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It has recently been established that the tube formula and the Euler characteristic method give an

identical and valid asymptotic expansion of the tail probability of the maximum of a Gaussian random

field when the random field has finite Karhunen–Loève expansion and the index set has positive

critical radius. We show that the positiveness of the critical radius is an essential condition. When the

critical radius is zero, we prove that only the main term is valid and that other higher-order terms are

generally not valid in the formal asymptotic expansion based on the tube formula. This is done by

first establishing an exact tube formula and comparing the formal tube formula with the exact formula.

Furthermore, we show that the equivalence of the formal tube formula and the Euler characteristic

method no longer holds when the critical radius is zero. We conclude by applying our results to some

specific examples.
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1. Introduction

Let M be a closed subset of the unit sphere Sn�1 in Rn. We consider the upper tail

probability of the maximum of a random field Z(u), u ¼ (u1, . . . , un)
T 2 M, defined by

Z(u) ¼ uTz ¼
Xn
i¼1

uizi, (1)

where z ¼ (z1, . . . , zn)T follows the standard multivariate normal distribution Nn(0, I n). This

is the canonical form of a Gaussian random field with finite Karhunen–Loève expansion

and constant variance, as discussed in Takemura and Kuriki (2002). Let y ¼
(y1, . . . , yn)

T ¼ z=kzk follow the uniform distribution Unif (Sn�1) on the unit sphere Sn�1.

We also study the upper tail probability of the maximum of

Y (u) ¼ uT y: (2)

In Takemura and Kuriki (1997) we treated the situation of convex M in order to study
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the properties of the �2 distribution in the framework of testing against multivariate ordered

alternatives. In Kuriki and Takemura (2001) we dealt with smooth M without boundary to

study multilinear forms in normal variates. Unifying these cases, in Takemura and Kuriki

(2002) we considered an index set M which is locally approximated by a convex cone. We

established that in this case M has positive critical radius, and that the tube method due to

Sun (1993) and the Euler characteristic method of Adler (1981) and Worsley (1995a;

1995b) lead to an identical valid asymptotic expansion of the upper tail probabilities. In a

different setting Adler (2000), using results due to Piterbarg (1996), showed that the Euler

characteristic method for isotropic Gaussian random fields on a piecewise smooth domain

gives a valid asymptotic expansion.

These results might give the impression that the formal asymptotic expansion based on

the tube formula is valid and identical to the Euler characteristic method for practically all

regular cases. However, this is not the case if the critical radius of M is zero. The main

purpose of this paper is to show that if the critical radius of M is zero, the asymptotic

expansion based on the tube formula is generally incorrect except for the main term.

Furthermore, the equivalence of the formal tube formula and the Euler characteristic

method no longer holds. We also give some simple examples of index sets with zero critical

radius, for which the formal tube formula and the Euler characteristic method give different

asymptotic expansions and both are incorrect. A more substantial application of the results

of the present paper is given in Takemura and Kuriki (2001), where a natural multivariate

test statistic has an associated index set with zero critical radius.

One advantage of the Euler characteristic method over the tube formula is that it can be

applied to non-Gaussian fields, whereas the tube formula is essentially restricted to

Gaussian fields. See, for example Worsley (1994) and Cao and Worsley (1998; 1999) for

applications of the Euler characteristic method to various non-Gaussian fields. However, the

validity of the Euler characteristic method for non-Gaussian fields has not been established

in general. Indeed, our example in Section 3.3 suggests that the validity of the Euler

characteristic method for non-Gaussian fields is hard to prove in general. In Section 3.3 we

first apply the formal tube formula to a Gaussian field whose index set has zero critical

radius. However, this Gaussian field can be transformed to an equivalent �2 field with very

regular index set, and we apply the Euler characteristic method to the resulting �2 field. It

will be shown that the Euler characteristic method for this �2 field leads to an invalid

asymptotic expansion, which is identical to the asymptotic expansion obtained by the formal

tube formula for the original Gaussian field.

This paper is organized as follows. In Section 2, after a preliminary discussion of the

properties of index sets with zero critical radius, we give some theoretical results on the

asymptotic expansion based on the formal tube formula. In Section 3 we study some relevant

examples in detail. Proofs and mathematical details are postponed to the appendices.

2. General results

In this section we first define a class of index sets M for which the tube formula can be

defined. Then in Section 2.2 the difference between the formal tube formula and the exact
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tube formula for these index sets is clarified. The invalidity of the asymptotic expansion

based on the formal tube formula is shown in Section 2.3.

2.1. A class of index sets

We consider a class of index sets M with the following property. At each point x 2 M , M

can be locally approximated by a cone, but the cone is not necessarily convex. We call sets

M with this property locally conic. This class contains the boundary of a polyhedron and

the union of submanifolds of Sn�1 which are self-intersecting on Sn�1. Unfortunately the

class of locally conic sets cannot be defined using standard manifold terminology because

we allow self-intersection of the index set. Precise definitions of this class and other notions

of this subsection are given in Appendix A.

The approximating cone of M at x 2 M is called the support cone of M at x and is

denoted by Sx(M). Let C(Sx(M)) denote the convex hull of Sx(M). The dual cone of Sx(M)

(or equivalently, the dual cone of C(Sx(M))) in Rn is called the normal cone of M at x and

is denoted by Nx(M). As we shall show, the critical radius of M is zero if Sx(M) is non-

convex at some x 2 M because of the singularity of the projection onto M around x.

We discuss several simple examples to illustrate the above notions. Note that in our

definition in Appendix A the support cone Sx(M) and the normal cone Nx(M) are defined

with their vertices located at the origin.

Example 2.1. On the sphere S2 � R3 consider the union of two great circles:

M ¼ f(x1, x2, x3) 2 S2jx3 ¼ 0g [ f(x1, x2, x3) 2 S2jx2 ¼ 0g: (3)

Except for two points (�1, 0, 0), M is a regular one-dimensional manifold. However, at these

two points M cannot be considered as a manifold using the standard terminology because of

the self-intersection. At x ¼ (�1, 0, 0), Sx(M) ¼ f(0, x2, 0)jx2 2 Rg [ f(0, 0, x3)jx3 2 Rg,
C(Sx(M)) ¼ f(0, x2, x3)j(x2, x3) 2 R2g and Nx(M) ¼ spanfxg.

Example 2.2. On S2 consider

M ¼ f(x1, x2, x3) 2 S2jx2x3 > 0g,

whose boundary is M of Example 2.1. At x ¼ (x1, x2, x3), with x2x3 . 0, Sx(M) ¼ C(Sx(M))

is the tangent plane Tx(S
2) of S2 at x and Nx(M) ¼ spanfxg. At x ¼ (x1, x2, 0), with jx1j , 1

and x2 . 0, Sx(M) ¼ C(Sx(M)) ¼ Tx(S
2) \ f(y1, y2, y3)jy3 > 0g and Nx(M) ¼ spanfxg


f(0, 0, y3)jy3 < 0g, where ‘
’ is the orthogonal direct sum. At x ¼ (�1, 0, 0), Sx(M)

¼ f(0, x2, x3)jx2x3 > 0g, C(Sx(M)) ¼ f(0, x2, x3)j(x2, x3) 2 R2g and Nx(M) ¼ spanfxg.

Example 2.3. Again on S2, let M be the union of two semicircles M ¼
f(x1, x2, 0) 2 S2jx2 > 0g [ f(x1, 0, x3) 2 S2jx3 > 0g. At x ¼ (�1, 0, 0), Sx(M) ¼ f(0, x2,

0)jx2 > 0g [ f(0, 0, x3)jx3 > 0g, C(Sx(M)) ¼ f(0, x2, x3)jx2 > 0, x3 > 0g and Nx(M) ¼
f(0, x2, x3)jx2 < 0, x3 < 0g 
 spanfxg.
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In the above three examples the points x ¼ (�1, 0, 0) exhibit a certain singularity.

However, from the viewpoint of the spherical tube around M in S2, the points

x ¼ (�1, 0, 0) in Example 2.3 contribute to the volume of the tube just as other points

in the sense that the points in the direction of Nx(M) from x are sent to x when projected

onto M . On the other hand, in Examples 2.1 and 2.2, the points x ¼ (�1, 0, 0) do not

contribute to the volume of the spherical tube around M, because no point (other than x

itself) is sent to x when projected onto M . In general, consider a spherical tube around M

in Sn�1. A point x 2 M does not contribute to the volume of the tube around M if the

dimension of Nx(M) and the dimension of the support cone Sx(M) do not add up to n.

This consideration leads us to call x 2 M a proper d-dimensional boundary point of M if

Sx(M) contains a linear subspace L of dimension d ¼ n� dimNx(M). We define the

dimension of M by the maximum value of d such that there exists a proper d-dimensional

boundary point of M . Note that we use the term ‘boundary’ even if x belongs to the

relative interior of M .

Let @Md , d ¼ 0, . . . , m (¼ dimM), denote the set of proper d-dimensional boundary

points of M . We now make the following technical assumption on locally conic sets M .

Assumption 2.1. For d ¼ 0, . . . , m, @Md is a relatively open d-dimensional C2-submanifold

of Rn. Let I(M) denote the set of improper boundary points of M. The Lebesgue measure ofS
u2 I(M) Nu(M) is zero.

Here we are assuming that @Md is an open manifold embedded in Rn. This assumption is

satisfied if the set of improper boundary points is at most countable. If M satisfies this

assumption we call it a ‘set with piecewise smooth proper boundary’. In summary, we assume

that the index set M � Sn�1 is a locally conic closed set with piecewise smooth proper

boundary.

We now consider spherical projection onto M . For x, y 2 Sn�1, let

dist(x, y) ¼ arccos(xT y) 2 [0, �]

be the geodesic distance and define

dist(x, M) ¼ dist(x, xM ) ¼ min
y2M

dist(x, y),

where xM is the spherical projection of x onto M . Although xM may not be unique,

dist(x, M) is uniquely determined because M is closed. We are interested in the geometry of

the set of points with a unique projection onto M :

R(M) ¼ fxjxM is uniqueg: (4)

For u, v 2 Sn�1, uTv ¼ 0 and 0 < Ł < �, let

[u, u cos Łþ v sinŁ) ¼ fu cos t þ v sin tj0 < t , Łg, if Ł . 0,

fug, if Ł ¼ 0,

�
(5)

denote the great circle segment joining u and u cos Łþ v sinŁ, which includes u and excludes

u cos Łþ v sin Ł. Let
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K(M) ¼
[
c>0

cM

denote the smallest cone containing M in Rn. For u 2 @Md , d < n� 2, and

v 2 Nu(K(M)) \ Sn�1, consider the semicircle

[u, u cos�þ v sin�) (6)

starting from u 2 M in the direction of v. In Appendix B it is shown that this semicircle is

divided into two segments. The points on the first segment have u as the unique projection

and the points on the second do not. More precisely, define

Ł(u, v) ¼ sup f0 < Ł , �ju cos Łþ v sinŁ 2 R(M), (u cos Łþ v sinŁ)M ¼ ug: (7)

Then u is the unique projection of points on the segment [u, u cos Ł(u, v)) but u is not the

unique projection of u cos Łþ v sin Ł for Ł(u, v) , Ł < �. At the boundary

u cos Ł(u, v)þ v sin Ł(u, v), u may or may not be the unique projection.

For the case d ¼ n� 1, that is, if M contains non-empty interior in Sn�1 and u is an

interior point, Nu(K(M)) ¼ f0g and Nu(K(M)) \ Sn�1 ¼ ˘. To simplify the notation in

this case, we define Ł(u, v) � 0 and[
v2Nu(K(M)),kvk¼1

[u, u cos Ł(u, v)þ v sin Ł(u, v)) ¼ fug: (8)

Henceforth we use this notational convention for the case d ¼ n� 1 throughout the paper.

Now we state the following basic proposition concerning R(M) in (4).

Proposition 2.1. For a locally conic closed set M with piecewise smooth proper boundary,

R(M) �
[
u2M

[
v2Nu(K(M)),kvk¼1

[u, u cos Ł(u, v)þ v sin Ł(u, v)) (9)

and the complement in S n�1 of the right-hand side of (9) has zero spherical volume.

The proof of Proposition 2.1 is given in Appendix B.

2.2. Exact tube formula and a formal tube formula

The open spherical tube of radius Ł around a closed set M � Sn�1 is defined by

MŁ ¼ fxjdist(x, M) , Łg:
Classifying the points of the tube in terms of their projection onto M and the direction of the

projection, MŁ can be written as

MŁ ¼
[
u2M

[
v2Nu(M),kvk¼1

[u, u cos Łþ v sin Ł):

Note that here the cross-section
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Cu(Ł) ¼
[

v2Nu(K(M)),kvk¼1

[u, u cos Łþ v sin Ł)

may overlap for different values of u. If we only count points with unique projection onto M ,

we obtain

~MMŁ ¼
[
u2M

[
v2Nu(K(M)),kvk¼1

[u, u cos Ł9þ v sin Ł9) � MŁ,

where Ł9 ¼ min(Ł, Ł(u, v)). Note that, by Proposition 2.1, MŁ � ~MMŁ is a null set.

Writing the tube ~MMŁ as above, we see that R(M) in (9) is a generalization of the tube

where the radius of the tube depends on u 2 M and on v 2 Nu(K(M)). Define

Ł(u) ¼ inf
v2Nu(K(M)),kvk¼1

Ł(u, v):

In Example 2.3 consider the points u0 ¼ (�1, 0, 0). Note that Ł(u0) ¼ �=2, whereas

Ł(u)! 0 as u! u0. This example shows that Ł(u) may not be a continuous function of

u 2 M . The critical radius (or angle) of M � Rn is

Ł ¼ inf Ł(u)ju 2
[n�2

d¼0

@Md

( )
:

In this definition we omit the interior @Mn�1 of M � Sn�1 when M contains a non-empty

interior in Sn�1. In the case of positive critical radius Ł . 0, the constant-radius tubeS
u2M Cu(Ł) was essential for obtaining an asymptotic expansion of the tail probability of the

maximum of Z(u) of (1) and Y (u) of (2). See Kuriki and Takemura (2001) and Takemura and

Kuriki (2002).

As already mentioned, we have the following simple lemma concerning the critical radius

Ł of M .

Lemma 2.1. The critical radius of M is zero if, for some x 2 M, the support cone Sx(M) is

not convex.

The proof is outlined in Appendix B.

Now we study the volume of the tube MŁ, when M is a locally conic closed set with

piecewise smooth proper boundary. Let H(x, v) denote the second fundamental form of M

at x in the direction v. Then from Lemma 2.3 of Takemura an Kuriki (2002) the volume

element dy of Sn�1 (induced from the Lebesgue measure of Rn) at y ¼ x cos Łþ v sin Ł,

x 2 @Md , v 2 Nx(K(M)), is written as

dy ¼ det (I d cos Łþ H(x, v) sin Ł) sinn�d�2Ł dŁ dx dv,

where dx denotes the volume element of @Md at x and dv denotes the volume element

of Sn�d�2 ¼ Nx(K(M)) \ Sn�1 at v. Note that, for Ł , Ł(x, v), the matrix (I d cos Ł
þ H(x, v)sin Ł) is positive definite. This can be seen from the discussion on focal points in
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Appendix B. Therefore, by the standard derivation of the tube formula, the spherical volume

of the tube MŁ is written as

V (MŁ) ¼
ð
M� I(M)

dx

ð
v2Nx(K(M))\S n�1

dv

ðmin(Ł,Ł(x,v))

0

d� det (I d cos �þ H(x, v)sin �) sinn�d�2�

¼
Xm
d¼0

ð
@Md

dx

ð
v2Nx(K(M))\S n�1

dv
Xd
j¼0

tr j H(x, v)

ðmin(Ł,Ł(x,v))

0

cosd� j� sinn�dþ j�2� d�,

where tr jH denotes the jth elementary symmetric function of the characteristic roots of H .

Using the fact that, for 0 < Ł < �=2,ðŁ
0

cosa� sinb� d� ¼ �aþbþ2

�aþ1�bþ1

B(aþ1)=2,(bþ1)=2(cos2Ł),

where Bk, l denotes the upper probability function of the beta distribution with parameters

(k, l ) and

�c ¼ V (Sc�1) ¼ 2�c=2

ˆ(c=2)

is the volume of Sc�1, we have established the following theorem.

Theorem 2.1. For a locally conic closed set M � Sn�1 with piecewise smooth proper

boundary, the spherical volume of the tube MŁ, Ł < �=2, is given by

V (MŁ) ¼ �n

Xm
d¼0

ð
@Md

dx

ð
v2Nx(K(M))\S n�1

dv

�
Xd
j¼0

tr j H(x, v)

�d� jþ1�n�dþ j�1

B(d� jþ1)=2,(n�dþ j�1)=2(cos2 min(Ł, Ł(x, v))): (10)

Theorem 2.1 can be generalized to the case min(Ł, Ł(x, v)) . �=2 as in Proposition 2.1

of Takemura and Kuriki (2002). Exact tube formula for a submanifold of a Riemannian

manifold is given in Lemma 8.3 of Gray (1990). Now we define a formal tube formula for

Ł < �=2 by setting Ł(x, v) ¼ �=2.

Definition 2.1. A formal tube formula approximation to the exact volume of the tube MŁ in

(10) is defined by

~VV (MŁ) ¼ �n

Xm
d¼0

ð
@Md

dx

ð
v2Nx(K(M))\S n�1

dv

�
Xd
j¼0

tr jH(x, v)

�d� jþ1�n�dþ j�1

B(d� jþ1)=2,(n�dþ j�1)=2(cos2Ł): (11)
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For sets with positive critical radius Ł . 0, (11) is the usual tube formula and coincides

with the exact volume (10) for Ł , Ł. For the case of zero critical radius there is actually

an alternative way to define the formal tube formula, by requiring equivalence to the Euler

characteristic method. We will discuss these points at the end of this section.

Since V (MŁ)=�n gives the exact tail probability of maxu2MY (u), we have the following.

Corollary 2.1. For t > 0,

P max
u2M

Y (u) > t

� �
¼
Xm
d¼0

ð
@Md

dx

ð
v2Nx(K(M))\S n�1

dv

�
Xd
j¼0

tr j H(x, v)

�d� jþ1�n�dþ j�1

B(d� jþ1)=2,(n�dþ j�1)=2(max(t2, t(x, v)2)), (12)

where t(x, v) ¼ cos Ł(x, v).

We can also derive the exact tail probability for the maximum of Z(u) in (1). Let gk and Gk

denote the density and the cumulative distribution function of the �2 distribution with k

degrees of freedom, and write

Qk, l(a, b) ¼
ð1
a

gk(x)Gl(bx)dx:

Theorem 2.2. Let M � Sn�1 be a locally conic closed set with piecewise smooth proper

boundary. For t > 0,

P max
u2M

Z(u) > t

� �
¼
Xm
d¼0

ð
@Md

dx

ð
Nx(K(M))\S n�1

dv

�
Xd
j¼0

tr j H(x, v)

�d� jþ1�n�dþ j�1

Qd� jþ1,n�dþ j�1(t2, tan2 Ł(x, v)): (13)

Proof. Since, for z � Nn(0, I n), y ¼ z=kzk and kzk are independent, P(maxu2M Z(u)

> t) ¼ P(maxu2MuTz > t) is calculated by substituting t :¼ t=kzk in (12) and taking

expectation with respect to kzk2 � �2(n). Let B be a random variable distributed as B(k, l ),

the beta distribution with parameters (k, l ). Then, for k þ l ¼ n,

E[Bk, l(max(t2=kzk2, t2))] ¼ P(kzk2B > t2, B > t2)

¼ P(kzk2B > t2, kzk2B(1� t2)=t2 > kzk2(1� B))

¼ Qk, l(t
2, (1� t2)=t2),

since kzk2B and kzk2(1� B) are independently distributed according to �2(k) and �2(l ),

respectively. h
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The formal asymptotic expansion by the tube formula is obtained by letting

Ł(x, v) ¼ �=2. In this case

Qd� jþ1,n�dþ j�1(t2, 1) ¼ Gd� jþ1(t2) ¼ 1� Gd� jþ1(t2),

and the formal expansion is given by

~PP max
u2M

Z(u) > t

� �
¼
Xm
d¼0

ð
@Md

dx

ð
Nx(K(M))\S n�1

dv
Xd
j¼0

tr j H(x, v)

�d� jþ1�n�dþ j�1

Gd� jþ1(t2), (14)

where Gk denotes the upper probability function of the �2 distribution with k degrees of

freedom.

As mentioned above, there is an alternative definition of the formal tube formula for the

case of zero critical radius. Here we give a brief discussion of this point. For piecewise

smooth M with convex support cone (and hence with positive critical radius Ł . 0),

Takemura and Kuriki (2002) established the equivalence of the tube formula and the Euler

characteristic method in the sense that

V (MŁ) ¼
ð
S n�1

�(A(y, Ł))dy, Ł , Ł,

where

A(y, Ł) ¼ fu 2 M juT y > cos Łg (15)

is the excursion set, �(�) is the Euler characteristic, and dy is the volume element of Sn�1. For

M with smooth boundary it is a consequence of the kinematic fundamental formula (Santaló

1976, IV.18.3). An alternative definition of the formal tube formula for the case Ł ¼ 0 may be

given by requiring the equivalence to the Euler characteristic method – that is, we define

V̂V (MŁ) ¼
ð
S n�1

�(A(y, Ł))dy: (16)

In convex analysis, the tube formula for a convex body K in Rn is called the Steiner

formula and the coefficients of the tube formula are called curvature measures of K. The

notion of the curvature measures of convex bodies can be generalized in various ways.

When M belongs to the convex ring (the set of finite unions of convex bodies), ~VV (MŁ) of

Definition 2.1 corresponds to the absolute curvature measures of M , whereas the alternative

definition V̂V (MŁ) in (16) corresponds to additive extension of curvature measures of M .

These notions are discussed in Matheron (1975, Section 4.7), Schneider (1993, Section 4.4)

and Stoyan et al. (1995, Section 7.3.4). See also Cheeger et al. (1986) for the alternative

definition (16) when M is piecewise linear.

Our example in Section 3.1 shows that ~VV (MŁ) and V̂V (MŁ) are different in general for M

with zero critical radius, and furthermore both of them lead to incorrect expansion of the

exact volume V (MŁ). The reason for adopting ~VV (MŁ) as our definition is that its

discrepancy from the exact volume V (MŁ) in (10) is easier to study. At present we know of

no integral expression for V̂V (MŁ) similar to (10) for Ł ¼ 0 in the literature.
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2.3. Invalidity of formal expansion

In this subsection we show that when the critical radius Ł is zero, the formal tube formula

only gives a valid main term, with other higher-order expansion terms not being valid in

general. Concerning the tail probability of maxu2MY (u), we let Ł#0 and compare the Taylor

expansion of (10) and (11). Similarly, we let t!1 and compare (13) and (14).

First, we consider the main terms of the expansions. In (10) the main term is given by

d ¼ m, j ¼ 0. The case m ¼ n� 1 is trivial, because in this case (10) and (11) converge to

V (M) ¼ V (@Mn�1) . 0. Therefore, let m , n� 1. Then

V (MŁ) �
ð
@Mm

dx

ð
v2Nx(K(M))\S n�1

dv
�n

�mþ1�n�m�1

B(mþ1)=2,(n�mþ1)=2(cos2 min(Ł, Ł(x, v))):

Write a ¼ (mþ 1)=2, b ¼ (n� m� 1)=2. Ignoring the constant, which is common to (10)

and (11), considerð
@Mm

dx

ð
Nx(K(M))\S n�1

dv

ð1

cos2 min(Ł, Ł(x, v))

�a�1(1� �)b�1 d�

ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv

ð1

cos2 min(Ł, Ł(x, v))

(1� �)b�1 d�

¼ 1

b

ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv sin2b min(Ł, Ł(x, v))

¼ Ł2b

b

ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv
sin2b min(Ł, Ł(x, v))

Ł2b
:

Now for each fixed (x, v) such that x =2 I(M), Ł(x, v) . 0, because M is locally conic and

Nx(K(M)) 6¼ f0g. Therefore,

sin2b min(Ł, Ł(x, v))

Ł2b
! 1, Ł! 0,

and by the dominated convergence theorem we haveð
@Mm

dx

ð
Nx(K(M))\S n�1

dv
sin2b min(Ł, Ł(x, v))

Ł2b
!
ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv:

Taking the constant into account again, we obtain

V (MŁ) � Łn�m�1

n� m� 1

ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv, Ł! 0:

However, this is the main term of ~VV (MŁ) as well. Therefore, we have shown that (10) and

(11) have the same main term.

Proving that (13) and (14) have the same main term
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P max
u2M

Z(u) > t

� �
� ˆ((n� m� 1)=2)

2(mþ3)=2 �n=2
t m�1 e� t2=2

ð
@Mm

dx

ð
Nx(K(M))\S n�1

dv, t!1,

is entirely similar, by noting that, for each (x, v), x =2 I(M),

Qa,n�a(t
2, tan2 Ł(x, v))

Ga(t2)
! 1, t!1:

We proceed to show that in general the higher-order terms of (10) and (11) or of (13)

and (14) are not equal. The arguments for these two cases are entirely similar. Here we

discuss only the difference between (13) and (14). In order to show the discrepancy we only

consider expansion terms arising from the term d ¼ m, j ¼ 0, in the summation of (13) and

(14). Ignoring 1=(�mþ1�n�m�1), the difference of these two terms is written asð
@Mm

dx

ð
Nx(K(M))\S n�1

dv

ð1
t2

gmþ1(�) Gn�m�1(� tan2 Ł(x, v)) d�: (17)

Define

A(t) ¼ f(x, v)jx 2 @Mm, v 2 Nx(K(M)) \ Sn�1, tan Ł(x, v) < 1=tg:
Now assume that there exists some k . 0 such thatð

A( t)

dx dv ¼ O(t�k): (18)

Fix c . 1. Then (17) is bounded below byð
@Mm

dx

ð
Nx(K(M))\S n�1

dv

ðct2

t2

gmþ1(�)Gn�m�1(� tan2 Ł(x, v)) d�

>

ð
A( t)

dx dv

ðct2

t2

gmþ1(�) Gn�m�1(� tan2 Ł(x, v)) d�

> Gn�m�1(c)

ð
A( t)

dx dv

ðct2

t2

gmþ1(�) d�

¼ O(t�kGmþ1(t2)) ¼ O(Gmþ1�k(t
2)):

However, the term of order O(Gmþ1�k(t2)) is not distinguishable from higher-order expansion

terms of (13) or (14). Therefore, we have shown that the higher-order terms of (13) and (14)

are not generally equal when (18) holds.

It may be the case that k in (18) is large and that many terms of the formal asymptotic

expansion are correct. In this case we may want to approximate the tail probability using

only the correct terms of the asymptotic expansion. Therefore it is important to determine

the value of k in (18) for a given problem.

We now argue that in certain regular cases k in (18) is simply the difference between

m ¼ dimM and the dimension of the set of points with non-convex support cone.

We require the technical assumption that there exists c > 1 such that, on @Mm,
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lim inf
t!0

inf
x:tan Ł(x)<1=(ct)

ð
v2Nx(K(M))\S n�1,tan Ł(x,v)<1= t

dv . 0: (19)

This condition implies that, for sufficiently small t, the angle of Nx(K(M)) \
fvjŁ(x, v) < 1=tg is bounded away from 0 for all x 2 @Mm with Ł(x) < 1=(ct). Now for

c > 1,ð
x:tan Ł(x)<1=(ct)

dx

ð
v2Nx(K(M))\S n�1,tan Ł(x,v)<1= t

dv <

ð
A( t)

dx dv < �n�m

ð
x:tan Ł(x)<1= t

dx:

Therefore, under assumption (19),ð
A( t)

dx dv ¼ O(t�k),
ð
x:tan Ł(x)<1= t

dx ¼ O(t�k)

and k can be evaluated from the volume of the set fx 2 @Mmj tan Ł(x) < 1=tg.
Let M denote the set of points on the relative boundary of @Mm with non-convex

support cone. We now make a second assumption that M forms a C2-submanifold of Rn of

dimension l. Finally, we assume that, for x 2 @Mm, Ł(x) ¼ O(1=t) if and only if

dist(x, M) ¼ O(1=t). Under these assumptions the set fx 2 @MmjŁ(x) < 1=tg is basically a

tube around M in @M of radius O(1=t). Therefore the m-dimensional volume of this tube

is proportional to O(t�k) with

k ¼ m� l ¼ dim M � dim M :

3. Examples

The formulae for exact tail probabilities in Section 2.2 are of theoretical importance.

However, they may be difficult to evaluate explicitly for a given problem. Therefore in this

section we investigate in detail some simple examples in which the exact tail probability as

well as the formal expansion by the tube formula and the Euler characteristic method can

be explicitly evaluated and the discrepancy between them can be clearly understood. A

detailed treatment of a more complicated but statistically natural example is given in

Takemura and Kuriki (2001).

3.1. Boundary of polyhedral cone

Here we consider simple examples of the tail probability of the maximum of Y (u) in (2)

corresponding to Examples 2.1 and 2.3. Consider the uniform distribution Unif (S 2) on the

sphere S2 in R3. For simplicity of notation we avoid subscripts and let (x, y, z) denote a

vector on R3 or on S2. Note that �3 ¼ 4�, �2 ¼ 2�, �1 ¼ 2.

First, we discuss Example 2.1. If M is as in (3), then
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max
u2M

Y (u) ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p� 	

¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p� 	
and

P max
u2M

Y (u) > cos Ł

� �
¼ V (MŁ)

4�
:

Y (u) corresponds to the maximum of two correlated beta variables. This type of statistic is

commonly used in change-point analysis or multiple comparisons. M consists of four arcs of

length � and two crossing points at (�1, 0, 0). These two points are improper and do not

contribute to the volume of the tube. On the other hand, the four arcs form the one-

dimensional proper boundary of M . Without loss of generality, consider points on the arc

u ¼ (cos �, sin �, 0), 0 < � < �. Nu(K(M)) \ S2 ¼ (0, 0, �1) and the cross-section at u is the

arc

Cu(Ł) ¼ cos �(cos �, sin �, 0)þ sin �(0, 0, 1), j�j , Ł:

u is the unique projection of points in Cu(Ł) if and only if

j sin �j , cos � sin �:

Therefore, for v ¼ (0, 0, �1),

Ł(u, v) ¼ arctan(sin �):

Now in (10) and (11) m ¼ d ¼ 1,
Ð
Nu(K(M))\S2 dv ¼ 2, H ¼ 0, tr0H ¼ 1, tr1H ¼ 0, and

B1,1=2(t2) ¼ 1

2

ð1

t2

(1� �)�1=2 d� ¼ (1� t2)1=2:

The point which makes the largest angle from M is (0, 1, 1)=
ffiffiffi
2
p

, and this angle is �=4.

We first consider the formal tube formula, because it is simpler. We have

~VV (MŁ) ¼ 2�3

ð
4 arcs

du
1

�1�2

B1,1=2(cos2 Ł)

¼ 8 sin Ł

ð�
0

d� ¼ 8� sin Ł:

This is the sum of the spherical areas of two bands around the two great circles of M .

In this example the alternative definition V̂V (MŁ) can also be explicitly computed. The

difference between ~VV (MŁ) and V̂V (MŁ) comes from excursion sets A(y, Ł) of (15) for y near

two crossing points. Figure 1 depicts the excursion set A(y, Ł) for y close to a crossing

point, which is placed at the origin. In ~VV (MŁ), points in the ‘square’ [�Ł, Ł] 3 [�Ł, Ł] are

counted twice. On the other hand, in V̂V (MŁ) the points in the spherical circle of radius Ł
are counted once, because the Euler characteristic of the latter is 1 and hence

�(A(y, Ł)) ¼ 1 for y in the spherical circle. Note that points y9 in the square outside the

circle (shaded area in Figure 1) are counted twice, because A(y9, Ł) consists of two line
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segments and �(A(y9, Ł)) ¼ 2. The area of a spherical circle of radius Ł is given by

2�(1� cos Ł). Hence

V̂V (MŁ) ¼ ~VV (MŁ)� 4�(1� cos Ł) ¼ 8� sinŁ� 4�(1� cos Ł):

We now consider the true volume V (MŁ). We only consider Ł < �=4. Write Ł ¼
arctan(sin �0) or �0 ¼ arcsin (tan Ł). Then

min(Ł, Ł(u, v)) ¼
arctan(sin �), if 0 < � < �0,

Ł, if �0 , � , �� �0,

arctan(sin �), if �� �0 < � < �:

8<
:

The contribution of the middle case to the volume is

8 sin Ł (�� 2�0) ¼ 8� sin Ł� 16 sin Ł arcsin(tan Ł):

The contribution from the region where Ł(u, v) , Ł is

16

ð�0

0

sin(arctan(sin �)) d� ¼ 16

ð�0

0

sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�
p d�:

Let w ¼ sin2�, with dw ¼ 2 sin � cos � d�. Then

16

ð�0

0

sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2�
p d� ¼ 8

ð sin2 �0

0

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ w
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� w
p dw

¼ 8

ð tan2 Ł

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2
p dw

¼ 8 arcsin(tan 2Ł):

Therefore, we obtain

y

y ′

(0,0) (0,θ)

(θ,0)

Figure 1. Euler characteristic around a crossing point.
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V (MŁ) ¼ 8� sin Ł� 16 sin Ł arcsin(tan Ł)þ 8 arcsin(tan 2Ł):

Note that both V (MŁ) and ~VV (MŁ) are O(Ł) and they differ in the term of order O(Ł2):

~VV (MŁ) ¼ V (MŁ)þ 8Ł2 þ o(Ł2):

V̂V (MŁ) also differs from V (MŁ) in the term of order O(Ł2):

V̂V (MŁ) ¼ V (MŁ)þ (8� 2�)Ł2 þ o(Ł2):

Ł(u, v) tends to zero around two crossing points of M . Note that in this example the

conditions of Section 2.3 are satisfied with c ¼ 1 in (19). The volume (actually the length

in this example) of points u 2 @M1 with Ł(u) < 1=t is O(1=t). Therefore, k ¼ 1 in (18).

This corresponds to the difference between 1 ¼ dimM and 0, which is the dimension of

these two points.

We now turn to Example 2.3. The necessary calculation has already been done. The

formal tube formula ~VV (MŁ) consists of the sum of two areas of half bands and the area of

two quarter spherical circles corresponding to the normal cone at (�1, 0, 0). Therefore

~VV (MŁ) ¼ 4� sin Łþ �(1� cos Ł):

We obtain V̂V (MŁ) by subtracting the area of two spherical quarter circles from ~VV (MŁ):

V̂V (MŁ) ¼ 4� sin Łþ �(1� cos Ł)� �(1� cos Ł) ¼ 4� sin Ł:

On the other hand, the true volume V (MŁ) is obtained by further subtracting twice the shaded

area of Figure 1:

V (MŁ) ¼ 4� sin Ł� �(1� cos Ł)þ 4 sin Ł arcsin (tan Ł)� 2 arcsin (tan2 Ł):

We again see that these three are all different and the difference appears at the order O(Ł2).

3.2. Direct product of two cones

Here we consider a generalization of Examples 2.1 and 2.3. For i ¼ 1, 2, let Ki be smooth

cones in Rni such that Mi ¼ Ki \ Sni�1 is a di-dimensional closed manifold. Define the

cone of direct product

K ¼ K1 3 K2 ¼ f(x1, x2)jx1 2 K1, x2 2 K2g � Rn

and its intersection with the unit sphere M ¼ K \ Sn�1, where n ¼ n1 þ n2. Note that M is

of dimension d ¼ d1 þ d2 þ 1 and is expressed as

M ¼ f(u1 cosj, u2 sinj)ju1 2 M1, u2 2 M2, j 2 [0, �=2]g: (20)

Examples 2.1 and 2.3 correspond the case where K1 ¼ R1 and

K2 ¼ f(0, y) 2 R2jy 2 R1g [ f(x, 0) 2 R2jx 2 R1g (Example 2:1),

f(0, y) 2 R2jy > 0g [ f(x, 0) 2 R2jx > 0g (Example 2:3):

�

As seen in Examples 2.1 and 2.3, M in (20) generally has zero critical radius, although
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M1 and M2 have positive critical radii. This is because the support cone of M at

u ¼ (u1, 0) 2 M , u1 2 M1, is

Su(M) ¼ Tu1
(M1) 3 K2,

which is not convex unless K2 is convex. Conversely, the set of regular points of M is

M � I(M) ¼ f(u1 cosj, u2 sinj)ju1 2 M1, u2 2 M2, j 2 (0, �=2)g
when both of K1 and K2 are non-convex.

The following proposition, proved in Appendix C, gives the formal tube formula for M.

Proposition 3.1. Assume that the formal tube formula for Mi, i ¼ 1, 2, is given by

V ((Mi)Ł) ¼ �ni

Xd i

j¼0

wijB(d i� jþ1)=2,(ni�diþ j�1)=2(cos2 Ł),

which is exact for 0 < Ł < Łic, where Łic . 0 is the critical radius of Mi. Then the formal

tube formula (11) for M is

~VV (MŁ) ¼ �n

Xd1

j1¼0

Xd2

j2¼0

w1 j1w2 j2 B(d� j1� j2þ1)=2, (n�dþ j1þ j2�1)=2(cos2 Ł):

As an example, consider the cones in R6 given by

K1 ¼ K2 ¼ fx � y 2 R6jx 2 R2, y 2 R3g,
where � denotes the Kronecker product. Cones of this type are defined by bilinear forms and

investigated fully in Kuriki and Takemura (2001). The formal tube formula for

Mi ¼ Ki \ S6�1, i ¼ 1, 2, is given by

V ((Mi)Ł) ¼ �6 2B4=2,2=2(cos2 Ł)� 2B2=2,4=2(cos2 Ł)
n o

, (21)

which is exact for 0 < Ł < �=4. Write K ¼ K1 3 K2 and M ¼ K \ S12�1 as before.

Let z ¼ (z1, z2) 2 R12, z1, z2 2 R6, be random vectors consisting of independent standard

normal random variables. Then maxu2Mi
uTzi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1(Wi)
p

, i ¼ 1, 2, and

max
u2M

uTz ¼ max
ui2Mi,j2[0,�=2]

(uT
1 z1 cosjþ uT

2 z2 sinj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘1(W1)þ ‘1(W2)

p
,

where W1, W2 are 2 3 2 matrices independently following the Wishart distribution with three

degrees of freedom and scale matrix I2, Wis2(3, I2), and are a function of z1 and z2. Here

‘1(�) denotes the largest eigenvalue of the matrix. The tube formula (21) gives an asymptotic

expansion for the upper tail probability

P(‘1(Wi) > t) � 2G4(t)� 2G2(t), t!1:

By Proposition 3.1 and (14), the formal tube formula is given by

~PP(‘1(W1)þ ‘1(W2) > t) ¼ 4G8(t)� 8G6(t)þ 4G4(t): (22)
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In the case of this example the exact distribution of ‘1(Wi) can be obtained in a simple

form. The joint density of the eigenvalues (‘1, ‘2), ‘1 > ‘2 > 0, of a Wis2(3, I2) matrix is

known to be

1

4
e�(‘1þ‘2)=2(‘1 � ‘2), ‘1 > ‘2 > 0: (23)

By integrating this over the region ‘1 > t, ‘1 > ‘2 > 0, we have

P(‘1 > t) ¼ 2G4(t)� 2G2(t)þ G2(2t),

with moment generating function E(eŁ l1 ) ¼ 2(1� 2Ł)�2 � 2(1� 2Ł)�1 þ (1� Ł)�1. Square

the moment generating function and for the term (1� 2Ł)��=2(1� Ł)�1 use the asymptotic

relation

P �2
� þ

1

2
�2

2 > t

� �
¼ 2G�(t)þ O(e� t=2 t�=2�2), t!1,

where �2
� and �2

2 are independent �2 random variables. Then the tail probability of the sum of

the two largest eigenvalues is evaluated as

P(‘1(W1)þ ‘1(W2) > t) ¼ 4G8(t)� 8G6(t)þ 8G4(t)þ O(G2(t)):

Therefore, we see that the formal tube formula (22) is invalid in the term of order O(G4(t)).

This was expected since k ¼ dim M � dim I(M) ¼ 7� 3 ¼ 4.

3.3. Euler characteristic method applied to �2 field

We continue to examine the example of sum of the largest eigenvalues of two independent

Wishart matrices ‘1(W1)þ ‘1(W2), W1, W2 �Wis2(3, I2).

Define a �2 field with index set S1 3 S1:

X (u) ¼
X2

i¼1

cos(�i=2), sin(�i=2)ð ÞWi

cos(�i=2)

sin(�i=2)

� �

¼
X2

i¼1

wi11 � wi22

2
cos�i þ wi12 sin�i þ

wi11 þ wi22

2

� �
,

where u ¼ (cos�1, sin�1, cos�2, sin�2), 0 < �1, �2 , 2�. The ( j1, j2)th element of Wi is

denoted by wij1 j2. This is a �2 field in a sense that, for each u fixed, X (u) is distributed as �2

with two degrees of freedom. In the following we apply the Euler characteristic method to

approximate the upper tail probability of

max
u2S13S1

X (u) ¼ ‘1(W1)þ ‘1(W2):

The Euler characteristic method approximates the tail probability by

P(‘1(W1)þ ‘1(W2) > t) � E[�(A(t))],

where
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A(t) ¼ fu 2 S1 3 S1jX (u) > tg

is the excursion set. The expectation E[�(A(t))] can be evaluated with the help of Morse

theory.

Define a (random) function on S1 3 S1 by f (u) ¼ �X (u). With probability one there

exist four critical points of f :

u� ¼ (E1 cos��1 , E1 sin��1 , E2 cos��2 , E2 sin��2 ), E1 ¼ �1, E2 ¼ �1,

where

��i ¼ tan�1 2wi12

wi11 � wi22

, i ¼ 1, 2:

The Hessian at each critical point is shown to be

det
@2 f (u)

@�i@� j

 !




u¼u�

¼
Y2

i¼1

Ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi11 � wi22

2

� �2

þw2
i12

s
,

which is non-zero with probability one. Therefore f (u) is a Morse function with probability

one. Then, by Morse’s theorem (Worsley 1995b, Theorem 1; Takemura and Kuriki 2002,

Proposition 3.1), we have

�(A(t)) ¼
X

u:critical point

I( f (u) < �t) sgn det
@2 f (u)

@�i@� j

 !

¼
X

u:critical point

E1E2 I
X2

i¼1

Ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wi11 � wi22

2

� �2

þw2
i12

s
þ wi11 þ wi22

2

0
@

1
A > t

0
@

1
A

¼ I(‘1(W1)þ ‘1(W2) > t)� I(‘1(W1)þ ‘2(W2) > t)

� I(‘2(W1)þ ‘1(W2) > t)þ I(‘2(W1)þ ‘2(W2) > t),

with probability one, where ‘1(Wi) > ‘2(Wi) are ordered eigenvalues of Wi. Note that the

joint distribution of the eigenvalues is given in (23). Simple calculations yield

P(‘2 > t) ¼ G2(2t),

P(‘1 > t)� P(‘2 > t) ¼ 2G4(t)� 2G2(t),

and hence

E[�(A(t))] ¼ P(‘1(W1)þ ‘1(W2) > t)� P(‘1(W1)þ ‘2(W2) > t)

� P(‘2(W1)þ ‘1(W2) > t)þ P(‘2(W1)þ ‘2(W2) > t)

¼ 4G8(t)� 8G6(t)þ 4G4(t):

The last equality can be easily verified by the moment generating function. This result
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coincides with the formal tube approximation (22), and the coefficient of the lowest term of

order O(G4(t)) is incorrect.

Appendix A. Definition of locally conic set and related notions

Here we give precise definitions of various notions in Section 2.1. Throughout Section 2 we

consider spherical tubes around M � Sn�1. Here we begin by considering M � Rn and the

volume of tubes in Rn for simplicity. Once we have a proof for tubes in Rn, it is

straightforward to adapt it to the spherical tube.

Let M be a closed subset of Rn. For each x 2 M , we assume that M is locally

approximated by a cone in the following definition.

Definition A.1. A closed subset M of Rn is locally conic of class C2 if, for each x 2 M, there

exist an open neighbourhood U (x) � Rn of x, E ¼ Ex . 0, a C2-diffeomorphism

�x : (�E, E)n ! U (x) with �x(0) ¼ x and a closed cone K ¼ K�x
of Rn such that

M \ U (x) is the image of K \ (�E, E)n by �x:

M \ U (x) ¼ �x(K \ (�E, E)n):

Furthermore, if V ¼ U (x) \ U (x9) 6¼ ˘ for x, x9 2 M, then ��1
x9 s �x: ��1

x (V )! ��1
x9 (V ) is a

C2-diffeomorphism.

In Definition A.1 we are following the standard definition of a differentiable manifold.

However, M may not be a standard manifold because we allow self-intersections in M . The

definition of the locally conic set is the same when M is a subset of Sn�1.

For locally conic M we define the supporting cone and the normal cone at each x 2 M

as follows. The support cone (or the tangent cone) of M at x 2 M is the image of K by the

differential d� at the origin:

Sx(M)þ x ¼ d�j(0,:::,0)K: (24)

Note that ‘þ’ on the left-hand side of (24) is the vector sum and hence Sx(M) is defined with

its vertex located at the origin. Let C(Sx(M)) be the convex hull of Sx(M). The normal cone

Nx(M) of M at x is the dual cone of C(Sx(M)) in Rn:

Nx(M) ¼ fyjyTv < 0, 8v 2 Sx(M)g ¼ fyjyTv < 0, 8v 2 C(Sx(M))g:

Here note that by definition the dual cone of Sx(M) coincides with the dual cone of

C(Sx(M)). For the case of geodesically convex M , the notions of support cone and normal

cone given here coincide with the standard notions in convex analysis (Schneider 1993,

Section 2.2; Takemura and Kuriki 1997, Section 2.3). Takemura and Kuriki (2002) assumed

that Sx(M) is convex for all x 2 M and proved the validity and the equivalence of the tube

method and the Euler characteristic method. In the present paper Sx(M) may not be convex

and the distinction between Sx(M) and its convex hull is important.

For x 2 M, let
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d ¼ n� dim Nx(M)

be the codimension of Nx(M). Note that d is the dimension of the largest linear subspace

contained in C(Sx(M)):

L ¼ C(Sx(M)) \ (�C(Sx(M))):

If L is contained in Sx(M), then clearly L is the unique largest linear subspace contained in

Sx(M), and in this sense L is the tangent space Tx(M) of M at x. On the other hand, if L is

not contained in Sx(M), then there are two non-nested linear subspaces contained in Sx(M)

and M does not possess a tangent space at x. In the tube formula the n-dimensional volume

of the tube is obtained by integrating the product of the volume element of Nx(M), the

volume element of the tangent space Tx(M) and the Jacobian containing the second

fundamental form at x. This implies that if L is not contained in Sx(M), then there should be

no contribution to the volume of the tube from x. On the other hand, if L is contained in

Sx(M), the contribution of points in Nx(M) to the volume of the tube is the same for convex

or non-convex Sx(M). This is the motivation for the definition of the proper boundary in

Section 2.1; for convenience we now give a formal definition.

Definition A.2. Let M be locally conic and, for x 2 M, let d ¼ n� dim Nx(M). x is a proper

d-dimensional boundary point if L ¼ C(Sx(M)) \ (�C(Sx(M))) is contained in Sx(M).

Appendix B. Proofs of Proposition 2.1 and Lemma 2.1

We begin with a proof of Proposition 2.1. We then state a version of Proposition 2.1 for

tubes in Rn. Finally, we outline the proof of Lemma 2.1.

Proof of Proposition 2.1. We first show that the complement of R(M) in Sn�1 has zero

spherical volume. Let x 62 R(M). Then there are at least two equidistant projections y1, y2 of

x onto M . By Assumption 2.1 it suffices to consider the case where both y1 and y2 are proper

boundary points of M . We need to distinguish two cases of non-uniqueness of projection.

One case is that x is a ‘focal point’ of y1 or y2 in the sense of Milnor (1963, p. 33).

Arguments similar to those in Milnor (1963, Corollary 6.2) show that the set of focal points

is of zero spherical volume. In the second case there exist neighbourhoods V (y1), V (y2) � M

of y1 and y2, respectively, such that yi is the locally unique projection of x on V (yi). It can be

easily seen that there exists a neighbourhood U (x) � Sn�1 of x such that projections �i:

U (x)! V (yi), i ¼ 1, 2, are of class C2. Let

E(x) ¼ fz 2 U (x)jzT�1(z) ¼ zT�2(z)g:
Then E(x) is the set of points z 2 U (x) which are equidistant from V (y1) and V (y2). Let

g(z) ¼ zT�1(z)� zT�2(z). Note that �i(dz) belongs to the tangent space T�i(z)(M) of M at

�i(z) and hence zT�i(dz) ¼ 0. It follows that

grad g ¼ �2(z)� �1(z) 6¼ 0:

Therefore, by the implicit function theorem, E(x) is an (n� 2)-dimensional submanifold of
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class C2 in U (x) and hence has zero spherical volume. Combining the above two cases, we

have shown that the complement of R(M) has zero spherical volume.

We now investigate points in R(M). For x 2 R(M), let

v ¼ x� (xTxM )xM

kx� (xTxM )xMk
2 Sn�1:

Consider the segment of the great circle joining xM and x, and let u ¼
xM cos Łþ x sin Ł, 0 , Ł , dist(x, xM ), be an interior point of this segment. We claim that

u 2 R(M), and that the projection of u coincides with xM . Assume the contrary. Then there

exists ~yy 6¼ xM , ~yy 2 M , such that

dist(u, ~yy) < dist(u, xM ):

By the triangular inequality,

dist(x, ~yy) < dist(x, u)þ dist(u, ~yy)

< dist(x, u)þ dist(u, xM )

¼ dist(x, xM ):

However, this contradicts the assumption that xM is the unique projection of x onto M .

Therefore, u has the unique projection xM onto M .

Consider the semicircle of (6). The above argument shows that this semicircle is divided

into two intervals. The points on the first interval have the unique projection u and the

points on the second do not. Define Ł(u, v) by (7). Note that Ł(u, v) ¼ 0 corresponds to the

case where no point other than u itself has u as the unique projection. Ł(u, v) > �=2

corresponds to the case where all the points on the quarter circle from u in the direction v

have u as unique projection, which is equivalent to

vTx < 0, 8x 2 M : (25)

That is to say, M is entirely contained in one side of the hyperplane in Rn defined by the

normal v.

Since M is assumed to be locally conic, u is a projection of u cos Łþ v sin Ł for

sufficiently small Ł . 0 if and only if v 2 Nu(K(M)). Therefore we have[
u2M

[
v2Nu(K(M)),kvk¼1

[u, u cos Ł(u, v)þ v sin Ł(u, v)) � R(M)

�
[
u2M

[
v2Nu(K(M)),kvk¼1

[u, u cos Ł(u, v)þ v sin Ł(y, v)], (26)

where

[u, u cos Łþ v sin Ł] ¼ [u, u cos Łþ v sinŁ) [ fu cos Łþ v sin Łg

denotes the right closed segment of the great circle. Suppose there exist points x in the

difference of R(M) and the left-hand side of (26), that is, x 2 R(M) such that
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x ¼ u cos Ł(u, v)þ v sin Ł(u, v), Ł(u, v) . 0,

where u ¼ xM is the unique projection of x. We now prove that x is a focal point of u.

Assume the contrary, that is, assume that Ł(u, v) is smaller than the radius of curvature of M

at u with respect to the direction v. Then there exist a neighbourhood V (u) � M of u and

E . 0 such that the restricted projection of points on the extended segment

u cos Łþ v sin Ł, Ł(u, v) , Ł , Ł(u, v)þ E,

onto V (u) is u and is unique in V (u). Consider a sequence of points xn ¼
u cos (Ł(u, v)þ 1=n)þ v sin(Ł(u, v)þ 1=n) converging to x. By definition of Ł(u, v) there

exists yn 2 M such that dist(xn, yn) < dist(xn, u). Furthermore, by the above argument,

yn =2 V (u). Since the sequence fyng is bounded, there exists an accumulation point y0 of

fyng. Taking a subsequence if necessary, we can without loss of generality assume that

yn ! y0 =2 V (u). Then

dist(x, y0) ¼ lim dist(xn, yn) < lim dist(xn, u) ¼ dist(x, u):

However, this contradicts the assumption that u ¼ xM is the unique projection of x onto M .

Therefore x is a focal point of xM . We have now shown that the difference of R(M) and the

left-hand side of (26) is contained in the set of focal points and hence has zero spherical

volume. h

We now state a version of Proposition 2.1 for tubes in Rn. Let M � Rn be a locally

conic set satisfying Assumption 2.1. Let R(M) denote the set of points of Rn with unique

projection onto M . For y 2 M and v 2 Ny(M), kvk ¼ 1, let

[y, yþ rv) ¼ fyþ tvj0 < t , rg, if r . 0,

fyg, if r ¼ 0,

�

denote the right open line segment starting from y in the direction v. Define

r(y, v) ¼ sup fr > 0jyþ rv 2 R(M), (yþ rv)M ¼ yg: (27)

Then we have the following proposition.

Proposition B.1. For a locally conic closed set M with piecewise smooth proper boundary,

R(M) �
[
y2M

[
v2N y(M),kvk¼1

[y, yþ vr(y, v)), (28)

and the complement of the right-hand side of (28) has zero Lebesgue measure. Here, as in

(8), we define
S

v2N y(M),kvk¼1[y, yþ vr(y, v)) ¼ fyg for y 2 @Mn.

As in (25), r(y, v) ¼ 1 is equivalent to

vT(x� y) < 0, 8x 2 M , (29)

that is, M is entirely contained in one side of the hyperplane in Rn defined by the normal v.

Finally, we give an outline of the proof of a version of Lemma 2.1. Suppose that x 2 M
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has a non-convex support cone Sx(M). It suffices to show that inf y2U (x) Ł(y) ¼ 0, where

U (x) is a neighbourhood of x. If we take U (x) sufficiently small, then M is approximated

by the support cone Sx(M). Therefore the essential point of the proof is to consider

projection onto M around the point x and to show Lemma 2.1 for M ¼ K ¼ Sx(M), which

is a non-convex cone in Rn. Consider y 2 K \ Sn�1. Let r(y, v) be defined by (27). Using

(29), it can be easily shown that

inf
y2K\S n�1,v2N y(K),kvk¼1

r(y, v) ¼ 1

if and only if K is a convex cone. Since K is assumed to be non-convex, there exist

y 2 K \ Sn�1 and v 2 Ny(M) such that r(y, v) ,1. By the proof of Proposition B.1,

x ¼ yþ r(y, v)v has at least two equidistant projections onto M . Because of the scale

invariance of the geometry of the cone, Ex ¼ Eyþ Er(y, v)v ¼ Eyþ r(Ey, v)v has the same

property for every E . 0. Therefore limE#0 r(Ey, v) ¼ 0, and this proves that the critical radius

of M is zero.

Appendix C. Proof of Proposition 3.1

In the following the index i is assumed to run over f1, 2g.
Let ui 2 Mi and let the volume element of Mi at ui be denoted by dui. At

u ¼ (u1 cosj, u2 sinj) 2 M , j 2 [0, �=2], (30)

the volume element of M is given by

du ¼ cosd1j sind2j du1 du2 dj: (31)

Let vi 2 Tui(Ki)
? \ Sni�1 and let the volume element of Tui(Ki)

? \ Sni�1 be denoted by

dvi, where ‘?’ denotes orthogonal complement. Then at

v ¼ (v1 cos ~jj, v2 sin ~jj) 2 Tu(K)? \ Sn�1, ~jj 2 [0, �=2], (32)

the volume element of Tu(K)? \ Sn�1 is given by

dv ¼ cosn1�d1�2 ~jj sinn2�d2�2 ~jj dv1 dv2 d ~jj: (33)

Let Hi(ui, vi) be the second fundamental form of Mi at ui with respect to the normal

direction vi 2 Tui(Ki)
? \ Sni�1. Then the second fundamental form of M at u in (30) with

respect to the normal direction v in (32) is given by

H(u, v) ¼ diag
cos ~jj
cosj

H1(u1, v1),
sin ~jj
sinj

H2(u2, v2), 0

� �
: (34)

Substituting (31), (33), and (34) into (11), and integrating it over 0 , �, j, ~jj , �=2, we

prove the proposition.
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