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Asymptotic expansions of long-memory sequences indexed by piecewise differentiable functionals are

investigated, and upper bounds of outer expectations of these functionals are given. These results differ

strikingly from the classical theories of empirical processes of independent random variables. Our

results go beyond earlier ones by allowing wider classes of function as well as by presenting sharper

bounds, and thus provide a more versatile approach for related statistical inferences. A complete

characterization of empirical processes for the class of indicator functions is presented, and an

application to M-estimation is discussed.
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1. Introduction

Motivated by many practical examples, long-memory processes have been extensively

investigated by the statistical community over the past several decades; see Beran (1994). A

distinctive feature of such processes is that their correlations decay fairly slowly as the

time-lag increases. An important model is the linear process X n ¼
P1

i¼0ai�n�i, where the

f�i, i 2 Zg are independent and identically distributed (i.i.d.) random variables with zero

mean and finite variance, and the coefficients ai satisfy
P1

i¼0a
2
i , 1. Many important time-

series models, such as the autoregressive moving average and fractional autoregressive

integrated moving average, take this form. If an decays to 0 at a sufficiently slow rate, then

the covariances of X n are not summable and thus the process exhibits long-range

dependence. It is clearly necessary to consider the theoretical properties of Sn(K)

¼
Pn

i¼1K(X i) for statistical inferences of such processes. In the paper we will investigate

the uniform asymptotic behaviour of Sn(K), where K belongs to certain classes K, and will

present a complete characterization of Sn(K) when K ¼ I ¼ f1x<s, s 2 Rg, the class of

indicator functions.

The theory of empirical processes for independent random variables is well developed;

see the extensive treatment by van der Vaart and Wellner (1996). Among the results there

are Vapnik–Chervonenkis and bracketing theories. Under certain conditions on bracketing

numbers on the class K, the abstract Donsker theorem asserts uniform central limit

theorems and the limiting distribution is the so-called abstract Brownian bridge. Results of

this sort have many applications in statistics. A large number of examples are given by van

der Vaart and Wellner (1996).
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However, the problem of uniform convergence becomes much harder when dependence is

present. The dependence structure itself is often of interest in time series analysis. For

example, the estimation of Hurst’s index is of critical importance in the study of long-

memory processes. Much previous work has been concerned with very weakly dependent

processes; see, for example, Doukhan et al. (1995) and Rio (1998) on �-mixing sequences.

Andrews and Pollard (1994) and Arcones and Yu (1994) provided surveys of empirical

processes for mixing processes. Under suitable mixing rates, results of this sort usually

assert that empirical processes behave as if the observations were i.i.d. For other dependent

processes, Bae and Levental (1995) considered a uniform central limit theorem for Markov

chains; Dehling and Taqqu (1989) and Arcones and Yu (1994) discussed functionals of

long-range dependent Gaussian processes and Gaussian random fields. Ho and Hsing (1996)

raised the problem of uniform convergence for linear processes X t which may not

necessarily be Gaussian. For the indicator function class I , Ho and Hsing (1996)

successfully derived uniform asymptotic expansions. See their paper and the recent review

by Koul and Surgailis (2002) for further references and some important historical

developments.

For long-memory linear processes we are able to establish uniform limiting distributions

of Sn(K) when the class K consists of piecewise differentiable functions. In particular, K
contains the Huber-type functions Hs(x) ¼ min[max(x� s, �1), 1], s 2 R, which frequently

appear in robust inference. Our treatment is similar to Arcones’ (1996) work in which weak

convergence properties of stochastic processes indexed by smooth functions were discussed.

The empirical processes behave significantly differently from those of independent random

variables in that the limiting distributions are often degenerate. While we impose weaker

conditions, sharper upper bounds are obtained for the special function class consisting of

indicators. Our results could be possibly extended and applied to other problems related to

linear processes.

The paper is organized as follows. Our main results are presented in Section 2 and

proved in Section 4. Section 3 contains an application to M-estimation theory.

2. Main results

Denote the measure wº(dt) ¼ (1þ jtj)ºdt. For ª > 0, define the class

K(ª) ¼ K(x) ¼
ðx
0

g(t)dt:

ð
R

jg(t)j2w�ª(dt) < 1

� �
:

For K 2 K, we have

K2(s) <

ð s
0

jg(t)j2w�ª(dt)

ð s
0

wª(dt) < jsj(1þ jsj)ª < 2ª(1þ jsjªþ1) (1)

by Cauchy’s inequality, which gives a growth rate for K. Let
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K(ª; I) ¼
(
K(x) ¼

XIþ1

i¼1

1[ºi�1ºi)(x)Ki(x): Ki 2 K(ª), jKi(s)j < (1þ jsj)ª=2,

�1 ¼ º0 , º1 , . . . , º I , º Iþ1 ¼ 1
)
: (2)

So K(ª; I) contains piecewise differentiable functions. Denote by C p ¼ C p(R) the class of

functions having derivatives up to pth order. For a measurable function K, let K1(x)

¼ E[K(X 1 þ x)] if it exists. If K1 2 C p, then, as in Ho and Hsing (1997), let

Sn(K; p) ¼
Xn
i¼1

K(X i)�
Xp
j¼0

K ( j)
1 (0)Ui, j

" #
, Un,r ¼

X
0< j1,..., j r

Yr
s¼1

a js�n� js , Un,0 ¼ 1:

(3)

We are interested in the uniform upper bound supK2K(ª; I)jSn(K; p)j, which may not be a

bona fide random variable since the class K is not countable. So the notion of outer

expectation E�� ¼ inffE�: � is a random variable and � > �, E � exists} (van der Vaart,

1998) is used.

Let Fk and F ¼ F1 be the distribution functions of
Pk�1

i¼0 ai��i and X 0 ¼
P1

i¼0ai��i,

respectively; let F
(r)
k and F (r) be the corresponding r th derivatives if they exist; leteXXn ¼ (. . . , �n�1, �n) be the one-sided shift process. Write f ¼ F9 and f k ¼ F9k for the first-

order derivatives. Define

Sn(y; p) ¼
Xn
i¼1

L(eXXi, y), L(eXXn, y) ¼ 1(X n < y)�
Xp
i¼0

(�1)i F (i)(y)Un,i: (4)

Let An(k) ¼
P1

i¼njaijk , Łn, p ¼ jan�1j[jan�1j þ A1=2
n (4)þ A p=2

n (2)], ¨n, p ¼
Pn

k¼1Łk, p and

˛n, p ¼ n¨2
n, p þ

X1
i¼1

(¨nþi, p �¨i, p)
2:

Clearly, for k > 2, An(k) # 0 as n ! 1. In Theorem 1 we do not require an to take special

forms such as n��‘(n), where throughout the paper ‘ stands for slowly varying functions.

Without loss of generality, we assume henceforth that a0 ¼ 1 and that there are infinitely

many i such that ai 6¼ 0. The latter requirement is imposed to avoid the degenerate case in

which X n is reduced to m-dependent processes (Hoeffding and Robbins, 1948).

Theorem 1. Assume that E(j�1j4þª) , 1 for some ª > 0, and that fk 2 C p for some integers

k . 0 and p > 0. Furthermore, assume thatXp
r¼0

ð
R

j f (r)k (x)j2wª(dx) , 1: (5)

Then
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E� sup
K2K(ª)

jSn(K; p)j2
" #

¼ O(˛n, p): (6)

Relation (6) expresses the uniform reduction principle (Taqqu 1975; Dehling and Taqqu

1989; Ho and Hsing 1997) which says that Sn(K) can be approximated by linear

combinations of
Pn

i¼1Ui, j, j ¼ 1, . . . , p. Theorem 2 provides a uniform upper bound for

the special class I consisting of indicator functions 1s(	) ¼ 1(	 < s).

Theorem 2. Assume that E(j�1j4þª) , 1 for some ª > 0, that fk 2 C pþ1 for some integers

k . 0 and p > 0, and that Xpþ1

r¼0

ð
R

j f (r)k (x)j2wª(dx) , 1: (7)

Then

E sup
t2R

(1þ jtj)ªjSn(t; p)j2
� �

¼ O n log2 nþ ˛n, p

� �
: (8)

Corollary 1. Let the assumptions of Theorem 2 be satisfied and, in addition, let an ¼
n��‘(n), n > 1, where � 2 (1

2
, 1) and ‘ is a slowly varying function. Then

E� sup
K2K(ª; I)

jSn(K; p)j2
" #

¼ O[n log2 nþ ˛n, p], (9)

where ˛n, p ¼ O(n), O[n2�( pþ1)(2��1)‘2( pþ1)(n)] or O(n)
Pn

i¼1j‘ pþ1(i)j=i
 �2

if

( pþ 1)(2�� 1) . 1, ( pþ 1)(2�� 1) , 1 or ( pþ 1)(2�� 1) ¼ 1, respectively.

Let fB(u), u 2 Rg be a standard two-sided Brownian motion, S ¼ f(u1, . . . , ur)

2 Rr: �1 , u1 , . . . , ur , 1g and define the multiple Wiener–Itô integral (Major 1981)

Zr,� ¼ �(r, �)

ð
S

ð1
0

Yr
i¼1

max(v� ui, 0)½ 
��
dv

( )
dB(u1) . . . dB(ur), (10)

where the norming constant � ensures that E(Z2
r,�) ¼ 1. Let

� 2
n,r ¼ n2�r(2��1)‘2r(n): (11)

Theorem 3. Assume that an ¼ n��‘(n) for n > 1, E(j�1j4) , 1, fk 2 C pþ2 for some integers

k . 0 and p > 0, and Xpþ2

r¼0

ð
R

j f (r)k (x)j2dx , 1: (12)

(i) If ( pþ 1)(2�� 1) . 1 or ( pþ 1)(2�� 1) ¼ 1 and
P1

n¼1j‘ pþ1(n)j=n , 1, then the weak

convergence
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1ffiffiffi
n

p Sn(s; p) ) W (s) (13)

holds in the Skorokhod space D(R), where W (s) is a Gaussian process.

(ii) If (pþ 1)(2�� 1) , 1, then

1

� n, pþ1

Sn(s; p) ) (�1) pþ1f f ( p)(s), s 2 RgZ pþ1,�: (14)

If we view Sn(s; p) as the remainder of the ‘Taylor’ expansion of Sn(1s), then (13) and

(14) describe the interesting phenomena that the remainder has a degenerate distribution for

low-order expansions and a non-degenerate Gaussian limit for high-order ones.

Corollary 2. Let the conditions of Theorem 3 be satisfied with p ¼ 0 and � ¼ 1.

(i) If
P1

n¼1j‘(n)j=n , 1, then we have (13).

(ii) If
P1

n¼1j‘(n)j=n ¼ 1, then

1

~�� n

Sn(s; 0) ) f f (s), s 2 RgZ, (15)

where Z is standard normal and ~�� n ¼ k
Pn

i¼1X ik � c
ffiffiffi
n

p j
Pn

i¼1‘(i)=ij for some c . 0.

Interestingly, Corollary 2 gives a complete characterization of the limiting behaviour of

Sn(s; 0) ¼
Pn

i¼11(X i < s)� nF(s) on the boundary � ¼ 1. It is well known that the process

X t is long- (or short-)range dependent if � , 1 (or � . 1). On the boundary � ¼ 1 it

depends on the finiteness of
P1

i¼1j‘(i)j=i. This result in some sense suggests the power of

our approach. It is unclear whether similar characterizations exist on other boundaries

� ¼ (2þ p)=(2þ 2p), where p > 1 is an integer.

Remark 1. Theorem 2 and Corollary 1 improve and generalize the earlier important results of

Ho and Hsing (1996) in several aspects. Consider the special case in which ª ¼ 0. The latter

paper requires that F1, the distribution function of �1, is pþ 3 times differentiable with

bounded, continuous and integrable derivatives. Our assumption (5) is clearly weaker. Next,

Corollary 1 allows a wider class K(0, 1) � I . Furthermore, if an adopts the special form

n��‘(n), n > 1, then for b . 0, (9) gives a sharper upper bound via Markov’s inequality:

P sup
t2R

jSn(1 t; p)j . b

� �
¼ b�2O[n log2 nþ ˛n, p];

see Lemma 5 for upper bounds of ˛n, p and Theorem 2.1 in Ho and Hsing (1996) for a

comparison. Consequently, applications derived in the latter paper which are based on

inequalities of this type can be correspondingly improved. We do not pursue this matter here.

Remark 2. The quantity
Ð
R
j f (r)k (x)j2dx in condition (5) with ª ¼ 0 is interestingly related to

many aspects in statistics, such as Wilcoxon’s rank test, optimal bandwidth selection and
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projection pursuit. The estimation problem has been widely studied; see Wu (1995) for

further references.

Remark 3. For Gaussian random fields, Arcones and Yu (1994) obtained weak convergence

of empirical processes under the bracket condition
Ð1
0
fN[](E, F , k 	 k)g1=2dE , 1, where F

is the index set and the bracketing number N[](E, F , k 	 k) is the minimum number of E-
brackets needed to cover F under the L2 norm. This bracket condition excludes the class of

indicator functions I since N[](E, I , k 	 k) has order 1=E2 as E # 0.

Remark 4. Recently Giraitis and Surgailis (2002) considered the uniform upper bound

sups2RjSn(s; p)j for two-sided linear processes with p ¼ 1. A reduction principle is derived.

It seems that our approach cannot be directly applied to two-sided processes.

We say that K has power rank p if K (i)
1(0) exist and vanish for 1 < i , p and

K ( p)
1 (0) 6¼ 0 (Ho and Hsing 1997). Power rank is reduced to Hermite’s rank if X 1 is

standard normal. Define the class K p ¼ fK 2 K(ª; I) : K1 2 C p, K (i)
1(0) ¼ 0, 1 < i , pg,

which contains functions with power rank at least p. Corollary 1, together withPn
k¼1Yn, p=� n, p ) Z p,� (Surgailis, 1982), immediately yields the following result:

Corollary 3. Let 1 < p , 1=(2�� 1) and the conditions of Corollary 1 be satisfied. Then

1

� n, p

fSn(K)� nK1(0), K 2 K pg ) fK ( p)
1 (0), K 2 K pgZ p,�: (16)

The limiting distribution in (16) is degenerate in the sense that it forms a line of

multiples of Z p,�. In contrast, the empirical processes for i.i.d. samples take abstract

Brownian bridges as limits. We conjecture that if p(2�� 1) . 1, then the limiting

distributions are non-degenerate Gaussian processes.

3. M-estimators

For i.i.d. observations, van der Vaart and Wellner (1996) presented a detailed account of

various statistical applications based on convergence properties of empirical processes.

Regarding long-memory processes, our theory can likewise provide a basis for inference,

particularly in the study of certain functionals of such processes with unknown parameters

for which estimates are plugged in. To fix this idea, let M � Rd , d > 1, be the parameter

space and m0 2 M be the unknown parameter to be estimated; let H(x, m)

¼ (H1(x, m), . . . , Hd(x, m)), where H j, 1 < j < d, are measurable functions defined on

the space R3 Rd . Then the functional An(m0) ¼
Pn

j¼1H(X j, m0) which contains the

unknown parameter m0 is often studied via An(mn), where mn is an estimator of m0.

An estimator mn ¼ mn(X 1, . . . , X n) of m0 is generically called an M-estimator if it

satisfies An(mn) � 0. In this section we shall establish asymptotic distributions of
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M-estimators. Let H1(x, m) ¼ EH(X1 þ x, m) and M(�) ¼ fm: jm � m0j < �g \M,

where j 	 j denotes Euclidean distance.

Assumption 1. There exist �0 . 0 and an integer p > 1 such that for all m 2 M(�0),
H1(	, m) is p times differentiable at x ¼ 0. Let ci(m) ¼ @ iH1(x, m)=@xijx¼0 and assume

that c p(	) is continuous at m0, c p(m0) 6¼ 0 and ci(m) ¼ 0 for all 1 < i , p and all

m 2 M(�0).

Assumption 2. For all 1 < j < d, H j
1(0, 	) is Fréchet differentiable at m ¼ m0. That

is, there exists a matrix �(m0) ¼ @H j
1(0, m)=@mi

� �d,d
i, j¼1

jm¼m0
such that jH(0, m) �

H(0, m0)� (m � m0)�(m0)j ¼ o(jm � m0j). Suppose that the matrix �(m0) is non-singular.

Assumption 3. The estimator mn ! m0 in probability and An(mn) ¼ oP(� n, p).

Remark 5. In Assumption 1, since c p(	) is continuous at m0, there exists E0 such that

c p(m) 6¼ 0 for all jm � m0j < E0. Hence we can substitute �0 by min(E0, �0). Assumptions 2

and 3 are standard in M-estimation theory (see Section 3.3 in van der Vaart and Wellner,

1996).

Theorem 4. Let Assumptions 1, 2 and 3 be satisfied. Suppose that there exist C . 0 and

ª > 0 such that Hq(	, m)=C 2 K(ª; I), for all 1 < q < d and all m 2 M(�0). If

p(2�� 1) , 1, then

n

� n, p

(mn � m0) ) c p(m0)�
�1(m0)Z�, p: (17)

Koul and Surgailis (1997) considered the one-dimensional location estimation with

H(x, m) ¼ ł(x� m) in which one observes Z t ¼ X t þ m. Beran (1991) discussed M-

estimation of location parameters for long-memory Gaussian processes. Arcones and Yu

(1994) treated H(X 	, m) ¼ h[G(X 	), m)] where X 	 is a Gaussian random field. Theorem 4

can be applied to the location estimation problem in the non-Gaussian and nonlinear model

Z t ¼ g(X t)þ m by letting H(x, m) ¼ ł(g(x)� m), where ł is a non-decreasing function.

4. Proofs

Let X n,i ¼
Pi

j¼�1an� j� j and X n,i ¼
Pn

j¼ian� j� j be truncated processes; let f�9n, n 2 Zg
be an i.i.d. copy of f�n, n 2 Zg and X 9n ¼

P1
i¼0ai�9n�i. Define X 9n,i and X 9n,i similarly. For a

random variable �, denote its Lr norm (r > 1) by k�kr ¼ [E(j�jr)]1=r, and L2 norm

k�k ¼ k�k2. Define the projection operators P j� ¼ E[�jeXX j]� E[�jeXX j�1].

Lemma 1. Suppose E(�1) ¼ 0, and E[j�1j�] , 1 for some � > 2. Then there exists a B� . 0

such that E[j
Pn

i¼1bi�ijæ] < B�(
Pn

i¼1b
2
i )
æ=2 holds for all real numbers b1, . . . , bn and all æ

for which 0 , æ < �.
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This lemma is an easy consequence of the Rosenthal inequalities (see Theorem 1.5.11 in

de la Peña and Giné, 1999).

Lemma 2. Let H(t, �, �) ¼ g(t þ �þ �)�
Pq

i¼0 g
(i)(t þ �)�i=i!, where g 2 Cqþ1, q > �1.

Then ð
R

jH(t, �, �)j2wª(dt) <
j�j2qþ2(1þ j�j)ª(1þ j�j)ª

[(qþ 1)!]2

ð
R

jg(qþ1)(t)j2wª(dt): (18)

Proof. Let t9 ¼ t þ �. Then it suffices to show (18) with � ¼ 0 since 1 þ
jtj < (1þ jt9j)(1þ j�j). We make extensive use of this simple inequality. Using the

convention
P�1

i¼0 ¼ 0, (18) trivially holds when q ¼ �1. Assume without loss of generality

that � . 0 and q ¼ 1, since general cases follow similarly. Note that g(t þ �) �
g(t)� �g9(t) ¼

Ð �
0

Ð u
0
g 0(t þ v)dv du. By Cauchy’s inequality, the left-hand side of (18) is

no greater than ð
R

ð�
0

ðu
0

dv du

" #
3

ð�
0

ðu
0

jg 0(t þ v)j2dv du

" #
wª(dt)

<
�2

2

ð�
0

ðu
0

ð
R

jg 0(t)j2(1þ jt � vj)ªdt dv du, (19)

which yields (18) again by the elementary inequality 1þ jt � vj < (1þ jtj)(1þ jvj): h

Lemma 3. Let f�ngn2Z be a stationary and ergodic Markov chain and h be a measurable

function on the state space of the chain such that h(�i) has mean zero and finite variance.

Define Sn(h) ¼
Pn

i¼1h(�i) and Æn ¼ kE[h(�n)j�1]� E[h(�n)j�0]k for n > 1. ThenX1
n¼1

Æn , 1 (20)

entails Sn(h)=
ffiffiffi
n

p ) N (0, � 2
h) for some � 2

h , 1.

Proof. The central limit theorem here is essentially an easy consequence of Woodroofe

(1992) which asserts that fSn(h)� E[Sn(h)j�0]g=
ffiffiffi
n

p
) N (0, � 2

h) if condition (20) is

satisfied. For j > 0, kE[Sn(h)j�� j]� E[Sn(h)j�� j�1]k <
Pn

i¼1Æiþ jþ1. Thus by (20) and

since E[Sn(h)j�� j]� E[Sn(h)j�� j�1], j > 0, are orthogonal,

kE[Sn(h)j�0]k2 ¼
X1
j¼0

kE[Sn(h)j�� j]� E[Sn(h)j�� j�1]k2 ¼ O
X1
j¼0

Xn
i¼1

Æiþ jþ1

 !
¼ o(n)

yields the lemma. h

Lemma 4. Let H 2 C1 and � . 0. Then
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sup
t<s< tþ�

H2(s) < 2��1

ð tþ�

t

H2(u)duþ 2�

ð tþ�

t

H92(u)du

and, for ª > 0,

sup
s2R

[(1þ jsj)ªH2(s)] < 21þ2ª

ð
R

H2(t)wª(dt)þ 21þ2ª

ð
R

[H9(t)]2wª(dt):

Proof. For x, y 2 [t, t þ �], jH(x)� H(y)j <
Ð tþ�
t

jH9(u)jdu. The inequality [H(x) �
2H(y)]2 > 0 implies 0 < 2jH(x)� H(y)j2 þ 2H2(y)� H2(x). Integrating the latter

inequality over [t, t þ �] gives
Ð tþ�
t

[2jH(x)� H(y)j2 þ 2H2(y)]dy > �H2(x), which results

in the first inequality in the lemma by Cauchy’s inequality. For the second, let � ¼ 1. Observe

that if k < s < k þ 1, then 1þ jsj < 2(1þ jkj) < 4(1þ jsj). So

sup
s2R

[(1þ jsj)ªH2(s)] <
X
k2Z

sup
k<s<kþ1

[(1þ jsj)ªH2(s)]

<
X
k2Z

21þª(1þ jkj)ª
ð kþ1

k

[H2(u)þ H92(u)]du

<
X
k2Z

21þ2ª

ð kþ1

k

[H2(u)þ H92(u)]wª(du)

¼ 21þ2ª

ð
R

[H2(u)þ H92(u)]wª(du):

h

Lemma 5. Let ‘(n) be a slowly varying function, � . 1
2
and janj ¼ n��‘(n), n > 1.

(i) If ( pþ 1)(2�� 1) . 1, then ˛n, p ¼ O(n).

(ii) If ( pþ 1)(2�� 1) , 1, then ˛n, p ¼ O[n2�( pþ1)(2��1)‘2( pþ1)(n)].

(iii) If ( pþ 1)(2�� 1) ¼ 1, then ˛n, p ¼ O(n)
Pn

i¼1j‘ pþ1(i)j=i
 �2

.

Proof. By Karamata’s theorem, An(i) ¼ O[n1�i�‘i(n)] for i > 2. Since ‘ is a slowly varying

function, it is easily seen that, for i > n, ¨nþi, p �¨i, p ¼ O(nŁi, p). Therefore,

˛n, p < n¨2
n, p þ

Xn
i¼1

¨2
nþi, p þ

X1
i¼nþ1

(¨nþi, p �¨i, p)
2 ¼ O(n¨2

2n, p)þ O(n3Ł2n, p):

where another application of Karamata’s theorem is used for
P1

i¼nþ1Ł
2
i, p.

(i) In this case Łn, p is summable over n and hence ˛n, p ¼ O(n) easily follows.

(ii) This is an easy consequence of ¨2n, p ¼ O[n2�( pþ1)(2��1)‘2( pþ1)(n)] by a third

application of Karamata’s theorem.

(iii) Since ( pþ 1)(2�� 1) ¼ 1,
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˛n, p ¼ O(n)
X2n
i¼1

j‘ pþ1(i)j
i

" #2
þO(n‘2( pþ1)(n)):

We now argue that ‘̂‘(n) ¼
Pn

i¼1j‘ pþ1(i)j=i is also a slowly varying function. Note that ‘̂‘ is

non-increasing, and it suffices to verify limn!1‘̂‘(2n)=‘̂‘(n) ¼ 1. For any G . 1, by properties

of slowly varying functions,

lim
m!1

XmG
i¼m

j‘ pþ1(i)j=i

j‘ pþ1(m)j ¼ logG:

Thus

lim sup
n!1

‘̂‘(2n)� ‘̂‘(n)

‘̂‘(n)
< lim sup

n!1

X2n
i¼1þn

j‘ pþ1(i)j=i

Xn
i¼n=G

j‘ pþ1(i)j=i
¼

log 2

logG

implies that ‘̂‘ is slowly varying by taking G ! 1 and (iii) follows. h

The next three lemmas consider the existence of K1 and F and their higher-order

derivatives. In particular, Lemma 6 imposes conditions such that the expectation and

differentiation operators can be exchanged; Lemma 7 provides expressions for F (r) and

F(r)
n ; and Lemma 8 gives sufficient conditions for K1 2 C p so that the expansion (3) is

meaningful.

Lemma 6. Let X and Y be two independent random variables such that X has density

f X 2 C p and E(jY jª) , 1 for some ª > 0. Assume that

Xp
r¼0

ð
R

j f (r)X (t)j2wª(dt) , 1: (21)

Then FZ, the distribution function of Z ¼ X þ Y , is also in C p and

F
(r)
Z (z) ¼ EF

(r)
X (z� Y ), 0 < r < p: (22)

Moreover, for C ¼ E[(1þ jY j)ª], we haveð
R

jF(r)
Z (uþ �þ �)� F

(r)
Z (uþ �)j2wª(du)

< C�2(1þ j�j)ª(1þ j�j)ª
ð
R

j f (r)X (u)j2wª(du), 0 < r < p, (23)
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ð
R

jF(r�1)
Z (uþ �þ �)� F

(r�1)
Z (uþ �)� �F(r)

Z (uþ �)j2wª(du)

< C�4(1þ j�j)ª(1þ j�j)ª
ð
R

j f (r)X (u)j2wª(du), 1 < r < p, (24)

and ð
R

jF(r)
Z (u)j2wª(du) < C

ð
R

jF(r)
X (u)j2wª(du), 1 < r < p: (25)

Proof. By Lemma 4,
P p�1

i¼0 supsj f (i)X (s)j , 1. Using conditioning, FZ(z) ¼ EFX (z� Y ).

Then the Lebesgue dominated convergence theorem asserts that F9Z(z) ¼ EF9X (z� Y ) by

letting � ! 0 in

FZ(zþ �)� FZ(z)

�
¼ E

FX (z� Y þ �)� FX (z� Y )

�
:

Higher-order derivatives follows similarly in a recursive way and hence (22) holds. To

establish (24), by (22) and Cauchy’s inequality,

jF(r�1)
Z (uþ �þ �)� F

(r�1)
Z (uþ �)� �F(r)

Z (uþ �)j2

< E jF(r�1)
X (u� Y þ �þ �)� F

(r�1)
X (u� Y þ �)� �F(r)

X (u� Y þ �)j2
h i

:

So (24) results from Lemma 2 with q ¼ 1. A similar argument yields (23) and (25) via

(22). h

Lemma 7. Assume (5) and E[j� ljmax(ª,2)] , 1. Then for all m > k, n > 0 and 0 < r < p,

F
(r)
mþn(z) ¼ EF(r)

m z�
Xmþn�1

l¼m

al�k� l

 !
, (26)

F (r)(z) ¼ EF(r)
m z�

X1
l¼m

al�k� l

 !
: (27)

Moreover, there exists a C . 0 such that for all n, k < n < 1,ð
R

jF(r)
n (uþ �þ �)� F(r)

n (uþ �)j2wª(du)

< C�2(1þ j�j)ª(1þ j�j)ª
ð
R

j f (r)k (u)j2wª(du), 0 < r < p, (28)
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ð
R

jF(r�1)
n (uþ �þ �)� F(r�1)

n (uþ �)� �F(r)
n (uþ �)j2wª(du)

< C�4(1þ j�j)ª(1þ j�j)ª
ð
R

j f (r)k (u)j2wª(du), 1 < r < p, (29)

and ð
R

jF(r)
n (u)j2wª(du) < C

ð
R

jF(r)
k (u)j2wª(du), 1 < r < p: (30)

Proof. Let X in Lemma 6 be Xk,1 ¼
Pk�1

l¼0 al�k� l. By (22), for m > k and n > 0,

F
(r)
mþn(z) ¼ EF(r)

k (z�
Pmþn�1

l¼k al�k� l) and F(r)
m (u) ¼ EF(r)

k (u�
Pm�1

l¼k al�k� l). Then (26)

follows by letting u ¼ z�
Pmþn�1

l¼m al�k� l in the latter identity and a smoothing argument.

Letting n ¼ 1, (27) is obtained. By Lemma 1, C ¼ supn>0 E[(1þ j
P1

l¼nal�� lj)ª] , 1.

Thus (29), (28) or (30) follows from (24), (23) or (25), respectively. h

Lemma 8. Assume (5) and E[j� ljmax(1þª,2)] , 1, and that K 2 K(ª) has the representation

K(x) ¼
Ð x
0
g(t)dt. Then

K1(x) ¼
ð
R

g(t)[1(0 < t)� F(t � x)]dt (31)

and K (r)
1 (x) ¼ �(�1)r

Ð
R
g(t)F (r)(t � x)dt, r ¼ 1, . . . , p.

Proof. Recall that K1(x) ¼ E[K(X1 þ x)]. Write K(x) ¼
Ð
R
g(t)[1(0 < t)� 1(x < t)]dt. To

prove (31), by Fubini’s theorem it suffices to verify thatð
R

jg(t)jE[j1(0 < t)� 1(xþ X1 < t)j]dt

¼
ð0
�1

jg(t)jF(t � x)dt þ
ð1
0

jg(t)j[1� F(t � x)]dt , 1:

Using Cauchy’s inequality, 0 < F < 1 and K 2 K(ª) (hence
Ð
R
g2(t)w�ª(dt) < 1),ð0

�1
jg(t)jF(t � x)dt

" #2
<

ð0
�1

g2(t)w�ª(dt)

ð0
�1

F(t � x)wª(dt)

<

ð�x

�1

ð0
yþx

wª(dt) f (y)dy

<

ð
R

(1þ jyþ xj)1þª

1þ ª
f (y)dy

< (1þ jxj)ªþ1E(1þ jX 1j)1þª , 1:

The finiteness of the second integral follows in a similar way. Next we compute the
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derivatives of K1. Let k(x; E) ¼ [K1(xþ E)� K1(x)]=E and f (x; E) ¼ [F(x)� F(x� E)]=E.
By Cauchy’s inequality, (29) and (31),����k(x; E)� ð

R

g(t) f (t � x)dt

����2 < ð
R

g2(t)w�ª(dt)

ð
R

[ f (t � x; E)� f (t � x)]2wª(dt)

< CE2(1þ jEj)ª(1þ jxj)ª
ð
R

j f (r)k (u)j2wª(du) ¼ O(E2):

Hence K91(x) ¼
Ð
R
g(t) f (t � x)dt. A simple induction yields higher-order derivatives. h

Lemma 9. Assume (5) and E(j�1j4þª) , 1. Thenð
R

kP1L(eXXn, t)k2wª(dt) ¼ O(Ł2n, p): (32)

Proof. For notational convenience we write Łn for Łn, p. We shall first show that (32) holds for

1 < n < k. If Łn ¼ 0, then an�1 ¼ 0 and hence P1L(eXXn, t) ¼ 0. Thus it suffices to verify thatÐ
R
kP1L(eXXn, t)k2wª(dt) <

Ð
R
kL(eXXn, t)k2wª(dt) ¼ O(1), which follows from (30) asserting

that
Ð
R
jF (r)(u)j2wª(du) , 1 for 1 < r < p and

Ð
R
k1(X n < u)� F(u)k2wª(du) , 1, an

easy consequence of E[(1þ jX1j)1þª] , 1.

From now on we assume n > kþ 1. Set � ¼ �an�1�1 and � ¼ �X n,0. Since � and � are

independent, by Lemma 1, E[j�j4(1þ j�j)ª(1þ j�j)ª] ¼ O(a4n�1). So inequality (29) in

Lemma 7 yields that, for 1 < Æ < p,ð
R

kF(Æ�1)
n (t � X n,1)� F(Æ�1)

n (t � X n,0)þ F(Æ)
n (t � X n,0)an�1�1k2wª(dt) ¼ O(a4n�1): (33)

By (26), F(Æ�1)
n (y) ¼ E[F

(Æ�1)
n�1 (y� an�1�91)� an�1�91F

(Æ)
n�1(y)]. Thus by Cauchy’s inequality,

kF(Æ�1)
n�1 (y)� F(Æ�1)

n (y)k < kF(Æ�1)
n�1 (y)� F

(Æ�1)
n�1 (y� an�1�91)þ an�1�91F

(Æ)
n�1(y)k:

Again by (29) in Lemma 7,ð
R

kF(Æ�1)
n�1 (t � X n,1)� F(Æ�1)

n (t � X n,1)k2wª(dt) ¼ O(a4n�1): (34)

Combining (33) and (34),ð
R

kF(Æ�1)
n�1 (t � X n,1)� F(Æ�1)

n (t � X n,0)þ F(Æ)
n (t � X n,0)an�1�1k2wª(dt) ¼ O(a4n�1): (35)

Define

M (r)
n (eXX0, y) ¼ F(r)

n (y� X n,0)þ
Xp
i¼r

(�1)iþrþ1F (i)(y)E[Un,i�rjeXX0]: (36)

Next we use the method of induction to establish that, for 0 < r < p,
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ð
R

kM (r)
n (eXX0, t)k2wª(dt) ¼ O[An(4)þ A p�rþ1

n (2)]: (37)

When r ¼ p, M (r)
n (eXX0, t) ¼ F( p)

n (t � X n,0)� F ( p)(t). By (27), F ( p)(t) ¼ EF( p)
n (t � X 9n,0). So

kM ( p)
n (eXX0, t)k < kF( p)

n (t � X n,0)� F( p)
n (t � X 9n,0)k < 2kF( p)

n (t � X n,0)� F( p)
n (t)k

and, by Lemma 1 and (28) in Lemma 7,

1

4

ð
R

kM ( p)
n (eXX0, t)k2wª(dt) <

ð
R

kF( p)
n (t � X n,0)� F( p)

n (t)k2wª(dt)

¼ OfE[jX n,0j2(1þ jX n,0j)ª]g ¼ O[An(2)]:

Now suppose that (37) holds for 1 < r ¼ Æ < p. To complete the induction it suffices to

consider r ¼ Æ� 1. To this end, observing that the projection operators P� j are orthogonal,

we have

1

2

ð
R

kM (Æ�1)
n (eXX0, t)k2wª(dt) ¼

1

2

X1
j¼0

ð
R

kP� jM
(Æ�1)
n (eXX0, t)k2wª(dt) < I n þ J n,

where

I n ¼
X1
j¼0

ð
R

kP� j F
(Æ�1)
n (t � X n,0)þ F

(Æ)
nþ jþ1(t � X n,� j�1)anþ j�� jk2wª(dt)

and

J n ¼
X1
j¼0

ð
R

F
(Æ)
nþ jþ1(t � X n,� j�1)anþ j�� j �

Xp
i¼Æ�1

(�1)iþÆF (i)(y)P� jE[Un,i�Æþ1jeXX0]

�����
�����2wª(dt):

Observe that by (26) in Lemma 7,

P� j F
(Æ�1)
n (t � X n,0) ¼ F

(Æ�1)
nþ j (t � X n,� j)� F

(Æ�1)
nþ jþ1(t � X n,� j�1):

Thus (35) ensures that I n ¼ O(
P1

j¼0a
4
nþ j) ¼ O[An(4)]. Since P� jE[Un,i�Æþ1jeXX0] ¼

anþ j�� jE[Un,i�ÆjeXX� j�1] if i > Æ and vanishes if i ¼ Æ� 1, the induction is now completed

since by the induction hypothesis

J n ¼
X1
j¼0

janþ jj2
ð
R

kM (Æ)
nþ jþ1(

eXX0, t)k2wª(dt) ¼
X1
j¼0

a2nþ jO[Anþ jþ1(4)þ A
p�Æþ1
nþ jþ1 (2)]

¼ O[An(4)]þ An(2)O[Anþ1(4)þ A
p�Æþ1
nþ1 (2)] ¼ O[An(4)þ A

p�Æþ2
nþ1 (2)]:

Let Rn(t) ¼ P11(X n < t)þ an�1�1F9n(t � X n,0). Since P11(X n < t) ¼ Fn�1(t � X n,1) �
Fn(t � X n,0), by (35),

Ð
R
kRn(t)k2wª(dt) ¼ O(a4n�1). Observe that Rn(t) ¼ P1L(eXXn, t)

þ an�1�1M (1)
n (eXX0, t). Then by (37) with r ¼ 1, we haveð

R

kP1L(eXXn, t)k2wª(dt) < 2

ð
R

[kRn(t)k2 þ kan�1�1M
(1)
n (eXX0, t)k2]wª(dt) ¼ O(Ł2n),
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completing the proof. h

Lemma 10. Assume that E(�41) , 1 and that, for all 0 < i < p, sups2Rj f (i)1 (s)j , 1. Then

for all s, kP1L(eXXn, s)k ¼ O(Łn):

Proof. The argument in the proof of Lemma 9 can be easily transplanted here with the

integral
Ð
R
H(t)wª(dt) (say) replaced by H(t). For example, since

P p
i¼0 sups2Rj f

(i)
1 (s)j , 1,

(33) now becomes

kF(Æ�1)
n (t � X n,1)� F(Æ�1)

n (t � X n,0)þ F(Æ)
n (t � X n,0)an�1�1k2 ¼ O(a4n�1);

(35) becomes

kF(Æ�1)
n�1 (t � X n,1)� F(Æ�1)

n (t � X n,0)þ F(Æ)
n (t � X n,0)an�1�1k2 ¼ O(a4n�1);

and (37) becomes

kM (r)
n (eXX0, t)k2 ¼ O[An(4)þ A p�rþ1

n (2)]:

It is easily seen that the induction in the proof of Lemma 9 still holds here. Thus Lemma 10

follows in a similar way. h

Lemma 11. Under the conditions of Theorem 1,ð
R

kSn(t; p)k2wª(dt) ¼ O(˛n, p): (38)

Proof. Let º2n ¼
Ð
R
kP1L(eXXn, t)k2wª(dt) and a _ b ¼ max(a, b). Note that P jSn(t; p),

�1 , j < n, are orthogonal and P j L(eXX l; t) ¼ 0 when l , j. Thusð
R

kSn(t; p)k2wª(dt) ¼
Xn
j¼�1

ð
R

kP jSn(t; p)k2wª(dt)

<
Xn
j¼�1

E

ð
R

Xn
l¼1_ j

[P j L(eXX l; t)]
2

º l� jþ1

( ) Xn
l¼1_ j

º l� jþ1

( )
wª(dt) ¼

Xn
j¼�1

Xn
l¼1_ j

º l� jþ1

" #2
entails (38) since ºn ¼ O(Łn) by Lemma 9. h

Lemma 12. Let Wn(y; p) ¼
Pn

m¼1J (
eXXm, y), where

J (eXXm, y) ¼ Fk(y� X m,m�k)�
Xp
r¼0

(�1)r F (r)(y)
X

k<i1,...,i r

Yr
q¼1

aiq�m�iq :

Then, under the conditions of Theorem 2, we haveð
R

kP1J (eXXn, t)k2wª(dt)þ
ð
R

kP1@J (eXXn, t)=@ tk2wª(dt) ¼ O(Ł2n, p) (39)
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and ð
R

kWn(y; p)k2wª(dy)þ
ð
R

k@Wn(y; p)=@ yk2wª(dy) ¼ O(˛n, p), (40)

while under the conditions of Theorem 3 we haveð
R

kP1@J (eXXn, t)=@ tk2dt þ
ð
R

kP1@
2J (eXXn, t)=@ t

2k2dt ¼ O(Ł2n, p) (41)

and ð
R

k@Wn(y; p)=@ yk2dyþ
ð
R

k@2Wn(y; p)=@ y
2k2dy ¼ O(˛n, p): (42)

Proof. The same argument in the proof of Lemma 9 yields that (7) and the moment

condition E(j�1j4þª) , 1 imply (39), which leads to (40) in a similar manner to Lemma 11.

The proof for (41) and (42) proceeds in a similar way. h

Let di(s) ¼ 1(X i < s)� E[1(X i < s)jeXXi�1], Dn(s) ¼
Pn

i¼1di(s) and Gn(s) ¼ Dn(s)=
ffiffiffi
n

p
.

A chain-type argument is used in the proof of Lemma 13. Lemma 14 concerns a functional

central limit theorem for Gn(s) in the Skorokhod space D(R). It is assumed that f 1 exists in

these two lemmas. In Lemma 15 we consider the general case in which there exists a

k 2 N such that the density fk exists.

Lemma 13. Assume that
Ð
R
f 21(t)wª(dt) , 1 and E(jX1j1þª) , 1. Then

E sup
s2R

(1þ jsj)ªjGn(s)j2
� �

¼ O(log2 n):

Proof. For k 2 Z, let pk(t) ¼ b2k tc=2k and qk(t) ¼ b2k t þ 1c=2k, where buc ¼
maxfk 2 Z: k < ug. Set N ¼ b2 log2 nc. Then by the triangle and Cauchy’s inequalities,

jGn(t)j2 < jGn( p0(t))j þ
XN
k¼1

jGn( pk(t))� Gn( pk�1(t))j þ jGn(t)� Gn(pN (t))j
" #2

< (N þ 2)

"
jGn( p0(t))j2 þ

XN
k¼1

jGn( pk(t))� Gn( pk�1(t))j2

þ jGn(t)� Gn(pN (t))j2
#
: (43)

For the first two terms in the preceding display, observe that
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sup
t2R

(1þ jtj)ªjGn( p0(t))j2 <
X
l2Z

(2þ jlj)ªjGn(l)j2, (44)

sup
t2R

(1þ jtj)ªjGn( pk(t))� Gn( pk�1(t))j2 <
X
l2Z

1þ jlj þ 1

2k

� �ª����Gn

l

2k

� �
� Gn

l � 1

2k

� �����2:
(45)

After elementary manipulations, expectations of both terms are of order O(1) by using the

martingale structure in Gn, E[jGn(l)j2] < F(l)(1� F(l)) and E[jGn(x)� Gn(y)j2] <
jF(x)� F(y)j, together with the moment condition E(jX 1j1þª) , 1. As to the third term,

we have jF1(y)� F1(x)j <
Ð y
x
f 21(u)wª(du)

Ð y
x
w�ª(du) by Cauchy’s inequality. Note that

sup t2R(1þ jtj)ª
Ð qN ( t)

pN ( t)
w�ª(du) ¼ O(2�N ). Again by Cauchy’s inequality, for all t 2 R,

(1þ jtj)ª
Xn
i¼1

E[1( pN (t) , X i < qN (t))jeXXi�1]

( )2

< (1þ jtj)ª
Xn
i¼1

ðqN ( t)

pN ( t)

f1(v� X i,i�1)dv

( )2

¼ O(n)

2N

Xn
i¼1

ðqN ( t)

pN ( t)

f 21(v� X i,i�1)wª(dv)

<
O(n)

2N

Xn
i¼1

(1þ jX i,i�1j)ª
ð
R

f 21(v)wª(dv)

which entails E[sup t2R(1þ jtj)ªjGn(t)� Gn(pN (t))j2] ¼ O(1) by (45) and

� 1ffiffiffi
n

p
Xn
i¼1

E[1( pN (t) , X i < qN (t))jeXXi�1] < Gn(t)� Gn(pN (t))

< Gn(qN (t))� Gn( pN (t))þ
1ffiffiffi
n

p
Xn
i¼1

E[1( pN (t) , X i < qN (t))jeXXi�1]:

Therefore the lemma follows from (43), (44) and (45). h

Lemma 14. Assume
Ð
R
[ f 21(s)þ j f 91(s)j2]ds , 1. Then Gn(s) ) G(s) in the space D(R),

where G(s) is a Gaussian process with mean 0 and covariance function E[G(s)G(t)]

¼ E[d1(s)d1(t)].

Proof. The martingale central limit theorem clearly entails the finite-dimensional convergence

of Gn(	). For the tightness, we need to show that for each E, � . 0, there is a � . 0 such that

P[supjs� tj,�jGn(s)� Gn(t)j . E] < � for large n. Since
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[
js� tj,�

fjGn(s)� Gn(t)j . Eg �
[
k2Z

sup
k�< t<(kþ1)�

jGn(t)� Gn(k�)j .
E
3

( )
,

the tightness follows from the stronger statement

X
k2Z

P sup
k�< t<(kþ1)�

jGn(t)� Gn(k�)j . E

" #
< � (46)

for large n. To this end, we shall use the argument of Theorem 22.1 in Billingsley (1968). Let

c0 ¼ sup f 1(s), � ¼ E4�, m ¼ b8E3�c0
ffiffiffi
n

p c þ 1 and p ¼ �=m , E=(8c0
ffiffiffi
n

p
); let I k ¼ I k(�) be

the interval [k�, (k þ 1)�]. Observe that E[1(s < X i < sþ p)jeXXi�1] < pc0. Then as in the

proof of the inequality (22.17) in Billingsley (1968), we have, for s < t < sþ p, that

jGn(t)� Gn(s)j < jGn(sþ p)� Gn(s)j þ pc0
ffiffiffi
n

p
,

which implies, as in the proof of the inequality (22.18) in Billingsley (1968), that

sup
t2 I k

jGn(t)� Gn(k�)j < 3max
i<m

jGn(k�þ ip)� Gn(k�)j þ pc0
ffiffiffi
n

p
: (47)

For y . x, let di ¼ di(y)� di(x). Then jdij < 1 and E(d2i ) < F(y)� F(x). In the rest of

the proof, C stands for a constant which may vary from line to line. By the Burkholder

inequality,

E[jGn(y)� Gn(x)j4] <
C

n2
E[(d21 þ . . . þ d2n)

2]

<
C

n2
E
Xn
i¼1

[d2i � E(d2i jXi�1)]

( )2

þ C

n2
E
Xn
i¼1

E(d2i jXi�1)

" #2
<

C

n
kd21 � E(d21jX0)k2 þ CkE(d21jX0)k2

<
C

n
[F(y)� F(x)]þ CEf[F1(y� X1,0)� F1(x� X1,0)]

2g,

(48)

where in the third inequality we have used the orthogonality of the martingale differences

d2i � E(d2i jXi�1), 1 < i < n. Let Æk ¼ Æk(�) ¼ E[supz2 I k f
2
1(z� X 1,0)]. By Lemma 4, and

noting that
Ð
R
f 21(u� X 1,0)du ¼

Ð
R
f 21(u)du,

�
X
k2Z

Æk < �
X
k2Z

E
2

�

ð
I k

f 21(u� X 1,0)duþ 2�

ð
I k

f 91
2(u� X 1,0)du

� �

¼ 2

ð
R

f 21(u)duþ 2�2
ð
R

f 91
2(u)du: (49)

Note that for x, y 2 I k , jF1(y� X 1,0)� F1(x� X 1,0)j < jy� xjsupz2 I k f 1(z� X 1,0). Then

Ef[F1(y� X1,0)� F1(x� X1,0)]
2g < (y� x)2Æk :

For 1 < i < m, define
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Zi ¼ Zi,k,n( p, �) ¼ Gn(ipþ k�)� Gn((i� 1) pþ k�),

˜i ¼ ˜i,k( p, �) ¼ P((i� 1) pþ k� < X 1 < ipþ k�)

and ui ¼ ui,k,n( p, �) ¼
ffiffiffiffiffiffiffiffiffiffi
˜i=n

p
þ p

ffiffiffiffiffiffi
Æk

p
: Then, for 1 < i , j < m,

E[(Ziþ1 þ . . . þ Z j)
4] < C(uiþ1 þ . . . þ u j)

2 (50)

by letting x ¼ ipþ k� and y ¼ jpþ k� in (48). Theorem 12.2 in Billingsley (1968) asserts

that (50) implies

P max
0<i<m

jZ1 þ . . . þ Zij >
E
8

� �
<

C

E4
(u1 þ . . . þ um)

2 <
C

E4
m

n
P(X1 2 I k)þ m2 p2Æk

� �
since ˜1 þ . . . þ ˜m ¼ P(X 1 2 I k). Thus (46) follows from (47), (49) andX

k2Z
P sup

t2 I k

jG(t)� G(k�)j . E
2

� �
<

C

E4
m

n
þ �2

X
k2Z

Æk

" #
¼ C�

1

np
þ �

X
k2Z

Æk

" #
by noticing that

P
k2ZP(X1 2 I k) ¼ 1, np ! 1 and pc0

ffiffiffi
n

p
< E=8. h

Lemma 15. Let G�n (s) ¼ n�1=2
Pn

m¼1[1(X m < s)� E(1(X m < s)jeXXm�k)].

(i) Assume that E(jX 1j1þª) , 1, fk exists for some k 2 N and
Ð
R
f 2k(t)wª(dt) , 1.

Then

E sup
s2R

(1þ jsj)ªjG�n (s)j2
� �

¼ O(log2 n):

(ii) Assume that
Ð
R
j[ f 2k(s)þ j f 9k(s)j2]ds , 1 for some integer k . 0. Then the process

fG�n (s), s 2 Rg is tight and sups2RjG�n (s)j ¼ OP(1).

Proof. For 1 < j < k, let

M�
n, j(s) ¼

Xn�1

i¼0

[1(X ikþ j < s)� E(1(X ikþ j < s)jeXX(i�1)kþ j)]:

(i) A similar argument as in the proof of Lemma 13 ensures that

E sup
s2R

(1þ jsj)ªjM�
n, j(s)j2

� �
¼ O(log2 n),

for each 1 < j < k.

(ii) Similarly, a careful examination of the proof of Lemma 14 reveals that the process

fn�1=2M�
n, j(s), s 2 Rg is tight and converges to a Gaussian process with mean 0 and

covariance function

ˆ(s, t) ¼ Ef[1(Xk < s)� E(1(Xk < s)jeXX0)][1(Xk < t)� E(1(Xk < t)jeXX0)]g,

for each 1 < j < k. So the lemma follows in view of G�nk(s) ¼
Pk

j¼1M
�
n, j(s)=

ffiffiffi
n

p
k. h
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With Lemmas 1–15 established, we can prove our main results.

Proof of Theorem 1. Let K(x) ¼
Ð x
0
gK (t)dt. By Lemma 8, under condition (5) we can write

Sn(K) ¼ �
Ð
R
gK(t)Sn(t; p)dt. Hence Cauchy’s inequality gives

E� sup
K2K(ª)

jSn(K; p)j2
" #

< E� sup
K2K(ª)

ð
R

g2K (t)w�ª(dt)

ð
R

jSn(t; p)j2wª(dt)

" #

<

ð
R

kSn(t; p)k2wª(dt)

which proves the theorem by (38) of Lemma 11. h

Proof of Theorem 2. Without loss of generality, let k ¼ 1. Define

Vm,r ¼
X

1<i1,...,i r

Yr
q¼1

aiq�m�iq :

Then Um,r � Vm,r ¼ �m
P

1<i2,...,i r

Qr
q¼2 aiq�m�iq form stationary martingale differences and

thus k
Pn

i¼1(Ui,r � Vi,r)k2 ¼ O(n). Now write

Sn(y; p) ¼
ffiffiffi
n

p
Gn(y)þ Wn(y; p)þ

Xn
m¼1

Xp
r¼1

(�1)r F (r)(y)(Vm,r � Um,r), (51)

where Wn(y; p) ¼
Pn

m¼1J (
eXXm, y) and

J (eXXi, y) ¼ F1(y� X i,i�1)�
Xp
r¼0

(�1)r F (r)(y)Vi,r

is � (Xi�1) measurable. By Lemma 13, E sups2R(1þ jsj)ªjGn(s)j2
 �

¼ O( log2n). To complete

the proof it suffices to verify that

sup
s2R

[(1þ jsj)ªj f (r)(s)j2] , 1, 0 < r < p� 1, (52)

and

E sup
y2R

(1þ jyj)ªjWn(y; p)j2
" #

¼ O(˛n, p): (53)

Let gr(s) ¼ (1þ jsj)ªj f (r)1 (s)j2. By Lemma 4, sups2R gr(s) , 1 under (7). Hence by (27)

and Cauchy’s inequality, (52) follows from
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sup
s2R

[(1þ jsj)ªj f (r)(s)j2] < E sup
s2R

[(1þ jsj)ªj f (r)1 (s� X 1,0)j2]
� �

< E sup
s2R

[(1þ js� X 1,0j)ªj f (r)1 (s� X1,0)j2](1þ jX1,0j)ª
� �

< Csup
s2R

gr(s)E[(1þ jX1,0j)ª] , 1:

For (53), again by Lemma 4,

E sup
y2R

(1þ jyj)ª
����Wn(y; p)

����2
" #

< 21þ2ª

ð
R

[kWn(y; p)k2 þ k@Wn(y; p)=@ yk2]wª(dy)

¼ O(˛n, p)

due to (40) in Lemma 12. h

Proof of Corollary 1. The case I ¼ 0 follows from Theorem 1 and Lemma 5. For I . 0, to

avoid non-essential complications we consider the special case I ¼ 1. Let K(x, s) ¼
K1(x)1(x < s)þ K2(x)1(x . s), where Ki 2 K(ª) and jKi(s)j < (1þ jsj)ª=2; let K�1 (x, s)
¼ K1(x)1(x < s)þ K1(s)1(x . s). Then for all s, K�1 (	, s)� K�1 (0, s) 2 K(ª). By Theorem 1,

E� sup
K12K(ª),s2R

jSn(K
�
1 (	, s); p)j2

" #
¼ O(˛n, p):

Since jK1(s)j < (1þ jsj)ª=2, by Theorem 2,

E sup
t2R

(1þ jtj)ªjSn(1(	 . t); p)j2
� �

¼ O n log2 nþ ˛n, p

� �
,

which implies (9) by

E� sup
K12K(ª),s2R

jSn(K1(	)1(	 . s); p)j2
" #

¼ O n log2 nþ ˛n, p

� �
in view of Sn(Lþ M ; p) ¼ Sn(L; p)þ Sn(M ; p). h

Proof of Theorem 3. (i) Once again we assume without loss of generality that k ¼ 1. The

finite-dimensional convergence easily results from Lemmas 3 and 10 by letting �i ¼ eXXi and

h(�i) ¼ L(eXXi, y) since
P1

n¼1Łn, p , 1. For tightness, we shall use (51). By Lemma 4,

sups2Rj f (r)1 (s)j , 1 for r < pþ 1. Hence by (27), sups2Rj f (r)(s)j , 1. Lemma 15

guarantees that Gn(s) is tight. By Lemma 4 and (42) in Lemma 12,

E sup
y2R

���� @Wn(s)

@s

����2
" #

< 2

ð
R

[k@Wn(y; p)=@ yk2 þ k@2Wn(y; p)=@ y2k2]dy ¼ O(˛n, p):
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Observe that O(˛n, p) ¼ O(n) by parts (i) and (ii) of Lemma 5. Then Wn(s)=
ffiffiffi
n

p
is tight since

jWn(s)� Wn(t)j < jt � sjsups2R j@Wn(s)=@sj.
(ii) By Corollary 1 with ª ¼ 0, supsjS n(s; pþ 1)j=� n, pþ1 ¼ oP(1) since

( pþ 1)(2�� 1) , 1. Hence (14) follows from
Pn

k¼1Un, pþ1=� n, pþ1 ) Z pþ1,� (Surgailis,

1982). h

Proof of Corollary 2. Assume k ¼ 1.

(i) This trivially follows from part (i) of Theorem 3 with p ¼ 0 and � ¼ 1.

(ii) We shall use the decomposition (51). By Lemma 15, sup y2RjGn(y)j ¼ OP(1). Since

sup y f (y) , 1 and Vm,1 � Um,1 ¼ ��m, it then suffices to establish thatPn
m¼1J (

eXXi, s)=~�� n ) f (s)Z in the space D(R). By Lemma 4, (40) in Lemma 12 and

Lemma 5, (12) yields

E sup
y2R

����Xn
i¼1

[F1(y� X i,i�1)� F(y)þ f (y)X i,i�1]

����2
( )

¼ O(˛n,1) ¼ O(n),

which completes the proof in view of
Pn

i¼1X i,i�1=~�� n ) Z (see, for example, Davydov 1970)

and
ffiffiffi
n

p ¼ o(~�� n). h

Proof of Theorem 4. Observe that the class fHq(	, m)=C: m 2 M(�0), 1 < q < dg is a

subset of K p under Assumption 1 and conditions in Theorem 4. So Corollary 3 is applicable;

and Theorem 4 then follows from the standard argument for asymptotic distributions of M-

estimators (see Theorem 5.21 in van der Vaart 1998). h
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C. Houdré and V. Pérez-Abreu (eds), Proceedings in Chaos Expansions, Multiple Ito–Wiener

integrals and Their Applications, pp. 205–221. Boca Raton, FL: CRC Press.

Bae, J. and Levental, S. (1995) Uniform CLT for Markov chains and its invariance principle: A

martingale approach. J. Theoret. Probab., 8, 549-570.

Beran, J. (1991) M-estimators of location for Gaussian and related processes with slowly decaying

serial correlations. J. Amer. Statist. Assoc., 86, 704–708.

Beran, J. (1994) Statistics for Long-Memory Processes. London: Chapman & Hall.

830 W.B. Wu



Billingsley, P. (1968) Convergence of Probability Measures. New York: Wiley.

Davydov, Yu.A. (1970) The invariance principle for stationary processes. Theory Probab. Appl., 15,

487–498.

de la Peña, V. and Giné, E (1999) Decoupling: From Dependence to Independence. New York:

Springer-Verlag.

Dehling, H. and Taqqu, M. (1989) The empirical process of some long-range dependent sequences

with an application to U -statistics. Ann. Statist., 17, 1767–1783.

Doukhan, P., Massart, P. and Rio, E. (1995) Invariance principles for absolutely regular empirical

processes. Ann. Inst. H. Poincaré Probab. Statist., 31, 393–427.
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