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We propose a complement to the Laplace–Varadhan integral lemma arising in the large-deviations
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1. Introduction

The Laplace–Varadhan integral lemma is a powerful change-of-reference-probability

technique which enables the transfer of a large-deviations principle (LDP) from one

sequence of probability measures fQN ; N > 1g to another fPN ; N > 1g. A collection of

probability measures fQN ; N > 1g on some metric space (M , d) is said to satisfy an LDP

with rate function H if there exists a lower semi-continuous function H : M ! [0, 1] such

that, for each open set A and for each closed subset B,

� inf
m2A

H(m) < lim inf
N!1

log
1

N
QN (A) and lim sup

N!1
log

1

N
QN (B) < � inf

m2B
H(m): (1)

The rate function is good if it has compact level sets; that is, for each h 2 [0, 1) the level

set fm 2 M ; H(m) < hg is compact.

The Laplace–Varadhan integral connection consists of a pair (PN , QN ) of absolutely

continuous measures on some complete separable metric space (M , d) such that

dPN

dQN
(u) ¼ exp(NC(u)) QN -almost everywhere (2)

for some measurable mapping C : M ! R. When C is bounded continuous, the lemma can

be stated as follows: if the sequence fQN ; N < 1g satisfies an LDP with good rate function

H then fPN ; N < 1g satisfies an LDP with good rate function H � C. The above sequences

are frequently defined in terms of the image measures

PN ¼ PN
s��1

N and QN ¼ QN
s��1

N
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for some probabilities PN and QN on some measurable space �N which may depend on N

and for some measurable mapping �N : �N ! M . Now we start by observing that if PN and

QN are aboslutely continuous and if, for QN -almost every x 2 �N,

dPN

dQN
(x) ¼ exp(NC(�N (x))) (3)

then the probability images PN and QN are absolutely continuous and their Radon–Nykodim

derivative satisfies (2), and the Laplace–Varadhan lemma applies if C is a bounded

continuous mapping. In this paper we propose a strategy to relax the analytic representation

(3) of the Radon–Nikodym derivative of PN with respect to QN . Our approach involves

replacing PN and QN by a pair of sequences PN
Æ,m and QN

m indexed respectively by a

parameter pair (Æ, m) with Æ 2 R and m 2 M and by a parameter m 2 M. Instead of (3) we

suppose that for any index pair (Æ, m) 2 (R3 M) we have PN
Æ,m ( QN

m and, for QN
m-almost

every x 2 �N,

dPN
Æ,m

dQN
m

(x) ¼ exp(N [ÆSN (x, m)þ CÆ(�N (x), m)]) (4)

for some measurable functions SN : �N 3 M ! R and CÆ : M 3 M ! R. We also assume

that PN
1,m is independent of m and we denote the former by PN

1 . For any (Æ, m) 2 (R3 M)

we define the image measures

P
N

Æ,m ¼ PN
Æ,m s��1

N and Q
N

m ¼ QN
m s��1

N :

We are now in position to state our main result.

Lemma 1.1 (Integral lemma). Suppose the sequence of probability measures fQN

m ; N > 1g
satisifes an LDP with good rate function H m : M ! [0, 1], for each m 2 M. Also assume

that the mappings fCÆ(�, m); Æ 2 Rg are continuous at each m, CÆ(m, m) ¼ 0 and the

exponential moment condition

lim sup
N!1

1

N
log

ð
�N

exp nN [SN (x, m)þ C1(�N (x), m)]dQN
m(x) ,1 (5)

holds for some (m, n) 2 M 3 (1, 1). Then fPN

1 ; N > 1g satisfies an LDP with good rate

function

I : m 2 M ! I(m) ¼ Hm(m) 2 [0, 1]:

We remark that (5) holds when the mappings C1(�, m) and Cn(�, m) are bounded for

some (m, n) 2 M 3 (1, 1). To see this, note that
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ð
�N

exp nN [SN (x, m)þ C1(�N (x), m)]dQN
m(x)

¼
ð
�N

exp N [nC1(�N (x), m)� Cn(�N (x), m)]dPN
n; m(x)

¼
ð

M

exp N [nC1(u, m)� Cn((u, m))]dP
N

n; m(u)

< exp(kC1 � Cn=nkNn):

Notice that when SN ¼ 0 are the null mappings then we have, for any u 2 M and N > 1,

dP
N

1

dQ
N

m

(u) ¼ exp N [C1(u, m)]

If C1(�, m) is continuous and (5) holds, Varadhan’s integral lemma says that the family of

probability measures P
N

1 ¼ PN

1
s��1

N satisfies the LDP with rate function I : M ! [0, 1]

given, for any u 2 M, by

I(u) ¼ H m(u)� C1(u, m):

If C1(�, m) is continuous and (5) holds for all m, since C1(u, u) ¼ 0 we have that

I(u) ¼ Hu(u):

Note that under our assumptions we only require the continuity of C1(�, m) at the point m

and that (5) holds for one m. Therefore, even when SN ¼ 0, our result does not follow from

the Laplace–Varadhan integral lemma.

To illuminate the structure of the Radon–Nikodym derivative (4) we discuss the different

roles played by the two parameters (m, Æ) 2 M 3 R. One natural and very useful strategy

in many applications of large deviations is to find judicious reference probability measures

under which the random sequence at hand satisfies an LDP with a good rate function. The

next stage consists of transferring this result to the desired sequence of distributions.

The choice of the reference sequence Q
N
m , m 2 M , is often dictated by the problem at

hand. In the interacting particle system (IPS) context QN
m is often chosen as an N -fold

tensor product measure so that the particle are QN
m-independent. In this situation Sanov’s

theorem tells us that an LDP holds with a good rate function. Using the integral lemma the

LDP transfer is guaranteed provided that we can find a collection of distributions PN
Æ,m

satisfying (4). Intuitively speaking, the pair (Æ, m) can be regarded as a deformation

parameter of the sequence of measures PN
1 . In the IPS context each PN

Æ,m is the distribution

law of an N -IPS model with an interaction function depending on the parameters Æ 2 R

and m 2 M . In some sense (Æ, m) measures the strength of interaction. For instance, in the

forthcoming examples, when Æ! 0 the particles become independent.
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2. Proof of the integral lemma

The following technical proposition states the exponential tightness property and two key

estimates needed to prove our result.

Proposition 2.1. Under the assumptions of Lemma 1.1 the sequence of probability measures

P
N

1 on M is exponentially tight. For any Borel subset A % M and for any

1=nþ 1=n9 ¼ 1, 1 , n, n9 ,1, and m 2 M, we have

P
N

1 (A) < Q
N

m(A)1=n9P
N

n,m(A)1=nexp[N�n(m, A)], (6)

Q
N

m(A) < P
N

1 (A)1=nP
N

Æ,(n),m(A)1=n9exp[N�Æ(n)(m, A)=n] (7)

with Æ(n) ¼ �n9=n, and, for any Æ 6¼ 0,

�Æ(m, A) ¼ sup
u2A

jC1(u, m)� CÆ(u, m)=Æj:

Since the proof of this proposition is rather technical, we have chosen to present first

how it is used to prove our main result. By exponential tightness, we already know from

Puhalskii (1991) that there exists a subsequence along which an LDP holds with good rate

function.

Proof of Lemma 1.1. If we take A in (6) to be the closure of the ball of radius E and centre

m 2 M , that is,

A ¼ B(m, E) ¼ fu 2 M : d(u, m) < Eg,

we find that for any conjugate integers 1=nþ 1=n9 ¼ 1, with 1 , n, n9 ,1,

P
N

1 (B(m, E)) < Q
N

m(B(m, E))1=n9exp[N�n(m, B(m, E))]:

Recalling that fQN

m; N > 1g satisfies the LDP with good rate function H m, this implies that

lim sup
N!1

1

N
logP

N

1 (B(m, E)) < � 1

n9
inf

B(m,E)
H m þ �n(m, B(m, E)):

Since H m is a good rate function and fB(m, E); E . 0g is a nested family of closed sets, that

is,

B(m, E) % B(m, E9) if E , E9,

from Lemma 4.1.6 in Dembo and Zeitouni (1993, p. 104) we have

H m(m) ¼ lim
E!0

inf
B(m,E)

H m:

Since each mapping Cn(�, m) : M ! R is continuous at the point m and Cn(m, m) ¼ 0 by

definition of �n we also have that
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lim
E!0

�n(m, B(m, E)) ¼ 0:

Considering the limit E # 0, one obtains, for any n9 . 1,

lim
E!0

lim sup
N!1

1

N
logP

N

1 (B(m, E)) < � 1

n9
Hm(m):

Letting n9! 1, we obtain

lim
E!0

lim sup
N!1

1

N
logP

N

1 (B(m, E)) < �I(m): (8)

Now if we take A in (7) to be the open ball

A ¼ B(m, E) ¼ fu 2 M : d(u, m) , Eg,

we obtain

Q
N

m(B(m, E)) < P
N

1 (B(m, E))1=n exp[N�Æ(n)(m, B(m, E))=n]:

Our assumptions on fQN

m ; N > 1g imply that

�Hm(m) < � inf
B(m,E)

Hm < lim inf
N!1

1

N
logQ

N

m(B(m, E)):

Arguing as above, this implies that

�I(m) < lim inf
N!1

1

N
logQ

N

m(B(m, E)) <
1

n
lim inf

N!1

1

N
logP

N

1 (B(m, E))þ �Æ(n)(m, B(m, E))

� 	
:

Considering the limit E # 0, one obtains, for any n . 1,

�nI(m) < lim
E!0

lim inf
N!1

1

N
logP

N

1 (B(m, E)):

Letting n! 1, we obtain from (8) that

lim
E!0

lim sup
N!1

1

N
logP

N

1 (B(m, E)) < �I(m) < lim
E!0

lim inf
N!1

1

N
logP

N

1 (B(m, E)):

Since

lim
E!0

lim inf
N!1

1

N
logP

N

1 (B(m, E)) < lim
E!0

lim sup
N!1

1

N
logP

N

1 (B(m, E)),

it follows that

�I(m) ¼ lim
E!0

lim sup
N!1

1

N
logP

N

1 (B(m, E)) ¼ lim
E!0

lim inf
N!1

1

N
logP

N

1 (B(m, E)):

As noticed in Remark 2.2 in Feng and Kurtz (2000), this statement implies that P
N

1 satisfies

the weak LDP (i.e. with upper bounds only for compact sets). Since the sequence P
N

1 is

exponentially tight, the weak LDP is equivalent to the full LDP (see for instance Lemma

1.2.18 in Dembo and Zeitouni 1993, p. 8) and the proof of the lemma is now complete. h
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We now come to proof of the technical proposition.

Proof of Proposition 2.1. Fixing n . 1 so that (5) holds and denoting the left-hand side of

(5) by ncn=2, we have, for N large enough,ð
dPN

1

dQN
m

 !n

dQN
m ¼

ð
�N

exp nN [SN (x, m)þ C1(�N (x), m)] dQN
m(x)

< exp(ncnN ): (9)

Since the sequence fQN

m ; N > 1g satisfies a full LDP, fQN

m; N > 1g is exponentially tight

(see for instance Exercise 4.1.10 in Dembo and Zeitouni 1993, p. 105). For any a ,1 there

exists a compact set K(m, a) % M such that

lim sup
N!1

1

N
logQ

N

m(Kc(m, a)) , �a with Kc(m, a) ¼ M � K(m, a):

To prove that fPN

1 ; N > 1g is exponentially tight, we first notice that

P
N

1 (K c
n(m, a)) ¼ PN

1 (1K c
n(m,a)(�N (x))),

with

1

n
þ 1

n9
¼ 1 and K c

n(m, a) 	 K c(m, n9(cn þ a)):

Thus, using Holder’s inequality, we verify that

P
N

1 (K c
n(m, a)) ¼ QN

m (1K c
n(m,a) s�N )

dPN
1

dQN
m

 !

< Q
N

m(K c
n(m, a))1=n9Q

N
m

dPN
1

dQN
m

 !n
0@ 1A1=n

< Q
N

m(K c
n(m, a))1=n9exp(cnN ):

Recalling (9), the above estimate implies that

lim sup
N!1

1

N
logP

N

1 (K c
n(m, a)) , � 1

n9
[n9(cn þ a)]þ cn ¼ �a:

This clearly ends the proof of the exponential tightness of the sequence fPN

1 ; N > 1g. In the

same way, for any Borel subset A % M and for any 1=nþ 1=n9 ¼ 1, 1 , n, n9 ,1, and

m 2 M , we have
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P
N

1 (A) ¼ QN
m (1A s�N )

dPN
1

dQN
m

 !

< Q
N

m(A)1=n9Q
N
m (1A s�N )

dPN
1

dQN
m

 !n
0@ 1A1=n

< Q
N

m(A)1=n9Q
N
m((1A s�N )exp(nN [SN (x, m)þ C1(�N (x), m)]))1=n:

Since we have

Q
N
m((1A s�N )exp(nN [SN (�, m)þ C1(�N (�), m)]))

¼ Q
N
m((1A s�N )exp(N [nSN (�, m)þ Cn(�N (�), m)])

3 exp(�N [Cn(�N (�), m)� nC1(�N (�), m)]))

¼ PN
n,m((1A s�N )exp(�N [Cn(�N (�), m)� nC1(�N (�), m)]))

< P
N

n,m(A)exp N sup
u2A

jnC1(u, m)� Cn(u, m)j
 �

¼ P
N

n,m(A)exp(nN�n(m, A)),

we find that

P
N

1 (A) < Q
N

m(A)1=n9P
N

n,m(A)1=nexp(N�n(m, A)):

This establishes (6).

To prove (7) we first use the decomposition

1A(�N (x)) ¼ 1A(�N (x))exp
N

n
[SN (x, m)þ C1(�N (x), m)]

� �� 	

3 1A(�N (x))exp � N

n
[SN (x, m)þ C1(�N (x), m)]

� �� 	
and Holder’s inequality to prove that

Q
N

m(A) < QN
m(1A s�N exp(N [SN (�, m)þ C1(�N (�), m)]))1=n

3Q
N
m 1A s�N exp �N

n9

n
[SN (�, m)þ C1(�N (�), m)]

� �� �1=n9

(10)

¼ P
N

1 (A)1=n 3Q
N
m 1A s�N exp �N

n9

n
[SN (�, m)þ C1(�N (�), m)]

� �� �1=n9

:
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We now observe that

Q
N
m( 1A s�N exp �N

n9

n
[SN (�, m)þ C1(�N (�), m)]

� �� �
¼ QN

m(1A s�N exp(NÆ(n)[SN (�, m)þ C1(�N (�), m)]))

¼ Q
N
m(1A s�N exp(N [Æ(n)SN (�, m)þ CÆ(n)(�N (�), m)])

3 exp(N [Æ(n)C1(�N (�), m)� CÆ(n)(�N (�), m)]))

< P
N

Æ(n),m(A) 3 exp(N jÆ(n)j�Æ(n)(m, A)):

We find from (10) that

Q
N

m(A) < P
N

1 (A)1=nP
N

Æ(n),m(A)1=n9 3 exp(N�Æ(n)(m, A)=n):

This establishes (7) and the proof of the proposition is complete. h

3. Large deviations for interacting particle systems

We illustrate the impact of the integral lemma in the context of IPS models. Our general

and abstract context is ideally suited to treating within the same framework discrete

generation IPS as well as pure jump and McKean–Vlasov IPS diffusions.

We let I ¼ f0, 1, . . . , T ] % N(I ¼ [0, T ] % Rþ ¼ [0, 1)) be a discrete (continuous) time

index with a finite time horizon T 2 N(T 2 Rþ). For E a complete separable metric space

we denote by P(E) the set of all probability measures on E furnished with the weak

topology. By D(I , E) we denote the set of all cadlag paths from I into E with the

Skorohod metric (when I ¼ f0, 1, . . . , Tg the set is simply the product space ETþ1). We

also denote by �(�) ¼ (� t) t2 I the distribution flow of the marginals with respect to time of

a given measure � 2 P(D(I , E)). Finally, and with a slight abuse of notation, we denote by

m(x) the empirical measure associated with a point in a given product space

x ¼ (x1, . . . , x N ) 2 EN , that is,

m(x) ¼ 1

N

XN

i¼1

�x i ,

where �a stands for the Dirac measure at a 2 E.

In the discrete time situation we start with a distribution �0 2 P(E) and a collection

of Markov transitions k ¼ fK n,�; n 2 I , � 2 P(E)g. For any distribution flow ª ¼
(ªn)n2 I 2 P(E)Tþ1, we denote by Qª the measure on ETþ1 defined by

Qª(d(x0, . . . , xT )) ¼ �0(dx0)K1,ª0(x0, dx1) . . . KT ,ªT�1(xT�1, dxT ):

It is important to notice that the McKean distribution defined by

P(d(x0, . . . , xT )) ¼ �0(dx0)K1,�0
(x0, dx1) . . . KT ,�T�1(xT�1, dxT )
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and associated with the distribution flow

�n ¼ �n�1 K n,�n�1
¼
ð
�n�1(dx)K n,�n�1

(x, �)

is a fixed point of the mapping � 2 P(D(I , E))! Q�(�) 2 P(D(I , E)). As usual, P can be

interpretated as the law of a time-inmogeneous Markov process X n with elementary

transitions K n,�n�1
with �n�1 ¼ P s X�1

n�1. More precisely, P is the solution of the following

discrete time and time-inhomogeneous martingale problem defined on the canonical space

(�, F, �) ¼ (D(I , E), (Ft) t>0, (Xt) t2 I ):

• Ps X�1
0 ¼ �0.

• For any bounded measurable test function f on E the sequence

Mn( f ) ¼ f (X n)� f (X 0)�
Xn

p¼1

[ f (X p)� K p,� p�1
( f )(X p�1)]

is an F-martingale under P, and the distribution flow f�n; n 2 Ig coincides with the

set of time marginals of P, that is, P s X�1
n ¼ �n.

The N -IPS associated to the collection K and the distribution �0 2 P(E) is an EN -valued

Markov chain �n ¼ (�1
n, . . . , �N

n ), n 2 I , with initial distribution ��N
0 and elementary

transitions

Pr(�n 2 d(x1, . . . , x N )j�n�1) ¼
YN
i¼1

K n,m(� n�1)(�
i
n�1, dxi):

In the continuous time situation we start with a distribution �0 2 P(E) and a collection of

generators L ¼ fLt,	; t 2 I , 	 2 P(E)g defined on some dense domain D(L) in the space of

bounded continuous functions. For any distribution flow ª ¼ (ª t) t2 I with ª t 2 P(E), t 2 I ,

we suppose there exists a solution Qª 2 P(D(I , E)) of the non-homogeneous martingale

problem associated with fLt,ª t
; t 2 Ig and starting at �0. In this framework the McKean

measure P can again be characterized as the fixed point of the mapping

� 2 P(D(I , E))! Q�(�) 2 P(D(I , E)). More generally, P is defined as the solution of

the following time-inhomogeneous martingale problem defined on the canonical space

(�, F, �) ¼ (D(I , E), (Ft) t>0, (X t) t>0):

• Ps X�1
0 ¼ �0.

• For any f 2 D(L), the process

Mt( f ) ¼ f (X t)� f (X0)�
ð t

0

Ls,�s
( f )(X s)ds

is an F-martingale under P and the distribution flow f� t; t > 0g coincides with the set

of time marginals of P, that is, P s X�1
t ¼ � t.

In this case the marginal distribution flow (� t) t2 I solves the nonlinear evolution equation

defined for any f 2 D(L) by
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d

dt
� t( f ) ¼ � t(Lt,� t

( f )):

The N-IPS associated with L and �0 2 P(E) is an EN -valued Markov process

� t ¼ (�1
t , . . . , �N

t ) having the initial distribution ��N
0 with generator

L t( f )(x1, . . . , xN ) ¼
XN

i¼1

L
(i)
t,m(x)( f )(x1, . . . , x N ),

where L
(i)
t,	 is used instead of Lt,	 when it acts on the ith variable of f (x1, . . . , xN ).

In the discrete or continuous time situation it is also known that the empirical distribution

(1=N )
PN

i¼1�(�i
t) t2 I

on the path space D(I , E) converges as N !1 to the McKean measure

P in the sense that

lim
N!1

1

N

XN

i¼1

F((�i
t) t2 I ) ¼

ð
�

F(ø)dP(ø)

in probability and for any bounded continuous function F on D(I , E).

In the remainder of this section we use the following notation:

� ¼ D(I , E), M ¼ P(�):

Let PN be the probability measure induced by the N -IPS process (� t) t2 I in the product path

space �N ¼ � 3 . . . 3 �. By PN ¼ PN
s��1

N we denote the image probability measure of

the empirical measure on the path space with

�N : ø 2 �N ! �N (ø) ¼ 1

N

XN

i¼1

�øi 2 M :

For each � 2 M we also denote by Q
N
� ¼ (Q�(�))

�N the N-fold tensor product of the measure

Q�(�) and by Q
N

� ¼ Q
N
� s��1

N the corresponding image measure. For each � 2 M , Sanov’s

theorem tells us that the sequence Q
N

�(�), N > 1, satisfies an LDP with good rate function

�9 2 M ! H�(�9) ¼ Ent(�9jQ�(�)) 2 [0, 1]:

Here, Ent(�9jQ�(�)) denotes the relative entropy of �9 with respect to �(�). To transfer this

LDP to the sequence PN , N > 1, using Lemma 1.1 we need to find a collection of measures

PN
Æ,m of the form (4) with PN ¼ P

N

1 . In what follows we indicate a simple way to construct

these distributions. The construction will be notationally complicated, but it is a

straightforward application of Girsanov’s theorem.

A great deal of work has been done on LDPs for interacting particle systems on path

space. To motivate our work let us briefly connect our strategy with existing results in the

literature on the subject. In the case of jump processes, Feng (1994a) proved that the

collection of measures PN satisfies the LDP with a good rate function

I : � 2 M ! I (�) ¼ Ent(�jQ�(�)), (11)

while Feng (1994b) and Léonard (1995) obtained the LDP for the empirical process

(m(� t)) t2 I . In the diffusion case, Dawson and Gärtner (1994) also obtained the LDP for the

empirical process. In the discrete time situation Del Moral and Guionnet (1998) obtained the
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LDP in path space when the Markov transitions K n,	 are such that K n,	(x, �) ¼ K n,	(y, �) for

any x, y 2 E. Here we present a straightforward approach to obtaining the LDP in path space

for discrete, pure jump and diffusion IPS based on a direct application of Lemma 1.1. In all

situations the good rate function is given by (11).

We begin with discrete time IPSs. Suppose that, for each pair of measures

(	, �) 2 P(E)2 and for each n 2 I , x 2 E and Æ 2 R,

K n,	(x, �) ( K n,�(x, �) and Z(Æ)
n (	, �)(x) ¼

ð
dK n,	(x, �)
dK n,�(x, �) (y)

� 	Æ
K n,�(x, dy) 2 (0, 1):

We also suppose that the mappings

	 2 P(E)!
ð
	(dx)log Z(Æ)

n (	, �)(x) (12)

are bounded and continuous at each 	 ¼ �. Let � be a fixed distribution on the path space

�(¼ ETþ1) and let PN
Æ,�, Æ 2 R, denote the collection of distributions on �N ¼ (ETþ1)N

defined by

dPN
Æ,�

dQN
�

(ø) ¼ exp(N [ÆSN (ø, �)þ CÆ(�N (ø), �)])

for Q
N
� -almost every ø 2 �N with

SN (ø, �) ¼
XT

p¼1

ð
m(ø p�1, ø p)(d(u, v))log

dK p,m(ø p�1)(u, �)
dK p,� p�1

(u, �) (v)

" #
,

CÆ(	, �) ¼ �
XT

p¼1

ð
	 p�1(du)log

ð
dK p,	 p�1)(u, �)
dK p,� p�1

(u, �) (v)

 !Æ

K p,� p�1
(u, dv)

" #
:

Under PN
Æ,� the N-IPS model (�n)n2 I is the N-IPS model associated with the collection of

Markov transitions K (Æ) ¼ fK (Æ)
n,	; n 2 I , 	 2 P(E)g on E defined by

K (Æ)
n,	(x, dy) ¼ 1

ZÆ
n(	, �n�1)(x)

dK n,	(x, �)
dK n,�n�1

(x, �) (y)

� 	Æ
K n,�n�1

(x, dy):

As mentioned above, the parameter Æ clearly measures the degree of interaction in the

system. For instance, for Æ ¼ 0 we have PN
0,� ¼ Q

N
� ¼ (Q�(�))

�N and under PN
0,� the N-IPS

consists of N independent particles with elementary transitions K n,�n�1
. To illustrate this

observation, we examine the case of Gaussian mean field transitions on E ¼ R defined by

K n,	(x, dy) ¼ 1ffiffiffiffiffiffi
2�
p exp � 1

2
(y� b[x, 	])2

� �
dy

for some measurable drift function b : E 3 P(E)! E. In this special case we can verify that,

for any (x, 	) 2 E 3 P(E),
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K (Æ)
n,	(x, dy) ¼ 1ffiffiffiffiffiffi

2�
p exp � 1

2
(y� (b[x, �n�1]þ Æ(b[x, 	]� b[x, �n�1])))2

� 	
dy:

In addition, we can verify that, for any 	, � 2 M (¼ P(ETþ1)),

CÆ(	, �) ¼ Æ(1� Æ)

2

Xn�1

p¼0

ð
	 p(dx)(b[x, � p]� b[x, 	 p])2:

We note that the technical assumption (12) is satisfied if and only if the drift function b is

chosen so that the mappings

	 2 P(E)!
ð
	(dx)(b[x, �]� b[x, 	])2

are bounded and continuous at each 	 ¼ �. To connect this example with the McKean–

Vlasov diffusion model examined later let us suppose the drift function b[x, 	] takes the form

b[x, 	] ¼
ð
	(dy)b(x, y)

for some measurable function b(x, y) on the product space E2. In this situation we can verify

that ð
	(dx)(b[x, �]� b[x, 	])2 ¼ 	 � [(	 � 	)� 2(	 � �)þ (� � �)](B)

with B(x, y, z) ¼ b(x, y)b(x, z). The desired regularity property is therefore met if b(x, y) is

bounded continuous.

Turning now to continuous time IPSs, we consider two traditional situations: the pure

jump generator and the diffusion generator.

For the pure jump generator we suppose that L ¼ fL	; 	 2 P(E)g is a collection of

bounded generators and D(L) ¼ Bb(E) is the set of bounded measurable functions. If

Lþ	 (x, �) and L�	 (x, �) constitute a Jordan decomposition of the signed kernel L	(x, �) then

we have Lþ	 (x, E) ¼ L�	 (x, E) and

L	(x, dy) ¼ º	(x)[Q	(x, dy)� �x(dy)]

with

º	(x) ¼ Lþ	 (x, E) and Q	(x, dy) ¼ Lþ	 (x, dy)=Lþ	 (x, E):

In this situation we assume that for any 	, � and u we have Lþ	 (u, �) ( Lþ� (u, �) with

dLþ	 (U , �)=dLþ� (u, �)(v) > E . 0. We also assume there exists some countable subset

H % Cb(E) with

j1� dLþ� (u, �)=dLþ	 (u, �)(v)j <
X
h2H
j	(h)� �(h)j and jHj ¼

X
h2H
khk ,1:

For the diffusion generator we suppose that E ¼ Rd , d > 1. If b : Rd 3 Rd ! Rd is a

bounded continuous function then, for each 	 2 P(Rd) and j 2 D(L) ¼ C2
b(Rd), we set
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L	(j)(x) ¼ 1

2

Xd

i¼1

@2j
@x2

i

(x)þ
Xd

i¼1

bi[x, 	]
@j
@xi

(x)

with

bi[x, 	] ¼
ð
Rd

	(dy)bi(x, y):

In both situations it is known that there exists a unique McKean measure P; see, for

instance, Graham (1992) in the jump case and Sznitman (1991) for diffusions. In the pure

jump situation, with � 2 M fixed, Girsanov’s theorem implies that PN ( Q
N
� . In addition,

for Q
N
� -almost every ø 2 �N, we have that

dPN

dQN
�

(ø) ¼ expN [SN (ø, �)þ C1(�N (ø), �)],

with the mappings SN : �N 3 M ! R and C1 : M 3 M ! R defined by

SN (ø, �) ¼
X
s<T

ð
E3E

m(øs�, øs)(d(u, v))log
dLþm(øs�)(u, �)

dLþ�s�
(u, �) (v)1u 6¼v,

C1(	, �) ¼ �
ðT

0

	s� Lþ	s�
� Lþ�s�

 �
(1) ds:

In the same way, for any bounded Borel function f 2 Bb(I 3�N 3�N ) the process defined

for any ø 2 �N by

E t( f )(ø) ¼ exp
X
s< t

øs 6¼øs�

f (s, øs�, øs)�
ð t

0

ð
E N

(e f (s,øs� ,x) � 1)Lþ�(�)(øs�, dx)ds

24 35
with, for any j 2 Bb(�N ),

Lþ�(�)(j)(øs�) ¼
XN

i¼1

ð
E

Lþ�s�
(xi, du)j(Łi(øs�, u)),

is a local Q�(�)-martingale. Here, for 1 < i < N , u 2 E and x ¼ (x1, . . . , xN ) 2 EN, Łi(x, u)

¼ (Łi
j(x, u))1< j<N is the element of EN given by

Łi
j(x, u) ¼ xj, if j 6¼ i,

u, if j ¼ i:

�
Applying this result to the collection of functions

f (s, x, y) ¼ Æ
XN

i¼1

1 y i 6¼x i log
dLþm(x)(x

i, �)
dLþ�s�

(xi, �) (yi), Æ 2 R,

we define a family of probability measures PN
Æ,�, with Æ 2 R, by setting
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dPN
Æ,�

dQN
�

(ø) ¼ exp N [ÆSN (ø, �)þ CÆ(�N (ø), �)],

with the mappings CÆ : M 3 M ! R defined by

CÆ(	, �) ¼ �
ðT

0

ð
E3E

	s�(du)Lþ�s�
(u, dv)

dLþ	S�
(u, �)

dLþ�s�
(u, �) (v)

" #Æ
�1

0@ 1Ads:

Note that under PN
Æ,� the N -IPS model (� t) t2 I becomes the N -IPS model associated with a

signed kernel L
(Æ)
t,	 with Jordan decomposition positive part

L
(Æ)þ
t,	 (x, dy) ¼

dLþ	 (x, �)
dLþ� t�(x, �) (y)

 !Æ

Lþ� t�(x, dy):

In view of Lemma 1.1 above and Sanov’s theorem (Dembo and Zeitouni 1993, Theorem

6.2.10), it remains to prove that, for each m 2 M and Æ 2 R, the mapping CÆ(�, m) is

bounded and continuous on M . First, we note that, for any E < x < 1=E and Æ 2 R,

j1� xÆj ¼ j1� exp(Æ log x)j < jÆj jlog xj j1þ xÆj

and therefore

j1� xÆj < Ł(Æ, E)j1� xj with Ł(Æ, E) ¼ jÆj(E�1 þ E�(1þjÆj))(< 2jÆj=E1þjÆj):

Hence, under our assumptions we obtain

jCÆ(	, �)j < Ł(Æ, E)
ðT

0

ð
E3E

	s�(du)Lþ�s�
(u, dv)

���� dLþ	s�
(u, �)

dLþ�s�
(u, �) (v)� 1

����ds

< Ł(Æ, E)
X
h2H

ðT

0

[	s�Lþ�s�
(1)]j	s�(h)� �s�(h)jds,

and finally

jCÆ(	, �)j < Ł�(Æ, E)
X
h2H

ðT

0

j	 t(h)� � t(h)jds,

with Ł�(Æ, E) ¼ Ł(Æ, E) [sup0< t<Tkº� tk] ,1. On the other hand, noting thatðT

0

j	 t(h)� � t(h)j2 dt ¼
ðT

0

	 t(h)2 dt þ
ðT

0

� t(h)2 dt � 2

ðT

0

	 t(h)� t(h)dt

and, for any h 2 Cb(E) and 	, � 2 M,ðT

0

	 t(h)� t(h)dt ¼
ðT

0

ð
�T3�T

h(ø t)h(ø9t)	(dø)�(dø9)dt ¼ (	 � �)(Hh)

with
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Hh(ø, ø9) ¼
ðT

0

(h � h)(ø t, ø9t)dt ¼
ðT

0

h(ø t)h(ø9t)dt,

we have

C2
Æ(	, �) < [Ł2

�(Æ, E)jHj]
X
h2H

((	 � 	)þ (� � �)� 2(	 � �))(Hh):

The space � ¼ D([0, T ], E) with the Skorohod metric is topologically complete and

separable. Thus, by Lemma 1.1 in Parthasarathy (1967), if 	n and �n weakly converge to 	
and � then (	n � �n) weakly converges to (	 � �). For each continuous mapping h the

integral function

ø 2 �!
ðT

0

h(ø t)dt

is continuous for the Skorohod metric; see, for instance, Example 8.2 in Kurtz and Protter

(1995, p. 32). Since H % Cb(E), we conclude that Hh 2 Cb(�) for any h 2 H and

	n weakly converges to 	) lim
n!1

CÆ(	n, �) ¼ CÆ(	, �):

We now examine mean field diffusions. We first notice that, for any � 2 M, ø 2 � and b

bounded continous, the stochastic process (B
�
t ) t2 I defined by

t 2 I ! B
�
t (ø) ¼ ø t � ø0 �

ð t

0

b[ø t, � t]ds

is an E-valued Brownian motion with respect to Q�(�). By Girsanov’s theorem we have

PN ( QN
� and, for QN

� -almost every ø ¼ (ø1, . . . , øN ) 2 �N,

dPN

dQN
�

(ø) ¼
XN

i¼1

ðT

0

(b[øi
t, m(ø t)]� b[øi

t, � t])
T dB

�
t (øi)

� 1

2

XN

i¼1

ðT

0

kb[øi
t, m(ø t)]� b[øi

t, � t]k2 ds

¼ N [SN (ø, �)þ C1(�N (ø), �)]

with, for any ø 2 �N and 	, � 2 M,

SN (ø, �) ¼
ðT

0

ð
m(ø t)(du)m(ø t)(dv)(b(u, v)� b[u, � t])

T dB
�
t (u)

C1(	, �) ¼ � 1

2

ðT

0

ð
	 t(du)kb[u, 	 t]� b[u, � t]k2 ds:

Here, the superscript T denotes transpose. Arguing as in the pure jump situation, we define a

family of probability measures PN
Æ,�, with Æ 2 R, by setting
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dPN
Æ,�

dQN
�

(ø) ¼ exp N [ÆSN (ø, �)þ CÆ(�N (ø), �)], with CÆ ¼ Æ2C1:

Note that under PN
Æ,� the N-IPS model (� t) t2 I is the N-IPS model associated with the time-

inhomogeneous generators L
(Æ)
t,	 defined, for any t 2 I and j 2 D(L) ¼ C2

b(Rd), by

L
(Æ)
t,	(j)(x) ¼ L� t(j)(x)þ Æ

Xd

i¼1

(bi[x, 	]� bi[x, � t])
@j
@xi

(x):

For any pair (	, �) 2 P(E)2, we have thatð
	(du)kb[u, 	]� b[u, �]k2 ¼

Xd

i¼1

ð
	(du)[	(bi(u, �))� �(bi(u, �))]2: (13)

Noting that

[	(bi(u, �))� �(bi(u, �))]2 ¼ 	(bi(u, �))2 þ �(bi(u, �))2 � 2	(bi(u, �))�(bi(u, �))

and

	(bi(u, �))�(bi(u, �)) ¼
ð

(	 � �)(dv, dv9)bi(u, v)bi(u, v9)

¼ (	 � �)(bi(u, �) � bi(u, �)),

we can rewrite (13) asð
	(du)kb[u, 	]� b[u, �]k2

¼
Xd

i¼1

	(du)[( 	 � 	)þ (� � �)� 2(	 � �)](bi(u, �) � bi(u, �))

¼ 	 � [(	 � 	)þ (� � �)� 2(	 � �)](B),

with B 2 Cb(E3) given by

B(u, v, v9) ¼
Xd

i¼1

bi(u, v)bi(u, v9):

This implies that, for any pair (	, �) 2 M2,

CÆ(	, �) ¼ �Æ2

2

ðT

0

	 t � [(	 t � 	 t)þ (� t � � t)� 2(	 t � � t)](B)ds

¼ �Æ2

2
	 � [(	 � 	)þ (� � �)� 2(	 � �)](B),

with B 2 Cb(�3) given by
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B(ø, ø9, ø 0) ¼
ðT

0

B(ø t, ø9t, ø 0t )dt:

Arguing as in the jump case, the desired properties of the mapping Ca(�, m) are clear.
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