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1. Introduction

A solution of a backward stochastic differential equation (BSDE) associated with a

coefficient f and a terminal value � on [0, 1] is an adapted process (Yt, Z t) t<1 such that

Yt ¼ �þ
ð1

t

f (s, Ys, Zs)ds�
ð1

t

Zs dBs, t < 1:

This type of equation, at least in the nonlinear case, was first introduced by Pardoux and Peng

(1990a), who proved the existence and uniqueness of a solution under suitable assumptions

on f and �, the most important of which are the Lipschitz continuity of f and the square

integrability of �. Their aim was to give a probabilistic interpretation of a solution to a

second-order quasilinear partial differential equation. Since then, these equations have

gradually become an important mathematical tool in many fields such as financial

mathematics (see, for example, El-Karoui et al. 1997a; 1997b; Buckdahn and Hu 1998;

Cvitanić and Karatzas 1996), stochastic games and optimal control (Hamadène and Lepeltier

1995a; 1995b; Hamadène et al. 1997; 1999; Cvitanić and Karatzas 1996; Dermoune et al.

1999), partial differential equations and homogenization (Pardoux and Peng 1990b; 1992;

Pardoux 1999; Peng 1991; Darling and Pardoux 1997; Buckdahn and Peng 1999) and

construction of ˆ-martingales (Darling 1995).

A further problem under widespread discussion is how to improve the existence and

uniqueness result of Pardoux and Peng (1990a) by weakening the Lipschitz continuity

condition on f . Hamadène (1996), Kobylanski (2000) and Lepeltier and San Martı́n (1997;

1998) have dealt with the situation where Y is a unidimensional process. They obtained an

existence result without assuming f Lipschitz continuous. However, the solution is not

necessarily unique. Hamadène (1996) takes f to be just locally Lipschitz, while Kobylanski
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(2000) and Lepeltier and San Martı́n (1997; 1998) merely assume that f is continuous. In

the proofs of these results, the comparison theorem for BSDE solutions plays a crucial role.

The situation where Y is a multidimensional process has also been studied, although the

comparison theorem does not apply. In general, however, the existence and uniqueness results

are obtained only under weaker regularity assumptions with respect to the component y of f .

The improvements are not concerned with the regularity of f in z since it is usually supposed

that f is Lipschitz with respect to that component (Pardoux 1999; Darling and Pardoux 1997;

Briand and Carmona 2000; Mao 1995). Nevertheless, some work has been done where this

latter condition is removed. Pardoux and Peng (1994) assume that f is deterministic and

sufficiently regular, while Hamadène et al. (1997) suppose that the randomness stems from a

Markov process. Finally, Zhou (1999) uses a generalization to the multidimensional case of

the comparison theorem. However, he requires some monotonicity conditions and some form

of pattern for the components f i of f .

In this paper we mainly address the problem of the existence of a solution for BSDEs

associated with coefficients which are not Lipschitz in z. In fact, we show that the

multidimensional BSDE associated with ( f , �) has a solution if the coefficient f of the

BSDE satisfies the following conditions:

(i) y 7! f (t, y, z) is uniformly continuous uniformly in (t, ø, z) and its modulus of

continuity � satisfies Assumption 2 below.

(ii) The function z 7! f (t, y, z) is uniformly continuous uniformly in (t, ø, y).

(iii) The ith component f i of f depends only on the ith row of z.

We give further consideration to the problem of uniqueness, and a result in this direction is

given.

Condition (i) is obviously satisfied when f is Lipschitz in y, with �(x) ¼ kx. But there

are functions which satisfy (i) and are not Lipschitz in y (see Example 2 in Section 3).

Conditions (i) and (ii) imply that f is uniformly continuous with respect to (y, z).

Therefore it can be approximated uniformly, on the whole space of (y, z), by a sequence of

Lipschitz functions ( f n)n>0. Furthermore, we introduce a sequence of processes (Y n, Z n)

which solve the BSDE associated with ( f n, �). Working on the components of Y n, we show

that the sequence (Y n)n is of Cauchy type. For this purpose we make use of condition (iii)

and Girsanov’s theorem in order to cancel some troublesome terms by putting them in the

martingale part. Assumption 2 on � enables us to conclude. The solution of the BSDE

associated with ( f , �) is constructed from the limit of (Y n)n and that of (Z n)n.

This paper is organized as follows. In Section 2 we formulate the problem accurately and

give some preliminary results. Section 3 is devoted to the proof of the main theorem and

investigates the conditions under which Assumption 2 is satisfied. Finally, in Section 4 we

consider the problem of uniqueness.

2. Formulation of the problem and preliminary results

Let B ¼ (Bt) t<1 be an m-dimensional Brownian motion defined on a probability space

(�, F , P), whose natural filtration is denoted (Ft) t<1, where Ft ¼ �fBs, s < tg. Let P be
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the � -algebra on [0, 1] 3� of Ft-progressively measurable sets. For k > 1, let H2,k be the

set of P-measurable processes V ¼ (Vt) t<1 with values in Rk such that E[
Ð 1

0
jVsj2 ds] ,1,

and let S2,k be the set of continuous P-measurable processes V ¼ (Vt) t<1 with values in Rk

such that E[sup t<1jVtj2] ,1.

We are now given two objects: a terminal value � 2 L2(�, F1, P); a coefficient f which

is a mapping (t, ø, y, z) 7! f (t, ø, y, z) from [0, 1] 3�3 Rd 3 Rd3m (where Rd3m is the

space of real matrices with d rows and m columns) to Rd satisfying the following

assumption:

Assumption 1. The process ( f (t, ø, 0, 0)) t<1 belongs to H2,d and, for any (y, z) 2
Rd 3 Rd3m, ( f (t, ø, y, z)) t<1 is P-measurable.

Let us now introduce the BSDE associated with ( f , �). A solution of such an equation is

a P-measurable process (Y , Z) ¼ (Yt, Z t) t<1 valued in Rd 3 Rd3m such that:

(Y , Z) 2 S2,d 3 H2,d3m

Yt ¼ �þ
ð1

t

f (s, ø, Ys, Zs)ds�
ð1

t

Zs dBs, 8t < 1:
(1)

The following theorem of Pardoux (1999) enables us to affirm the existence and uniqueness

of a solution for a BSDE.

Theorem 2.1. Let g be a mapping (t, ø, y, z) 7! g(t, ø, y, z) from [0, 1] 3�3 Rd 3 Rd3m

to Rd satisfying the following assumptions, along with Assumption 1 above:

(i) jg(t, y, 0)j < jg(t, 0, 0)j þ �(jyj), for all t, y, where � is a continuous increasing

function from Rþ into itself.

(ii) jg(t, y, z)� g(t, y, z9)j < Kkz� z9k, for all t, y, z, z9, where kzk ¼ [tr(zz�)]1=2

(iii) hy� y9, g(t, y, z)� g(t, y9, z)i < �jy� y9j, for all t, y, y9, z, where � is a real

number.

(iv) y 7! g(t, y, z) is continuous, for all t, z.

Then the BSDE (1) associated with (g, �) has a unique solution (Y , Z).

Now, let us give a result concerning the solutions of deterministic differential equations

which will be useful later.

Proposition 2.2. Let � be a continuous function from Rþ into Rþ such that �(x) < axþ b,

for all x 2 Rþ, where a and b are given non-negative constants. Then the deterministic

backward differential equation (DBE)

u(t) ¼ ªþ
ð1

t

�(u(s))ds, t < 1, ª 2 Rþ, (2)
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has a solution uª. In addition, if ª . 0 and �(x) . 0, for all x . 0, then the solution is

unique.

Proof. For n > 0, let �n : Rþ ! Rþ such that �n(x) :¼ inf y2Rþf�(y)þ njx� yjg. Since

the rate of growth of � is at most linear, �n is defined and is Lipschitz. Moreover, the

sequence (�n)n is non-decreasing and converges to �. So let un : Rþ ! Rþ be the solution

of the following DBE:

un(t) ¼ ªþ
ð1

t

�n(un(s))ds:

Since �n < �nþ1, then un < unþ1. Moreover, for all n > 0, 0 < un(t) < ~uu(t), t 2 [0, 1],

where ~uu is a function from Rþ into itself such that ~uu(t) ¼ ªþ
Ð 1

t
(a~uu(s)þ b)ds, t < 1. It

follows that, for any t 2 [0, 1], the sequence (un(t))n converges increasingly to a function

uª(t). On the other hand, since ~uu is bounded then there exists a constant k such that, for any

n > 0, we have un 2 [0, k]. Now on [0, k], by virtue of Dini’s theorem, the sequence (�n)n
converges uniformly towards �. Then, for any E . 0, there exists a rank n0 such that for all

n > n0, �(x)� E < �n(x) < �(x)þ E. Therefore, for any t < 1, we have

ªþ
ð1

t

�(un(s))ds� E < un(t) < ªþ
ð1

t

�(un(s))dsþ E:

Taking the limit as n!1 yields uª as a solution of (2) since E is arbitrary.

Let us now suppose that ª . 0 and �(x) . 0, for all x . 0. For z . 0, let us set

G(z) ¼
Ð 1

z
[�(x)]�1 dx and let u be a solution of (2). It is obvious that u > ª and

(G(u(t)))9 ¼ 1, for all t < 1. Hence G(u(1))� G(u(t)) ¼ 1� t, which implies that

u(t) ¼ G�1(G(ª)� 1þ t), t < 1, whence the desired result. h

Uniformly continuous functions can be approximated uniformly in the whole space of

(y, z) by Lipschitz functions. To be precise, we have the following lemma.

Lemma 2.3. Let g be a mapping (t, ø, y, z) 7! g(t, ø, y, z) from [0, 1] 3�3 Rd 3 Rd3m

to Rd satisfying Assumption 1. In addition, there exists a continuous function j from

Rþ 3 Rþ into Rþ such that j(0, 0) ¼ 0 and

jg(t, ø, y, z)� g(t, ø, y9, z9)j < j(jy� y9j, kz� z9k), 8t, y, y9, z, z9, a:s: (3)

Then there exists a sequence (gn)n>0 such that:

(i) For any n > 0, gn is a mapping from [0, 1] 3�3 Rdþd3m into Rd satisfying

Assumption 1 and which is Lipschitz with respect to (y, z) uniformly in (t, ø).

(ii) For all E . 0, there is an NE > 0 such that, for all n > NE,

jgn(t, ø, y, z)� g(t, ø, y, z)j < E for all t, y, z, a.s.

Proof. Let ł be a function of C1(Rdþd3m, Rþ) with compact support and which satisfiesÐ
Rdþd3m ł(y, z)dy dz ¼ 1. For n > 0, let łn : (y, z) 2 Rdþd3m 7! łn(y, z) ¼ n2ł(ny, nz) and

gn :¼ g�łn, the convolution product of g and łn. Therefore,
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8t, y, z, gn(t, ø, y, z) ¼
ð
Rdþd3m

g(t, ø, u, v)n2ł(n(y� u), n(z� v))du dv,

¼
ð
Rdþd3m

g t, ø, y� u

n
, z� v

n

� �
ł(u, v)du dv:

It is easily seen that the sequence (gn)n>0 converges pointwise to g, and, for any n > 0, gn
satisfies Assumption 1 and is Lipschitz with respect to (y, z) uniformly in (t, ø). On the

other hand, for any n, m > 0, we have

jgn(t, ø, y, z)� gm(t, ø, y, z)j

¼





ð
Rdþd3m

g t, ø, y� u

n
, z� v

n

� �
� g t, ø, y� u

m
, z� v

m

� �
ł(u, v)du dv






<

ð
Rdþd3m





g t, ø, y� u

n
, z� v

n

� �
� g t, ø, y� u

m
, z� v

m

� �



ł(u, v)du dv

<

ð
Rdþd3m

j




 un� u

m





,




 un� v

m






 !

ł(u, v)du dv:

But since the function ł is of compact support, then, by virtue of Lebesgue’s theorem, the

last integral tends to 0 as n, m tend to +1, whence the desired result. h

Remark. Functions g which are uniformly continuous in (y, z) uniformly in (t, ø) satisfy (3).

3. The main result

We begin with a couple of useful assumptions. Let � : Rþ 7! Rþ be a continuous function

of at most linear growth such that, �(0) ¼ 0 and �(x) . 0 for all x . 0. We would like �
to satisfy the following assumption:

Assumption 2. uª(0)! 0 as ª& 0, where uª is the unique solution on [0, 1] of the DBE

uª(t) ¼ ªþ
ð1

t

�(d:uª(t))dt, t < 1; ª . 0:

This assumption implies, in particular, that uª(t)! 0 as ª! 0 for any t 2 [0, 1].

Suppose now that, besides Assumption 1, the mapping (t, ø, y, z) 7! f (t, ø, y, z)

satisfies the following:

Assumption 3.

(i) f is uniformly continuous in y uniformly with respect to (t, ø, z), i.e., there exists a
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continuous non-decreasing function � from Rþ into itself with at most linear growth

and satisfying �(0) ¼ 0 and �(x) . 0 for all x . 0 such that:

j f (t, y, z)� f (t, y9, z)j < �(jy� y9j), 8t, y, y9, z a:s:

Moreover, � satisfies Assumption 2.

(ii) f is uniformly continuous in z, i.e., there exists a continuous function � from Rþ

into itself with at most linear growth and satisfying �(0) ¼ 0, such that:

j f (t, y, z)� f (t, y, z9)j < �(kz� z9k), 8t, y, z, z9 a:s:

(iii) For i ¼ 1, . . . , d, the ith component f i of f depends only on the ith row of the

matrix z.

In Assumption 3(i) the case where �(x) ¼ 0 on some interval [0, �] is irrelevant, since

then f (t, y, z) � f (t, 0, z).

Example 1. If f is Lipschitz in (y, z) uniformly in (t, ø), then it satisfies Assumption 3 with

�(x) ¼ �(x) ¼ kx.

Example 2. We now give a mapping f which satisfies Assumption 3 and which is not

Lipschitz in (y, z). Let f be the function which with (t, y, z) 2 [0, 1] 3 Rdþd3m associates

f (t, y, z) ¼ [h(jyj þ jz1j), . . . , h(jyj þ jzd j)], where zi is the ith row of z and

h(x) ¼ x ln
1

x
:1[0<x<�] þ (h9(��)(x� �)þ h(�)):1[x.�]

with � small enough. Since h(0) ¼ 0, and h is concave increasing, then for all x, x9 2 Rþ,

h(xþ x9) < h(x)þ h(x9). This implies that jh(x)� h(x9)j < h(jx� x9j), 8x, x9 2 Rþ. There-

fore f satisfies Assumption 3 with � ¼ � ¼ d:h (see Proposition 3.2 below for the second

part of Assumption 3(i)).

We shall now prove the main result of this section which provides, under Assumptions 1

and 3, a solution (Y , Z) for the BSDE associated with ( f , �). The known existence results

(Pardoux and Peng 1990a; Darling and Pardoux 1997; Pardoux 1999; Briand and Carmona

2000; Mao 1995) do not provide a solution for the BSDE associated with such a pair

( f , �).

Theorem 3.1. Suppose that Assumptions 1 and 3 hold. Then there exists a process (Y , Z) in

S2,d 3 H2,d3m such that

Yt ¼ �þ
ð1

t

f (s, Ys, Zs)ds�
ð1

t

Zs dBs, 8t < 1: (4)

Proof. Let ( f n)n>0 be a sequence of mappings from [0, 1] 3�3 Rdþd3m into Rd such that

for all n > 0, f n ¼ f � łn (łn is as in Lemma 2.3). This sequence converges uniformly to f

and for any n > 0, f n satisfies Assumption 1 and is Lipschitz with respect to (y, z) uniformly

in (t, ø). In addition, we have
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j f n(t, y, z)� f n(t, y9, z)j < �(jy� y9j), 8t, y, y9, z, a:s:

For any n > 0, let (Y n, Z n) be the solution of the BSDE associated with ( f n, �) which,

according to Theorem 2.1, exists. So, for any n > 0, we have

(Y n, Z n) 2 S2,d 3 H2,d3m,

Y n
t ¼ �þ

ð1

t

f n(s, Y
n
s , Z n

s )ds�
ð1

t

Z n
s dBs, 8t < 1:

(5)

The proof is based on the fact that (Y n)n>0 and (Z n)n>0 are Cauchy sequences in S2,d and

H2,d3m, respectively.

Step 1. In this step we show that (Y n)n>0 is a Cauchy sequence in S2,d . For any n > 0, let

(Y n,k , Z n,k)k>0 be the sequence of processes of S2,d 3 H2,d3m defined recursively as follows:

(Y n,0, Z n,0) ¼ (0, 0),

Y n,k
t ¼ �þ

ð1

t

f n(s, Y n,k�1
s , Z n,k

s )ds�
ð1

t

Z n,k
s dBs, 8t < 1, k > 1:

It is easily seen that (Y n,k , Z n,k)k>0 converges, as k ! þ1, to (Y n, Z n) in S2,d 3 H2,d3m.

Now, for i ¼ 1, . . . , d, let iY n,k , � i, f in and iZ n,k, be the ith components and row of

respectively Y n,k, �, f n and Z n,k . On the other hand, for any E . 0, let NE > 0 such that if

n, m > NE then j f n(t, y, z)� f m(t, y, z)j , E.

(a) For all n, m > NE, k > 0, i ¼ 1, . . . , d, t < 1, jiY n,k
t � iY m,k

t j < Cn,m
k,E , where Cn,m

k,E is

a constant which may depend on n, m, k, E. Indeed, we have

iY n,kþ1
t � iY m,kþ1

t

¼
ð1

t

f f in(s, Y n,k
s , iZ n,kþ1

s )� f im(s, Y m,k
s , iZ m,kþ1

s )gds�
ð1

t

(iZ n,kþ1
s � iZ m,kþ1

s )dBs

¼
ð1

t

f f in(s, Y n,k
s , iZ n,kþ1

s )� f in(s, Y
m,k
s , iZ n,kþ1

s )þ f in(s, Y m,k
s , iZ n,kþ1

s )

� f in(s, Y
m,k
s , iZ m,kþ1

s )þ f in(s, Y
m,k
s , iZ m,kþ1

s )� f im(s, Y m,k
s , iZ m,kþ1

s )gds

�
ð1

t

(iZ n,kþ1
s � iZ m,kþ1

s )dBs:

But since f in is a Lipschitz mapping,
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iY n,kþ1
t � iY m,kþ1

t ¼
ð1

t

fibk
n,m(s)(Y n,k

s � Y m,k
s )þ iak

n,m(s)(iZ n,kþ1
s � iZ m,kþ1

s )

þ ( f in(s, Y
m,k
s , iZ m,kþ1

s )� f im(s, Y m,k
s , iZ m,kþ1

s )gds

�
ð1

t

(iZ n,kþ1
s � iZ m,kþ1

s )dBs:

Here (iak
n,m(t)) t<1 and (ibk

n,m(t)) t<1 are bounded and Ft-adapted processes defined as:

iak
n,m(t) ¼

f in(t, Y
m,k
t , iZ n,kþ1

t )� f in(t, Y m,k
t , iZ m,kþ1

t )
iZ n,kþ1

t � iZ m,kþ1
t

if iZ n,kþ1
t � iZ m,kþ1

t 6¼ 0,

0 otherwise,

8><
>:

and

ibk
n,m(t) ¼

f in(t, Y
n,k
t , iZ n,kþ1

t )� f in(t, Y m,k
t , iZ n,kþ1

t )

Y n,k
t � Y m,k

t

if Y n,k
t � Y m,k

t 6¼ 0,

0 otherwise:

8><
>:

Let Pi,k
n,m be the probability on (�, F ) which is equivalent to P and defined by:

dPi,k
n,m

dP
¼ E

ð1

0

iak
n,m(s)dBs

 !
:¼ exp

ð1

0

iak
n,m(s)dBs �

1

2

ð1

0

jiak
n,m(s)j2 ds

" #
:

From Girsanov’s theorem (Karatzas and Shreve 1991; Revuz and Yor 1991), under Pi,k
n,m the

process

i Bk
n,m(t) ¼ Bt �

ð t
0

iak
n,m(s)ds, t < 1,

is an (Ft, P
i,k
n,m)-Brownian motion. Moreover,ð t

0

(iZ n,kþ1
s � iZ m,kþ1

s )di Bk
n,m(s)

� �
t<1

is an (Ft, P
i,k
n,m)-martingale. Indeed,

Ei,k
n,m sup t<1






ð t

0

(iZ n,kþ1
s � iZ m,kþ1

s )di Bk
n,m(s)






" #

< CEi,k
n,m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1

0

jiZ n,kþ1
s � iZ m,kþ1

s j2 ds

s24
3
5

< C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

dPi,k
n,m

dP

� �2
" #vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

ð1

0

jiZ n,kþ1
s � iZ m,kþ1

s j2 ds

" #vuut ,1,

and the result follows. The first inequality stems from that of Burkholder, Davis and Gundy

(Karatzas and Shreve 1991; Revuz and Yor 1991).

On the other hand, let 	n,m be a real number such that
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	n,m >
X
i¼1,d

jibk
n,m(t)j, 8t < 1, a:s:

Since n, m > NE then, after writing iY n,kþ1
t � iY m,kþ1

t with the Brownian motion i Bk
n,m

instead of B and taking the conditional expectation, we obtain

jiY n,kþ1
t � iY m,kþ1

t j < Ei,k
n,m

ð1

t

f	n,mjY n,k
s � Y m,k

s j þ EgdsjFt

" #
:

Now it is easily seen by induction on k, that for all k > 0, for all i ¼ 1, . . . , d, and

t < 1, jiY n,k
t � iY m,k

t j < un,m(t) < un,m(0). Here un,m is the deterministic function on [0, 1]

which satisfies un,m(t) ¼
Ð 1

t
fd	n,mun,m(s)þ Egds, t < 1 (this exists according to Proposition

2.2). Whence the desired result.

(b) We now need the fact that (Y n)n>0 is a Cauchy sequence in S2,d . Tanaka’s formula

implies that

jiY n,k
t � iY m,k

t j þ 2(i¸nmk
1 (0)� i¸nmk

t (0)) ¼
ð1

t

sgn(iY n,k
s � iY m,k

s )( f in(s, Y
n,k�1
s , iZ n,k

s )

� f im(s, Y m,k�1
s , iZ m,k

s ))ds�
ð1

t

sgn(iY n,k
s � iY m,k

s )(iZ n,k
s � iZ m,k

s )dBs,

where (i¸nmk
t (0)) t<1 is the local time of iY n,k � iY m,k at 0. It follows that

jiY n,k
t � iY m,k

t j <
ð1

t

sgn(iY n,k
s � iY m,k

s )f f in(s, Y n,k�1
s , iZ n,k

s )� f in(s, Y m,k�1
s , iZ n,k

s )

þ f in(s, Y
m,k�1
s , iZ n,k

s )� f in(s, Y
m,k�1
s , iZ m,k

s )þ f in(s, Y m,k�1
s , iZ m,k

s )

� f im(s, Y m,k�1
s , iZ m,k

s )gds�
ð1

t

sgn(iY n,k
s � iY m,k

s )(iZ n,k
s � iZ m,k

s )dBs:

So since n, m > NE then

jiY n,k
t � iY m,k

t j <�
ð1

t

sgn(iY n,k
s � iY m,k

s )(iZ n,k
s � iZ n,k

s )di Bk�1
n,m (s)

þ
ð1

t

fEþ�(jY n,k�1
s � Y m,k�1

s j)ds:

On the other hand, let uE be the solution on [0, 1] of the DBE

uE(t) ¼ Eþ
ð1

t

�(d:uE(s))ds, t < 1

(cf. Proposition 2.2). Sinceð t
0

sgn(iY n,k
s � iY m,k

s )(iZ n,k
s � iZ m,k

s )di Bk�1
n,m (s)

� �
t<1

is an (Ft, P
i,k�1
n,m )-martingale, we have
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jiY n,k
t � iY m,k

t j � uE(t) < Ei,k
n,m

ð1

t

f�(jY n,k�1
s � Y m,k�1

s j)��(d:uE(s))gdsjFt

" #
, t < 1:

(6)

Now by induction on k we have, for all k > 0, jiY n,k
t � iY m,k

t j < uE(t) for any t < 1 and

i ¼ 1, . . . , d. Indeed, for k ¼ 0 the property holds. Suppose it also holds for some k � 1, i.e.,

jiY n,k�1
t � iY m,k�1

t j < uE(t), 8t < 1 and i ¼ 1, . . . , d, then jY n,k�1
t � Y m,k�1

t j < d:uE(t),
8t < 1. Now combining that with the fact that � is non-decreasing and taking into account

(6) yields jiY n,k
t � iY m,k

t j < uE(t) for all t < 1, i ¼ 1, . . . , d:
Taking the limit as k !1 implies that jiY n

t � iY m
t j < uE(t), for all t < 1, i ¼ 1, . . . , d.

Hence for all E . 0 there exists NE such that, for all n, m > NE, we have

sup t<1jY n
t � Y m

t j < d:uE(0). As uE(0)! 0 as E! 0 (according to Assumption 3(i)), then

(Yn)n>0 is a Cauchy sequence in S2,d and converges to a process which we denote by Y.

Step 2. We now show that (Zn)n>0 is a Cauchy sequence in H2,d3m.

(a) There exists a constant C such that E[
Ð 1

0
kZ n

s k2 ds] < C. Indeed, since the rate of

growth of the functions � and � is at most linear, there exists a constant Æ such that, for

any n > 0, we have j f n(t, ø, y, z)j < j f (t, ø, 0, 0)j þ Æ(1þ jyj þ kzk), for all t, y, z, a.s.

Now using Itô’s formula with the process Y n defined in (5), we obtain

jY n
t j2 þ

ð1

t

kZ n
s k2 ds ¼ j�j2 þ 2

ð1

t

Y n
s f n(s, Y n

s , Z n
s )ds� 2

ð1

t

Y n
s Z

n
s dBs:

Then, for all t < 1 and � . 0,

jY n
t j2 þ

ð1

t

kZ n
s k2 ds < j�j2 þ

ð1

t

jY n
s jfj f (s, 0, 0)j þ Æ(1þ jY n

s j þ kZ n
s k)gds� 2

ð1

t

Y n
s Z

n
s dBs

< j�j2 þ 1

�

ð1

t

jY n
s j2 dsþ �

ð1

t

fj f (s, 0, 0)j þ Æ(1þ jY n
s j þ kZ n

s k)g2 ds

� 2

ð1

t

Y n
s Z

n
s dBs

< j�j2 þ 1

�

ð1

t

jY n
s j2 dsþ C�

ð1

t

f1þ j f (s, 0, 0)j2 þ jY n
s j2 þ kZ n

s k2gds

� 2

ð1

t

Y n
s Z

n
s dBs

< j�j2 þ 1

�
þ �C

� �ð1

t

jY n
s j2 dsþ C�

ð1

t

(1þ j f (s, 0, 0)j2)dsþ C�

ð1

t

kZ n
s k2 ds

� 2

ð1

t

Y n
s Z

n
s dBs:
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Through the convergence of (Y n)n>0 in S2,d we have supn>0 E[sup t<1jY n
t j2] < C, and then,

once again using the Burkholder–Davis–Gundy inequality, we deduce that (
Ð t

0
Y n

s Z
n
s dBs) t<1

is an (Ft, P)-martingale. Now choosing � ¼ 1=4C, we obtain

E

ð1

0

kZ n
s k2 ds

" #
< 4fE[�2]þ (4C þ 1

4
)E

ð1

0

jY n
s j2 ds

" #
þ E

ð1

0

(1þ j f (s, 0, 0)j2)ds

" #
< C,

whence the desired result. Here C is a constant which may change from one line to another.

(b) We show that (Zn)n>0 is a Cauchy sequence. Indeed, for any n, m > 0, we have

E

ð1

0

kZ n
s � Zm

s k2 ds

" #
< 2E

ð1

0

(Y n
s � Y m

s )( f n(s, Y n
s , Z n

s )� f m(s, Y m
s , Zm

s ))ds

" #

since the process (
Ð t

0
(Y n

s � Y m
s )(Z n

s � Zm
s )dBs) t<1 is an (Ft, P)-martingale. It follows that

E

ð1

0

kZ n
s � Zm

s k2 ds

" #
< 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E sup

t<1

jY n
t � Y m

t j2
� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

ð1

0

j f n(s, Y n
s , Z n

s )� f m(s, Y m
s , Zm

s )j2 ds

" #vuut :

But there exists a constant C > 0 such that, for all n > 0,

E

ð1

0

j f n(s, Y n
s , Z n

s )� f m(s, Y m
s , Zm

s )j2 ds

" #
< C:

Then the sequence (Zn)n>0 is a Cauchy sequence in H2,d3m whose limit will be denoted

by Z.

Step 3. We now show that the process (Y , Z) is a solution of the BSDE associated with

( f , �). For any n > 0 and t < 1, we know from (5) that

Y n
t ¼ �þ

ð1

t

f n(s, Y
n
s , Z n

s )ds�
ð1

t

Z n
s dBs:

Now, for a fixed t 2 [0, 1], the sequences (Y n
t )n>0 and (

Ð 1

t
Z n
s dBs)n>0 converge in L2(�, dP)

towards Yt and
Ð 1

t
Zs dBs, respectively. On the other hand,

E






ð1

t

f n(s, Y
n
s , Z n

s )ds�
ð1

t

f (s, Ys, Zs)ds






" #

< E

ð1

0

j f n(s, Y n
s , Z n

s )� f (s, Ys, Zs)jds
" #

< E

ð1

0

j f n(s, Y n
s , Z n

s )� f (s, Y n
s , Z n

s )jds
" #

þ E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)jds
" #

:

The first term converges to 0 as n! þ1 since ( f n)n>0 converges uniformly to f (cf.

Lemma 2.3(ii)). In addition, for any 	 > 0, we have
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E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)jds
" #

< E

ð1

0

f�(jY n
s � Ysj)1[jY n

s�Ysj<	] þ�(kZ n
s � Zsk)1[kZ n

s�Zsk<	]gds
" #

þ E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)j1[jY n
s�Ysj>	]ds

" #

þ E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)j1[kZ n
s�Zsk>	]ds

" #
:

Then, after extracting a subsequence, the first term converges to 0 as n! þ1. Moreover,

E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)j1[jY n
s�Ysj>	]ds

" #

< E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)j2 ds

" # !1=2

E

ð1

0

1[jY n
s�Ysj>	]ds

" # !1=2

< 	�1 E

ð1

0

j f (s, Y n
s , Z n

s )� f (s, Ys, Zs)j2 ds

" # !1=2

: E

ð1

0

jY n
s � Ysj2 ds

" # !1=2

< C	�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

ð1

0

jY n
s � Ysj2 ds

" #vuut :

The last inequality follows from the convergence of (Yn)n>0 ((Zn)n>0) in S2,d (H2,d3m) and

the linear growth of f , i.e., j f (t, ø, y, z)j < j f (t, ø, 0, 0)j þ Æ(1þ jyj þ kzk) a.s. Therefore,

the second term converges to 0 as n! þ1. In the same way, it is easily seen that the third

term also converges to 0 as n! þ1. Consequently, since Y is a continuous process, we

have

Yt ¼ �þ
ð1

t

f (s, Ys, Zs)ds�
ð1

t

Zs dBs, 8t < 1, a:s:,

i.e. (Y , Z) is a solution for the BSDE associated with ( f , �). The proof is now complete.

h
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We now focus on the conditions under which condition the function � of Assumption

3(i) satisfies Assumption 2. Here is a result in this direction.

Proposition 3.2. (i) Assume the DBE u(t) ¼
Ð 1

t
�(d:u(s))ds, t < 1, has a unique solution

u � 0. Then � satisfies Assumption 2.

(ii) The deterministic backward differential equation u(t) ¼
Ð 1

t
�(d:u(s))ds, t < 1, has a

unique solution if and only if
Ð

0þ[�(x)]�1 dx ¼ 1.

Proof. First let us emphasize that � is supposed to be continuous, non-decreasing, with at

most linear growth, and satisfies �(0) ¼ 0 and �(x) . 0 for all x . 0.

(i) For any E . 0, let uE be the solution of the DBE

uE(t) ¼ Eþ
ð1

t

�(d:uE(s))ds, t < 1:

If � . E then 0 < uE < u�, and it follows that, for all t < 1, uE(t)& ~uu(t) as E& 0. In

addition, ~uu satisfies ~uu(t) ¼
Ð 1

t
�(d:~uu(s))ds, t < 1. As the solution of this latter equation is

unique then ~uu(t) ¼ 0, for all t < 1, and so uE(0)! 0 as E& 0.

(ii) The condition is sufficient. For z . 0, let G(z) ¼
Ð 1

z
[�(d:x)]�1 dx. If u 6¼ 0 then there

exists some t0 2]0, 1] such that u(t0) ¼ 0 and u(t) . 0 for any t , t0, and then

(G(u(t))9 ¼ 1 for all t , t0. This implies that u(t) ¼ G�1(G(u(t1)� t1 þ t) for any

t < t1 , t0. Now taking the limit as t1 % t0 yields G(u(t1))! þ1 and G�1(þ1) ¼ 0,

whence u(t) ¼ 0 for all t < t0 which is a contradiction.

The condition is also necessary. Let us suppose
Ð

0þ[�(x)]�1 dx ,1. For E . 0, let

GE(z) ¼
Ð 1

z [Eþ�(d:x)]�1 dx, z > 0, and let uE be a function such that uE(t) ¼Ð 1

t
[Eþ�(d:uE(s))]ds, t < 1. uE is unique since GE(u

E(t))9 ¼ 1 for all t < 1, and then

GE(u
E(1))� GE(u

E(t)) ¼ 1� t, t < 1, which implies uE(t) ¼ GE
�1(GE(0)� 1þ t), t < 1.

Now if � . E then u� > uE, hence uE & v pointwise as E& 0. But v satisfies

v(t) ¼
Ð 1

t
�(d:v(s))ds, and then v ¼ 0, since the solution of this latter equation is unique.

It follows that uE & 0 as E& 0 pointwise and uniformly by virtue of Dini’s theorem.

Henceforth, for all t < 1, GE(u
E(t))!

Ð 1

0
[�(x)]�1 dx ,1 as E! 0. Now since

GE(u
E(1))� GE(u

E(t)) ¼ 1� t, for all t < 1, taking the limit as E! 0, we obtain

0 ¼ 1� t, for all t < 1 which is a contradiction. h

We are now ready to give the following result whose proof is a direct consequence of

Theorem 3.1 and Proposition 3.2.

Theorem 3.3. Assume the mapping ( t, ø, y, z) 7! f ( t, ø, y, z) satisfies Assumptions 1, 3(ii)
and 3(iii), and j f ( t, y, z)� f ( t, y9, z)j < �( jy� y9j), for all t, z, y, y9, where � is a

continuous non-decreasing function from Rþ into itself with at most linear growth and such

that �(0) ¼ 0,
Ð

0þ[�( x)]�1dx ¼ þ1 and �( x) . 0 for all x . 0. Then the BSDE

associated with ( f , �) has a solution.

According to this theorem, if f is as in Example 2 above then the BSDE associated with

( f , �) has a solution.

Multidimensional backward stochastic differential equations 529



4. Uniqueness

In this section we deal with the issue of the uniqueness of the solution for the BSDE (4)

associated with ( f , �). Let us assume that the mapping (t, ø, y, z) 7! f (t, ø, y, z) satisfies

the following assumption.

Assumption 4.

(i) For all t, y, y9, z, j f (t, y, z)� f (t, y9, z)j < �(jy� y9j), where � is continuous and

non-decreasing, grows at most linearly and satisfies �(0) ¼ 0, �(x) . 0, for all

x . 0, and
Ð

0þ [�(x)]�1dx ¼ 1.

(ii) The function z 7! f (t, y, z) is Lipschitz uniformly with respect to (t, ø, y). In

addition, for any i ¼ 1, . . . , d, f i(t, y, z), the ith component of f , depends only on

the ith row of z.

Then we have the following result.

Theorem 4.1. Under Assumptions 1 and 4, the solution (Y , Z) of the BSDE (4) associated

with ( f , �) is unique.

Proof. The existence follows from Theorem 3.3. Let us focus on the uniqueness. Let

(Y 9, Z9) 2 S2,d 3 H2,d3m be another solution of the BSDE associated with ( f , �), i.e.

Y 9t ¼ �þ
ð1

t

f (s, Y 9s, Z9s)ds�
ð1

t

Z9s dBs, 8t < 1, a:s:

(i) The process Y � Y 9 is uniformly bounded, i.e. there exists a constant ~CC such that

jYt � Y 9tj < ~CC, for all t < 1. Indeed, using Itô’s formula we arrive, for all t < 1, at

jYt � Y 9tj2 þ
ð1

t

kZ9s � Zsk2 ds ¼ 2

ð1

t

(Ys � Y 9s)( f (s, Ys, Zs)� f (s, Y 9s, Z9s))ds

� 2

ð1

t

(Ys � Y 9s)(Zs � Z9s)dBs

< 2

ð1

t

jYs � Y 9sjf�(jYs � Y 9sj)þ kkZs � Z9skgds

� 2

ð1

t

(Ys � Y 9s)(Zs � Z9s)dBs

< C

ð1

t

jYs � Y 9sj2 dsþ
ð1

t

�(jYs � Y 9sj)2 dsþ 1

2

ð1

t

kZs � Z9sk2 ds

� 2

ð1

t

(Ys � Y 9s)(Zs � Z9s)dBs (7)
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since, for all a, b 2 R and E . 0, jabj < Ea2 þ E�1b2. The growth of � is at most linear, then

�(jyj)2 < C(1þ jyj2) for all y 2 R. On the other hand, since (Y , Z) and (Y 9, Z9) belong to

S2,d 3 H2,d3m then, using the Burkholder–Davis–Gundy inequality, we deduce that

(
Ð t

0
(Ys � Y 9s)(Zs � Z9s)dBs) t<1 is an (Ft, P)-martingale. We thus have

jYt � Y 9tj2 < C 1þ
ð1

t

jYs � Y 9sj2 ds

( )
�
ð1

t

(Ys � Y 9s)(Zs � Z9s) dBs, t < 1:

Then, for any s > t > 0, we have

E[jYs � Y 9sj2jFt] < C 1þ
ð1

s

E[jYu � Y 9uj2jFt]du

( )
:

Now by Gronwall’s inequality we obtain E[jYs � Y 9sj2jFt] < ~CC, which yields the desired

result after taking s ¼ t.

(ii) We show that the solution of the BSDE associated with ( f , �) is unique. For any

i ¼ 1, . . . , d and t < 1, we have

iYt � iY 9t ¼
ð1

t

( f i(s, Ys,
iZs)� f i(s, Y 9s,

iZ9s))ds�
ð1

t

(iZs � iZ9s)dBs

where, once again, iY , iY 9, f i, iZ and iZ9 are the ith components and rows of respectively

Y , Y 9, f , Z and Z9. Then, using Tanaka’s formula, we obtain

jiYt � iY 9tj þ 2(¸i
1(0)�¸i

t(0)) ¼
ð1

t

sgn(iYs � iY 9s)( f
i(s, Ys,

iZs)� f i(s, Y 9s,
iZ9s))ds

�
ð1

t

sgn(iYs � iY 9s)(
iZs � iZ9s)dBs t < 1,

where (¸i
t(0)) t<1 is the local time of iY � iY 9 at 0. Now let (ait) t<1 be the following bounded

and Ft-adapted process:

ait ¼
f i(t, Y 9t,

iZ t)� f i(t, Y 9t,
iZ9t)

iZ t � iZ9t
if iZ t � iZ9t 6¼ 0,

0 otherwise:

8><
>:

Then

jiYt � iY 9tj <
ð1

t

sgn(iYs � iY 9s)( f
i(s, Ys,

iZs)� f i(s, Y 9s,
iZs))ds

�
ð1

t

sgn(iYs � iY 9s)(
iZs � iZ9s)dBs, t < 1

where Bt ¼ Bt �
Ð t

0
ais ds, t < 1, is a Brownian motion under the probability Pi on (�, F )

defined by dPi=dP ¼ E(
Ð 1

0
ais dBs). We thus have
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jiYt � iY 9tj <
ð1

t

�(jYs � Y 9sj)ds�
ð1

t

sgn(iYs � iY 9s)(
iZs � iZ9s)dBs, t < 1:

Then, for all s > t,

E i[jiYs � iY 9skFt] <

ð1

s

E i[�(jYu � Y 9uj)jFt]du (8)

since, as in step 1(a) of the proof of Theorem 3.1,
Ð t

0
sgn(iYu � iY 9u)(

iZu � iZ9u)dBu, t < 1, is

an (Ft, P
i)-martingale.

Now for n > 0, let �n be a Lipschitz function from Rþ into itself such that, for all

x 2 Rþ, �n(x)& �(x) as n!1 (see the proof of Proposition 2.2 for the existence of

�n).

For n > 0 and E . 0, let vn
E be the function such that

vn
E (t) ¼ Eþ

ð1

t

�n(d:vn
E (s))ds, t < 1:

Since (�n)n is a non-increasing sequence, vnþ1
E < vn

E for any n > 0. This implies that the

sequence (vn
E )n>0 converges pointwise to a function vE : Rþ ! Rþ which satisfies

vE(t) ¼ Eþ
ð1

t

�(d:vE(s))ds, t < 1:

Now if E < � then vn
E < vn

� for any n > 0, and then vE < v�. It follows that vE & v as E& 0

where, for any t < 1, v t ¼
Ð 1

t
�(d:v(s))ds, so that v � 0 (according to Proposition 3.2).

Therefore, we have vE(0)& 0 as E& 0.

Now for E, n and k > 0, let vE
n,k be the function defined recursively as follows:

vn,0
E ¼ ~CC,

vn,k
E (t) ¼ Eþ

ð1

t

�n(d:v
n,k�1
E (s))ds, k > 1, t < 1: (9)

Since �n is Lipschitz, vn,k
E ! vn

E as k ! þ1. On the other hand, it is easily seen by

induction that for all k > 0, jiYt � iY 9tj < vn,k
E (t), t < 1, i ¼ 1, . . . , d. Indeed, for k ¼ 0

the formula holds. Suppose it also holds for some k � 1, then

�(jYt � Y 9tj) < �(d:vn,k�1
E (t)) < �n(d:vn,k�1

E (t)) for all t < 1. Now, using (8) and (9), we

have jiYt � iY 9tj < vn,k
E (t) for all t < 1, i ¼ 1, . . . , d: Taking the limit as first k !1, then

n!1, and finally E! 0, we obtain jiYt � iY 9tj ¼ 0 for all t < 1. Therefore the solution is

unique. h

Finally a word about the work of Mao (1995) on the same subject. He shows that if the

coefficient f satisfies j f (t, ø, y, z)� f (t, ø, y9, z9)j2 < �(jy� y9j2)þ kjz� z9j2, where k

is constant and � satisfies Assumption 4(i) and (importantly) is concave, then the BSDE

associated with ( f , �) has a unique solution. He does not require the second part of

Assumption 4(ii). In his proof he uses Bihari’s inequality.
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Using our approach and under the same hypotheses as in Mao (1995), but without

requiring the concavity of �, it could be possible to obtain the same result as he does.

The issue of the existence and uniqueness of the solution for the BSDE associated with

( f , �) when f satisfies Assumption 4(i) and the mapping z 7! f (t, ø, y, z) is uniformly

Lipschitz is still open.
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