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Parabolic and hyperbolic stochastic partial differential equations in one-dimensional space have been
proposed as models for the term structure of interest rates. The solution to these equations is
reviewed, and their sample path properties are studied. In the parabolic case the sample paths
essentially are Holder continuous of order % in space and % in time, and in the hyperbolic case the
sample paths essentially are Holder continuous of order % simultaneously in time and space.
Parametric likelihood inference given an observation at discrete lattice points in time and space is also
considered. The associated infinite-dimensional state-space model is described, and a finite-
dimensional approximation is proposed. Conditions are presented under which the resulting
approximate maximum likelihood estimator is asymptotically efficient when the number of
observations in time increases to infinity at a fixed time step. The asymptotic distribution of the
approximate likelihood ratio test for a parabolic equation against the hyperbolic alternative is found to
be a truncated chi-square. Moreover, explicit moment estimators are derived which can be used as a
starting point for a numerical optimization of the likelihood function.
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1. Introduction

The purpose of this paper is to propose an approximate likelihood and study the asymptotic
properties of the associated maximum likelihood estimator for the parameter 6 =
11, 2, &0, €1, &) given an observation at discrete points in time and space of the
stationary solution of the parabolic (7, =0, &5, > 0) or hyperbolic (7, >0, 5 > 0)
stochastic partial differential equation

0? 0 0 0
772@ V(ta .X) + m E V(ta x) = 50 V(t9 x) + gl a V(ta x) + §2ﬁ V(t9 .X) + Wé'(ty X), (1)

te€R,0<x<1, with Dirichlet boundary conditions ¥V (z, 0)= V(¢t, 1) =0. Here the
parameters satisfy 71, & > 0, 7, = 0 and the stochastic disturbance term Wg(¢, x) is related

to Brownian white noise (¢, x) (see Holden et al. 1996), via the equation
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We(t, x) = exp (— g1x> W(t, x). 2)
28,

Parameter estimation in stochastic partial difference equations has been discussed in
several papers, but to our knowledge always assuming an observation of the Fourier
coefficients in the spectral representation of the equation. In Huebner and Rozovskii (1995)
a continuous observation over a fixed time interval of the M first Fourier coefficients is
assumed to be available. The asymptotic behaviour of the maximum likelihood estimator
when M — oo is investigated and shown to depend on the structure of the partial
differential operators involved. In Piterbarg and Rozovskii (1997) a similar estimation
problem given the observation of the M first Fourier coefficients at n discrete points in time
is considered for M — oo. The stochastic partial differential equation (1) has been used in
mathematical finance in models of the term structure for bonds of different maturity times;
see Cont (1998) and Santa-Clara and Sornette (2001). In these models the spatial
component represents time to maturity. In Cont (1998) it is argued that the short rate
(x =0) and the long rate (x = 1) can be modelled independently of the profile from the
short rate to the long rate, and that the deviation from the average profile can be modelled
by (1). Realistic data thus consist of observations at discrete points in time and space
organized in a lattice. The spatial resolution N is usually fairly low, consisting of between
10 and 20 maturity times, and calculating the discrete Fourier transforms and using the
Galerkin approximation (see Huebner and Rozovskii 1995) would be inadequate and result
in biased estimates. In this paper we thus assume that the stochastic partial differential
equation has been observed at discrete points in time and space. Moreover, we assume that
the number of observations in space is fixed and examine the asymptotic behaviour when
the number of observations in time tends to infinity at a fixed time step. The parabolic and
hyperbolic equations have different properties — see the discussion in Cont (1998) —
whence it is of interest to test the hypothesis of a parabolic equation against a hyperbolic
equation.

The paper is organized as follows. In Section 2 we describe the parameters for which
there exists a stationary solution to (1), give a representation of the solution, and investigate
the smoothness properties of the sample paths. In Section 3 we propose an approximation
of the likelihood, prove a uniform version of the local asymptotic normality property and
derive the likelihood ratio test for a parabolic equation against a hyperbolic equation. In
Section 4 we derive easily calculated moment estimators, which can be used as a starting
point for a numerical optimization of the likelihood function. Moreover, we describe how to
perform the likelihood ratio test for a parabolic equation against the hyperbolic alternative.
Readers mainly interested in implementing the estimation and test procedures can skip the
more technical parts of Section 3.

2. The stationary solution and its properties

If the partial differential equation (1) is either parabolic or hyperbolic, i.e. 7, =0 and
& > 0, then the associated Green function G(¢, x, y) is given by
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G(t, x, ) = > THDX ()X (),
k=1

where Xj(x) and Ay, k € N, are respectively the eigenfunctions and eigenvalues of the
differential operator &y + &10/0, + £0%/0x* with boundary conditions X(0) = X (1) = 0.
Moreover, in the parabolic case Ty (f) is the solution of the differential equation

mT'(1) = A T(1), mTO) =1,
and in the hyperbolic case T%(¢) is the solution of the differential equation
mT"() +mT'(6) = 2T (1), 7(0) =0, mT'(0) = 1. ©)

Solving these differential equations, we find that X;(x) and A, are given by

2
n@:ﬁmmmm%—ia, h=E - oL 2R, )
28 45,
and T%(¢) is given by
1 A
— exp (—k t) if 79, =0,
M N1
1 -1 + Uk ) (—771 — Uk )) )
— (exp( VL) —exp | VP, if 7, >0, 1 >0,
VK < p( 2172 P 212 7 e
Ti(t) = 1 "
t—exp(—5—1 if 75 >0, g =0,
" P< 2 ) 2 Uk
2 ya—
sin( 'ukt) exp —ﬂt if 7,>0, u, <O,
N 21 21,
(5)

where u; = 17% + 4myAy. Thus if 41 < 0 < ny, then there exists a unique stationary solution
V(t, x) to (1) given by

B t 1 51
V(t, x) = J, L G(t — s, x, y)We(s, y)exp gy dyds

t 1 o

[ ] ne- oo ew( Sy Javes ©)
—00J0 k=1 52

=3 U)X,
=1

Here the Fourier coefficient processes Uy(t) are given by
t t
v = [ ne-smisds = | Tt i), )
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and the pairwise independent white noise processes Wy(f), k € N, and the pairwise
independent two-sided normalized Brownian motions By (7), k£ € N, are given by

1 t
£
Wi(t) = J XMW (t, y)exp (ﬁy dy, Bi(t) = | Wi(s)ds.

0 2 0
Observe that the choice (2) of the noise process We(t, x) is made in order for the Brownian
motions Bj(f) to become independent, thus facilitating the analysis. Whether this choice is
adequate from a modelling point of view will of course depend on the particular application.
We summarize the above considerations in the following theorem.

Theorem 1. If the parameter 0 = (31, N2, &, &1, &) belongs to the parameter space ® C R’
given by

1m0, gL E>0,  E & eR, 4%+n2fsz>so, ®)

then V(t, x) = > 3 U(t)X k(x) is the unique stationary solution to (1).

The pairwise independent coefficient processes U(f), k € N, are characterized by the
following proposition.

Proposition 1. If 17, = 0, then Uy(t) is a stationary Ornstein—Uhlenbeck process and solves
the stochastic differential equation

dUL(1) = fy—’l‘ Uit + % dBL(1): ©)

if 112 >0, then Ui(?) is the first component of the two-dimensional stationary Ornstein—
Uhlenbeck process Uy(t) = (Up(t), U(1)), where

t

Ui(t) = J Ti(t — s)Wi(s)ds = J Ti(t — s)dBy(s).

—00

Moreover, U(t) solves the stochastic differential equation

0 1 0
dUk(t) = /’L_k _ﬂ Uk(t)dl+ 1 dB (7).
oM 7

Proof. The statement is classical in the parabolic case (see Walsh 1986, p. 323). In the
hyperbolic case we use the white noise calculus and the differential equation (3) to see that

SO0 = Ti= Wi + IO = T

and
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%mm - J TH(t — $)Wi(s)ds + THO)Wi(1)
- Jf <ik g 771 / ) 1
(B = T — ) ) Wis)ds + — Wi(o)
—co \112 2 2

Y m ~ 1
= —Ui(t) — —Ui(t) + — Wyi(1).
7 (1) . «(2) n k(1)

If these equations are rewritten as It0 stochastic differential equations, then the stated
equation for Uy (7) follows. U

Let A > 0 be some fixed time step, and let Uy a(?), U r.A(?) be the time series associated
with the kth coefficient processes at the discrete time points A, t € Z, i.e.

Uka(t) = Ur(tD), Uia(t) = U(1A), Ura(t) = (Ura(t), Upa(1)).
Proposition 2. If 17, =0, then U a(?) is a first-order autoregressive process,
d
Uia(?) = praUra(t + 1) + e,a(t) ~ N1(0, 03),

Where  the innovations epa(t), t € Z, are independent and  distributed  as
N1(0, 07 — pi’AO'%(), and the autoregression coefficient and the stationary variance are

given by
Ti(A) (ik ) 2 1
= =exp|—A |, o= .
S ORI VT CT o

If 72 >0, then Uy A(2) is a first-order autoregressive process, i.e.
— _ = _ d _
Ura(t) = peaUa(t — 1) + Exa(t) ~ N2(0, T7),

where the innovations &;a(t) = (€xa(?), Exa(?)), t € Z, are independent and distributed as
N> (0, 55 — ﬁk,AE%{IE?;A), and the autoregression coefficient and the stationary variance are
given by

- (ﬂzT%(A) + 171 Tx(A) ﬂsz(A)>
PrA = ,
Ak Tr(A) MmTiA)
1

—_— 0
(U%{ 0 > —27’]1j~k
=2 _ —
o, = L=
0 o2 0 1

2112

Moreover, the coefficient pra = 2 T1(A) + 11 Tr(A) has the series expansion
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Ak Ak
=1+ A2 _TELAS A).
PrA + T on2 + o(A”)

Proof. We will first consider the hyperbolic case. Since Uy(¢) is an Ornstein—Uhlenbeck
process the time series Uy a(f) is a first-order autoregressive process. The stationary variance
can be calculated by

., ! Ty(t —s) _ [T Tts) Til(s) )
o —var<Joc<T]fk(t_S)>dBk(S)> = L (TZ(S)) (T]}Z(s)> ds.

The components of Uj(f) are a priori seen to be independent, i.e.

00

COu(UK(D, i) = | o) Titsds =3 RO =0,

0

and the marginal variances are found by direct computation of the integrals. In order to
determine the autoregression coefficient we use the equation

7 o [T TuA =) N TA —s)
Uk,A(t) - J ( T;((l(A o S)>dBk(S) + J(tl)A ( T;{(l‘A o S))dBk(S)

—00

=piaUra(t—1) innovation & (1)

to conclude that p;a satisfies the equation

_ Te(uw)y\ _ ( Tr(u+A)
PEA Thw) ) — \ Thu+A) )

Inserting u = 0, normalizing by 7';(0) and using the differential equation (3) gives the second

column of pya, 1.e.
ﬁkA(O) _ 1 ﬁkA(Tk(0)> _ (ﬂsz(A)>
Al T3(0)" "\ T(0) mTA) )"

Differentiating (10) with respect to u, inserting u = 0, normalizing by 7';(0) and using the
differential equation (3) gives

S 1 <Tz(0)> ( nTiA) )
Ok, L | = 7Pk, -
) THOT o) Ak TH(A) = mTH(A)

and hence the first column of pya, i.e.

1 1 7 0 M T (D) + 1 T(A)
p_k,A(O) =pra|l M | +—pia = .
7 (& 1 A Ti(A)

)
e

(10)

The series expansion for the coefficient pya = 72T(A) + 171 Tx(A) follows by the Taylor
formula since
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d
GA Pra = MmTHA) +mT(A) = Ak Ti(A)

gives that &5 pga for j=1,2,3 and A =0 equals

—Akm
-
2

! ik ",
AxTk(0) =0, AeTi(0) = "’ AeTi(0) =
The easier parabolic case is analysed similarly. O
In the hyperbolic case the paths of the coefficient processes Uy(f) are continuously
differentiable; cf. Proposition 1. This fact suggests that the solution V(¢ x) is smoother in
the hyperbolic case than in the parabolic case. We conclude this section by considering the

sample path properties of V(z, x).

Lemma 1. There exists a < oo such that, for |t — s| sufficiently small,

var (V(t, x) — V(t, y)) < alx— y|,

ar/|t—s|, if 1, =0,

alt —s|log (|t — s| 1), if 12> 0.

var(V (s, x) — V(t, x)) <

Proof. The first estimate and the second estimate in the parabolic case are given in Walsh
(1986, Proposition 3.7). We thus consider the second estimate in the hyperbolic case. For
fixed & > 0 the representation (6) gives

o0

var (V(t+ 0, x) = V(t, x)) = »_ X3(x) var (U(t + 6) — Ui(1)).
k=1

The squared eigenfunctions X i(x) are uniformly bounded, and using Proposition 2 and the
differential equation (3), we see that

var (Up(t + ) — Ux(1)
= (N Te(0) + 12 TH(©O) — 1207 + m3Ti(0)*G% + var (gx.)
= {1 Ti(0) + M2 TH(0) — 1)* + 1 — (11 Te(0) + 12 Ti(9))*}o%

=2(1 — 91 Te(S) — m Ti(S))o3

— L BTU®) + M T(d) — 12 THO) — 1 TH(0)
Mk

1 0
:—J Tr(u)du.
nJo

We wish to bound the sum of the variances by a constant times &log(d~!) for 6 >0
sufficiently small. Thus, given n € N,
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> var (Ui(t + 6) — Ux(t) = ni J Ty(u)du
k=1
1 1 & m
~— — sin| kmy/==u | exp( —=—u |du
m 4= J km \/ 72 p< 21, )

1 1 J & Al
=— 2 =u ) exp| —=—u |du,
1 /128> / \/ 72 p( 21, )

where f,(x) = Y }_, sin(kx)/k. Some comments regarding the somewhat subtle approxima-
tion are needed. Firstly, since the kernals 7 () are bounded we may replace finitely many of
the integrands 7;(u«) by arbitrary bounded functions. Secondly, if k is large, then u; < 0 and
the replacement for Tj(u) corresponds to the approximation —u; =~ 4mn,&,k?; see equation
(5). Thirdly, the approximations of 7 (u) for large £ are small perturbations of lower order in
k and may be disregarded. If 6> < 17,&", then f,(x) is only employed for 0 < x < /2,
where

) = Z cos () — €08 ((” D1 ;sfl?(sx()x) sin((n + 1))
_ 1 4 cos(x) _ 1
B 2 sin(x) RS

Since f(;t/2) < | we thus have, for 0 < x < 1/2,

/2

T /2
0= fux)=fn (5) —J Sr(wydu < 1 +J (1 +u Hdu < 4 — log (x).

X X

Using this bound, we see that

) )
an n\/gu exp(mu>du SJ — log J'c\/g2 du
0 P 212 0 2
=50+ dlog (1 \/7261>,
&

and so the desired bound follows. O

Theorem 2. The solution V(t, x) to the stochastic partial difference equation (1) has a
version that is continuous in (t, x). If, for some fixed ty < oo,
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Hf(é) = sup ‘V(L X) - V(ts y)|9 te [09 ZLO],

x,y€[0,1]:]x— y[<0

H(0) = sup [V (s, x) = V(£ y)

5,1€[0,20],%, yE[0,1]:((s— )2 +(x—y)})1/2<6
are the moduli of continuity in space and time t and in time and space, respectively, then

there exist o < oo and random variables Y,, t € [0, ty], and Y with exponential moments
such that, for 0 <0 < |,

H(0) < Y,0'? + ad'?\/log (07 1),

5 YOl/4 + ad'/4y/log (6-1), if m2 =0,
H() <
Y02\ /log (0~1) + ad'/* log (67 1), if 12> 0.

Proof. Using the variance estimates given in Lemma 1, the proof is similar to the proof of
Walsh (1986, Theorem 3.8). U

Theorem 2 states that the solution V(¢ x) to (1) has paths that essentially are Holder
continuous of order % in space and % in time in the parabolic case, and of order % in time
and space in the hyperbolic case. The paths are thus substantially rougher in time in the
parabolic case. The roughness present in the parabolic case is also reflected in the property
that the process in that case has non-vanishing quartic variation (see Walsh 1986, Theorem
3.10).

3. Likelihood inference given discrete observations

In this section we give a time series representation of the statistical model given an
observation of V(z, x) at discrete points in time and space at the lattice points (¢, x) given
by

a) an
t=A,2A, ..., nA =, ..., — 11
L 2A, .., nA, X= (11)
where A >0 and ay, ..., ay, beN, a; < ... <ay < b, are fixed. Moreover, we describe

an approximate maximum likelihood estimation procedure which is asymptotically efficient
as n — oo, and we describe the associated likelihood ratio test for a parabolic equation
against a hyperbolic equation.

Given an observation of V(¢ x) at the lattice points (11), let the N-dimensional time
series Va(?), t € Z, the 2b-dimensional time series Ua(f), t € Z, and the matrices
= e RYN and W € RV*?? be given by
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Va(t) = V<an %) ; Ua(?) = <Z Uk+2bj,A(l)> ;
J=lN =

elor(227)) (v2sn(w45))

= = diag( exp| — = , W= (v2sin( k=L

. ( P ( 285, b j=1,.,N b

Then the observable time series Va(f) has the state-space representation
Va(t) = EWUA(1). (12)

The components of the time series Ua(f) are independent and given as infinite sums of
independent time series. We propose to approximate the tail in the representation of Ua(?) by
independent white noise. Thus, given a cut-off point K € N, variances 72 > 0 approximating
the variance of the tails, and random variables

vi() L N, 72,  k=1,...,,2b,t=1,...,n, (13a)

independent of everything else, we approximate the distribution of VA(¢) with the distribution
of

= - Ui (1) f=1,...
W (Y ek 2k Unsana() + 0k(0) ,_, = :W(((U};@()))Zkl o ) (13b)
where the matrix ¥ € RV*(K+20) ig given by
7= <\/§sin (nk%)) . (13¢)
j=1uN
k=1,..K,1,.2b

Below we describe how to choose the cut-off point K and the variances 75 as functions of
n € N such that the resulting approximate likelihood is asymptotically efficient as » — oo. In
order to measure the quality of the proposed approximation we introduce metrics on the
space of N-dimensional matrices and on the space of N-dimensional spectral densities. The
Schatten p-norm ||4||, of a matrix 4 € CY*V is defined as the /”-norm of the eigenvalues of
the positive semidefinite matrix |4| = (4*4)'/2, i.e. |||/« is the operator norm of 4 and

4], = (a*0)??)" . pell, ).

The L?-norm ||9], of a matrix-valued function v: (—3, 3] — C¥*V is defined as the usual
L?-norm of the real-valued function |[y(-)|,, ie. |||« is the essential supremum of

%)l and

-1

1/2 P
wlp= ([, wola) . pen o
~1/2
These L”-norms behave much like the usual L”-norms and, in particular, satisfy the Holder
inequality. The remaining analysis relies on the following theorem proved in Markussen
(2001).
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Theorem 3. Let V(t), t € Z, be an N-dimensional Gaussian time series, I.e.
d
V, =), .., V()" &~ Noxw(0, Z,()),

where Z,(y) is the Toeplitz matrix associated to the spectral density 1. For each n € N, let
Yuo 0 €O CRY be a family of spectral densities and let 1,(0) be the corresponding log-
likelihood function given by

l,,(@) = _% lOg deth(wn,b‘) - %tr (Zn(Wn,H)il\/n\/:)' (14)

Let Oy € © be some fixed and unknown parameter, and suppose that the Fisher information
matrix J given by

n—oo

1/2
J = lim (5] . (V2 @000 @ b (@0 00, () dw)

exists and is positive definite. If n'/?||yp — ., |2 vanishes as n — oo and some additional

regularity conditions are satisfied, then the maximum likelihood estimator 6, =
argmaxgeel,(0) is a \/n-consistent estimator for Oy and there exists a sequence G,,
n € N, of d-dimensional random variables converging in distribution to N4(0, J) such that

E sup 100+ ) = 1(00) — (" G — Y Tu)| (15)
ueR4:|u|<

r0p+n"12uc®

vanishes for every r >0 as n — oc. The local asymptotical normality property (15) implies
that 0, is asymptotically efficient in the sense of Hajek and Le Cam.

Let ® C R’ be the parameter space described in Theorem 1, and suppose that the
stochastic partial differential equation described by the parameter 6, € ® has been observed
at the lattice points (11). Then the additional regularity conditions are satisfied for the
associated time series model (see Markussen 2001), and Theorem 3 applies if

n'2||pg, = gl = 0,

where g, is the exact spectral density and v, is the nth approximate spectral density.
Using the state-space representation (12) and the approximate state-space representation (13),
we see that

—_ . 2 kK =k
Yo, = EW diag(d jony iy 2nj< k Phr2bia + T k=1, 26 P ET, (16)

where @ A is the spectral density for the coefficient process Uy a(?).

Lemma 2. In the parabolic case the spectral density @i satisfies the bound

1 1 — ehedd/m 1 14 eMd/m
< < ,
200 | + AT Pra(w) TN W BT
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In the hyperbolic case and for u; <0, with k > (1/275)\/77%/17252 +4E)/Ey + E)E, the
spectral density @ satisfies

1 end2m _ 1 m - -1
= - A —exp( 2 A
Peale) =2 AgemAm 41 R/~ ik (exp (2772 ) eXp<2772 )) ’

1 emAam 4 1 m -
< A —exp( ) )
Pra(w) oA A ] + YT (exp (2772 > exp<2n2>)

Proof. In the parabolic case the first-order autoregressive process U a(?) has spectral density

Pra@) = 071 — pl (1 — 2ppa cos2rw) + 0} 5)

-1
= ! (1 — exp (% A)) (1 —2exp (ﬂL—k A) cos(2mw) + exp (% A>> ,
—2n1Ax m 7 7
(17)

and so the stated bound immediately follows. In the hyperbolic case we first do a linear
transformation of the autoregressive process Uy a(?). Let the matrix 4 and the inverse A ! be
given by

1 0 1 0
_ -1 _
A - 771 2772 ’ A - _771 \/:m ’
Ve T HE 21, 21,

and consider the autoregression
AUgA(t+ 1) = (Aprad VAU (D) + AEpa(r + 1)

Using Proposition 2, we see that the autoregression coefficient 4p;a4~! is given by

Ln@+mria) Y@

Appad ' =

@) D@ i)

The powers of Ap;aA~" can be calculated easily since Ap; a4~ is a scaled rotation matrix.
The differential equation (3) gives

d ) m , VT Hx m o\ —v " Hk
" {exp (3s0) (35 7+ marie ) } T (exp (352) "5 Tk(A)>,

d Ual Vvl Mk B A ,
" {exp (2—772A) - Tkm)} -Vt {exp (Z—WA) (7 Ty(A) + nzrkm)) }

whence
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cos(mA> sin( e kA)

21

Aﬁk,AA_l = exp (_—mA)

21, Yayrre -
7 —sin( s A) cos( #kA>
21 21,
Moreover, the variance of the innovations A&, a(f) is given by
1 m
vV Mk
Ao 4" =07 5

m o ony— 2mi

VR —Hk

The first component of the time series 4 Uy (%), i.e. the coefficient process Uy a(?), thus has
spectral density ¢4 given by

_ 2 2N -m VvV Mk
Qra(w) =07 +207% ; exp(2772 At> cos( ph At) cos(2mwt)

e e e
t=1

and thus the stated bounds follow by inserting the trigonometric relations

2 cos(x)cos(y) = cos(x + y) + cos(x — y),
2 sin(x)cos(y) = sin(x + y) + sin(x — y)

and using the bounds

1 = a b)—1 1
— S Ze""’ cos(bn) =1 e” cos(b) =

O = —2e?cos(b) +e2@ er—1°
1 = . e? sin(b) 1
- < an bn) = = .
el —e nz:; e sin(bn) 1 —2e“cos(b) +e2¢ v —e™¢

O

The required cut-off point and white noise variances are given in the following lemma.

Lemma 3. The quantity n'/?||yg, — Y4, |2 vanishes as n — oo if the cut-off point K and the

white noise variances T3, as functions of n € N, in the parabolic case are given by
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0= [syzsier]

1 1
T(n) = SR AT > ; (19a)
2m <2b7€ &nl/ eNo:K (=t 28 <nl —Aky2b)
and in the hyperbolic case for some arbitrary o >% are given by
1
K(n) = [n" ) =————. 19b
(=TT B0 = e (19)

Proof. Given fixed a > 0, let the factors y, , be defined by

-1
- 1

Yan = (Tﬂzgzna > —M) =1+o(n™%,

a‘l

where the estimate follows from the approximation —A; ~ m>k2&,. We first consider the
parabolic case. Using equation (16), the Holder and the triangular inequality, we see that
'[9, — el is bounded by

L]

o 1
1/2 = 2 V7] 2 _ -
#PIREIE| 3 flora 7. PN (e N
which by Lemma 2 is bounded by
X1 eMAm & 1
V2= ) — -1/ . 20
nPIEIZ I DD B BTy > —2;71/1,{'”/4’” | (20)

k=K(n) k=[n1/4]

The term Zf:(nl/ﬂ(l/ = 2mA)|y1/a,n — 1] is of order o(n~'/?), and using the choice of K(n)
given by (19a), we see that

Ak(n
exp (ﬂA) ~ exp (—nzéAK(nf) <n 12
m m

The bound (20) thus vanishes as n — oo. In the hyperbolic case similar considerations lead
us to consider the estimate

> 1 C
1/2 _ - 12 1 < C,pl/22a
n Pr.A || SN =< (yn
kgq 2 k:z[;l] —A e/
for some constants C;, C,. If a > 1 , then the right-hand side of the last inequality vanishes as
n — oo and the statement of the lemma follows. O

The following theorem states the asymptotic properties of the proposed approximate
likelihood function for n» — oo and fixed N € N.
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Theorem 4. Let 6y = (W1, N2, &0, &1, &) be the true parameter, and let the cut-off points
K(n) and the white noise variances t5(n) be given by (19). Then 6, = = argmaxgee!,(0) is an
asymptotically efficient estimator for 0y and /n (0 — 6y) converges in distribution to
Ns(0, V), where the Fisher information J is given by

1 (/2
J = (5 Jl/z ey, (@)D, (@) @)1, (w))dw) @1

and the spectral density g, is given by (16), (17) and (18). If 7, = 0, then the likelihood
ratio test statistic ¥, for a parabolic against a hyperbolic equation satisfies

D 1 1

An=2supl,(0)—2 sup [,(0) ——= <¢ +f)ﬁ, (22)
0O 0€O:,=0 n— oo 2 2

where ¢ is the point measure in 0 and y? is the chi-square distribution with one degree of

freedom.

Proof. Using Lemma 3, we see that the conditions of Theorem 3 are satisfied. The properties
of the estimator 6, follow from the local asymptotic normality property (15), and the
asymptotic distribution of the likelihood ratio test statistic follows since the hypothesis
17, = 0 is a hyperplane on the border of the parameter space; see Self and Liang (1987).
O

4. Moment estimators and implementation

In this section we describe how the analysis given in Section 3 can be used to perform
maximum likelihood estimation given an observation of the stochastic partial differential
equation at the lattice points (11). Moreover, we describe how to perform the likelihood
ratio test for a parabolic equation against the alternative of a hyperbolic equation.

We first give an informal derivation of preliminary moment estimators which can be used
as a starting point for a numerical optimization of the likelihood function. Using equation
(6), we have

V(t, x) = i Ur(HX k(x) = V2 exp( ) Z Uw(t)sin(rtkx),
k=1

28,

whence the ergodic theorem for the processes Uj(f) and Proposition 2 give

2
- Z V(IA, x)* = 2exp (— g—x> Z (Z Uk(tA)sm(nkx))
2 n

t=1

pfgbZe p<—5—x> Zo sin?(stkx),

where the approximation in probability is good for large n. Inserting



760 B. Markussen

1 A
2 1 2
o9 = = —0
k —2mir Ax !
and
g 5., -1 K —4
=& — = —nk& = Ay — A
= &0 48, k& 3 2 3 1
gives

o 1IN 2
exp(— & p b n=1y 70 V(tA, x) (23)

%" V601 \/Zk  Sin?(kx) /{(K* — DAa /A1 — k> + 4}

whence the unobserved coefficient processes U a(f) can be estimated via

1
303Uk A(t) = \/30%10 V(tA, X)X i (x)exp (2x>dx
~ /302 — Z ( ) 2sm<nkab> p(fé}z“’> (24)

2
—Ix—n &
pgbiil/ A, Y sin( kY ! ZSIV<SA’ b)
~N < p b oy sin?(mia;/D)/{(i2 — DAz /Ay — 2 + 4}

The first approximation in (24) is good for small k, large N and observation points a;/b
equally spaced in the interval [0, 1]. In the applications we have in mind N will usually be
small, and this approximation will hence be bad. We will, however, use (24) for £k =1, 2 in
order to derive preliminary estimates. For numerical implementations of (24) it is, moreover,
necessary to replace the infinite sum over i € N by some finite sum. Below we list estimators
for the parameters A/, 7141, #1/A1 in the parabolic case, and A, /Ay, 1141, 72 /41, 71 /A1 in
the hyperbolic case, which can be computed successively using the approximation (24) for
the quantities \/307 Ua(?). The quotient 4,/4; can be estimated solving the approximative
identity

/12 _O'% p{gb nilz;':13a%U1,A(t)2 (25)
b 02 T I 302 Upa(1)?

numerically in 4,/A; > 1. Then the product 7;4; can be estimated by

1 prob 1

VAol \/gn*IZ:':@o%ULA(I)Z

where the estimate for A,/4; is inserted in (24). In the parabolic case the quotient A, /#7; can
be estimated by

(26)
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27

m A T A n 1" 302U, A(1)?

cf. Proposition 2. In the hyperbolic case the estimation of the parameters #7,/A;, and 7, /4, is
more difficult. These parameters do not appear in the formulae for the stationary variances
o2, whence the estimators need to be based on the autoregression coefficients

A
pia =mTi(A) +mTi(A) =1 +—kA2

P logpa) pb 1y <(n — 1) 1,303 1Al - I)Ul,w))_

Ak

A+ o(AY).
6175

Since these estimators only are reliable for a small time step A > 0, we will use the series
expansion in order to derive explicit estimators. The quotient 7, /A, thus can be estimated by

—A1_2(1 —pra) prob 2 (1 (=D 30T ULA(L — 1)U1,A(f)> 28)

A2 T A2 n13" 302U, A(1)?

and the quotient 7, /4; can be estimated by

m 14 (A2/20) (A1 /12)A* /2 — paa
I (A2 /2)(A1 [m2)* N3 /6

pob37, 6 Ay <@>z (1 (=)' 303 Usalt — l)Uz)A(t)) 29

“An T AL\ 1> 302 Usa(ip

Computing these estimators successively, we find estimates for the parameters #,, 771, 41 and

Ao. If observations at the points x = % and x = % are available, then the quotient &; /&, can be

estimated by
& B e—§1/4&
E ~ 2loe a

prob o 102 sin?(mkd) n7'N V(A 3
0
& Y 0 sind (k) nT ST VA, b

. S VA, %)2 )
=2log (72?—1 VA, %)2 ; (30)

cf. equation (23). Otherwise & /&, can be estimated by

é prob Zb Zk ISII’IZ(JTkCZ//b)/{(kZ 4)/11 — (k2 — 1)],2}
& a_,- 3mn=1 30 V(EA, a;/b) '
1

The estimator (31) probably has best properties for an observation point a;/b close to 5.
Finally, estimates for the parameters &, &;, & can be found solving the equations
E 4 -1 A — 2o

Eo—?— 3 & = 3

€3]
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These considerations thus give an easily calculated preliminary estimate 6 for the
parameter 6 = (12, 171, &o, &1, &). The approximation (24) used is, however, poor for small
N. In order to adjust the estimate it is asymptotically efficient by Theorem 4 to perform an
optimization of the likelihood function given by the state-space model described by (13),
(19) and Proposition 2. The likelihood for this state-space model can be calculated using
the Kalman filter (see Brockwell and Davis 1991). Since closed-form expressions for the
maximum likelihood estimator and the asymptotic Fisher information (21) are unavailable,
it is necessary to do a numerical optimization of the likelihood function, for example
starting from 6. Estimation under a statistical hypothesis ®, C © is performed similarly,
only optimizing over 6 € .

The likelihood ratio test statistic y, for a parabolic equation against a hyperbolic equation
is given by (22). Theorem 4 gives the asymptotic distribution

Pry, o(xn = x) ~ 1Pr(y] = x), x> 0.

The null hypothesis that the equation is parabolic against the alternative that the equation is
hyperbolic is thus rejected at significance level a when y, > qi_24, Where q;_», is the
1 — 20 quantile of the chi-square distribution with one degree of freedom.

References

Brockwell, PJ. and Davis, R.A. (1991) Time Series: Theory and Methods. New York: Springer-Verlag.

Cont, R. (1998) Modeling term structure dynamics: an infinite dimensional approach. RI 402, Centre
de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France.

Holden, H., Qksendal, B., Ubge, J. and Zhang, T. (1996) Stochastic Partial Differential Equations.
Boston: Birkhduser.

Huebner, M. and Rozovskii, B.L. (1995) On asymptotic properties of maximum likelihood estimators
for parabolic stochastic PDEs. Probab. Theory Related Fields, 103, 143—163.

Markussen, B. (2001) Uniform convergence of approximate likelihoods for multivariate Gaussian time
series. Preprint No. 8, University of Copenhagen. http://www.stat.ku.dk/research/preprint/.

Piterbarg, L. and Rozovskii, B.L. (1997) On asymptotical problems of parameter estimation in
stochastic PDEs: Discrete time sampling. Math. Methods Statist., 6, 200—223.

Santa-Clara, P. and Sornette, D. (2001) The dynamics of the forward interest rate curve with stochastic
string shocks. Rev. Financial Stud., 14, 149—-185.

Self, S.G. and Liang, K.Y. (1987) Asymptotic properties of maximum likelihood estimators and
likelihood ratio test under nonstandard conditions. J. Amer. Statist. Assoc., 82, 605—-610.

Walsh, J.B. (1986) An introduction to stochastic partial differential equations. In R. Carmona, H.
Kesten and J.B. Walsh (eds), Ecole d’Eté de Probabilités de Saint-Flour XIV—-1984, Lecture
Notes in Math. 1180, pp. 265-437. Berlin: Springer-Verlag.

Received December 2001 and revised February 2003



