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Ion channels are proteins that are located in the membranes of cells and are capable of conducting ions

through the membrane. An ion channel is not always ‘open’ for transport. The ion channel molecule

may reside in several configurations, some of which correspond to an open channel and others to a

closed channel. The transitions of the channel between the different configurational states have a

random nature. Markov processes are often used to describe this randomness. In practice, there often

exist a number of candidate Markov models. The objective of this paper is the selection of a Markov

model from a finite collection of such models. We propose a Bayesian setting in which the model

indicator itself is viewed as a random variable, and we develop a reversible jump Markov chain Monte

Carlo (MCMC) algorithm in order to generate a sample from the posterior distribution of the model

indicator given the data of a single-channel recording. A hidden Markov model is used to incorporate

the correlated noise in recordings and the effects of filters that are present in the experimental set-up.

The reversible jump MCMC sampler is applied to both simulated and recorded data sets.

Keywords: Markov chain Monte Carlo; maximum a posteriori estimator; model identification; posterior

distribution; single-channel recordings

1. Introduction

Ion channels are proteins that are located in the membranes of cells and are capable of

conducting ions through the membrane. An ion channel is not always ‘open’ for transport.

The ion channel molecule may reside in several configurations, some of which correspond

to an open channel and others to a closed channel. The transitions of the channel between

the different configurational states are of a random nature. Markov processes are often used

to describe this randomness. The passage of ions through the membrane implies a small

electric current that can be measured. Noise and filtering, however, usually have a serious

impact on the resulting recordings. Therefore, hidden Markov models are used to

incorporate these effects.

De Gunst et al. (2001) dealt with Bayesian inference from ion channel data using hidden

Markov models. Here we are concerned with the problem of model identification in that
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setting, and the objective is to select a Markov model for the gating mechanism of the ion

channel from a set of candidate Markov models. For hidden Markov models the number of

states of the underlying Markov chain is one of the model components that need to be

identified. When all states play the same role, this number determines the model, otherwise

the structure of the chain, i.e. the possible transitions between states, needs to be identified

too. For ion channel models we are in the latter situation, unless there are only two states.

In a non-Bayesian context model identification is usually based upon criteria that make

some correction of the log-likelihood in order to prevent larger models from being chosen.

See, for instance, Horn (1987) and Ball and Sansom (1989) in the area of ion channel

modelling. Rydén (1995) uses maximum split data estimates for the estimation of the

number of states in a hidden Markov model.

The Bayesian setting allows for model selection by considering the model itself as a

random variable. The ratio of the posterior densities times the inverse ratio of the prior

densities of two different models, the so-called Bayes factor, is often used as a measure to

quantify how much one model is to be favoured over another model; see, for instance, Kass

and Raftery (1995). In our case, the Bayes factor of the two models cannot be derived

analytically. Numerical methods should therefore be used to approximate the Bayes factors.

We will apply Markov chain Monte Carlo (MCMC) techniques to sample from the

posterior density of a model. This will enable us to estimate Bayes factors for different sets

of models. As different models may have different numbers of parameters and different

state spaces for the ion channel states, the usual MCMC methods cannot be used to update

the model. Instead, reversible jump MCMC techniques introduced by Green (1995) can be

used to match dimensions. Hodgson and Green (1999) have developed a reversible jump

sampler to investigate the discrimination of several simple Markov models for ion channel

kinetics. Their approach only allows for Markov models with sojourn lengths that are

independent, and cannot easily be extended to the non-independent case. Ball et al. (1999)

used a model that is more general, and used a reversible jump sampler to update the

number of sojourns, but did not include model updating in their algorithm. The model used

by Hodgson and Green (1999) includes state-independent, correlated noise with a fixed

variance. The hidden Markov model that we will use includes correlated noise, state-

dependent excess noise and filtering, and allows for more general state spaces.

In Section 2 we will pose the model selection problem, and in Section 3 the reversible

jump sampler is constructed and an example of a model selection problem is given. Section

4 motivates our choice of model jump proposal probabilities. In the last two sections some

results of the application of the reversible jump sampler to simulated and real data sets are

presented and discussed.

2. The model selection problem

We use the hidden Markov model as defined in de Gunst et al. (2001). Let fX (t)g t>0 be a

continuous-time, irreducible, stationary Markov chain representing the state of the ion

channel. Its state space S is finite and is the union of the set of closed states Sc and the set

of open states So. The sampling interval is ˜, and we let X i ¼ X (i˜) for 0 < i < T.
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Furthermore, let fYtg0< t<T denote the observed electrical current and fCtg0< t<T be an

AR( p) process describing the correlated, state-independent noise. For (r _ p) < t < T � r,

the model has the form

Yt ¼
Xr
k¼�r

ªk�(X t�k)þ Ct þ � (X t)� t, (1)

with Ct ¼
P p

i¼1�iC t�i þ E t and

�(s) ¼ �c if s 2 Sc,

�o if s 2 So,

�
� (s) ¼ �c if s 2 Sc,

�o if s 2 So:

�

The innovations E t are assumed to be independent and normally distributed with mean zero

and variance � 2
E ; f� tg0< t<T is white standard Gaussian noise. The processes fX tg0< t<T ,

f� tg0< t<T and fE tg0< t<T are assumed independent. The innovations variance of the AR(p)

process is � 2
E .

In the following the probability density of a variable Z in z will simply be denoted by

p(z), unless this is not clear from the context. Furthermore, for any sequence a1, a2,

. . . , aT , we let alþk
l denote the vector (al, alþ1, . . . , alþk), 1 < l < l þ k < T . For

notational convenience we will use y, x and c instead of y ¼ yT�r
(r_ p), x ¼ xTr�r and

c ¼ cT�r
r� p, with r ¼ r _ p. The vector q ¼ (q1, . . . , ql)9 contains the non-zero transition

rates, and

� ¼ (�c, �o, � 2
c , � 2

o, �1, . . . , � p, �
2
E )9,

Ł ¼ (�, q)9:

Besides Ł, the state space and the structure of the underlying Markov process are also

unknown. The weights ª�r, . . . , ªr are assumed to be known and fixed. Our goal is to select

the most likely model from a collection of biologically plausible models and to estimate its

unknown parameter values based on observations y. Suppose that model M is to be selected

from a collection of M models, so M 2 f1, 2, . . . , Mg. The differences between the models

are the underlying Markov models that describe the gating mechanism of the ion channel.

The number of states and the permitted transitions between states may vary over the different

Markov models. For all models the noise and filtering are modelled identically. Also current

levels and noise variances are assumed to be the same. For illustration purposes we will

discuss a simple example of a model selection problem in Section 3.6.

We choose a non-informative prior distribution for the model indicator M,

p(M ¼ m) ¼ 1=M, for 1 < m <M. The parameter priors p(ŁjM ¼ m) are chosen such

that, given model M , all parameters are independent. The transition rates q have gamma

priors, the current levels � and the autoregression coefficients � have normal priors, and the

variances � 2 and � 2
E have inverse gamma distributions as priors.

Model m will be chosen so as to maximize the posterior density p(mjy), the so-called

maximum a posteriori (MAP) estimate, and Bayes factors are used to summarize the

evidence in favour of model m against other models. The Bayes factor in favour of model

m1 against model m2 is defined by
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B(m1, m2) ¼ p(m1jy)

p(m2jy)

p(m2)

p(m1)
¼ p(yjm1)

p(yjm2)
: (2)

The prior ratio in (2) cancels, since the prior is non-informative, and the Bayes factors can be

computed via either likelihoods or posterior distributions. For the hidden Markov model (1)

the likelihoods p(yjm) and the posteriors p(mjy) have complicated forms and should be

approximated numerically. An alternative is the use of Monte Carlo methods. De Gunst et al.

(2001) have constructed a Gibbs sampler that generates samples from p(c, x, Łjy, m) for a

particular model m. The samples of two Gibbs sampler runs for two different models may be

used to approximate (2) with the weighted likelihood bootstrap method of Newton and

Raftery (1994). However, since a Gibbs sampler run is then needed for every model in the set

of candidate models, this is not a computationally tractable method of estimating the

posterior densities in our case.

In order to be able to compare several models using only a single run of an MCMC

sampling method, we will combine the approach described by Green (1995) and the Gibbs

sampler to construct a reversible jump sampler that generates a Markov chain

(c, (M , q, x), �jy)i with invariant distribution p(c, (M , q, x), �jy). The model M , the

vector of transition rates q and the ion channel states x are denoted as a triplet because

transition rates and channel states only have a meaning in connection with the model. The

state space of the Markov process of model m is denoted by Sm ¼ Sm,c [ Sm,o.

We remark that Kehagias (1996) has developed an algorithm to compute the MAP

estimate if the observations Y come from a finite set, and that Frühwirth-Schnatter (1995)

has also used Monte Carlo methods to do Bayesian model selection for state space models

that, except for the presence of the Markov process fX tg t2N0
, are generalizations of (1).

3. A reversible jump sampler

3.1. The algorithm

We propose a sampler with blocks c, (m, q, x), x, q and �, which thus consists of five updating

steps in each iteration. Our reversible jump sampler algorithm has the following form:

1. Construct starting values �0 and (m0, q0, x0) for � and (m, q, x). Let i ¼ 0.

2. Sample ciþ1 from p(cj(mi, qi, xi), � i, y) ¼ p(cj(mi, xi), � i, y).

3. Sample (miþ1, ~qq, ~xx) from p((m, q, x)jciþ1, � i, y).

4. Sample xiþ1 from p(xjciþ1, (miþ1, ~qq), � i, y) ¼ p(xjciþ1, (miþ1, ~qq), (�, � 2)i, y).

5. Sample qiþ1 from p(qjciþ1, (miþ1, xiþ1), � i, y) ¼ p(qj(miþ1, xiþ1)).

6. Sample � iþ1 from p(�jciþ1, (miþ1, qiþ1, xiþ1), y) ¼ p(�jciþ1, (miþ1, xiþ1), y). Return

to step 2 with i :¼ iþ 1.

Steps 1, 2, 4, 5 and 6 are described in detail in de Gunst et al. (2001). Steps 4, 5 and 6 may

be interchanged. Any model can be used as a starting model m0. Since the number of models

M is usually not large, convergence to the desired invariant distribution will not be affected

too much by this choice.

The only new step is step 3. Since in this step a jump may be made between models having
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different dimensions, in the sense that the number of free transition rates and the sizes of the

state spaces of the two models may differ, step 3 makes the sampler a jump sampler. We

would like to design the sampler so that it satisfies detailed balance and we have convergence

to the desired invariant distribution and can apply ergodic theorems (see Gilks et al. (1996)).

However, due to the possible difference in dimensionality this is not straightforward. As

mentioned above, we will follow the technique proposed in Green (1995). First of all, we

have to define how to jump between the models, by means of defining proposal probabilities

for all model changes. For each model there are in principleM so-called move types, one for

each model transition. The proposal probabilities of the move types are allowed to depend on

the present state of the reversible jump sampler Markov chain.

For dimension matching for each pair of models a number of additional random variables

are sampled. The number of additional variables equals the difference in the number of free

transition rates of the two models. Then two mutually inverse bijections are defined between

the sets of transition rates – one in each direction – where the smallest set is augmented

with the additional variables. The transition rates ~qq of the model that is proposed as the

next model then follow from the bijection from the transition rates of the current to the

transition rates of the proposed model.

Next, the ion channel states need to be adapted to the proposed model. Since the number

and meaning of states may change with the model, care should be taken in the way these

states are adapted.

Finally, as the proposed (m, q, x) are sampled from a more or less arbitrary, but hopefully

cleverly chosen, proposal distribution, an acceptance–rejection step is performed in order to

obtain the correct invariant distribution. A transition to a new model m and the adapted q

and x are accepted in such a way that it is a sample from p((m, q, x)jciþ1, � i, y).

In summary, the model updating step 3 in the reversible jump sampler consists of the

following three steps:

3(i) Sample a model m from some model jump proposal distribution.

3(ii) Sample, if necessary for dimension matching, additional variables and adapt the

transition rates q and the ion channel states x to the new model m to obtain ~qq
and ~xx.

3(iii) Calculate the acceptance probability of the transition to the model m and accept the

move to m with this probability.

In the following subsections we will explain the updating of the model in more detail. It

can be proved (see Schouten 2000) that the transition probability kernel of the generated

Markov process converges in total variation norm to the desired invariant distribution and

that the Markov process is geometrically ergodic. Examples of reversible jump MCMC in

different contexts can be found in Richardson and Green (1997) and Robert et al. (2000).

3.2. The model jump proposal probabilities

For each model there are M move types, the one belonging to the model itself included,

which change the model into one of the M models. We require that (m, ~qq, ~xx) be sampled
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from p((m, q, x)jciþ1, � i, y). To speed up convergence we let the model jump proposal

probabilities depend on (mi, qi, xi), and not on ciþ1 and � i. The acceptance–rejection step

described below will correct for this. The proposal probabilities for the different jumps are

denoted by r(mj(mi, qi, xi)) for candidate m, and sum to one. If the model m that is

proposed equals the present model mi, then q and x will not be altered and we will see

later that it will then be accepted with probability one. Otherwise, the transition rates and

the ion channel states need to be adjusted to be consistent with the proposed model. In

general, jumps from a model to any other model are allowed, although it sometimes may be

convenient to limit the number of possible transitions. For example, one may only allow

transitions to models where either a state is added or one of the states is deleted.

We choose the dependence of the model jump proposal probabilities on (mi, qi, xi) in

such a way that jumps to another model are more likely when xi does not fit (mi, qi) very

well. For this we use the information in zi ¼ 1Smi ,o (xi), the current open–closed process, and

base the proposal probability for a jump on mi, qi and zi.

The open–closed process fZ tg t2N0
is an aggregated Markov model. The process takes

the value 0 if the Markov model resides in a closed state and 1 if the Markov model resides

in an open state. From the Shannon–McMillan–Breiman theorem (see, for instance, Durrett

1996, Section 6.5) it follows that, whenever this process is stationary and ergodic, its scaled

log-likelihood converges almost surely to a constant, the negative entropy H(m, q):

� 1

T
log p(ZT

1 j(m, q))! H(m, q) for T !1 a:s: (3)

In Section 4 we will prove that (3) holds and show that, when the underlying Markov chain

describing the gating mechanism contains only one open state, the entropy can be computed.

For this reason we let the proposal probabilities depend on the relative deviation of the

negative scaled log-likelihood of the present model mi to its entropy H(mi, qi). Define

Ai ¼ A((mi, qi), zi) ¼ H(mi, qi)

H(mi, qi)� (1=T ) log p(zj(mi, qi))

 !2

: (4)

It follows from (3) that the better xi fits (mi, qi), the larger is Ai. We define the proposal

probabilities of the model jumps in the following way

r(mj(mi, qi), zi) ¼

1

Ai þ b1

Ai þ B1B2

M� 1þ B2

� �
if m ¼ mi,

1

Ai þ b1

B1

M� 1þ B2

� �
if m 6¼ mi,

8>>><
>>>:

(5)

where the constant B1 determines the influence of ‘how well zi fits (mi, qi)’ and should in

some sense depend on the length T relative to the mixing conditions of the underlying

Markov chain fX tg t2N0
, and B2 determines ‘how strong is our preference for sticking to our

current model’. B1 and B2 may be chosen different for every model m, but are fixed in

advance. In Section 4 we will discuss the choice of the model jump proposal probabilities in

more detail.

If the state space contains more than one open state the proposal probabilities need to be
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defined in a different way. We will only consider cases, though, where the number of open

states is one. We remark that in these cases the use of uniform proposal distributions results

in lower acceptance rates than when (5) is used.

3.3. The adaptation of the transition rates to the new model

As mentioned earlier, a transition to a new model is based on a bijection between the

current model and the proposed model, and for every pair of models m1 and m2 two

bijections need to be defined, one for the move from m1 to m2 and one for the move from

m2 to m1. The two bijections are each other’s inverse, so that for each pair of models m1

and m2 we only need to construct one bijection f m1,m2
. We assume for convenience that the

number of free transition rates of m1 is larger than or equal to that of m2. Let

d ¼ d(m1, m2) denote the difference in number. Then we introduce d independent

Unif(0, 1) distributed random variables u1, . . . , ud , and

q2 ¼ f m1,m2
(u, q1),

where u ¼ (u1, . . . , ud)9. Other probability distributions may be chosen for the ui as well, but

this complicates the procedures. The function f m1,m2
is chosen such that the means of closed

and open sojourns under models m1 and m2 are equal. A similar concept is used in Hodgson

(1999). If d is larger than 2, then higher moments or other statistics, such as the probability

of a transition to a particular state, should also be used to construct a bijection. However,

these may have complex forms, which complicates the construction of a bijection. We found

that, even for simple models, the construction of a bijection between the sets of transition

rates of those models can be rather difficult.

Explicit formulae are, of course, different for each particular pair of models. We will

illustrate the above by working through a simple example in Section 3.6. When there is a

larger collection of possibly more complex candidate models the bijections are constructed

similarly.

3.4. The adaptation of the ion channel states to the new model

If we let xi denote the current ion channel states in model mi, then we propose to sample

the new ion channels states x in the proposed model (m, q) from p(xj(m, q), zi). This

means that the open–closed process ZT
r�r does not change when proposing a move to a

different model. Surprisingly, as we will see below, if the new ion channel states x are

sampled in this way, all terms in the acceptance probability that involve x cancel. Hence, in

the proposed set-up we do not need to adapt the ion channel states to the new model, as we

throw them away immediately in step 4 of the reversible jump sampler. Another advantage

is that this way we only need starting values for ZT
r�r and not for the exact states X T

r�r of

the ion channel. However, if steps 4 and 5 are interchanged or if in step 4 another sampling

algorithm is used, the ion channel states do need to be adapted in order to compute the

acceptance probability of the proposed jump, and starting values for the ion channel states

need to be given. The latter can be done by generating a sample from p(xj(m0, q0), z0),
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having chosen starting values m0, q0 and z0. A sample from p(xj(m, q), z) can be generated

analogously to step 4.

3.5. The acceptance probabilities

In updating step 3(iii) of the reversible jump sampler let us again assume for convenience

that the proposed model m is ‘bigger’ than the current model mi, i.e. the number of

transition rates of m is larger than that of mi. As usual, the proposed state (m, q, x) is

accepted with probability

Æ((m, q, x)i, (m, q, x)) ¼ 1 ^ p((m, q, x)jciþ1, � i, y)~pp((mi, qi, xi)j(m, q, x))

p((mi, qi, xi)jciþ1, � i, y)~pp((m, q, x)j(mi, qi, xi))

� 1 ^ R, (6)

where ~pp denotes the proposal density. If the proposal is rejected then we set

(miþ1, ~qq, ~xx) ¼ (mi, qi, xi), otherwise we set (miþ1, ~qq, ~xx) ¼ (m, q, x). It is immediately clear

that if m ¼ mi then the proposal will always be accepted. The posterior p((m, q, x)jc, �, y) is

proportional to the product of the likelihood p(c, �, yj(m, q, x)) and the prior p(m, q, x). The

likelihood ratio is 1, since p(c, �, yj(m, q, x)) ¼ p(c, �, yj(m, q), z) and the open–closed

process is the same for the current and the proposed model. The prior p(m, q, x) factorizes

as p(xj(m, q)) p(qjm) p(m). The terms p(m) cancel in the prior ratio, because all models have

equal prior probability. The proposal ratio is given by

~pp((mi, qi, xi)j(m, q, x))

~pp((m, q, x)j(mi, qi, xi))
¼ r(mij(m, q, x))p(xij(mi, qi), zi)

r(mj(mi, qi, xi)) p(xj(m, q), zi)h(u)
jJmi ,m(u, qi)j:

Here, Jmi ,m(u: qi) is the Jacobian of f mi ,m in (u: qi), which results from the adaptation of the

transition rates, r is the proposal distribution of the model jumps defined in (5), and h is the

probability density of the additional variables u. Since the additional variables are sampled

independently from the Unif(0, 1) distribution, h cancels out. If x is allowed under z,

meaning that the open–closed process corresponding to x equals z, then

p(xj(m, q), z) ¼ p(xj(m, q))

p(zj(m, q)
:

Since x is constructed in such a way that the open–closed process does not change, this is

true. Furthermore, the model jump proposal probabilities r depend only on the open–closed

process and not on the exact states. Therefore, all terms concerning x and xi cancel and, for

m 6¼ mi, (6) reduces to

Æ((mi, qi, xi), (m, q, x)) ¼ 1 ^ p(zj(m, q))p(qjm)r(mij(m, q, x))

p(zj(mi, qi)) p(qijmi)r(mj(mi, qi, xi))
jJ mi,m(u, qi)j:

The reversed jump from m to mi has acceptance probability min(1, R�1).
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3.6. Example

Suppose that a model needs to be selected from the following two models based on the

recording y: the one-gate model 1 written as

C )*
q1,1

q1,2
O

and the two-gate (fast–slow) model 2 written as

C1 )*
q2,1

q2,2
O )*

q2,3

q2,4
C2

In this example we need d ¼ 2 additional variables u1 and u2 in order to construct a bijection

for all possible transition rates q1 in model 1 to all possible transition rates q2 in model 2,

and q2 ¼ f1,2(u1, u2, q1) and (u1, u2, q1) ¼ f 2,1(q2). Let G1 (O1) and G2 (O2) denote the

length of a closed (open) sojourn for models 1 and 2, respectively. The distributions of these

variables are mixtures of exponential distributions. We have

EG1 ¼
1

q1,1

, EG2 ¼
q2,1

q2,2 þ q2,3

1

q2,1

þ q2,3

q2,2 þ q2,3

1

q2,4

,

EO1 ¼
1

q1,2

, EO2 ¼
1

q2,2 þ q2,3

:

The bijections f 1,2 and f 2,1 are constructed in such a way that EG1 ¼ EG2 and EO1 ¼ EO2.

We use the bijections

f 1,2(u1, u2, q1,1, q1,2) ¼ q1,1

u1

u2

, u1q1,2, (1� u1)q1,2, q1,1

1� u1

1� u2

� �
, (7)

and

f 2,1(q2,1, q2,2, q2,3, q2,4) ¼ q2,2

q2,2 þ q2,3

,
q2,2q2,4

q2,2q2,4 þ q2,1q2,3

,
q2,1q2,4(q2,2 þ q2,3)

q2,1q2,3 þ q2,2q2,4

, q2,2 þ q2,3

� �
:

(8)

The role of u1 and u2 in f1,2 is to a certain extent arbitrary; only two variables are determined

when it is imposed that the expectations of the closed and open sojourns are equal under both

models. However, when we constructed the bijections, it turned out that (7) is a quite natural

choice. It can easily be seen that both (7) and (8) are bijections. After some calculations it

follows that

jJ1,2(u, q)j ¼ q1,1q1,2u1(1� u1)

u2
2(1� u2)2

and jJ2,1(q)j ¼ q2,1q2,2q2,3q2,4

(q2,1q2,3 þ q2,2q2,4)3
:

Clearly, p(xj(1, q), z) is either 1 or 0, and for a jump from (1, q1, x1) for model 1 to

(2, q2, x2) for model 2 we obtain
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R ¼ p(x2j(2, q2))p(q2j2)r(1j(2, q2, x2))

p(x1j(1, q1))p(q1j1)r(2j(1, q1, x1))p(x2j(2, q2), z)

q1,1q1,2u1(1� u1)

u2
2(1� u2)2

:

4. The choice of the model jump proposal probabilities

First, we will compute the entropy for the case when there is only one open state. Then we

will empirically analyse the rate of convergence of the scaled log-likelihood to the entropy

and discuss how to incorporate the relative deviation into the model jump proposal

probabilities.

4.1. The entropy of aggregated Markov models with a single open state

When there is a single open state O, we know the exact state of the Markov process X t

when Z t ¼ 1. Since we assume that the Markov process fX tg t2N0
is irreducible, aperiodic

and has a finite state space, it is positive recurrent and ergodic.

Let the probabilities p101(k) and p100(k), for k > 0, be defined by

p101(k) ¼ p(X kþ1 ¼ OjX 0 ¼ O, X k
1 2 Sc), (9)

p100(k) ¼ p(X kþ1 2 ScjX 0 ¼ O, X k
1 2 Sc), (10)

whenever p(X0 ¼ O, X k
1 2 Sc) . 0, and otherwise set both p100(k) and p101(k) to zero. By

convention, 0 log 0 ¼ 0. The following theorem identifies the entropy H(m, q) defined by (3)

in the case of a single open state, so that it can be computed.

Theorem 4.1. If fX tg t2N0
is a stationary and ergodic Markov chain with a finite state space

S ¼ Sc [ fOg and Z t ¼ 1fOg(X t), then

1

T
log p(ZT

1 jm, q)!
X1
k¼0

�(O)( p101(k)log p101(k)þ p100(k)log p100(k))
Yk�1

i¼0

p100(i)

for T !1 a:s:

Proof. Let the states in S be labelled 1, . . . , K and let the Kth state be O. It can be shown

that, if fX tg t2N0
is stationary and ergodic, then so is fZ tg t2N0

. The one-sided stochastic

process fZ tg t2N0
can be extended to a two-sided stationary, ergodic stochastic process

fZ tg t2Z. Following Blackwell (1957), the negative entropy H(m, q) is then given by

H(m, q) ¼ �
ð
p2P

ł0( p)logł0( p)þ ł1( p)logł1(p)d�( p),

where � is the distribution of the conditional distribution of X0 given Z 0
�1, which is

defined on the set P ¼ f(p1, . . . , pK) : pi > 0,
PK

i¼1 pi ¼ 1g, and ł0( p) ¼
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PK
i¼1 pi p(X1 2 ScjX0 ¼ i) and ł1( p) ¼

PK
i¼1 pi p(X 1 ¼ OjX0 ¼ i). Blackwell (1957) proved

that

f( p(X n ¼ 1jZ n
�1), . . . , p(X n ¼ K � 1jZ n

�1), p(X n ¼ KjZ n
�1))gn2Z

is a stationary Markov process with invariant distribution �. Its state space P equals

P ¼f(0, . . . , 0, 1), ( p(X0 ¼ 1jZ0 ¼ 0, Z�1 ¼ 1), . . . , p(X0 ¼ K � 1jZ0 ¼ 0, Z�1 ¼ 1), 0),

( p(X0 ¼ 1jZ 0
�1 ¼ 0, Z�2 ¼ 1), . . . , p(X0 ¼ K � 1jZ 0

�1 ¼ 0, Z�2 ¼ 1), 0), . . .g

�f�0, �1, . . .g,

and hence is countable. Therefore,

H(m, q) ¼ �
X1
k¼0

(ł0(�k)logł0(�k)þ ł1(�k)logł1(�k))�(�k):

It can easily be seen that ł0(�k) ¼ p100(k), ł1(�k) ¼ p101(k), for all k 2 N0. Furthermore,

�(�k) ¼ p(Z�k ¼ 1, Z�kþ1 ¼ 0, . . . , Z0 ¼ 0) ¼ �(O)
Yk�1

i¼1

p100(i),

for all k 2 N, and �(�0) ¼ �(O), which completes the proof. h

Theorem 4.1 does not give the limiting entropy in closed form, and only simplifies its

computation. In the following we will always approximate the infinite sum by taking a large

number of terms.

4.2. The choice of constants in the model jump proposal probabilities

In order to choose the constants B1 and B2 in (5) we have investigated the rate of

convergence of the scaled log-likelihood to the entropy H(m, q). To this end we performed

100 simulations of two different aggregated Markov models for various lengths of

recording. Both models are three-state models like the one in Section 3.6, but have different

transition rates. The values of the transition rates were q ¼ (10�2, 10�2, 0:1, 0:5)9 and

q ¼ (10�4, 10�3, 10�2, 0:3)9. The transition rates for the first model are chosen in such a

way that open and closed holding times are relatively short compared to the sampling

interval. In the second model the transition rates are chosen more realistically in the sense

that long closed holding times are likely to occur. The entropy H for the two models is

�9:89 3 10�2 and �3:40 3 10�3 respectively, hence there is more ‘information’ in

recordings of the first model. Tables 1 and 2 contain the sample averages and standard

deviations for the two models for different lengths of recordings. From these tables it is

clear that the scaled log-likelihood converges to the theoretical entropy for both models. For

the first model convergence is faster, as was to be expected.

We notice from the standard deviations in Tables 1 and 2 that, if the length of a

recording is increased by a certain factor, then the sample standard deviation is decreased
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by approximately the square root of this factor. From this observation and the fact that

histograms had a Gaussian shape, it can be conjectured that

ffiffiffiffi
T
p

� 1

T
log p(ZT

1 )� H(m, q)

� �
�!d N (0, ~�� 2) for T !1, (11)

with ~�� 2 some positive constant. Indeed, (11) can be proved using Theorem 8.1 of Serfozo

(1975) with �n the time of the nth return to the open state, �(t) ¼ log p(Z t
1), A(t) ¼ 0,

L(t) ¼ 1, ª ¼ 1=2 and a the expected length of a closure. Hence the inverse of the square

root of A((m, q), z) in (4) can be approximated by a normal distribution. We have applied a

Kolmogorov–Smirnov test to test the null hypothesis of normally distributed scaled log-

likelihoods, and all bootstrapped p-values exceeded 0:05 except for the simulations of the

second model with T ¼ 2 3 104.

Based on the foregoing, we choose B1 in the following way. If T is the length of the

recording and q0 are the starting values for the transition rates of model m0, then we

compute H(m0, q0) and fit a normal distribution to 100 realizations of (1=T ) log p(ZT
1 ). If �

is the standard deviation of the fitted normal distribution, then B1 is chosen to be 2 or 3

times

Table 1. The sample means and standard deviations of

the simulations of the first model (H ¼ �9:89 3 10�2)

Sample

Length T Mean Standard deviation

1 3 103 �9:50 3 10�2 2:47 3 10�2

5 3 103 �9:91 3 10�2 1:23 3 10�2

2:5 3 104 �9:88 3 10�2 4:49 3 10�3

1:25 3 105 �9:89 3 10�2 2:50 3 10�3

Table 2. The sample means and standard deviations of

the simulations of the second model (H ¼ �3:40 3 10�3)

Sample

Length T Mean Standard deviation

2 3 104 �3:21 3 10�3 2:73 3 10�3

1 3 105 �3:70 3 10�3 1:46 3 10�3

5 3 105 �3:37 3 10�3 6:51 3 10�4

2:5 3 106 �3:42 3 10�3 2:82 3 10�4
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H(m, q)

�1�Æ=2�

 !2

, (12)

with �Æ the Æ-quantile of the standard normal distribution. For example, let T ¼ 5 3 105 and

Æ ¼ 0:05 then (12) is 6:82 and 2:40 3 103 for model 1 and model 2, respectively. Hence, B1

will be chosen much larger for model 2.

When a recording is noisier, it is more difficult to estimate the transition rates of the

underlying Markov chain and, therefore, also to select a model. In that case if model jumps

are proposed very often, i.e. when B2 is chosen small, then the convergence properties of

the Markov process that is generated by the reversible jump sampler, and especially those of

the sampled transition rates, are rather poor. We have chosen B2 to be approximately twice

the inverse of the signal-to-noise ratio of the recording.

5. Results from simulated and recorded samples

We have investigated a number of model schemes for both simulated and recorded data

sets. Below we will discuss the results of two such schemes, shown in Figures 1 and 2, for

three simulated data sets and one recorded data set. The recorded data set is an inside-out

patch measurement of a single potassium outward rectifier in a barley leaf protoplast. The

data were sampled at a fixed holding potential (�96 mV). See Vogelzang (1996) for

experimental details. If moves between some of the models are not allowed, then

corresponding model jump proposal probabilities are taken to be zero. Scheme 1 is

particularly interesting in the context of the ion channel data that we have at our disposal

and is used to choose the number of gates in the mechanism that generate long closures.

Let ML denote the model with L such gates, i.e. the first model in scheme 1 is ML1
.

Biologists conjecture that the long closures of the potassium outward rectifier are caused by

a number of independent and identical gates. The leftmost state of model ML, for instance,

corresponds to L closed independent, identical gates. Since these gates act independently,

the transition rates can simply be added. The second scheme can be used to test whether

Figure 1. Model scheme 1 (simulations 1, 2 and 3, recording).
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two or three dependent closed states are responsible for the closures. The first model in

scheme 2 is M1.

Simulations 1, 2 and 3 are from models M4, M1 and M2, respectively. The transition

rates in the Markov processes as well as the noise parameters are given in Table 3. The

transition rates for simulation 1 were chosen such that they resemble those of the recorded

data set, and simulation 1 contains both very long and very short closures. All data sets

have a low noise level, except for simulation 2. We have analysed two different sections of

the recording, both of length T ¼ 2 3 105. The simulations have length T ¼ 2 3 105, except

for simulation 1, which has length T ¼ 1 3 105. Scheme 1 has been applied to simulation 1

with L1 ¼ 1, L2 ¼ 4, to simulation 2 with L1 ¼ 1, L2 ¼ 3, to simulation 3 with

L1 ¼ 1, L2 ¼ 3, to the first section of the recording with L1 ¼ 1, L2 ¼ 4 and to the second

section of the recording with L1 ¼ 2, L2 ¼ 3. Since none of the jump proposals to model

M1 was accepted for the first section of the recording, we deleted this model from the

model scheme. The number of models is L2 þ 1. We report the results of the application of

scheme 2 to simulation 1. We found similar results for other simulations and recordings.

The bijection for a transition from model Mk to M l, with l, k . 0, if allowed, is

fM k ,M l
(q1, q2, q3, q4) ¼ k

l

q2

((q1 þ q2)=q1)k= l � 1
,
k

l
q2, q3, q4

� �
,

Figure 2. Model scheme 2 (simulation 1).

Table 3. The values of the transition rates, the model indicator, the noise parameters and the model

jump proposal parameters B1 and B2. The current levels are given in picoamperes, and the noise

variances in square picoamperes

Model Sample

Mi Simulation 1 Simulation 2 Simulation 3 Recording Recording

i (M4) (M1) (M2) I II

q (3.6, 2.8, 130, 7000) (100, 100, 100, 1000) (10, 10, 100, 2000) – –

M 4 1 2 – –

� (0, �3) (0, �0.85) (0, �1.25) – –

� 2 (0.001, 0.11) (0.005, 0.05) (0.005, 0.1) – –

� 2
E 0.048 0.40 0.023 – –

� (�0.28, �0.10,

�0.05)

(�0.30, �0.10,

�0.05)

(�0.23, �0.17,

�0.08)

– –

B1 500 3000 500 500 500

B2 3 15 6 3 3
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and the bijection from model 1 to model 2 in scheme 2 is

f 1,2(u1, u2, q1, q2, q3, q4) ¼ q1, q2, u1q3,
u1q4

u2

, (1� u1)q3,
(1� u1)q4

1� u2

� �
,

where u1 and u2 are two Unif(0, 1) distributed additional variables. Bijection f 1,2 can easily

be inverted to obtain the reverse bijection f 2,1.

Reversible jump sampler runs have been generated of lengths N ¼ 5000 for simulations 1

and 3, and the first recorded section. For the other data sets N ¼ 4000. The parameter

values of B1 and B2 are also given in Table 3.

Figure 3 shows the reversible jump sampler outcomes for the model indicator and scaled

histograms. For the histograms we have used a burn-in period between 1500 and 2500,

chosen by eye. Diagnostic checking of the convergence of the generated Markov chain is

usually difficult for reversible jump MCMC methods (see Brooks and Giudici 1999), since

there are only few transitions to the models that are less likely. One may, of course, remove
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Figure 3. The reversible jump sampler runs for model M with the corresponding scaled histograms

for simulation 1 ((a) and (b)), simulation 2 ((c) and (d)), simulation 3 ((e) and (f )) and two sections of

the recording ((g) and (h), (i) and ( j)).
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these models from the set of candidate models, but that is a very opportunistic choice.

Brooks and Giudici (1999) propose multiple runs of the sampler. However, this is not

computationally feasible in our case. We have checked the convergence of the model

indicator using the gibbsit software of Raftery and Lewis (1992) with satisfactory results.

Furthermore, since we adapt the transition rates in a proposed model by fixing the mean

closed and open sojourn lengths, these means can also be used to diagnose convergence.

The mean closed and open sojourn lengths using the sampled transition rates for simulation

2 are shown in Figure 4. The gibbsit software applied to the closed and open means gave

satisfactory results. The outcomes for c, x and the parameters Ł are not shown, but similar

results to those in de Gunst et al. (2001) were found here.

Table 4 contains the estimates for the posterior densities of the model indicator M for

scheme 1, the scaled histogram counts. Also given in Table 4 are the MCMC standard

errors. Except for simulation 1, the maximum posterior estimates agree with the models we

have simulated from. The estimated posterior densities for simulation 1 and the recording

are rather flat, which was to be expected since the underlying Markov processes mix slowly.

In most cases the standard errors are rather large, so that results need to be interpreted with

care.
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Figure 4. The mean closed and open sojourn lengths for the sampled transition rates for simulation 2.
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The Bayes factors of the MAP estimates for the model parameter M versus the other

models are given in Table 5, together with approximate standard errors that were computed

by the delta method. According to Jeffreys’s (1961) scale the evidence in favour of a model

is substantial, strong and decisive if the Bayes factor is larger than 3:2, 10 and 100,

respectively. From Table 5 we can see that, except in one instance, the first section of the

recording, there is only substantial or no evidence against the other models. As could be

expected from the MCMC standard errors in Table 4, the standard errors for the Bayes

factors are large as well.

We have also applied a sign test to test the hypothesis that the posterior density p(mjy)

gives equal probability to two models, m1 and m2 say. If fmig1<i<N are the generated

Table 4. The estimates for the posterior densities of the model indicator M in scheme 1 and the

corresponding MCMC standard errors

Model Sample

Mi Simulation 1 Simulation 2 Simulation 3 Recording Recording

i (M4) (M1) (M2) I II

1 0.056 (0.024) 0.541 (0.060) 0.337 (0.048) 0.000 0.157 (0.024)

2 0.268 (0.033) 0.251 (0.038) 0.389 (0.052) 0.083 (0.042) 0.325 (0.038)

3 0.267 (0.037) 0.113 (0.037) 0.175 (0.032) 0.212 (0.040) 0.299 (0.028)

4 0.251 (0.016) 0.096 (0.035) 0.099 (0.026) 0.358 (0.040) 0.219 (0.049)

5 0.159 (0.035) – – 0.347 (0.057) –

Table 5. The Bayes factors B, their approximate standard errors and the p-values of the sign test of

the maximum posterior estimate versus the other models

Sample

Simulation 1 Simulation 2 Simulation 3 Recording Recording

(M4) (M1) (M2) I II

MAP ¼ 2 MAP ¼ 1 MAP ¼ 2 MAP ¼ 4 MAP ¼ 2

B 4.79 (3.00) 2.16 (0.63) 1.15 (0.28) 1 2.07 (0.35)

1.00 (0.08) 4.79 (0.80) 2.22 (0.62) 4.31 (2.49) 1.09 (0.17)

1.07 (0.23) 5.64 (2.88) 3.93 (1.43) 1.69 (0.42) 1.48 (0.49)

1.69 (0.69) 1.03 (0.21)

p 2 3 10�4 3 3 10�2 0.46 0 6 3 10�4

0.99 2 3 10�4 3 3 10�4 7 3 10�1 0.60

0.84 2 3 10�4 1� 10�6 4 3 10�2 0.14

0.19 0.89
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samples of the model indicator M, then we define Mi by Mi ¼ 1m1
(mi)� 1m2

(mi). It can be

proved that the Markov chain generated is geometrically ergodic. Since it is also stationary,

the process M1, M2, . . . , MN is also stationary and geometrically ergodic. This means that

central limit theorems hold. Testing whether p(m1jy) ¼ p(m2jy) is the same as testing

whether the medians of the Mi are non-zero, for which we have used the statistic

t(M1, . . . , MN ) ¼
PN

i¼1Mi(
ffiffiffiffiffiffiffiffiffiffiffiffi
N� 2

M

p
)�1. The variance is � 2

M ¼ var(Mi)þ 2
P1

k¼1

cov(M1, Mkþ1), which needs to be estimated from the data. Under the null hypothesis

t(MN
1 ) converges to a standard normal distribution. Table 5 also contains the resulting p-

values for the maximum posterior estimates against the other models. When the Bayes

factors are larger than 2 then the p-values are very small, and the null hypothesis of equal

posterior probabilities of two models will be rejected.

We ran the reversible jump sampler of scheme 2 for simulation 2. Figure 5 shows the

results for the model indicator M and the parameters Ł. When the sampler makes an

m

0 1000 2000 3000

1.
0

1.
4

1.
8

q1

0 1000 2000 3000

0
20

0

q2

0 1000 2000 3000

0
15

0
30

0

q3
 (

10
^1

0)

0 1000 2000 3000

0
1

3

q4
(x

 1
0^

11
)

0 1000 2000 3000

0
2

6

q1

0 1000 2000 3000

0
40

0
80

0

q2

0 1000 2000 3000

0
40

0
80

0

q3
(x

 1
0^

11
)

0 1000 2000 3000

0
1

2

q4
(x

 1
0^

16
)

0 1000 2000 3000

0
1

3

q5
(x

 1
0^

11
)

0 1000 2000 3000

0
2

5

q6
 (

x 
10

^1
7)

0 1000 2000 3000

0
1

ph
i1

0 1000 2000 3000

-.
32

-.
30

ph
i2

0 1000 2000 3000

-.
12

-.
10

ph
i3

0 1000 2000 3000

-.
06

0
-.

04
5

se
2

0 1000 2000 3000

.3
85

.4
00

m
uc

0 1000 2000 3000

-.
00

4
.0

06

m
uo

0 1000 2000 3000

-.
92

-.
84

sc
2

0 1000 2000 3000

.0
02

5
.0

04
0

so
2

0 1000 2000 3000

.0
2

.0
5

Figure 5. A reversible jump sampler run for simulation 2 in scheme 2. From top to bottom and from

left to right, the samples of the model indicator M, the transition rates of both models, the AR

parameters � and � 2
E , the current levels � and the noise variance � 2 are depicted. The transition rates

of the model other than the current one are set to zero. The samples of �c and �o are given in

picoamperes, those of � 2
E , � 2

c and � 2
o in square picoamperes.
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excursion to one model, the transition rates of the other model are set to zero. From the

samples it is clear that until iteration step 1000 the sampler favours model 1. After that a

transition to model 2 is proposed and accepted, and the transition rates that are sampled for

model 2 suddenly increase rapidly to very high values. Proposed transitions to model 1 are

then almost always rejected. Clearly, the values that are sampled, of the order of 1017 for

q6, are not physically realistic. The sampled variances � 2
o and � 2

E and the open current level

�o decrease somewhat at the same time. The sampling of large values for the transition

rates, therefore, seems to be caused by the fact that large values of the ‘open’ noise are

seen as very short excursions to state C3. This undesired effect did not occur when the

reversible jump sampler was applied to simulations from the second model in scheme 2.

The computation time that is needed to make a single run of the reversible jump sampler

depends on the number of models in the scheme, the relative likeliness of these models and

the complexity of the ‘largest’ model in the scheme. Computation times are, therefore,

longer than for the Gibbs sampler for a fixed model. Since we ran the Gibbs sampler for at

least one of the models in every scheme, so that the starting values can be chosen close to

the modes of the posterior densities, the computation times were only slightly longer than

for the Gibbs sampler. On a Sun workstation (with 128 MB of RAM and an UltraSPARC 8

processor) the reversible jump sampler took between one and several days, which is rather

long. However, in general the selection of a model only needs to be done a small number

of times for recordings that are representative for a larger collection of recordings.

6. Discussion

Our proposed reversible jump sampler for the selection of a gating mechanism from a set of

candidate gating mechanisms gave promising results for simulated data and recorded data.

Its mixing properties are reasonable, and convergence seems to be rather fast. The

computation times are usually not much longer than the computation times of the Gibbs

sampler for a fixed model. In most cases we recovered the original model when we applied

the sampler to simulated data. Clearly, the latter also depends on the amount of information

that is present in a recording. The slower the mixing of the underlying Markov process, the

longer the recordings needed to perform a sensible model selection. Even for recordings

that have a length of T ¼ 2 3 105 the posterior density of the model indicator can be rather

flat. However, the identifiability of models in a scheme is a problem of the statistical model

and the data, and not of the method used.

The sampler proposed by Hodgson and Green (1999) cannot be generalized in a

straightforward way to Markov processes with more than one open state, because their

sampling algorithm is based on the independence of the lengths of consecutive closed and

open sojourns, which is lost when open states are added. Although in its present form our

reversible jump sampler is not applicable to Markov processes with more than one open

state, additional open states can be incorporated in a natural way. The model jump proposal

probabilities are presently based on the entropy of the corresponding aggregated Markov

model. The entropy of aggregated Markov models with more than one open state cannot be

easily identified. The sampler can be adapted, though, to general Markov processes by
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choosing model jump probabilities that do not depend on the model, which is only a small

change to the algorithm. We have compared the model jump proposal probabilities of (5) to

uniform proposal probabilities, i.e. that do not depend on the model, and it turned out that

in those cases where the probabilities of (5) were used the reversible jump sampler had

better mixing properties. The construction of bijections between the transition rates of the

candidate Markov models is, of course, more complicated if extra open states are added.

There are some drawbacks to the method, apart from the rather long computation times.

Diagnosing convergence can be difficult, especially when models are proposed that are less

likely. Also, the construction of bijections between models can be quite difficult, since the

moments of closed and open sojourn lengths do not always have tractable forms. The

choice of bijections is very important. The proposed transition rates need to be probable in

the new model, otherwise many proposals will be rejected. Especially when models of

different dimension are proposed, the choice of bijections is crucial. Furthermore, it may

occur that the sampler gets stuck in high values of the transition rates whenever a model

has more freedom, i.e. more Markov states, than the ‘true’ model.

Finally, we remark that Hodgson (1999) proposed simulated tempering to improve the

mixing properties of the reversible jump sampler. We have not tried this, but it may also

improve our sampler.
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