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We propose a new analytic formula for evaluating the derivatives of a matrix exponential. In contrast

to the diagonalization method, eigenvalues and eigenvectors do not appear explicitly in the derivation,

although we show that a necessary and sufficient condition for the validity of the formula is that the

matrix has distinct eigenvalues. The new formula expresses the derivatives of a matrix exponential in

terms of minors, polynomials, the exponential of the matrix as well as matrix inversion, and hence is

algebraically more manageable. For sparse matrices, the formula can be further simplified. Two

examples are discussed in some detail. For the companion matrix of a continuous-time autoregressive

moving average process, the derivatives of the exponential of the companion matrix can be computed

recursively. The second example concerns the exponential of the tridiagonal transition intensity matrix

of a finite-state-space continuous-time Markov chain whose instantaneous transitions must be between

adjacent states. We present a numerical study to show that the new method may yield numerically

more accurate results than the diagonalization method, at the expense of a slight increase in

computation.

Keywords: CARMA models; Cayley–Hamilton theorem; finite-state-space continuous-time Markov

chain; maximum likelihood estimation; transition intensity matrix

1. Introduction

Various methods of parameter differentiation of a matrix exponential have been studied in

statistical mechanics and quantum theory (see Wilcox, 1967), as well as in the mathematics,

economics and statistics literature (see Jennrich and Bright 1976; Van Loan 1978;

Kalbfleisch and Lawless 1985; Graham 1986; Horn and Johnson 1991; Chen and Zadrozny

2001; and Chan and Munoz-Hernandez 2003). For continuous/discrete state-space modelling

(see Jazwinski 1970; Singer 1995), parameter differentiation of a matrix exponential is

needed to compute the analytic score function. For continuous-time Markov modelling, an

efficient algorithm for the computation of the transition probability matrix and its

derivatives with respect to the transition intensity parameters is needed for maximum

likelihood estimation. For example, see Kalbfleisch and Lawless (1985) for an approach to
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analysing categorical panel data by assuming that the data are obtained from sampling a

latent continuous-time finite-state-space Markov process.

We propose in this paper an alternative method for computing the derivatives of a matrix

exponential. In contrast to the diagonalization method (see below), eigenvalues and

eigenvectors do not appear explicitly in the derivation, although we show that a necessary

and sufficient condition for the validity of the formula is that the matrix has distinct

eigenvalues. The new formula expresses the derivatives of a matrix exponential in terms of

minors, polynomials, the exponential of the matrix as well as matrix inversion, and hence is

algebraically more manageable. In particular, we present a numerical study to show that, for

nearly non-diagonalizable matrices, the new method may be numerically more accurate than

the diagonalization method. When the matrix has repeated eigenvalues, it appears to be hard

to extend the results; see the end of Section 2 for a discussion. Fortunately, in most

statistical applications that involve matrix exponentials, the distinct eigenvalue assumption is

valid. For example, in continuous-time Markov chain modelling, for most models of

interest, the transition intensity matrix has distinct eigenvalues for almost all parameter

values (see Kalbfleisch and Lawless, 1985).

This paper is organized as follows. In Section 2, we derive the new formula for

computing the derivatives of a matrix exponential and a necessary and sufficient condition

for the formula to be valid. For sparse matrices, the formula may be further simplified. Two

interesting examples are the exponential of the companion matrix arising from a

continuous-time autoregressive moving average process and that of the tridiagonal transition

intensity matrix arising from a continuous-time Markov chain whose instantaneous

transitions must be jumps between adjacent categories. Some simplified formulae for these

two examples are given in Section 3. We report in Section 4 a numerical study comparing

the new method and the diagonalization method in terms of speed and numerical stability.

2. Main results

Let A ¼ [aij] be a p3 p matrix whose elements are functions of W ¼ (W1, . . . , Wr)
T. Recall

that the matrix exponential eA ¼
P1

j¼0A
j= j!. There are a number of approaches for

computing the partial derivatives of e tA with respect to W j, where t is a real number. A

commonly used method is diagonalization, which assumes that A has distinct eigenvalues

d1, . . . , dp so that A ¼ XDX �1 and e tA ¼ X diag(ed1 t, . . . , ed p t)X �1, where X is the p3 p

matrix whose jth column is a right eigenvector corresponding to dj and D ¼
diag(d1, . . . , dp). Furthermore,

@e tA

@Wu

¼ XVuX
�1, u ¼ 1, . . . , r, (1)

where Vu is a p3 p matrix with (i, j)th entry equal to

g
(u)
ij (e

di t � ed j t)=(di � dj), i 6¼ j,

g
(u)
ii tedi t, i ¼ j,
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and g
(u)
ij is the (i, j)th entry in G(u) ¼ X�1(@A=@Wu)X . See Kalbfleisch and Lawless (1985)

for the above formula and related discussions; see also Jennrich and Bright (1976) and Chan

and Munoz-Hernandez (2003). When A has repeated eigenvalues, an analogous decomposi-

tion of A to Jordan canonical form is possible (see Chapter 4 of Cox and Miller, 1965). But,

as pointed out by Kalbfleisch and Lawless (1985), this is rarely necessary, since for most

models of interest in continuous-time Markov modelling, A has distinct eigenvalues for

almost all parameters.

Another approach is based on equation (2.1) of Wilcox (1967) which states that, for

i ¼ 1, . . . , r,

@e tA

@Wi

¼
ð t
0

e( t�u)A @A

@Wi

� �
euA du: (2)

One of the main results of this paper is to derive another closed-form solution for @e tA=@Wi,

based on the Wilcox formula. Let Bij ¼ @A=@aij, which is a p3 p matrix with a 1 in (i, j)th

position and zeros everywhere else. Then, for 1 < k < r,

@e tA

@Wk

¼
ð t
0

e( t�u)A @A

@Wk

euA du

¼
ð t
0

e( t�u)A
Xp
i¼1

Xp
j¼1

@aij
@Wk

Bij

 !
euAdu

¼
Xp
i¼1

Xp
j¼1

@aij
@Wk

ð t
0

e( t�u)ABij e
uA du

¼
Xp
i¼1

Xp
j¼1

@aij
@Wk

�ij, (3)

where

�ij ¼
ð t
0

e( t�u)ABij e
uA du: (4)

A closed-form solution for �ij in terms of minors, polynomials, the exponential of the matrix

A as well as matrix inversion is given in Theorem 1.

Before stating the main results, we need some notation for an explicit formula for the

characteristic polynomial of A. Let A ¼ [aij] and B ¼ [bij] be two p3 p matrices. Define

[A, B] ¼ AB� BA as the commutator of A and B, and let jAj be the determinant of the

matrix A. For vectors Æ ¼ [Æ1, . . . , Æq] and � ¼ [�1, . . . , �q], where Æ j 2 f1, . . . , pg and

� j 2 f1, . . . , pg, for j ¼ 1, . . . , q(< p), we denote the (sub)matrix that lies in the rows of

A indexed by Æ and the columns indexed by � as A(Æ, �). For example,

A([1, 3], [2, 1]) ¼ a12 a11
a32 a31

� �
:
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If � ¼ Æ, the submatrix A(Æ, Æ) is called a principal submatrix of A and is denoted by A(Æ);
see Horn and Johnson (1985, p. 17). Let R

p
0 ¼ 1 and, for 1 < k < p, let

R
p
k ¼

X
1< l1,..., l k< p

jA([l1, . . . , l k])j: (5)

Note that q(º) ¼
P p

k¼0(�1) p�k R
p
p�kº

k is the characteristic polynomial of A, and q(A) ¼ 0

by the Cayley–Hamilton theorem. Theorem 1 below essentially results from differentiating

(5) with respect to ai j. Let q9(º) be the (first) derivative of q with respect to º. Then

q9(A) ¼
P p�1

k¼0 (�1) p�k�1(k þ 1)R
p
p�k�1A

k , which is independent of t. This fact may result in

simpler inferential procedures, as will be illustrated in an example below. The derivative of

the matrix exponential is trivial when p ¼ 1. For p > 2, we have the following results:

Theorem 1. For p > 2, and assuming that q9(A) ¼
P p�1

k¼0 (�1) p�k�1(k þ 1)R
p
p�k�1A

k is

invertible,

�ij ¼
Xp�1

k¼0

(�1) p�k�1(k þ 1)R
p
p�k�1A

k

( )�1 Xp�1

k¼0

(�1) p�kþ1
@R p

p�k

@aij

 !
Ak

8<:
9=;te tA

264

�
Xp�2

u¼0

Xp
k¼uþ2

(�1) p�k(k � u� 1)R
p
p�k A

k�u�2[Bij, e
tA]Au

375:
Theorem 2 gives an explicit representation of the partial derivatives of the R

p
k with

respect to the aij, while Theorem 3 gives a necessary and sufficient condition for q9(A) to

be invertible.

Theorem 2. (a) For 1 < i 6¼ j < p,

@R p
1

@aij
¼ 0:

(b) For 1 < i 6¼ j < p,

@R p
2

@aij
¼ �jA([ j], [i])j ¼ �a ji:

(c) For 3 < k < p and 1 < i 6¼ j < p,

@R
p
k

@aij
¼ �

X
1< l1,..., l k�2< p

i=2f l1,..., l k�2g
j=2f l1,..., l k�2g

jA([ j, l1, . . . , l k�2], [i, l1, . . . , l k�2])j:

(d) For 1 < i < p,
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@R p
1

@aii
¼ 1:

(e) For 2 < k < p and 1 < i < p,

@R
p
k

@aii
¼

X
1< l1,..., l k�1< p
i=2f l1,..., l k�1g

jA([l1, . . . , l k�1])j:

Theorem 3. For p > 2, q9(A) ¼
P p�1

k¼0 (�1) p�k�1(k þ 1)R
p
p�k�1A

k is invertible if and only if

the matrix A has p distinct eigenvalues.

If A has repeated eigenvalues, Theorem 3 implies that q9(A) is singular, so that Theorem

1 is inapplicable. Now, Theorem 1 may be generalized by considering the equation

m(A) ¼ 0, where m(º) is the minimal polynomial of A. Indeed, if A is diagonalizable, its

minimal polynomial equals m(º) ¼
Q
(º� º j), where the product is over distinct

eigenvalues, in which case, even though the eigenvalues are not distinct, they do not

repeat in the minimal polynomial so that m9(A) is invertible. This suggests that the

preceding results may be extended to the more general case where A is diagonalizable, or

equivalently, its minimal polynomial is of the form m(º) ¼
Q
(º� º j), where all the º j are

distinct. However, the coefficients of the minimal polynomial may not admit a simple form.

Moreover, Theorem 2 and related results do not appear to be easily generalizable in this

more general situation.

3. Applications

3.1. Continuous-time autoregressive moving average processes

For continuous/discrete state-space modelling (see Jazwinski, 1970; Singer, 1995), parameter

differentiation of a matrix exponential is needed in computing the analytic score function;

indeed, it is also required in other methods of estimation, such as least squares. An example

of continuous/discrete state-space modelling is the continuous-time autoregressive moving

average (CARMA(p, q)) process, which is defined as the solution of the pth-order

differential equation

Y
(p)
t � Æ pY

(p�1)
t � . . . � Æ1Yt � Æ0 ¼ � [W (1)

t þ �1W
(2)
t þ . . . þ �qW

(qþ1)
t ], (6)

where the superscript ( j) denotes j-fold differentiation with respect to t; fWt, t > 0g is

standard Brownian motion, and Æ0, . . . , Æ p, �1, . . . , �q and � are constants. We assume that

� . 0, Æ1 6¼ 0 and �q 6¼ 0 and define � j :¼ 0 for j . q. The derivatives W
( j)
t , j . 0, do not

exist in the usual sense; hence, we interpret (6) as being equivalent to the observation and

state equations (the Y s below are observations sampled at possibly unequally spaced epochs

t1 , t2 , . . . , t n from an underlying continuous-time process fXtg and are also referred to

as the state vectors: for further discussion, see Arnold 1974; Brockwell 1993; Brockwell and

Stramer, 1995):
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Yti ¼ �TX ti , i ¼ 1, 2, . . . , n,

dXt ¼ (AXt þ Æ0�p)dt þ ��p dWt,

where

A ¼

0 1 0 	 	 	 0

0 0 1 	 	 	 0

..

. ..
. ..

. . .
. ..

.

0 0 0 	 	 	 1

Æ1 Æ2 Æ3 	 	 	 Æ p

266664
377775, Xt ¼

X
(0)
t

X
(1)
t

..

.

X
(p�2)
t

X
(p�1)
t

2666666664

3777777775
, �p ¼

0

0

..

.

0

1

2666666664

3777777775
, � ¼

1

�1

..

.

� p�2

� p�1

26666666666664

37777777777775
:

The solution of the preceding stochastic differential equation is

Xt ¼ eAtX 0 þ Æ0

ð t
0

eA( t�u)�p duþ �

ð t
0

eA( t�u)�p dWu:

Thus, statistical inference for this model generally requires differentiation of the matrix

exponential of At; see below. Note that the companion matrix A is a function of the

parameters Æ1, . . . , Æ p, and, due to the simplicity of the matrix, parameter differentiation of

the corresponding matrix exponential can be easily computed by the recursive procedure

@e tA

@Æi

¼ @e tA

@Æi�1

� �
A, 2 < i < p;

see Theorem 4(c) and the appendix for a proof. The partial derivative of e tA with respect to

Æ1 is given by parts (a) and (b) of the same theorem:

Theorem 4. (a) For p ¼ 1, @e tA=@Æ1 ¼ te tA.

(b) For p > 2,

@e tA

@Æ1

¼ K�1
p,0 te tA �

Xp�1

r¼1

Kp,r[Bpr, e
tA]

( )
, (7)

where

Kp,r ¼
(p� r)A p�r�1 �

Xp
k¼rþ2

(k � r � 1)Æk A
k�r�2, 0 < r < p� 2,

I r ¼ p� 1,

8><>:
and [Bpr, e

tA] ¼ Bpre
tA � e tABpr is the commutator of Bpr and e tA.

(c) For 2 < i < p,
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@e tA

@Æi

¼ @e tA

@Æi�1

� �
A: (8)

By way of clarification, the expressions for the matrix @e tA=@Æ1, for p ¼ 1, . . . , 4, are as

follows: for p ¼ 1,

@e tA

@Æ1

¼ te tA;

for p ¼ 2,

@e tA

@Æ1

¼ (2A� Æ2 I)
�1(te tA � [B21, e

tA]), (9)

for p ¼ 3,

@e tA

@Æ1

¼ (3A2 � 2Æ3A� Æ2 I)
�1fte tA � (2A� Æ3 I)[B31, e

tA]� [B32, e
tA]g

and for p ¼ 4,

@e tA

@Æ1

¼ (4A3 � 3Æ4A
2 � 2Æ3A� Æ2 I)

�1fte tA � (3A2 � 2Æ4A� Æ3 I)[B41, e
tA]

� (2A� Æ4 I)[B42, e
tA]� [B43, e

tA]g:

We now present an example illustrating the use of the new formulae. Suppose that we

observed the states Xt from a CAR(p) model over (possibly) unequally spaced epochs (say,

ti), and we wish to compute the conditional least-squares estimators of the parameters. First,

note that the sum of squared predictive residuals is

g(Æ0, . . . , Æ p) ¼
XN
i¼1

fxti � �� e˜i A(xti�1
� �)gTfxti � �� e˜i A(xti�1

� �)g,

where ˜i ¼ ti � ti�1 and � ¼ (�Æ0=Æ1, 0, . . . , 0)
T. For simplicity assume that Æ0 ¼ 0, so

that � ¼ 0. Therefore, for 1 < j < p,

@ g(Æ0, . . . , Æ p)

@Æ j
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¼ �2
XN
i¼1

@e˜i A

@Æ j

xti�1

 !T

(xti � e˜i Axti�1
)

¼ �2
XN
i¼1

xTt i�1
(AT) j�1 ˜ie

˜i A �
Xp�1

r¼1

Kp,r[Bpr, e
˜i A]

 !T

(K�1
p,0)

T(xti � e˜i Axti�1
)

¼ �2
XN
i¼1

tr (xti � e˜ i Axti�1
)xTt i�1

(AT) j�1 ˜ie
˜i A �

Xp�1

r¼1

Kp,r[Bpr, e
˜i A]

 !T

(K�1
p,0)

T

8<:
9=;

¼ �2
XN
i¼1

vec ˜ie
˜i A �

Xp�1

r¼1

Kp,r[Bpr, e
˜i A]

 !
Aj�1xti�1

(xti � e˜ i Axti�1
)T

( )" #T
vec[(K�1

p,0)
T]:

By replacing K�1
p,0 by the adjoint of K p,0 in the preceding expression, high numerical

accuracy can be attained even when some of the eigenvalues are nearly identical.

3.2. Tridiagonal intensity matrix in continuous-time Markov processes

Kalbfleisch and Lawless (1985) proposed methods for the analysis of panel data under a

continuous-time Markov chain fXtg with a finite state space that has, say, p states. Let

Q ¼ (qi, j) be a p3 p transition intensity matrix that is constant over any interval between

two consecutive integer time points; the intensities qi, j are the rates of transition of the

process fXtg from state i to state j over an infinitesimal time period and hence
P

jqi, j ¼ 0

for all i. Furthermore, the transition probability matrix of the process from t to t þ 1 is eQ.

In some applications, the states of a panel of independent individuals following such a

transition mechanism are observable over a set of integer time points. The formulae derived

below then facilitate a likelihood analysis of such data. For some applications, the matrix Q

is a sparse matrix in the sense that only a few elements of Q are non-zero. See Kalbfleisch

and Lawless (1985) for examples. Chan and Munoz-Hernandez (2003) adopted the

continuous-time Markov processes to model longitudinal data consisting of transitional

frequencies classified according to an ordered categorical response variable. The ordering of

the categories implies that the continuous-time Markov chain can only jump between

adjacent categories over an infinitesimal period, resulting in a tridiagonal transition intensity

matrix. For the tridiagonal transition intensity matrix, the coefficients R
p
k and their partial

derivatives with respect to the qij can be further simplified as in Theorem 5 below.

Henceforth, assume p > 2, and write the tridiagonal transition intensity matrix as

Q ¼

�q1 q1 0 	 	 	 0 0 0

q2 �q2 � q3 q3 	 	 	 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 	 	 	 q2p�4 �q2p�4 � q2p�3 q2p�3

0 0 0 	 	 	 0 q2p�2 �q2p�2

2666664

3777775:
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By equation (3) and the tridiagonality of the matrix, we only need to compute �ij for

ji� jj < 1, and so only the @R p
k =@qi j for ji� jj < 1 are needed. Theorem 5 gives a closed

form of the R
p
k and the required derivatives.

Theorem 5. Assume that p > 2.

(a) R p
p ¼ 0, for p > 2.

(b) For 1 < k < p� 1,

R
p
k ¼

X2p�2k

i1¼1

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k qi1 	 	 	 qik :

(c) For 1 < i < p,

@R p
1

@qi,i
¼ 1:

(d) For 1 < i < p and 2 < k < p,

@R
p
k

@qii
¼

X2p�2kþ2

i1¼1

X2p�2kþ4

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k�1q i
i1
	 	 	 q i

i k�1
,

where, for 1 < k < 2p� 2,

q i
k ¼

qk , if k =2 f2i� 2, 2i� 1g,
0, if k 2 f2i� 2, 2i� 1g:

(
(e)

@R p
1

@qi,iþ1

¼ @R p
1

@qiþ1,i

¼ 0:

( f )

@R p
2

@qi,iþ1

¼ �qiþ1,i ¼ �q2i,

and

@R p
2

@qiþ1,i

¼ �qi,iþ1 ¼ �q2i�1:

(g) For 1 < i < p� 1 and 3 < k < p,

@R p
k

@qi,iþ1

¼ �q2i
X2p�2kþ4

i1¼1

X2p�2kþ6

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k�2 ~qq i
i1
	 	 	 ~qq i

i k�2
,

and
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@R p
k

@qiþ1,i

¼ �q2i�1

X2p�2kþ4

i1¼1

X2p�2kþ6

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k�2 ~qq i
i1
	 	 	 ~qq i

i k�2
,

where, for 1 < k < 2p� 2,

~qq i
k ¼

qk , if k =2 f2i� 2, 2i� 1, 2i, 2iþ 1g,
0 if k 2 f2i� 2, 2i� 1, 2i, 2iþ 1g:

(

Example. By way of clarification, we give the parameter differentiation of the matrix

exponential for an example from Chan and Munoz-Hernandez (2003) concerning an analysis

of a longitudinal study on election opinions of a group of potential voters. Consider a

continuous-time Markov chain that has three (ordered) states, where the model specifies that

the transition rates between any two adjacent states to be a linear function of the initial

period. Specifically, the transition intensity matrix over the interval [t, t þ 1) is

Qt ¼
�q1 q1 0

q2 �q2 � q3 q3
0 q4 �q4

24 35 ¼
�eŁ5 tþŁ1 eŁ5 tþŁ1 0

eŁ6 tþŁ3 �eŁ6 tþŁ3 � eŁ5 tþŁ2 eŁ5 tþŁ2

0 eŁ6 tþŁ4 �eŁ6 tþŁ4

24 35:
This model can be used to infer whether the transition intensities are constant against the

possibility that they have linear time trends. The transition probability matrix of the Markov

chain from t to t þ 1 is Pt ¼ eQt . Denote the (u, v)th entry of Pt as pu,v, t. Suppose we

observed the states of n independent such Markov processes at epochs t ¼ 0, 1, 2, . . . , T and

there were nu,v, t transitions from state u at time t to state v at time t þ 1. Then, conditional

on the initial states at t ¼ 0, the log-likelihood equals
PT

t¼1

P3
u¼1

P3
v¼1nu,v, t log(pu,v, t).

Maximum likelihood inference then requires the differentiation of the matrix exponential eQt .

It follows from Theorems 1 and 5 that

�31 ¼ W�1[q1q3 te
tQ � f2Qþ (q1 þ q2 þ q3 þ q4)Ig[B31, e

tQ]� [B31, e
tQ]Q],

where

W ¼ 3R3
0Q

2 � 2R3
1Qþ R3

2 I

¼ 3Q2 þ 2(q1 þ q2 þ q3 þ q4)Qþ (q1q3 þ q1q4 þ q2q4)I :

The other �ij can be computed from �31 as follows. First, note that q3 6¼ 0 and

Q�31 ¼
ð t
0

e( t�u)QQB31e
uQdu

¼
ð t
0

e( t�u)Q(q3B21 � q4B31)e
uQdu

¼ q3�21 � q4�31,

so
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�21 ¼
1

q3
(Q�31 þ q4�31):

Similarly, we have

�32 ¼
1

q1
(�31Qþ q1�31),

�11 ¼
1

q1
(Q�21 þ (q2 þ q3)�21),

�22 ¼
1

q1
(�21Qþ q1�21),

�23 ¼
1

q3
(�22Qþ (q2 þ q3)�22),

�33 ¼ te tQ � �11 � �22,

and

@e tQ

@Ł1
¼ �q1(�11 � �12),

@e tQ

@Ł2
¼ �q3(�22 � �23),

@e tQ

@Ł3
¼ q2(�21 � �22),

@e tQ

@Ł4
¼ q4(�32 � �33),

@e tQ

@Ł5
¼ �tq1�11 þ tq1�12 � tq3�22 þ tq3�23

¼ t
@e tQ

@Ł1
þ @e tQ

@Ł2

� �
,

@e tQ

@Ł6
¼ tq2�21 � tq2�22 þ tq4�32 � tq4�33

¼ t
@e tQ

@Ł3
þ @e tQ

@Ł4

� �
:

We note that the preceding two equalities between the partial derivatives may not be easily

realized from the diagonalization method.
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4. Numerical study

In this section, we report a numerical study for comparing the speed and numerical stability

of our method with the diagonalization method. Now, for nearly non-diagonalizable

matrices, the determination of the eigenvectors may be numerically unstable and yet the

inverse operation needed in the new method could be well conditioned. We illustrate this

observation with an example in the form of the companion matrix of a CARMA(2,0)

process (see Section 3.1 for details), i.e.

A ¼ 0 1

Æ1 Æ2

� �
:

Write @eA=@Æ1 ¼ [@ ij]. Let the eigenvalues of A be �1 and �2; they are negative, and

h ¼ �1 � �2 . 0. It is readily seen that Æ1 ¼ ��1�2 and Æ2 ¼ �1 þ �2. It follows from (9)

and routine calculations that

@11 ¼ h�3[e �1f2�2 þ h(1� �2)g þ e �2f�2�1 þ h(1� �1)g],

@12 ¼ h�3[2(e �2 � e �1 )þ h(e�1 þ e �2 )],

@21 ¼ h�3[e �1fÆ1hþ h2 � 2Æ1g þ e �2fÆ1h� h2 þ 2Æ1g],

@22 ¼ h�3[e �1f�2�1 þ h(1þ �1)g þ e �2f2�2 þ h(1þ �2)g]: (10)

Furthermore,

lim
h!0

@eA

@Æ1

¼ 1

6

(3� �2)e �2 e �2

(6� �22)e
�2 (3þ �2)e�2

" #
: (11)

Here, we compute @eA=@Æ1 by: (a) the new method, namely formula (9); (b) the

diagonalization method, namely formula (1); (c) formula (10); and (d) formula (11). In order

to compare the stability of methods (a) and (b), we choose �1 ¼ �1 and set h to be 0:1r, for

r ¼ 1, . . . , 7. In computing (11), �2 was replaced by �1 � h ¼ �1� h; this yields more

accurate asymptotic values. All computations were done in double precision, using the

Compaq Visual Fortran Version 6.1 compiler. For X �1 of formula (1) and (2A� Æ2 I)
�1 of

formula (9), the DLFCRG subroutine of the IMSL package was called to compute the LU

factorization of the matrices and to check for singularity or ill conditioning, and then

DLFIRG was called to compute the inverse matrices. The results are listed in Table 1. While

all methods are comparable for not too small a difference between the eigenvalues, method

(a) clearly outperforms methods (b) and (c) when the difference between the two eigenvalues
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becomes very small. These results can be understood as follows. The eigenvectors of A can

be shown to be proportional to (1, �1)T and (1, �2)T and are nearly linearly dependent for

nearly zero h, rendering the diagonalization method numerically unstable. On the other hand,

the matrix 2A� Æ2 I appearing in (9) has a condition number equal to 1 and hence is well

conditioned; the condition number of a matrix is defined as the product of the spectral norm

of the matrix and that of the inverse of the matrix (see Moler and Van Loan 1978).

Consequently, the inverse operation in (9) is not particularly sensitive to machine rounding

error. We also note that the matrix exponential needed in (9) is computed by the Padé

approximation (Ward 1977) that does not make use of diagonalization.

In order to assess the speed of methods (a) and (b), we compute @eA=@Æ1 and @eA=@Æ2

by each method 100 000 times, which took 37 and 34 seconds respectively for methods (a)

and (b). For this example, the diagonalization method was about 10% faster than the new

method. It would be interesting to further identify the conditions under which the new

method is numerically more (less) stable than the diagonalization method.

APPENDIX

Proof of Theorem 1. By the Cayley–Hamilton theorem (see Horn and Johnson, 1985, p. 86),

Xp
k¼0

(�1) p�k R
p
p�k A

k ¼ 0: (12)

Taking the partial derivative with respect to aij on both sides, we have

Xp
k¼0

(�1) p�k
@R p

p�k

@aij

 !
Ak þ

Xp
k¼1

(�1) p�k R
p
p�k

Xk�1

r¼0

Ak�r�1 @A

@aij

� �
Ar ¼ 0, (13)

which implies

Xp
k¼1

(�1) p�k R
p
p�k

Xk�1

r¼0

Ak�r�1BijA
r ¼

Xp�1

k¼0

(�1) p�kþ1
@R p

p�k

@aij

 !
Ak : (14)

Premultiplying both sides of equation (14) by e( t�u)A and postmultiplying by euA and then

integrating with respect to u from 0 to t to get
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ð t
0

e( t�u)A
Xp
k¼1

(�1) p�k R
p
p�k

Xk�1

r¼0

Ak�r�1BijA
r

( )
euA du

¼
ð t
0

e( t�u)A
Xp�1

k¼0

(�1) p�kþ1
@R

p
p�k

@aij

 !
Ak

8<:
9=;euA du: (15)

Using the fact that (see Hale, 1969 p. 95),

Ae tB ¼ e tBA if and only if AB ¼ BA,

we have

Xp
k¼1

(�1) p�k R
p
p�k

Xk�1

r¼0

Ak�r�1�ij A
r ¼

Xp�1

k¼0

(�1) p�kþ1
@R p

p�k

@aij

 !
Ak

8<:
9=;te tA: (16)

Applying integration by parts to equation (4), we obtain

�ij A ¼ A�ij þ [Bij, e
tA];

postmultiplying both sides by A then gives

�ij A
2 ¼ A�ij Aþ [Bij, e

tA]A

¼ A(A�ij þ [Bij, e
tA])þ [Bij, e

tA]A

¼ A2�ij þ A[Bij, e
tA]þ [Bij, e

tA]A:

Applying the same technique recursively, we obtain
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�ij A
r ¼ Ar�ij þ

Xr�1

u¼0

Ar�u�1[Bij, e
tA]Au, r > 1: (17)

It follows from equation (17) that the left-hand side of (16) can be rewritten as

(�1) p�1R
p
p�1�ij

þ
Xp
k¼2

(�1) p�k R
p
p�k Ak�1�ij þ

Xk�1

r¼1

Ak�r�1 Ar�ij þ
Xr�1

u¼0

Ar�u�1[Bij, e
tA]Au

 !( )

¼ (�1) p�1R
p
p�1�ij þ

Xp
k¼2

(�1) p�k R
p
p�k A

k�1�ij

þ
Xp
k¼2

(�1) p�k R
p
p�k

Xk�1

r¼1

Ak�1�ij þ
Xp
k¼2

(�1) p�k R
p
p�k

Xk�1

r¼1

Xr�1

u¼0

Ak�u�2[Bij, e
tA]Au

¼
Xp
k¼1

(�1) p�k kR
p
p�k A

k�1

( )
�ij þ

Xp
k¼2

(�1) p�k R
p
p�k

Xk�2

u¼0

Xk�1

r¼uþ1

Ak�u�2[Bij, e
tA]Au

¼
Xp�1

r¼0

(�1) p�r�1(r þ 1)R
p
p�r�1A

r

( )
�ij

þ
Xp
k¼2

(�1) p�k R
p
p�k

Xk�2

u¼0

(k � u� 1)Ak�u�2[Bij, e
tA]Au

¼
Xp�1

r¼0

(�1) p�r�1(r þ 1)R
p
p�r�1A

r

( )
�ij

þ
Xp�2

u¼0

Xp
k¼uþ2

(�1) p�k(k � u� 1)R
p
p�k A

k�u�2[Bij, e
tA]Au:

This proves the result. h

Proof of Theorem 2. The proofs of (a), (b) and (d) are trivial.

(c) First, note that, for 3 < k < p,
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R
p
k ¼

X
1< l1,..., l k< p

jA([l1, . . . , l k])j

¼
X

1< l1,..., l k< p

i, j2f l1,..., l kg

jA([l1, . . . , l k])j þ
X

1< l1,..., l k< p

i=2f l1,..., l kg
or j=2f l1,..., l kg

jA([l1, . . . , l k])j

¼ �
X

1< l1,..., l k�2< p
i=2f l1,..., l k�2g
j=2f l1,..., l k�2g

jA([i, j, l1, . . ., l k�2], [ j, i, l1, . . . , l k�2])j

þ
X

1< l1,..., l k< p

i=2f l1,..., l kg
or j=2f l1,..., l kg

jA([l1, . . ., l k])j,

which implies that, for 1 < i 6¼ j < p,

@R p
k

@aij
¼ �

X
1< l1,..., l k�2< p

i=2f l1,..., l k�2g
j=2f l1,..., l k�2g

jA([ j, l1, . . . , l k�2], [i, l1, . . . , l k�2])j:

(e) For 2 < k < p,

R
p
k ¼

X
1< l1,			, l k< p

jA([l1, . . . , l k])j

¼
X

1< l1,			, l k< p
i2f l1,..., l kg

jA([l1, . . . , l k])j þ
X

1< l1,			, l k< p
i=2f l1,..., l kg

jA([l1, . . . , l k])j,

which implies that, for 1 < i < p,

@R
p
k

@aii
¼

X
1< l1,			, l k�1< p

i=2f l1,..., l k�1g

jA([l1, . . . , l k�1])j

h
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Proof of Theorem 3. The characteristic polynomial can be written as

q(º) ¼ jºI � Aj ¼
Yp
i¼1

(º� ºi),

where the ºi are the eigenvalues of A. Now, the derivative of the characteristic polynomial is

q9(º) ¼
P p

i¼1

Q
j 6¼i(º� º j). Hence, q9(A) ¼

P p
i¼1

Q
j 6¼i(A� º j I). If vk is an eigenvector of

A corresponding to the eigenvalue ºk , then

q9(A)vk ¼
Xp
i¼1

Y
j 6¼i

(ºk � º j)vk :

In other words, the eigenvalues of q9(A) are
P p

i¼1

Q
j 6¼i(ºk � º j) ¼

Q
j 6¼k(ºk � º j),

k ¼ 1, 2, . . . , p, which are non-zero if and only if all the eigenvalues of A are distinct. h

Proof of Theorem 4. (a) The proof of (a) is trivial.

(b) The proof for p ¼ 2 is trivial. For p > 3, first note that

R
p
p�k�1 ¼

(�1) p�kÆkþ2, for � 1 < k < p� 2

1, for k ¼ p� 1:

(
(18)

@R p
p�k

@ap1
¼

@

@Æ1

f(�1) p�kþ1Ækþ1g, for 0 < k < p� 1,

0, for k ¼ p,

8><>:
¼

(�1) pþ1, for k ¼ 0,

0, for 1 < k < p,

(
(19)

and

[Bp1, e
tA]Au ¼ [Bp1A

u, e tA] ¼ [Bp(uþ1), e
tA], for 0 < u < p� 1: (20)

Thus,
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@e tA

@Æ1

¼
ð t
0

e( t�u)A @A

@Æ1

� �
euA du (by equation (2))

¼
ð t
0

e( t�u)ABp1e
uA du

¼ � p1 (by equation (4))

¼ pA p�1 þ
Xp�2

k¼0

(�1) p�k�1(k þ 1)(�1) p�kÆkþ2A
k

( )�1"
(�1) pþ1(�1) pþ1 te tA

�
Xp�3

u¼0

Xp�1

k¼uþ2

(�1) p�k(�1) p�kþ1Ækþ1(k � u� 1)Ak�u�2[Bp1, e
tA]Au

�
Xp�2

u¼0

(�1) p�p(p� u� 1)A p�u�2[Bp1, e
tA]Au

#
(by Theorem 1, equations (18) and (19))

¼ pA p�1 �
Xp�2

k¼0

(k þ 1)Ækþ2A
k

( )�1

3 te tA þ
Xp�3

u¼0

Xp�1

k¼uþ2

(k � u� 1)Ækþ1A
k�u�2[Bp(uþ1), e

tA]

(

�
Xp�2

u¼0

(p� u� 1)A p�u�2[Bp(uþ1), e
tA]

)
(by equation (20))

¼ K�1
p,0 te tA þ

Xp�2

r¼1

Xp�1

k¼rþ1

(k � r)Ækþ1A
k�r�1[Bpr, e

tA]�
Xp�1

r¼1

(p� r)A p�r�1[Bpr, e
tA]

( )

(by letting r ¼ uþ 1)

¼ K�1
p,0 te tA þ

Xp�2

r¼1

Xp
v¼rþ2

(v� r � 1)ÆvA
v�r�2[Bpr, e

tA]�
Xp�1

r¼1

(p� r)A p�r�1[Bpr, e
tA]

( )

(by letting v ¼ k þ 1)

¼ K�1
p,0

"
te tA �

Xp�2

r¼1

(p� r)A p�r�1 �
Xp
k¼rþ2

(k � r � 1)Æk A
k�r�2

( )
[B pr, e

tA]

� [Bp(p�1), e
tA]

#
¼ K�1

p,0 te tA �
Xp�1

r¼1

Kp,r[Bpr, e
tA]

( )
:

Parameter differentiation of matrix exponentials 913



This proves the result.

(c) For 2 < i < p,

@e tA

@Æi

¼
ð t
0

e( t�u)A�p�9ie
uA du

¼
ð t
0

e( t�u)A�p�9i�1Ae
uA du (because �9i�1A ¼ �9i)

¼ @e tA

@Æi�1

� �
A (because AeuA ¼ euAA):

Proof of Theorem 5. The proofs of (c), (e) and (f) are trivial.

We prove (a) and (b) together. Let q0 ¼ q2p�1 ¼ 0, then the transition intensity matrix

can be rewritten as

Qp ¼ [qi, j] ¼

�q0 � q1 q1 0 	 	 	 0 0 0

q2 �q2 � q3 q3 	 	 	 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 	 	 	 q2p�4 �q2p�4 � q2p�3 q2p�3

0 0 0 	 	 	 0 q2p�2 �q2p�2 � q2p�1

2666664

3777775,

and

qi, j ¼

�q2i�2 � q2i�1, if 1 < i ¼ j < p,

q2i�1, if 1 < j ¼ iþ 1 < p,

q2i�2, if 1 < j ¼ i� 1 < p� 1,

0, otherwise:

8>>><>>>:
For 1 < i < p, let

Q i
p ¼

�q i
1 q i

1 0 	 	 	 0 0 0

q i
2 �q i

2 � q i
3 q i

3 	 	 	 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 	 	 	 q i
2p�4 �q i

2p�4 � q i
2p�3 q i

2p�3

0 0 0 	 	 	 0 q i
2p�2 �q i

2p�2

26666666664

37777777775
,

where, for 1 < k < 2p� 2,

q i
k ¼

qk , if k =2 f2i� 2, 2i� 1g,
0, if k 2 f2i� 2, 2i� 1g:

�
For 1 < i < p, let R

p
0,i ¼ 1. For p > 2 and 1 < i, k < p, define
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R
p
k,i ¼

X2p�2k

i1¼1

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k q i
i1
	 	 	 q i

i k
:

We will prove later that, for p > 2, and 1 < k < p,

R
p
k ¼

X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�1

i k¼i k�1þ2

(�1)k qi1 	 	 	 qik : (21)

But because q0 ¼ q2p�1 ¼ 0, we have, by equation (21),

R p
p ¼

X1
i1¼0

X3
i2¼i1þ2

	 	 	
X2p�1

i p¼i p�1þ2

(�1) pqi1 	 	 	 qi p ¼ 0,

and, for 1 < k < p� 1,

R
p
k ¼

X2p�2k

i1¼1

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k qi1 	 	 	 qik :

This proves parts (a) and (b) of the theorem.

We prove equation (21) by mathematical induction. First, it is easily seen that (21) holds

for p ¼ 2 and 1 < k < 2. Now, suppose (21) holds for Rr
k, where 2 < r < p� 1 and

1 < k < r; we wish to show that, for 2 < k < p, R
p
k is given by the right-hand side of (21)

(the proof for k ¼ 1 is trivial).

Note that, for the tridiagonal matrix Qp, we have

jºI � Qpj ¼ (º� qp, p)jºI � Qp�1j � qp, p�1qp�1, pjºI � Qp�2j,

which implies thatXp
k¼0

(�1) p�k R
p
p�kº

k ¼ (ºþ q2p�2 þ q2p�1)
Xp�1

k¼0

(�1) p�k�1R
p�1
p�k�1º

k

� q2p�2q2p�3

Xp�2

k¼0

(�1) p�k�2R
p�2
p�k�2º

k :

Comparing the coefficients of ºk on both sides, we have, for k ¼ 1, . . . , p� 2,

(�1) p�k R
p
p�k ¼ (�1) p�k R

p�1
p�k þ (�1) p�k�1(q2p�2 þ q2p�1)R

p�1
p�k�1

� (�1) p�k�2q2p�2q2p�3R
p�2
p�k�2:

Equivalently, we have, for k ¼ 2, . . . , p� 1,

(�1)k R
p
k ¼ (�1)k R

p�1
k þ (�1)k�1(q2p�2 þ q2p�1)R

p�1
k�1

� (�1)k�2q2p�2q2p�3R
p�2
k�2 : (22)

But, for k ¼ 3, . . . , p� 1,
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R
p�1
k ¼

X2p�2k�1

i1¼0

X2p�2kþ1

i2¼i1þ2

	 	 	
X2p�3

i k¼i k�1þ2

(�1)k qi1 	 	 	 qik ,

R
p�1
k�1 ¼

X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�3

i k�1¼i k�2þ2

(�1)k�1qi1 	 	 	 qik�1
,

R
p�2
k�2 ¼

X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�5

i k�2¼i k�3þ2

(�1)k�2qi1 	 	 	 qik�2
,

and so, for k ¼ 3, . . . , p� 1, equation (22) becomes

(�1)k R
p
k ¼

X2p�2k�1

i1¼0

X2p�2kþ1

i2¼i1þ2

	 	 	
X2p�5

i k�1¼i k�2þ2

X2p�3

i k¼i k�1þ2

qi1 	 	 	 qik

þ
X2p�2k

i1¼0

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�6

i k�2¼i k�3þ2

X2p�4

i k�1¼i k�2þ2

X2p�1

i k¼2p�2

qi1 	 	 	 qik

þ
X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�5

i k�2¼i k�3þ2

X2p�3

i k�1¼2p�3

X2p�2

i k¼2p�2

qi1 	 	 	 qik

þ
X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�5

i k�2¼i k�3þ2

X2p�3

i k�1¼2p�3

X2p�1

i k¼2p�1

qi1 	 	 	 qik

�
X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�5

i k�2¼i k�3þ2

X2p�3

i k�1¼2p�3

X2p�2

i k¼2p�2

qi1 	 	 	 qik

¼
X2p�2k�1

i1¼0

X2p�2kþ1

i2¼i1þ2

	 	 	
X2p�5

i k�1¼i k�2þ2

X2p�3

i k¼i k�1þ2

qi1 	 	 	 qik

þ
X2p�2k

i1¼0

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�6

i k�2¼i k�3þ2

X2p�4

i k�1¼i k�2þ2

X2p�1

i k¼2p�2

qi1 	 	 	 qik

þ
X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�5

i k�2¼i k�3þ2

X2p�3

i k�1¼2p�3

X2p�1

i k¼2p�1

qi1 	 	 	 qik

¼
X2p�2kþ1

i1¼0

X2p�2kþ3

i2¼i1þ2

	 	 	
X2p�1

i k¼i k�1þ2

qi1 	 	 	 qik :

The proofs for k ¼ 2 and p are similar to that of 3 < k < p� 1. This proves equation (21).

(d) First note that, for 1 < l1 , . . . , l k�1 < p and i =2 fl1, . . . , l k�1g,
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jQp([l1, . . . , l k�1])j ¼ jQ i
p([l1, . . . , l k�1])j. For 1 < l1 ,. . ., l k�1 < p and i 2 fl1, . . . ,

l k�1g, jQ i
p([l1, . . . , l k�1])j ¼ 0, because the matrix Q i

p([l1, . . . , l k�1]) contains a zero row

vector. Thus, by Theorem 2(e), we have that, for 2 < k < p and 1 < i < p,

@R
p
k

@qi,i
¼

X
1< l1,..., l k�1< p

i=2f l1,..., l k�1g

jQp([l1, . . . , l k�1])j

¼
X

1< l1,..., l k�1< p
i=2f l1,..., l k�1g

jQ i
p([l1, . . . , l k�1])j þ

X
1< l1,..., l k�1< p

i2f l1,..., l k�1g

jQi
p([l1, . . . , l k�1])j

¼
X

1< l1,..., l k�1< p

jQ i
p([l1, . . . , l k�1])j

¼ R
p
k�1,i,

where the last equality follows from equation (5), Theorem 5(b) and the definition of R
p
k,i.

(g) For 1 < i < p, let

~QQ i
p ¼

�~qq i
1 ~qq i

1 0 	 	 	 0 0 0

~qq i
2 �~qq i

2 � ~qq i
3 ~qq i

3 	 	 	 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 	 	 	 ~qq i
2p�4 �~qq i

2p�4 � ~qq i
2p�3 ~qq i

2p�3

0 0 0 	 	 	 0 ~qq i
2p�2 �~qq i

2p�2

26666666664

37777777775
,

and ~RR p
0,i ¼ 1. For p > 2 and 1 < i, k < p, define

~RR p
k,i ¼

X2p�2k

i1¼1

X2p�2kþ2

i2¼i1þ2

	 	 	
X2p�2

i k¼i k�1þ2

(�1)k ~qq i
i1
	 	 	 ~qq i

ik
:

By Theorem 2(c) we have that, for 3 < k < p and 1 < i < p� 1,
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@R p
k

@qi,iþ1

¼ �
X

1< l1,..., l k�2< p
i=2f l1,..., l k�2g

and iþ1=2f l1,..., l k�2g

jQp([iþ 1, l1, . . . , l k�2], [i, l1, . . . , l k�2])j

¼ �qiþ1,i

X
1< l1,..., l k�2< p

i=2f l1,..., l k�2g
and iþ1=2f l1,..., l k�2g

jQp([l1, . . . , l k�2], [l1, . . . , l k�2])j

¼ �qiþ1,i

X
1< l1,..., l k�2< p

i=2f l1,..., l k�2g
and iþ1=2f l1,..., l k�2g

j ~QQi
p([l1, . . . , l k�2], [l1, . . . , l k�2])j

� qiþ1,i

X
1< l1,..., l k�2< p

i=2f l1,..., l k�2g
and iþ12f l1,..., l k�2g

j ~QQi
p([l1, . . . , l k�2], [l1, . . . , l k�2])j

¼ �qiþ1,i

X
1< l1,..., l k�2< p

j ~QQi
p([l1, . . . , l k�2], [l1, . . . , l k�2])j

¼ �q2i ~RR
p
k�2,i:

The proof for @R p
k =@qiþ1,i is similar.
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