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CHAPTER XII

Hilbert and Banach Spaces

Abstract. This chapter develops the beginnings of abstract functional analysis, a subject designed
to study properties of functions by treating the functions as the members of a space and formulating
the properties as properties of the space.
Section1definesBanachspaces as completenormed linear spaces andgives a numberof examples

of these. The space of bounded linear operators from one normed linear space to another is a normed
linear space, and it is a Banach space if the range is a Banach space.
Sections 2–3 concern Hilbert spaces. These are Banach spaces whose norms are induced by

inner products. Section 2 shows that closed vector subspaces of such a space have orthogonal
complements, and it shows the role of orthonormal bases for such a space. Section 3 concentrates
on bounded linear operators from a Hilbert space to itself and constructs the adjoint of each such
operator.
Sections 4–6 prove the three main abstract theorems about the norm topology of general normed

linear spaces—the Hahn–Banach Theorem, the Uniform Boundedness or Banach–Steinhaus Theo-
rem, and the Interior Mapping Principle. A number of consequences of these theorems are given.
The second and third of the theorems require some hypothesis of completeness.
The topic of Hilbert and Banach spaces continues in Chapter IV of the companion volume,

Advanced Real Analysis.

1. Definitions and Examples

Functional analysis puts into practice an idea from the early twentieth century,
that sometimes properties of functions become clearer when the functions are
regarded as themembers of a space and the properties are formulated as properties
of the space. We encountered some simple examples of this situation already in
Chapter II in the examples ofmetric spaces. Uniformconvergencewas encoded in
themetric on spacesof functions, andother kinds of convergencewere capturedby
other metrics. In Chapter V we introduced the spaces L1(X), L2(X), and L∞(X)
of functions (or really equivalence classes of functions), all of which were proved
to be complete. The property of completeness was a useful property of the space
as a whole that led, for one thing, to the Riesz–Fischer Theorem in Chapter VI.
More complicatedproperties led us to variouskindsof differentiabilityof integrals
in Rn in Chapters VI and IX and to boundedness of the Hilbert transform in
Chapter IX. The development of measure theory on locally compact Hausdorff
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1. Definitions and Examples 571

spaces in Chapter XI rested on an analysis of positive linear functionals on the
space of continuous functions of compact support.
The different spaces—of functions, measures, and whatever else—that arise

in this way have some properties in common, and we study them in this chapter in
a setting that emphasizes these common properties. We shall work with normed
linear spaces, which were defined in Section V.9. With such spaces the field of
scalars F can be either R or C. Recall then that a normed linear space X is a
vector space over F with a norm, i.e., a function k · k from X to [0,+∞) such
that kxk ∏ 0 with equality if and only if x = 0, kcxk = |c|kxk if c is a scalar, and
kx + yk ≤ kxk + kyk. The norm yields a metric d(x, y) = kx − yk, and we can
then speak of the norm topology on X . Proposition 5.55 showed that addition and
scalar multiplication are continuous, that the closure of any vector subspace of X
is a vector subspace, and that the set of all finite linear combinations of members
of a subset S of X is dense in the smallest closed subspace containing S.
Completeness plays an increasingly important role as one studies such spaces,

and it is customary to introduce a definition to incorporate this notion: a normed
linear space X is a Banach space if X is complete as a metric space. The metric-
space completion of a normed linear space is automatically a normed linear space
that is complete, hence is a Banach space.
Let us consider some examples of normed linear spaces, some old and some

new. Except as indicated, they will all be Banach spaces.

EXAMPLES.
(1) Euclidean space Rn and complex Euclidean space Cn , written briefly as

Fn . The space consists of n-tuples of scalars a = (a1, . . . , an) with kak equal
to the Euclidean norm |a| of Section II.1, namely kak =

°Pn
k=1 |ak |

¢1/2. It was
remarked in Section II.7 that these spaces are complete, hence are Banach spaces.
(2) Finite-dimensional normed linear spaces. It can be shown that each finite-

dimensional normed linear space X is complete.1 In fact, any linear map carrying
a vector-space basis of X to a vector-space basis of some Fn , normed as in the
previous example, can be shown to be uniformly continuous with a uniformly
continuous inverse, and the completeness of X follows.
(3) B(S), the space of bounded scalar-valued functions on a nonempty set S

with the supremum norm, defined in Section II.1. Proposition 2.44 establishes
the completeness.
(4)C(S), the space of bounded continuous scalar-valued functions on a metric

space or topological space S, defined in Section II.4 in themetric case and Section
X.5 in general. The norm is the supremum norm. Corollary 2.45 and Proposition
10.30 establish the completeness ofC(S). When S is locally compact Hausdorff,

1Section IV.1 of the companion volume, Advanced Real Analysis, proves a more general result.
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we defined C0(S) in Section XI.4 to be the subspace of C(S) of all members
vanishing at infinity. This is complete. However, the subspace Ccom(S) of
continuous scalar-valued functions of compact support is usually not complete.
(5) L p(S,A, µ), the space of equivalence classes of pth-power integrable

functions on a measure space (S,A, µ). This is a normed linear space for
1 ≤ p < ∞ with norm k f kp =

° R
S | f (s)|p dµ(s)

¢1/p. These spaces were
introduced in Section V.9 for p = 1 and p = 2 and in Section IX.1 for general p.
Theorem 5.59 established the completeness for p = 1 and p = 2, and Theorem
9.6 established the completeness for general p.
(6) L∞(S,A, µ), the space of equivalence classes of essentially bounded

functions on a measure space (S,A, µ). This is a normed linear space with
norm the essential supremum norm. This space was introduced in Section V.9
and was proved to be complete in Theorem 5.59.
(7) Sequence spaces c, c0, and `

p
n and `p for 1 ≤ p ≤ ∞. These are

special cases of various examples above. The space `
p
n is L p(S,A, µ) when

S = {1, 2, . . . , n},A is the set of all subsets, andµ is countingmeasure, the norm
being k(a1, . . . , an)k =

°Pn
k=1 |ak |p

¢1/p if p < ∞ and being k(a1, . . . , an)k =
max1≤k≤n |ak | if p = ∞. The space `

p
n specializes to Fn when p = 2. The

space `p is the version of `pn when S is the set of positive integers; the members
of this space are thus all sequences for which the norm is finite. The sequence
spaces c and c0 can be regarded as subspaces ofC(S)when S is the set of positive
integers. The space c consists of all convergent sequences, and c0 is the space of
sequences vanishing at infinity; in both cases the norm is the supremum norm.
All these examples are Banach spaces. They tend to be useful in testing guesses
about properties of normed linear spaces. We shall not need them explicitly, and
this traditional notation for them will not recur after the end of this section.
(8) M(S), S being a compact Hausdorff space. This is the space of regular

Borel signed or complex measures on S, introduced as M(S, R) or M(S, C) in
Section XI.4. The norm is the total-variation norm. Theorems 11.26 and 11.28
identify these spaceswith duals of spacesof continuous functions, andProposition
12.1 below will show that they are complete as a consequence.
(9) CN ([a, b]), the space of scalar-valued functions on a bounded interval

[a, b] with N bounded derivatives, the norm being

k f k =
NX

j=1
sup
a≤s≤b

| f ( j)(s)|.

It is shown in Problem 2 at the end of the chapter that this space is complete. This
space is an indication of how normed linear spaces can carry information about



1. Definitions and Examples 573

derivatives. Indeed, normed linear spaces carrying information about derivatives
play a significant role in the subject of partial differential equations.2

(10) H∞(D), the space of bounded functions in the open unit disk D =
{|z| < 1} in C such that the function is given by a convergent power series. The
norm is the supremum norm. It is shown in Problem 3 at the end of the chapter
that this space is complete.
(11) A(D), the space of bounded continuous functions on the closed unit disk

whose restriction to the open unit disk is given by a convergent power series. The
norm is the supremum norm. It is shown in Problem 3 at the end of the chapter
that this space is complete.

Two further kinds of normed linear spaces are worth mentioning now. One is
that any real or complex inner-product space X in the sense of Section II.1 gives
an example of a normed linear space. Recall that an inner product on X is a
function ( · , · ) from X × X to F that is linear in the first variable, is conjugate
linear in the second variable, is symmetric if F = R or Hermitian symmetric if
F = C, and has (x, x) ∏ 0 for all x with equality if and only if x = 0. Such
an inner product satisfies the Schwarz inequality |(x, y)| ≤ (x, x)1/2(y, y)1/2,
according to Lemma 2.2, and then the definition kxk = (x, x)1/2 makes X into a
normed linear space, according to Proposition 2.3.
As a normed linear space, an inner-product spacemay or may not be complete.

Any space L2(S,A, µ), with ( f, g) =
R
S f ḡ dµ, is an example in which the

associated normed linear space is complete. An inner-product space whose
associated normed linear space is complete is called a Hilbert space.
The other kind of normed linear spaceworthmentioningnow involves bounded

linear operators. Recall from Section V.9 that a linear function L : X → Y
between two normed linear spaces with respective norms k · kX and k · kY is
often called a linear operator. Proposition 5.57 showed that a linear operator
L is continuous at a point if and only if it is continuous everywhere, if and
only if it is uniformly continuous, if and only if it is bounded in the sense that
kL(x)kY ≤ MkxkX for some constant M and all x in X . The least such constant
M is called the operator norm of L , written kLk. We can define addition and
scalar multiplication on bounded linear operators from X to Y by addition and
scalar multiplication of their values:

(L1 + L2)(x) = L1(x) + L2(x) and (cL)(x) = cL(x).

Then L1 + L2 and cL are linear operators by the elementary theory of vector

2This is one of the themes of the companion volume, Advanced Real Analysis.
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spaces, and the inequalities

k(L1 + L2)(x)kY = kL1(x) + L2(x)kY ≤ kL1(x)kY + kL2(x)kY
≤ kL1kkxkX + kL2kkxkX = (kL1k + kL2k)kxkX

k(cL)(x)kY = kcL(x)kY = |c|kL(x)kY ≤ |c|kLkkxkXand

show that L1 + L2 and cL are bounded with kL1 + L2k ≤ kL1k + kL2k and
kcLk ≤ |c|kLk. Applying the latter conclusion to c−1 when c 6= 0 gives kLk =
kc−1(cL)k ≤ |c|−1kcLk ≤ |c|−1|c|kLk = kLk, and we conclude that kcLk =
|c|kLk. Since it is plain that kLk ∏ 0 with equality if and only if L = 0, the set
of bounded linear operators from X to Y , with the operator norm, is a normed
linear space. We denote this normed linear space by B(X,Y ).

Proposition 12.1. If X and Y are normed linear spaces and if Y is complete,
then the normed linear space B(X,Y ) is a Banach space.

REMARKS. In the special case in which Y is the set F of scalars, the linear
operators are called linear functionals, in terminology we have used repeatedly.
The normed linear space F = F1 is complete, and therefore the normed linear
space of bounded linear functionals on X is a Banach space. The space of
bounded linear functionals is called the dual space of X and is denoted by X∗.
More explicitly the norm of an element x∗ of X∗ is3

kx∗k = sup
kxk≤1

|x∗(x)|.

Proposition 12.1 is implicitly saying that X∗ is always complete.

PROOF. Let {Ln} be a Cauchy sequence in B(X,Y ). Since in any metric space
the members of a Cauchy sequence are at a bounded distance from any particular
element, the sequence {kLnk} is bounded. Let C = supn kLnk.
If x is in X , then {Ln(x)} is a Cauchy sequence since kLm(x) − Ln(x)kY ≤

kLm−LnkkxkX . By completeness ofY , L(x) = limn Ln(x) exists. Continuity of
addition and scalarmultiplication in X implies that L(x+x 0) = limn Ln(x+x 0) =
limn(Ln(x) + Ln(x 0)) = limn Ln(x) + limn Ln(x 0) = L(x) + L(x 0) and that
L(cx) = limn Ln(cx) = limn(cLn(x)) = c limn Ln(x) = cL(x). Therefore L is
a linear operator.

3A superscript ∗ has also been used in this book to indicate a one-point compactification, but
there need never be any confusion about this notation. One-point compactifications arise in practice
only for locally compact Hausdorff spaces, and one can show that a normed linear space is locally
compact only if it is finite dimensional, For finite-dimensional normed linear spaces it is always
clear from the context whether ∗ refers to the dual space or to the one-point compactification.



1. Definitions and Examples 575

For boundedness of L , we have kLn(x)kY ≤ kLnkkxkX ≤ CkxkX for all n.
Hence continuity of the norm function implies that kL(x)kY = k lim Ln(x)kY ≤
lim infn kLn(x)kY ≤ CkxkX , and L is bounded with kLk ≤ C .
To complete the proof, we show that kLn − Lk → 0. Assuming the contrary,

we can pass to a subsequence and then change notation so that kLn − Lk ∏ ≤
for some ≤ > 0 for all n. Then for each n, we can find xn in X with kxnkX = 1
such that kLn(xn) − L(xn)kY ∏ ≤/2. Choose and fix N so that m ∏ N implies
kLN − Lmk ≤ ≤/4. Whenever m ∏ N , the triangle inequality gives

kLm(xN ) − L(xN )kY ∏ kLN (xN ) − L(xN )kY − kLN (xN ) − Lm(xN )kY

∏ ≤
2 − kLN − LmkkxNkX = ≤

2 − kLN − Lmk ∏ ≤
4 ,

in contradiction to the fact that limm Lm(xN ) = L(xN ). §

EXAMPLES OF DUAL SPACES.
(1) L p(S,A, µ)∗ ∼= L p0

(S,A, µ) if 1 ≤ p < ∞, µ is σ -finite, and p0 is the
dual index with 1

p + 1
p0 = 1, according to the Riesz Representation Theorem

(Theorem 9.19). Specifically to each x∗ in L p(S,A, µ)∗ corresponds a unique g
in L p0

(S,A, µ) with x∗( f ) =
R
S f g dµ for all f in L p(S,A, µ), and this g has

kx∗k = kgkp0 . It can be shown that the hypothesis of σ -finiteness of µ can be
dropped if 1 < p < ∞, but Problem 4 at the end of Chapter IX shows that the
hypothesis cannot be completely dropped for p = 1.
(2) (`

p
n )

∗ ∼= `
p0

n and (`p)∗ ∼= `p
0 for 1 ≤ p < ∞ if p0 is the dual index. This

is a special case of Example 1. In particular, the first of these duality results for
p = 2 says that (Rn)∗ ∼= Rn and (Cn)∗ ∼= Cn .
(3) C(S)∗ ∼= M(S) if S is a compact Hausdorff space, according to Theorems

11.26 and 11.28. Specifically to each x∗ in C(S)∗ corresponds a unique ρ in
M(S)with x∗( f ) =

R
S f dρ for all f in C(S), and this ρ has kx∗k = kρk. Since

M(S) is in this way identified as the dual space of some normed linear space, it
follows from Proposition 12.1 that M(S) is a Banach space.
(4) (`∞

n )∗ ∼= `1n and (c0)∗ ∼= `1. The isomorphism (`∞
n )∗ ∼= `1n is the special

case of Example 3 in which S = {1, . . . , n}. To see the isomorphism (c0)∗ ∼= `1,
we take S to be the set of positive integers and form the one-point compactification
S∗. The continuous scalar-valued functions on S∗, with their supremum norm,
can be identified with the normed linear space c of convergent sequences. Thus
Example 3 in this setting says that c∗ ∼= M(S∗). The members of c0 are the
members of c that vanish at∞, and any point mass at∞ in a member of M(S∗)
has no effect on the subspace c0. It readily follows that the dual of c0 consists of
the members of M(S∗) with no point mass at ∞, and these elements, with their
norm, may be identified with `1.
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From one point of view, Hilbert spaces are particularly simple Banach spaces,
and we shall study them first. The geometry of Hilbert space will be the topic of
the next section, and the section after that will give a brief introduction to bounded
linear operators from a Hilbert space to itself.

2. Geometry of Hilbert Space

Hilbert spaces were defined in Section 1 as complete normed linear spaces whose
norms arise from an inner product. Euclidean space Rn and complex Euclidean
space Cn are examples, and every space L2(S,A, µ) with ( f, g) =

R
S f ḡ dµ

is a Hilbert space. We shall see in this section that every Hilbert space shares
many geometric facts in common with the finite-dimensional examples Rn and
Cn . The expansion of square integrable functions on [−π,π] in Fourier series
will be seen to be an example of expansion of all members of a Hilbert space in
terms of an “orthonormal basis.”
Let H be a real or complex Hilbert space with inner product ( · , · ) and with

norm k · k given by kuk = (u, u)1/2. Lemma 2.2 shows that H satisfies the
Schwarz inequality

|(u, v)| ≤ kukkvk for all u and v in H.

The Schwarz inequality implies the estimate

|(u, v)−(u0, v0)| ≤ |(u−u0, v)|+|(u0, v−v0)| ≤ ku−u0kkvk+ku0kkv−v0k,

from which it follows that the inner product is a continuous function of two
variables.
We shall make frequent use of the formula

ku + vk2 = kuk2 + 2Re(u, v) + kvk2,

which is what one combines with the Schwarz inequality to prove the triangle
inequality for the norm. With the additional hypothesis that (u, v) = 0, this
formula reduces to the Pythagorean Theorem

ku + vk2 = kuk2 + kvk2.

Direct expansion of the norms squared in terms of the inner product shows that
H satisfies the parallelogram law

ku + vk2 + ku − vk2 = 2kuk2 + 2kvk2 for all u and v in H.

Actually, there is a converse to this formula, due to Jordan and von Neumann,
whose details are left to Problems 19–24 at the end of the chapter: a Banach space
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is a Hilbert space if its norm satisfies the parallelogram law. The idea is that the
inner product in a Hilbert space can be computed from the identity

(u, v) =
1
4

X

k
i k ku + i kvk2,

where the sum extends for k ∈ {0, 2} if the scalars are real and extends for
k ∈ {0, 1, 2, 3} if the scalars are complex. This identity goes under the name
polarization. For the result of Jordan and vonNeumann, onedefines (u, v) by this
formula, shows that the result is an inner product, and proves that kuk2 = (u, u).
The following lemma, which makes use of the completeness, is the key to all

the geometry.

Lemma 12.2. If M is a closed vector subspace of the Hilbert space H and if
u is in H , then there is a vector v in M with

ku − vk = inf
w∈M

ku − wk.

REMARK. Examination of the proof will show that we do not make full use
of the assumption that M is closed under addition and scalar multiplication, only
that M is closed under passage to convex combinations, i.e., that x and y in M
imply that t x + (1 − t)y is in M for all t with 0 ≤ t ≤ 1. Thus it is enough to
assume that M is a closed convex set, not necessarily a closed vector subspace.
PROOF. Let d = infw∈M ku − wk, and choose a sequence {wn} in M with

ku − wnk → d. By the parallelogram law,

k2u − (wn + wm)k2 + kwn − wmk2 = 2(ku − wmk2 + ku − wnk
2) −→ 4d2.

Since 12 (wn + wm) is in M ,

k2u − (wn + wm)k2 = 4ku − 1
2 (wn + wm)k2 ∏ 4d2.

We conclude that kwn − wmk2 → 0, and {wn} is Cauchy. By completeness of
H , {wn} is convergent. If v = limwn , then v is in M since M is topologically
closed. Since ku − wnk → d, continuity of the norm gives ku − vk = d. §

Two vectors u and v in H are said to be orthogonal if (u, v) = 0. The set of
all vectors orthogonal to a subset M of H is denoted by M⊥. In symbols,

M⊥ = {u ∈ H | (u, v) = 0 for all v ∈ M}.

Weseeby inspection thatM⊥ is a closedvector subspace. Moreover,M∩M⊥ = 0
since any u inM∩M⊥must have (u, u) = 0. The subspaceM⊥will be of greatest
interest when M is a closed vector subspace, as a consequence of the following
proposition.
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Proposition 12.3 (Projection Theorem). If M is a closed vector subspace of
the Hilbert space H , then every u in H decomposes uniquely as u = v + w with
v in M and w in M⊥.

REMARKS. One writes H = M ⊕ M⊥ to express this unique decomposition
of vector spaces. Because of this proposition, M⊥ is often called the orthogonal
complement of the closed vector subspace M . It is essential that M be closed
in this proposition. In fact, consider the vector subspace M of polynomials in
L2([0, 1]). This is dense as a consequence of the Weierstrass Approximation
Theorem, and consequently no L2 function other than 0 can be in M⊥. Thus not
every member of L2 is the sum of a member of M and a member of M⊥.

PROOF. Uniqueness follows from the fact that M ∩M⊥ = 0. For existence let
u be in H , and choose v in M by Lemma 12.2 with ku − vk = infw∈M ku − wk.
If m is any member of M with kmk = 1, then the vector v + (u − v,m)m is in
M and the formula kx − yk2 = kxk2 − 2Re(x, y) + kyk2 gives

ku − vk2 ≤ ku − v − (u − v,m)mk2

= ku − vk2 − 2|(u − v,m)|2 + |(u − v,m)|2

= ku − vk2 − |(u − v,m)|2.

Hence (u− v,m) = 0. Since every nonzero member of M is a scalar multiple of
a member with kmk = 1, u − v is in M⊥. §

Corollary 12.4. If M is a closed vector subspace of the Hilbert space H , then
M⊥⊥ = M .

PROOF. From the definition we see that M ⊆ M⊥⊥. If u is in M⊥⊥, write u =
m+m⊥ withm ∈ M andm⊥ ∈ M⊥ by Proposition 12.3. Then 0 = m⊥+(m−u)
with m⊥ ∈ M⊥ and m − u ∈ M⊥⊥. By the uniqueness in the decomposition
H = M⊥ ⊕M⊥⊥ of Proposition 12.3,m⊥ = 0 andm−u = 0. Therefore u = m
is in M , and M⊥⊥ = M . §

Theorem 12.5 (Riesz Representation Theorem). If ` is a continuous linear
functional on the Hilbert space H , then there exists a unique v in H with `(u) =
(u, v) for all v in H . This vector v has the property that k`k = kvk.

REMARKS. It is instructive to compare this result with the version of the
Riesz Representation Theorem in Theorem 9.19, which applies to L p(S,A, µ)
for 1 ≤ p < ∞ and in particular to L2(S,A, µ). That theorem associates to a
continuous linear functional ` on this L2 space a member g of the space such that
`( f ) =

R
S f g dµ for all f in the space. The present theorem, applied with H =

L2(S,A, µ), instead yields a member v of the space such that `( f ) =
R
S f v̄ dµ
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for all f in the space. The connection, of course, is that the function g is v̄. The
space L2(S,A, µ) has a canonically defined notion of complex conjugation, but
an abstract Hilbert space does not. Because of the existence of this canonical
conjugation, Theorem 9.19 gives us a canonical linear isometry of L2(S,A, µ)∗

onto L2(S,A, µ), whereas Theorem 12.5 gives us a canonical isometry that is
merely conjugate linear.

PROOF. Uniqueness is immediate since if (u, v) = 0 for all u, then (u, v) = 0
for u = v, and hence v = 0. Let us prove existence. If ` = 0, take v = 0.
Otherwise let M = {u | `(u) = 0}. This is a vector subspace since ` is linear,
and it is closed since ` is continuous. By Proposition 12.3 and the fact that M is
not all of H , M⊥ contains a nonzero vectorw. This vectorwmust have `(w) 6= 0
since M ∩ M⊥ = 0, and we let v be the member of M⊥ given by

v =
`(w)

kwk2
w.

For any u in H , we have `
°
u− `(u)

`(w)
w

¢
= 0, and hence u− `(u)

`(w)
w is in M . Since

v is in M⊥, u − `(u)
`(w)

w is orthogonal to v. Thus

(u, v) =
≥ `(u)
`(w)

w, v
¥

=
≥ `(u)
`(w)

w,
`(w)

kwk2
w

¥
= `(u)

`(w)

`(w)

kwk2

kwk2
= `(u).

This proves existence.
For the norm equality every u in H has |`(u)| = |(u, v)| ≤ kukkvk by

the Schwarz inequality. Taking the supremum over all u with kuk ≤ 1 gives
k`k ≤ kvk. On the other hand, |(u, v)| = |`(u)| ≤ k`kkuk; putting u = v gives
kvk ≤ k`k. Thus k`k = kvk. §

A subset S of H is orthonormal if each vector in S has norm 1 and if each
pair of distinct vectors in S is orthogonal. For example, relative to the inner
product ( f, g) = 1

2π
R π

π f ḡ dx , the functions x 7→ einx are orthonormal as n
varies through the integers. An orthonormal set S is linearly independent; in
fact, if v1, . . . , vn are members of S with

P
i civi = 0, then the computation

0 =
°
vj ,

P
i civi

¢
=

P
i ci (vj , vi ) = cjkvjk2 = cj shows that cj = 0 for all j .

We encountered other examples of orthogonal sets, beyond the functions einx ,
in Chapter IV in connection with solving certain ordinary differential equations.
Such an orthogonal set becomes orthonormal when each member is scaled by
the reciprocal of its norm. One example was the system of Legendre polyno-
mials Pn(x), which were introduced in Section IV.8: the differential equation
(1− t2)y00 − 2t y0 + n(n+ 1)y = 0 has polynomial solutions y(t) that are unique
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up to a scalar, and Pn(t) is a suitably normalized polynomial solution, necessarily
of degree n. These can be shown to be orthogonal4 in L2([−1, 1], dt).
Another example was constructed from the Bessel function

J0(t) =
∞X

n=0
(−1)n

t2n

22n(n!)2
,

which was defined in Section IV.8. There are infinitelymany distinct positive real
numbers kn such that J0(kn) = 0, and it can be shown that the functions
x 7→ J0(knx) are orthogonal5 in L2([0, 1], x dx).
If an ordered set of n linearly independent vectors in H is given, the Gram–

Schmidt orthogonalization process, which appears in Problem 6 at the end of
the present chapter, gives an algorithm for replacing the set with an orthonormal
set having the same linear span.
Let M be a closed vector subspace of H , so that H = M⊕M⊥ by Proposition

12.3. The linear projection operator E of H onM alongM⊥, given by the identity
on M and the 0 operator on M⊥, is called the orthogonal projection of H on M .
The linear operator E is bounded with kEk ≤ 1 because if u ∈ H decomposes
as u = m + m⊥, the Pythagorean Theorem gives

kE(u)k2 = kE(m + m⊥)k2 = kmk2 ≤ kmk2 + km⊥k2 = kuk2.

We are going to derive a formula for E in terms of orthonormal sets.

Lemma 12.6. If {uj } is an orthonormal sequence in the Hilbert space H
and if {cj } is a sequence of scalars, then

P∞
j=1 cjuj converges if and only ifP∞

j=1 |cj |2 < ∞, and in this case
∞
∞
∞

X∞

j=1
cjuj

∞
∞
∞ =

≥X∞

j=1
|cj |2

¥1/2
.

When the series converges, the sum
P∞

j=1 cjuj is independent of the order of the
terms.

PROOF. For m ∏ n, we have
∞
∞Pm

j=n cjuj
∞
∞2 =

°Pm
i=n ciui ,

Pm
j=n cjuj

¢
=

P
i, j ci c̄j (ui , uj ) =

Pm
j=n |cj |2.

This shows that the sequence
©Pp

j=1 cjuj
™
isCauchy inH if andonly if

P∞
j=1 |cj |2

is convergent, and the first conclusion follows since H is complete. When

4The verification appears in the problems in the companion volume, Advanced Real Analysis.
5Again the verification appears in the problems in the companion volume, Advanced Real

Analysis.
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©Pp
j=1 cjuj

™
is convergent, we denote its limit by

P∞
j=1 cjuj , and continuity

of the norm yields k
P∞

j=1 cjujk = limp k
Pp

j=1 cjujk. Since we have seen that
k
Pp

j=1 cjujk =
°Pp

j=1 |cj |2
¢1/2, the second conclusion of the lemma follows.

Let u =
P

j cj u j , and let
P

k cjk u jk be a rearrangement, necessarily convergent
bywhat has already been proved. Suppose that the rearrangement has sum u0. The
equality just proved shows that kuk2 =

P∞
i=1 |ci |2 = ku0k2 since rearrangements

of series of nonnegative reals have the same sums. Continuity of the inner product,
together with the same computation as made above, gives

(u, u0) = lim
p,q

°Pp
i=1 ciui ,

Pq
k=1 cjk u jk

¢
= lim

p,q

P

1≤i≤p,
i= jk with k≤q

|ci |2.

The limit on the right is
P∞

i=1 |ci |2 since
P

k |cjk |2 is a rearrangement of
P

i |ci |2,
and hence (u, u0) =

P∞
i=1 |ci |2 = kuk2 = ku0k2. Therefore ku − u0k2 =

(u, u) − 2Re(u, u0) + (u0, u0) = kuk2 − 2kuk2 + kuk2 = 0, and u0 = u. §

Proposition 12.7. Let S be an orthonormal set in the Hilbert space H , and let
M be the smallest closed vector subspace of H containing S. For each u in H ,
there are at most countably many members vα of S such that (u, vα) 6= 0, and
thus the series

E(u) =
X

vα∈S
(u, vα)vα

has only countably many nonzero terms. The series converges independently of
the order of the nonzero terms, E is the orthogonal projection of H on M , and E
satisfies

kE(u)k2 =
X

vα∈S
|(u, vα)|2 ≤ kuk2.

REMARK. The final inequality of the proposition is Bessel’s inequality.

PROOF. Let vα1, . . . , vαn be a finite subset of S, and form the vector u0 =Pn
j=1 (u, vαj )vαj . Taking the inner product of both sides with u gives

(u0, u) =
nX

j=1
(u, vαj )(vαj , u) =

nX

j=1
|(u, vαj )|

2,

and Lemma 12.6 gives

ku0k2 =
nX

j=1
|(u, vαj )|

2.
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Therefore 0 ≤ ku−u0k2 = kuk2−2Re(u, u0)+ku0k2 = kuk2−2ku0k2+ku0k2 =
kuk2 − ku0k2, and we obtain

ku0k2 ≤ kuk2. (∗)

In other words,
nX

j=1
|(u, vαj )|

2 ≤ kuk2, (∗∗)

no matter what finite subset vα1, . . . , vαn of S we use.
The sumof uncountablymany positive real numbers is infinite, since otherwise

there could be only finitely many greater than 1/n for each n. Since kuk2 < ∞,
(∗∗) implies that there can be only countably many α’s with |(u, vα)|2 nonzero.
This proves the first conclusion. If we enumerate those α’s and apply Lemma
12.6, we obtain the convergence of

P
vα∈S(u, vα)vα to a sum independent of the

order of the terms.
It is evident from the formula that E is linear and that E(u) = 0 if u is in

M⊥. Inequality (∗∗) shows that the partial sums u0 of E(u) have ku0k ≤ kuk,
and the continuity of the norm therefore implies that kE(u)k ≤ kuk for all u.
Hence E is continuous. Since E(vα) = vα for all α, E is the identity on all finite
linear combinations of members of S. The continuity of E thus implies that E is
the identity on all of M . Hence E is the orthogonal projection as asserted. The
final assertion of the proposition follows from Lemma 12.6 and the inequality
kE(u)k ≤ kuk, which we have already proved. §

Corollary 12.8. If S is an orthonormal set in the Hilbert space H , then the
following are equivalent:

(a) S is maximal among orthonormal subsets of H ,
(b) u =

X
vα∈S

(u, vα)vα for all u in H ,

(c) kuk2 =
X

vα∈S
|(u, vα)|2 for all u in H ,

(d) (u, v) =
X

vα∈S
(u, vα)(v, vα) for all u and v in H .

REMARKS. Condition (b) is summarized by saying that the orthonormal set S
is an orthonormal basis of H . If H is infinite-dimensional, an orthonormal basis
is not a basis in the ordinary linear-algebra sense; a passage to the limit is usually
needed to expand vectors in terms of the basis. Condition (c), or sometimes
condition (d), is called Parseval’s equality. Thus the corollary says that the
orthonormal set S is maximal if and only if it is an orthonormal basis, if and only
if Parseval’s equality holds.
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PROOF. LetM be the smallest closed vector subspace of H containing S. Then
S is maximal if and only if M⊥ = 0, and we replace (a) by this condition. If
M⊥ = 0, then E is the identity operator in Proposition 12.7, and the proposition
shows that (b) holds. If (b) holds, Proposition 12.7 says that (c) holds. On the
other hand, if (c) holds, then Proposition 12.7 says that kuk = kE(u)k for all u.
For a vector u in M⊥, which must have E(u) = 0, this says that kuk = 0. Thus
M⊥ = 0, and (a) holds. Hence (a), (b), and (c) are equivalent. Finally (c) and
(d) are equivalent by polarization. §

In the context of Fourier series, Parseval’s equality ((c) in Corollary 12.8)
was proved as Theorem 6.49, and that theorem showed also that any member of
L2

°
[−π,π], 1

2π dx
¢
is the sum of its Fourier series in the sense of convergence

in L2. This conclusion was (b) in the corollary. The corollary is showing that
the equivalence of (b) and (c) is just a result in abstract Hilbert-space theory. The
extra content of Theorem 6.49 is that these conditions are actually satisfied by
the system of exponential functions.
One can show that the other two exampleswe gave in this section of orthogonal

sets give orthonormal bases when normalized—the Legendre polynomials Pn(t)
on [−1, 1] with respect to dt and the functions J0(knt) on [0, 1] with respect to
t dt .

Proposition 12.9. Let (X, µ) and (Y, ∫) be σ -finite measure spaces, and
suppose that L2(X, µ) has a countable orthonormal basis {ui } and L2(Y, ∫) has a
countable orthonormal basis {vj }. Then {(x, y) 7→ ui (x)vj (y)} is an orthonormal
basis of L2(X × Y, µ × ∫).

PROOF. The functions ui (x)vj (y) are orthonormal, and Corollary 12.8 shows
that it is enough to prove that this orthonormal set is maximal. Suppose that
w(x, y) is an L2 function on X × Y orthogonal to all of them. Then

0 =
R
X

R
Y w(x, y) ui (x) vj (y) d∫(y) dµ(x) =

R
X (w(x, · ), vj ) ui (x) dµ(x)

for all i and j . Since {ui } is an orthonormal basis of L2(X, µ), x 7→ (w(x, · ), vj )
is the 0 function in L2(X, µ) for each j . In other words, (w(x, · ), vj ) = 0 for a.e.
x [dµ] for that j . Since the number of j’s is countable, (w(x, · ), vj ) = 0 for all j
for a.e. x [dµ]. Any such x has 0 =

P
j |(w(x, · ), vj )|2 =

R
Y |w(x, y)|2 d∫(y).

Integrating in x , we see that w is the 0 function in L2(X × Y, µ × ∫). §

Proposition 12.10. Any orthonormal set in a closed vector subspace M of a
Hilbert space H can be extended to an orthonormal basis of M . In particular any
closed vector subspace M of H has an orthonormal basis.
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PROOF. As a closed subset of a complete space, M is complete, and therefore
M is a Hilbert space in its own right. Order by inclusion all orthonormal subsets
of M containing the given set. The given set is one such, and the union of the
members of a chain is an orthonormal set forming an upper bound for the chain.
By Zorn’s Lemma we can find a maximal orthonormal set S in M containing the
given one. This satisfies (a) in Corollary 12.8 and hence is an orthonormal basis.
This proves the first conclusion, and the second conclusion follows from the first
by taking the given orthonormal set in M to be empty. §

Proposition 12.11. Any two orthonormal bases of a Hilbert space have the
same cardinality.

REMARKS. Cardinality is discussed in Section A10 of Appendix A. The “same
cardinality” whose existence is proved in the proposition is called the Hilbert
space dimension of the Hilbert space. Problem 7 at the end of the chapter shows
that two Hilbert spaces are isomorphic as Hilbert spaces if and only if they have
the same Hilbert space dimension. Despite the apparent definitive sound of this
result, onemust not attach toomuch significance to theproposition. Hilbert spaces
that arise in practice tend to have some additional structure, and an isomorphism
of this kind need not preserve the additional structure.

PROOF. Fix two orthonormal basesU = {uα} and V = {vβ} of a Hilbert space
H . We define two members uα and uα0 of U to be equivalent if there exists a
sequence

uα1, vβ1, uα2, vβ2, . . . , uαn−1, vβn−1, uαn (∗)

with uα1 = uα and uαn = uα0 , with each uαj inU and each vβj in V , and with each
consecutive pair having nonzero inner product. Define an equivalence relation in
V similarly.
Each equivalence class is countable. In fact, consider the class of uα1 , and

consider sequences of a fixed length. Proposition 12.7 shows that only countably
many members of V can have nonzero inner product with uα1 , only countably
many members of U can have nonzero inner product with that, and so on. Thus
there are only countably many sequences of any particular length. The countable
union of these countable sets is countable, and thus there are only finitely many
sequences connecting uα1 to anything. Hence uα1 can be equivalent to only
countably many members of U .
LetU1 andV1 be equivalence classes inU andV , respectively, and suppose that

uα0 and vβ0 are members ofU1 and V1 with nonzero inner product. Expand uα0 in
terms of V as uα0 =

P
β (uα0, vβ)vβ , retaining only the terms with (uα0, vβ) 6= 0.

One of the terms making a contribution is the one with vβ = vβ0 , and it follows
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that any other term with (uα0, vβ 0) 6= 0 has vβ 0 equivalent to vβ . Hence we have

uα0 =
X

vβ∈V1

(uα0, vβ)vβ and similarly vβ0 =
X

uα∈U1

(vβ0, uα)uα.

If uα0
0
is another member ofU1 and we expand it in terms of V , retaining only the

nonzero terms, then the vβ’s that occur have to be equivalent to one another. So
we have uα0

0
=

P
vβ∈V2 (uα0, vβ)vβ for some equivalence class V2 within V . If

we form a sequence (∗) connecting uα0 and uα0
0
, we see that at least one member

of V2 is connected to at least one member of V1. Thus V1 = V2. Consequently
every member of U1 lies in the smallest closed vector subspace containing V1,
and every member of V1 lies in the smallest closed subspace containing U1. In
otherwords,U1 and V1 are orthonormal bases for the same closed vector subspace
of H .
If U1 is finite, then linear algebra shows that V1 is finite and has the same

number of elements. SinceU1 and V1 are countable, the only way that either can
be infinite is if both are countably infinite. In any event,U1 and V1 have the same
cardinality. Thus we have a one-one function carrying U1 onto V1. Repeating
this process for each equivalence class within U , we obtain a one-one function
carrying U onto V . §

3. Bounded Linear Operators on Hilbert Spaces

In this section we briefly study bounded linear operators from a Hilbert space
H to itself. In the finite-dimensional case we often make a correspondence
between matrices and linear operators by using the standard basis of the space
of column vectors. If {ei }ni=1 is this basis, then the correspondence between a
matrix A = [Ai j ] and a linear operator L is given by Ai j = (L(ej ), ei ). If
u =

P
j u j ej and v =

P
i vi ei are column vectors, then L(u) =

P
j u j L(ej ) and

hence (L(u), v) =
P

i, j u j v̄i (L(ej ), ei ) =
P

i j v̄i Ai j u j .
We could extend these formulas to the case of a general Hilbert space, not

necessarily finite-dimensional, by using a particular orthonormal basis as the
generalization of {ei }. But no particular such basis recommends itself, and we
work without any choice of basis as much as possible, except for purposes of
motivation. Instead, we may think of the function (u, v) 7→ (L(u), v) as a more
appropriate—andcanonical—analogof thematrix of L . Just as the operator norm
of L is given by a formula that views L as an operator, namely

kLk = sup
kuk≤1

kL(u)k,
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so there is a formula for computing the norm in terms of the function of two
variables, namely

kLk = sup
kuk≤1,
kvk≤1

|(L(u), v)|.

To verify this formula, fix u and let v have norm≤ 1. Application of the Schwarz
inequality gives |(L(u), v)| ≤ kL(u)kkvk ≤ kL(u)k. On the other hand, if
L(u) 6= 0, we take v = kL(u)k−1L(u); this v has kvk = 1, and we obtain
|(L(u), v)| = kL(u)k−1(L(u), L(u)) = kL(u)k. Hence supkvk≤1 |(L(u), v)k =
kL(u)k. Taking the supremum over kuk ≤ 1 shows that the two expressions for
kLk are equal.
We shall work with the “adjoint” L∗ of a bounded linear operator L . In terms

of matrices in the finite-dimensional case, the matrix of L∗ is to be the conjugate
transpose of the matrix of L . In other words, the (i, j)th entry (L∗(ej ), ei )) of the
matrix for L∗ is to be (L(ei ), ej ) = (ej , L(ei )). Passing to our functions of two
variables, we want to arrange that (L∗(u), v) = (u, L(v)) for all u and v. Let us
prove existence and uniqueness of such a bounded linear operator.

Proposition 12.12. Let L : H → H be a bounded linear operator on the
Hilbert space H . For each u in H , there exists a unique vector L∗(u) in H such
that

(L∗(u), v) = (u, L(v)) for all v in H .

As u varies, this formula defines L∗ as a bounded linear operator on H , and
kL∗k = kLk.

PROOF. The function v 7→ (L(v), u) is a linear functional on H satisfying
|(L(v), u)| ≤ kLkkkukkvk, hence having norm ≤ kLkkkuk. Being bounded,
the linear functional is given by (L(v), u) = (v,w) for some unique w in H ,
according toTheorem12.5. Wedefine L∗(u) = w, and thenwehave (L∗(u), v) =
(u, L(v)). This formula shows that L∗ is a linear operator, and the computation

kL∗k = sup
kuk≤1,
kvk≤1

|(L∗(u), v)| = sup
kuk≤1,
kvk≤1

|(u, L(v))| = sup
kuk≤1,
kvk≤1

|(L(v), u)| = kLk

shows that kL∗k = kLk. §

The bounded linear operator L∗ in the proposition is called the adjoint of L .
The mapping L 7→ L∗ is conjugate linear. We shall be especially interested in
the case that L∗ = L , in which case we say that L is self adjoint.
An example of a self-adjoint operator is the orthogonal projection E on a closed

vector subspace M as defined before Lemma 3.6. In fact, if u in H decomposes
according to H = M ⊕ M⊥ as u = u0 + u00, then the computation (1− E)(u) =
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u − u0 = u00 shows that 1 − E is the orthogonal projection on M⊥. Hence
(E(u), (1− E)(v)) = 0 for all u and v in H , and also ((1− E)(u), E(v)) = 0.
The first of these says that (E(u), v) = (E(u), E(v)), and the second says that
(E(u), E(v)) = (u, E(v)). Combining these, we obtain (E(u), v) = (u, E(v)).
Comparison of this formula with the formula in Proposition 12.12 shows that
E = E∗.
The Banach space B(H, H) is closed under composition. In fact, if L and M

are in B(H, H), then linear algebra shows LM to be linear, and the computation
k(LM)(u)k = kL(M(u))k ≤ kLkkM(u)k ≤ kLkkMkkuk shows that

kLMk ≤ kLkkMk.

Hence LM is in B(H, H) if L and M are. Within B(H, H), we have (LM)∗ =
M∗L∗.
The structure of abstract bounded linear operators on Hilbert spaces is one of

the topics in Chapter IV of the companion volume, Advanced Real Analysis.

4. Hahn–Banach Theorem

We return now to the setting of general normed linear spaces or Banach spaces.
There are threemain theorems concerning the norm topology of such spaces—the
Hahn–Banach Theorem, the Uniform Boundedness Theorem, and the Interior
Mapping Principle. These three theorems are the main subject matter of the
remainder of this chapter. Further properties of normed linear spaces and Banach
spaces are established in Chapter IV of the companion volume, Advanced Real
Analysis.
We shall often use symbols x, y, . . . for members of a normed linear space

and symbols x∗, y∗, . . . for linear functionals. This notation has the advantage
of allowing us to use symbols like x∗∗ for linear functionals on a space of linear
functionals, an important notion as we shall see.
We begin with the Hahn–Banach Theorem, which ensures the existence of

many continuous linear functionals on a normed linear space. The theorem has
applications even in situations in which one has a concrete realization of the dual
space, because it shows that any closed vector subspace is characterized by the
continuous linear functionals that vanish on the subspace.

Theorem 12.13 (Hahn–Banach Theorem). If Y is a vector subspace of a
normed linear space X and if y∗ is a continuous linear functional on Y , then there
exists a continuous linear functional x∗ on X with kx∗k = ky∗k such that

x∗(y) = y∗(y) for all y ∈ Y.
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The theorem as stated is derived from the following lemma, which itself goes
under the name “Hahn–BanachTheorem”and has other applicationsquite distinct
from Theorem 12.13 that are beyond the scope of this book.

Lemma12.14. Let X be a real vector space, and let p be a real-valued function
on X with

p(x + x 0) ≤ p(x) + p(x 0) and p(t x) = tp(x)
for all x and x 0 in X and all real t ∏ 0. If f is a linear functional on a vector
subspace Y of X with f (y) ≤ p(y) for all y in Y , then there exists a linear
functional F on X with F(y) = f (y) for all y ∈ Y and F(x) ≤ p(x) for all
x ∈ X . §

PROOF. Form the collection of all linear functionals on vector subspaces of
X that extend f and that are dominated by p, and partially order the collection
by saying that one is ≤ another if the second is an extension of the first. If we
have a chain of such extensions, then we can obtain an upper bound for the chain
by taking the union of the domains and using the common value of the linear
functionals on an element of this domain as the value of the linear functional
forming the upper bound. The result is linear because any two members of the
domainmust lie in the domain of a singlemember of the chain. By Zorn’s Lemma
let f0, with domain Y0, be a maximal extension. We shall prove that Y0 = X .
In fact, suppose that y1 is a vector in X but not Y0. Every vector in the vector

subspace Y1 spanned by y1 and Y0 has a unique representation as y + cy1, where
y is in Y0 and c is in R. Define f1 on Y1 by

f1(y + cy1) = f0(y) + ck, (∗)
where k is a real number to be specified. For a suitable choice of k, f1 will be
bounded by p and will contradict the maximality of ( f0,Y0).
Let y and y0 be in Y0. Then
f0(y0) − f0(y) = f0(y0 − y) ≤ p(y0 − y) ≤ p(y0 + y1) + p(−y1 − y),

−p(−y1 − y) − f0(y) ≤ p(y0 + y1) − f0(y0).and hence
Take the supremum of the left side over y and the infimum of the right side over
y0, let k be any real number in between, and define f1 on Y1 by (∗).
To complete the proof, we are to check that f1(x) ≤ p(x) for all x in Y1. Thus

suppose that x = y + cy1 is arbitrary in Y1. If c = 0, then f1(x) ≤ p(x) by the
assumption on Y0. If c > 0, then
f1(x) = f0(y)+ck ≤ f0(y)+c[p(c−1y+y1)− f0(c−1y)] = p(y+cy1) = p(x).
If c < 0, then
f1(x)= f0(y)+ck≤ f0(y)+c[−p(−y1−c−1y)− f0(c−1y)]= p(y+cy1)= p(x).
In any case, f1(x) ≤ p(x). §
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PROOF OF THEOREM 12.13. If the field of scalars is R, then Theorem 12.13
follows immediately from Lemma 12.14 with p(x) = ky∗kkxk and f = y∗.
If the field of scalars is C, if y∗ is given, and if, as we may, we regard X as a

real normed linear space, then Re y∗ defined by (Re y∗)(y) = Re(y∗(y)) is a real
linear functional on Y with

|(Re y∗)(y)| ≤ |y∗(y)| ≤ ky∗kkyk for all y ∈ Y .

By what has already been proved, we can extend Re y∗ without an increase in
norm to a real linear functional F defined on all of X . Define

x∗(x) = F(x) − i F(i x).

Weshow that x∗ has the requiredproperties. Certainly x∗(x+x 0) = x∗(x)+x∗(x 0)
and x∗(cx) = cx∗(x) for c real. Furthermore

x∗(i x) = F(i x) − i F(i2x) = i[F(x) − i F(i x)] = i x∗(x).

Thus x∗ is complex linear. On Y , we have

(Re y∗)(iy) + i(Im y∗)(iy) = y∗(iy) = iy∗(y) = −(Im y∗)(y) + i(Re y∗)(y),

and thus (Re y∗)(iy) = −(Im y∗)(y). Substituting this identity into the definition
of x∗, we obtain

x∗(y) = (Re y∗)(y) − i(Re y∗)(iy) = (Re y∗)(y) + i(Im y∗)(y) = y∗(y)

for y in Y . Thus x∗ is an extension of y∗. Finally if x∗(x) = reiθ for r and θ real
and r ∏ 0, then

|x∗(x)| = x∗(e−iθ x) = F(e−iθ x) ≤ ky∗kke−iθ xk = ky∗kkxk,

since thenonnegative number x∗(e−iθ x)has 0 imaginarypart. Thuskx∗k ≤ ky∗k.
The reverse inequality follows because x∗ is an extension of y∗, and the proof is
complete. §

Corollary 12.15. If Y is a closed vector subspace of a normed linear space X
and if x0 is a vector of X not in Y , then there exists an x∗ in the dual X∗ with

x∗(y) = 0 for all y ∈ Y

x∗(x0) = 1.and

The norm of x∗ can be taken to be the reciprocal of the distance from x0 to Y .
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PROOF. Let d > 0 be the distance from x0 to Y , and let Z be the linear span of
x0 and Y . Every x in Z has a unique expansion as x = y + cx0 for some scalar c
and some y in Y . For such an x , let z∗(x) = c. Let us see that the linear function
z∗ on Z satisfies

kz∗k = d−1. (∗)

First we check that |z∗(x)| ≤ d−1kxk: if c 6= 0, then

kxk = ky + cx0k = |c|kc−1y + x0k ∏ |c|d = d|z∗(x)|,

while if c = 0, then z∗(x) = 0. Thus |z∗(x)| ≤ d−1kxk for all x , and we
obtain kz∗k ≤ d−1. For the reverse inequality, let {yn} be a sequence in Y , not
necessarily convergent, with limn kx0 − ynk = d. Then

1 = z∗(x0 − yn) ≤ kz∗kkx0 − ynk −→ dkz∗k,

and hence kz∗k ∏ d−1. This proves (∗). Applying Theorem 12.13 to z∗, we
obtain the corollary. §

EXAMPLE. To illustrate Corollary 12.15, we re-prove the result of Proposition
11.21a that C(S) is dense in L p(S, µ) if S is a compact Hausdorff space, µ is
a regular Borel measure on S, and p satisfies 1 ≤ p < ∞. For definiteness let
us suppose that the underlying scalars are real. If C(S) were not dense, then
the corollary would produce a continuous linear functional ` on L p(S, µ) that
vanishes on C(S) but is not identically 0 on L p(S, µ). Theorem 9.19 says that
` has to be given by integration with some member g of L p0

(S, µ), where p0 is
the dual index: `( f ) =

R
S f g dµ for all f in L p(S, µ). Since ` vanishes on

C(S), we have
R
S f g dµ = 0 for all f ∈ C(S). Thus

R
S f g

+ dµ =
R
S f g

− dµ

for all f ∈ C(S). Here g+ dµ and g− dµ are Borel measures on S, regular by
Proposition 11.20, and they yield the same positive linear functional on C(S).
Applying the uniqueness in the Riesz Representation Theorem (Theorem 11.1),
we obtain g+ dµ = g− dµ and therefore g+ = g− almost everywhere. Since g+

and g− are nowhere both nonzero, g+ = g− = 0 almost everywhere. Hence g is
the 0 function, and ` = 0, contradiction.

Corollary 12.16. If X is a normed linear space and if x0 6= 0 is a vector in X ,
then there is an x∗ in X∗ with

kx∗k = 1 and x∗(x0) = kx0k.

PROOF. Apply Corollary 12.15 with Y = 0 and multiply by kx0k the linear
functional that is produced by that corollary. §
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Corollary 12.16, when applied to x0 = x − x 0, shows that there are enough
continuous linear functionals on a normed linear space X to separate points. Also,
it implies that the only vector x0 in X with x∗(x0) = 0 for all x∗ in X∗ is x0 = 0.
The third corollary we have already seen for L p spaces with 1 ≤ p < ∞ in
Proposition 9.8, at least when the measure space is σ -finite.

Corollary 12.17. If X is a normed linear space and x0 is in X , then

kx0k = sup
kx∗k≤1

|x∗(x0)|.

PROOF. If kx∗k ≤ 1, then |x∗(x0)| ≤ kx∗kkx0k ≤ kx0k, and therefore
supkx∗k≤1 |x∗(x0)| ≤ kx0k. The linear functional of Corollary 12.16 shows that
equality holds. §

We have seen for σ -finite measure spaces that the dual X∗ of X = L1(S, µ)
may be identified with L∞(S, µ) via integration. In turn every member of
L1(S, µ) then acts as a continuous linear functional on L∞(S, µ) via integra-
tion. This change of point of view amounts to the implementation of a certain
canonically defined linear mapping of X into X∗∗, which we now define for
general normed linear spaces.
Let X be a normed linear space, and let X∗∗ be the dual of X∗. We define a

linear operator ∂ : X → X∗∗ by

(∂(x))(x∗) = x∗(x) for all x∗ ∈ X∗,

and we call ∂ the canonical map of X into X∗∗.

Corollary 12.18. If X is a normed linear space, then the canonical map
∂ : X → X∗∗ has k∂(x)k = kxk for all x and in particular is one-one. Conse-
quently if X is complete, then ∂(X) is a closed vector subspace of X∗∗.

PROOF. We have

k∂(x)k = sup
kx∗k≤1

|(∂(x))(x∗)| = sup
kx∗k≤1

|x∗(x)| = kxk,

the last step holding byCorollary 12.17. This proves the first conclusion. Because
∂ preserves norms, X complete implies that ∂(X) is a complete subset of the
complete space X∗∗ and is therefore closed, by Corollary 2.43. §
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A Banach space X is said to be reflexive if the canonical map carries X onto
X∗∗. Warning: This is a more restrictive condition than to say that there is some
norm-preserving linear mapping of X onto X∗∗.
Finite-dimensional normed linear spaces are reflexive since linear functionals

in this case are automatically continuous and since the vector-space dual of
a finite-dimensional vector space has the same dimension as the space itself.
Hilbert spaces are reflexive as a consequenceof theRieszRepresentationTheorem
in its form in Theorem 12.5. The spaces L p(S, µ) for a σ -finite measure space,
when 1 < p < ∞, are reflexive as a consequence of the Riesz Representation
Theorem6 in its form in Theorem 9.19. However, L1(S, µ) and L∞(S, µ) are
often not reflexive, as is shown below in Proposition 12.19 and Corollary 12.21.

Proposition 12.19. If (S, µ) is a σ -finite measure space with infinitely many
disjoint sets of positive measure, then L1(S, µ) is not reflexive.

PROOF. Theorem 9.19 shows that the Banach space X = L1(S, µ) has X∗ ∼=
L∞(S, µ), the isomorphism being given by integration. Therefore it is enough to
producea continuous linear functionalon L∞(S, µ) that is not givenby integration
with an L1 function.
Thus let {En} be a sequence of disjoint sets of positive measure, and let Y be

the vector subspace of functions in L∞(S, µ) that are constant on each En and
have values on the En’s tending to a finite limit as n tends to infinity. Let y∗ of
such a function be the limit. Then y∗ is a linear functional on Y of norm 1. By
the Hahn–Banach Theorem (Theorem 12.13), there exists a linear functional x∗

defined on all of L∞(S, µ), having norm 1, and restricting to y∗ on Y . Suppose
that there is some g in L1(S, µ)with x∗( f ) =

R
S f g dµ for all f in Y , quite apart

from all f in L∞(S, µ). If f is 1 on En and is 0 elsewhere, then x∗( f ) = 0, and
hence

R
En g dµ = 0. In other words,

R
En g dµ = 0 for every n. If we next take f

to be 1 on
S∞

n=1 En and to be 0 elsewhere, then x∗( f ) = 1. On the other hand,
this f has

x∗( f ) =
R
S f g dµ =

R
S
n En

g dµ =
P∞

n=1
R
En g dµ = 0,

and we have a contradiction. §

Proposition 12.20. If X is a Banach space and its dual X∗ is reflexive, then
X is reflexive.

PROOF. Let ∂ : X → X∗∗ and ∂∗ : X∗ → X∗∗∗ be the canonical maps.
Arguing by contradiction, suppose that X is not reflexive. Since ∂(X) is a closed
proper vector subspace of X∗∗, Corollary 12.15 produces a nonzero member

6Actually, the σ -finiteness is not needed for 1 < p < ∞.
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x∗∗∗ of X∗∗∗ such that x∗∗∗(∂(X)) = 0. Since X∗ is reflexive by assumption,
there exists x∗ in X∗ with x∗∗∗ = ∂∗(x∗). If x is in X , then we have 0 =
x∗∗∗(∂(x)) = (∂∗(x∗))(∂(x)) = (∂(x))(x∗) = x∗(x), and hence x∗ = 0. But then
x∗∗∗ = ∂∗(x∗) = 0, and we have a contradiction. §

Corollary 12.21. If (S, µ) is a σ -finite measure space with infinitely many
disjoint sets of positive measure, then L∞(S, µ) is not reflexive.
PROOF. Theorem 9.19 shows that the Banach space X = L1(S, µ) has X∗ ∼=

L∞(S, µ), the isomorphismbeing given by integration. If X∗ were reflexive, then
X would have to be reflexive by Proposition 12.20, in contradiction to Proposition
12.19. §

5. Uniform Boundedness Theorem

The secondmain theorem about the norm topology of normed linear spaces is the
Uniform Boundedness Theorem, also known as the Banach–Steinhaus Theorem.
This result involves a parametrized family of linear operators from one normed
linear space into another, and it is assumed that the domain is complete. Twokinds
of boundedness as a function of one variable are assumed—boundedness of each
linear operator as a functionon (theunit ball of) the domainandboundedness in the
parameter for each fixed member of the domain. The conclusion is boundedness
in the two variables jointly.

Theorem 12.22 (UniformBoundedness Theorem). If {Lα} is a set of bounded
linear operators from a Banach space X into a normed linear space Y such that

kLα(x)k ≤ Cx for all α,

then there is a constant C independent of x such that kLαk ≤ C for all α.
PROOF. For each positive integer n, the set

Fn =
©
x ∈ X

Ø
Ø kLα(x)k ≤ n for all α

™

is closed in X , being the intersection of inverse images of closed sets in Y under
continuous functions, and

S∞
n=1 Fn = X by assumption. By the Baire Category

Theorem (Theorem 2.53b), one of the sets, say FN , contains a nonempty open
subset B of X . Then kLα(x)k ≤ N for all α and for all x in B. If B contains the
open ball in X of radius 2r > 0 and center b, then kxk ≤ r implies that x + b is
in B and that

kLα(x)k = kLα(x + b) − Lα(b)k ≤ kLα(x + b)k + kLα(b)k ≤ N + Cb,
independently of α. Hence kxk ≤ 1 implies

kLα(x)k = r−1kLα(r x)k ≤ r−1(N + Cb).
In other words, kLαk ≤ r−1(N + Cb). §
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EXAMPLE. Let us use the theorem to give a proof that the Fourier series of
a continuous periodic function need not converge at some point. Consider the
Banach space X of all continuous periodic functions f on [−π,π] with the
supremum norm. Let Dn be the Dirichlet kernel as in Section I.10, given by

Dn(t) =
nX

k=−n
eikt =

sin((n + 1
2 )t)

sin 12 t
.

The nth partial sum of the Fourier series of f is

sn( f ; x) =
1
2π

Z π

−π

f (x − t)Dn(t) dt.

Define linear functionals `n on X by

`n( f ) = sn( f ; 0) =
1
2π

Z π

−π

f (−t)Dn(t) dt.

Each of these is bounded; specifically k`nk ≤ 2n+1 because kDnksup ≤ 2n+1.
If the Fourier series of each continuous function f were to converge at 0, then
limn `n( f ) would exist for each f , and hence we would have |`n( f )| ≤ Cf for
a constant Cf independent of n. The Uniform Boundedness Theorem would say
that k`nk ≤ C for some constant C independent of n. The norm equality of
Theorem 11.26 or 11.28 would then allow us to conclude that

R π

−π |Dn(t)| dt is
bounded. In fact, the numbers

R π

−π |Dn(t)| dt are unbounded, according to the
following proposition, and thus there exists a continuous periodic function whose
Fourier series diverges at x = 0.

Proposition 12.23. The numbers

Ln =
1
2π

Z π

−π

|Dn(t)| dt

have the property that
Ln = 4π−2 log n + O(1),

where O(1) denotes an expression bounded as a function of n. Hence Ln is
unbounded with n.

REMARK. The numbers Ln are sometimes called Lebesgue constants.
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PROOF. By writing sin((n + 1
2 )t) = sin nt cos 12 t + cos nt sin 12 t , we see that

Dn(t) = sin nt cot 12 t + cos nt = 2t−1 sin nt + hn(t),

where hn(t) is bounded in the pair (n, t) for |t | ≤ π . If we let O(1) denote an
expression bounded as a function of n, then

Ln =
2
2π

Z π

−π

| sin nt |
|t |

dt + O(1)

=
2
π

Z π

0

| sin nt |
t

dt + O(1)

=
2
π

n−1X

k=0

Z (k+1)π/n

kπ/n

| sin nt |
t

dt + O(1)

=
2
π

Z π/n

0

sin nt
t

dt +
2
π

Z π/n

0
(sin nt)

h n−1X

k=1

1
t + kπ/n

i
dt + O(1).

The first term on the right side is bounded, and the sum in brackets lies between

π−1n(1+ 1
2 + · · · + 1

n−1 ) and π−1n( 12 + · · · + 1
n ),

which are upper and lower Riemann sums for π−1n
R n
1 t

−1 dt and have difference
π−1n(1 − 1

n ). Thus the sum in brackets is equal to π−1n(log n + O(1)). The
integral of sin nt over [0,π/n] is 2/n, and the result follows. §

6. Interior Mapping Principle

The third main theorem about the norm topology of normed linear spaces is the
Interior Mapping Principle. This result involves a single bounded linear operator
from one normed linear space into another, and it is assumed that the domain and
the range are both complete. The theorem is that if the operator is onto the range,
then it carries open sets to open sets.

Theorem 12.24 (Interior Mapping Principle). If L is a continuous linear
operator from a Banach space X onto a Banach space Y , then L carries open
subsets of X to open subsets of Y .
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PROOF. Let Br be the closed ball in X with center 0 and radius r , and let Us
be the open ball in Y with center 0 and radius s. The proof is in three steps.
The first step is to show that (L(B1))cl contains an open neighborhood of 0 in

Y . To do so, we use the fact that L is onto Y to write

Y = L(X) = L
°[∞

n=1
Bn

¢
=

[∞

n=1
L(Bn).

Thus Y =
S∞

n=1(L(Bn))cl, and the Baire Category Theorem (Theorem 2.53b)
shows that one of the sets (L(Bn))cl contains a nonempty open set. Since L is
linear and since multiplication by 2n is a homeomorphism of Y , (L(Bn))cl =
(L(2nB1/2))cl = (2nL(B1/2))cl = (2n)(L(B1/2))cl, and we see that (L(B1/2))cl
contains some nonempty open subset V of Y . If v and v0 are in V , they are in
(L(B1/2))cl and there exist sequences {vn} and {v0

n} in L(B1/2) with vn → v and
v0
n → v0. By linearity, vn − v0

n is in L(B1), and passage to the limit shows that
v − v0 is in L(B1)cl. The set V − V of such differences v − v0 is the union over
v0 ∈ V of V −v0, hence is the union of open sets and is open. Since 0 is in V −V ,
the set V − V is an open neighborhood of 0 lying in L(B1)cl.
The second step is to show that the image of any neighborhood of 0 in X is

a neighborhood of 0 in Y . The previous step shows that (L(B1))cl ⊇ Us for
some s > 0, and we show for every c > 0 that L(Bc) ⊇ Usc/2. For t > 0,
multiplication of the inclusion (L(B1))cl ⊇ Us by t shows that

(L(Bt))cl ⊇ Ust (∗)

since multiplication by t is a homeomorphism of Y and L is linear. If y is in
Usc/2, we are to produce x in Bc with L(x) = y, and we do so by successive
approximations. Specifically we construct inductively the terms xn of a conver-
gent series in X with sum x , as follows: Condition (∗) with t = c/2 allows us
to choose a member x1 of Bc/2 with ky − L(x1)k < 2−2sc. If x1, . . . , xn−1 have
been constructed with each xj in B2− j c and with

ky − L(x1 + · · · + xn−1)k < 2−nsc,

then y− L(x1+· · ·+ xn−1) is inU2−nsc. Condition (∗) with t = 2−nc shows that
we can find xn in B2−nc with

ky − L(x1 + · · · + xn−1) − L(xn)k < 2−(n+1)sc.

We now have

ky − L(x1 + · · · + xn−1 + xn)k < 2−(n+1)sc.
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This completes the inductive construction of the xn’s, and we shall prove that the
series

P
xn is convergent in X . Since X is complete, it is enough to show that

the partial sums of
P

xn are Cauchy. If q ∏ p, then
∞
∞Pq

n=1 xn −
Pp

n=1 xn
∞
∞ =

∞
∞Pq

n=p+1 xn
∞
∞ ≤

Pq
n=p+1 kxnk ≤

Pq
n=p+1 2−nc.

The right side is ≤ 2−pc, and the partial sums of
P

xn are indeed Cauchy. Let
x =

P∞
n=1 xn . Taking p = 0 and using the continuity of the norm, we see that

kxk ≤ c. By continuity of L , we have y = limn L(x1 + · · · + xn) = L(x).
Consequently the member y ofUsc/2 is of the form L(x) for some x in Bc, as was
asserted.
The third step is to show that each open set of X is mapped to an open set of

Y by L . Let U be open in X , let x be in U , and let N be an open neighborhood
of 0 in X such that x + N ⊆ U . The previous step shows that there is some
open neighborhood V of 0 in Y such that V ⊆ L(N ). Then L(x) + V is an open
neighborhood in Y of L(x) with

L(x) + V ⊆ L(x) + L(N ) = L(x + N ) ⊆ L(U).

Therefore L(U) contains a neighborhood about each of its points and must be
open. §

Corollary 12.25. A one-one continuous linear operator L of a Banach space
X onto a Banach space Y has a continuous linear inverse.
PROOF. Since L is one-one onto, L−1 exists. For L−1 to be continuous, the

inverse image under L−1 of each open set is to be open. In other words, the direct
image under L of any open set is to be open. But this is just the conclusion of
Theorem 12.24. §

EXAMPLE. Let F be the Fourier coefficient mapping, which carries functions
in L1

° 1
2π dx

¢
to doubly infinite sequences {cn} vanishing at infinity. The linear

operator F has norm 1 when the space of doubly infinite sequences is given the
supremum norm k{cn}ksup = supn |cn|. Corollary 6.50 shows that F is one-one.
Let us see that there is some doubly infinite sequence vanishing at infinity that
is not the sequence of Fourier coefficients of some L1 function. If this were
not so, then Corollary 12.25 would say that F−1 is bounded. We can obtain a
contradiction if we produce a sequence { fn} of L1 functions with k fnk1 = 1 for
all n and with limn kF( fn)ksup = 0. Form the Dirichlet kernel Dn as defined
in Section I.10 and reproduced in the previous section. Its Fourier coefficients
ck are 1 for |k| ≤ n and are 0 for |k| > n, and thus kF(Dn)ksup = 1. Put
fn = Dn

±
kDnk1. Then k fnk1 = 1 for all n, and kF( fn)ksup = 1

±
kDnk1.

Proposition 12.23 shows that in fact limn 1/kDnk1 = 0, andwe obtain the desired
contradiction. The conclusion is that the image of F on L1 fails to include some
doubly infinite sequence {cn} vanishing at infinity.
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If f : X → Y is a function between Hausdorff spaces, the graph of f is
the subset G = {(x, f (x)) | x ∈ X} of X × Y . If f is continuous, then G is
a closed set, as we see immediately by using nets. The converse fails because
f : [0, 1] → R with f (0) = 0 and f (x) = 1/x for x > 0 is a discontinuous
function with closed graph.
We shall be interested in the converse under the additional condition that our

function f is linear. Our spaces being metric spaces, the condition that the graph
be closed is that whenever {(xn, f (xn))} converges to some (x, y), then x is in
the domain of f and f (x) = y.
Linearity by itself is not enough to get an affirmative result. In fact, let X =

C([0, 1]), let X0 be the vector subspace of functions with a continuous derivative,
and let L : X0 → X be the derivative operator F 7→ F 0. If limn Fn = F in X and
limn F 0

n = H , then Theorem 1.23 shows that F 0 exists and equals H . Hence the
linear operator L : X0 → X has closed graph. However, L is unbounded since
the function x 7→ xn has norm 1 and its derivative has norm n.

Corollary 12.26 (Closed Graph Theorem). If L : X → Y is a linear operator
from a Banach space X into a Banach space Y such that the graph of L is a closed
subset of X × Y , then L is a bounded linear operator.

PROOF. Make X⊕Y into a Banach space by defining k(x, y)k = kxkX+kykY .
The graph G = {(x, L(x)) | x ∈ X} of L is a vector subspace of X ⊕ Y since
L is linear, and it is closed by hypothesis. Thus G is a Banach space. The
linear operator P : G → X given by P((x, L(x)) = x is one-one and onto, and
Corollary 12.25 shows that the linear operator P−1 : X → G given by P−1(x) =
(x, L(x)) is continuous. If E denotes the projection of X⊕Y to the Y coordinate,
then E is bounded with norm ≤ 1, and hence the restriction E

Ø
Ø
G : G → Y is

bounded with norm ≤ 1. Therefore the composition (E
Ø
Ø
G) ◦ P−1 : X → Y is

bounded. But (E
Ø
Ø
G)(P−1(x)) = E(x, L(x)) = L(x), and thus L is bounded. §

EXAMPLE. Suppose that a Banach space X is the vector-space direct sum of
two closed vector subspaces: X = Y ⊕ Y 0. Let E : X → Y be the projection of
X on Y given by E(y + y0) = y. Corollary 12.26 implies that E is bounded. In
fact, let xn = yn + y0

n define a sequence in X , so that (xn, yn) defines a sequence
in the graph of E . Suppose that limn(xn, yn) = (x0, y0) in X × X , i.e., that
limn xn = x0 and limn yn = y0. Here x0 is in X , and y0 is in Y since Y is closed.
Then y0

0 = limn y0
n = limn xn − limn yn = x0 − y0, and this is in Y 0 since Y 0 is

closed. The equality x0 = y0 + y0
0 shows that E(x0) = y0, and therefore (x0, y0)

is in the graph of E . In other words, the graph of E is closed. We conclude from
Corollary 12.26 that E is bounded.
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7. Problems

1. Let X be a normed linear space.
(a) Prove that the closure of the open ball of radius r and center x0 is the closed

ball of radius r and center x0.
(b) If X is complete, prove that any decreasing sequence of closed balls has

nonempty intersection.
2. The normed linear space C (N )([a, b]) was defined in Section 1. Prove that it is

complete.
3. The normed linear space H∞(D) and its vector subspace A(D) were defined in

Section 1. Prove that H∞(D) is complete and that A(D) is a closed subspace,
hence complete.

4. Let X be a Banach space, let Y be a closed vector subspace, and define kx+Yk =
infy∈Y kx + yk for x + Y in the quotient vector space X/Y .
(a) Show that k · +Yk is a norm for X/Y .
(b) By replacing a Cauchy sequence {xn + Y } in X/Y by a subsequence such

that kxnk − xnk+1 + Yk ≤ 2−k , show that the subsequence can be lifted to a
Cauchy sequence in X and deduce that X/Y is a Banach space.

5. Let v1, . . . , vn be vectors in an inner-product space. Their Gram matrix is the
Hermitian matrix of inner products given by G(v1, . . . , vn) = [(vi , vj )], and
detG(v1, . . . , vn) is called their Gram determinant.

(a) If c1, . . . , cn are in C, let c =

√ c1
...
cn

!

. Prove that ctrG(v1, . . . , vn)c̄ =

kc1v1 + · · · + cnvnk2.
(b) Making use of the finite-dimensional Spectral Theorem, prove that there

exists a unitary matrix u such that the matrix u−1G(v1, . . . , vn)u is diagonal
with diagonal entries ∏ 0.

(c) Prove that detG(v1, . . . , vn) ∏ 0 with equality if and only if v1, . . . , vn are
linearly dependent. (This generalizes the Schwarz inequality.)

6. (Gram–Schmidt orthogonalization process) Let (u1, . . . , un) be a linearly
independent ordered set in an inner-product space, and inductively define v0

1 =

u1, v1 = kv0
1k

−1v0
1, v0

k = uk −
Pk−1

j=1 (u, vj )vj , and vk = kv0
kk

−1v0
k . Prove that

the vectors v1, . . . , vn are well defined, that v1, . . . , vn are orthonormal, and that
for each k with 1 ≤ k ≤ n, span{v1, . . . , vk} = span{u1, . . . , uk}.

7. Let H1 and H2 be Hilbert spaces with respective orthonormal bases {uα} and
{vβ}. If there is a one-one function carrying the one orthonormal basis onto the
other, prove that there is a bounded linear operator F : H1 → H2 carrying H1
onto H2 and preserving distances. Deduce that H1 and H2 are isomorphic as
Hilbert spaces if and only if they have the same Hilbert space dimension.
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8. Let (S, µ) be a σ -finite measure space, and let f be in L∞(S, µ).
(a) Show that multiplication by f is a bounded linear operator on L2(S, µ), and

find the norm of this operator.
(b) Find the adjoint of the operator in (a).

9. Suppose that X is a normed linear space and that its dual X∗ is separable in its
norm topology, with {x∗

n } as a countable dense set. For each n, choose xn in X
with kxnk ≤ 1 and |x∗

n (xn)| ∏ 1
2kx

∗
nk. Prove that the linear span of {xn} is dense

in X , and conclude that X∗ separable implies X separable.

10. By considering the discontinuous indicator function I{s0}, where s0 is a limit point
of S, prove that the Banach spaceC(S) is not reflexive if S is compact Hausdorff
and infinite.

11. Without using the Baire Category Theorem, prove that theUniformBoundedness
Theorem for linear functionals implies the same theorem for linear operators.

12. Suppose for each n that Ln : X → X 0 is a bounded linear operator from a normed
linear space X to a Banach space X 0 such that kLnk ≤ C with C independent
of n. Suppose in addition that {Ln(y)} converges for each y in a dense subset Y
of X . Prove that L(x) = limn Ln(x) exists for all x in X and that the resulting
function L : X → X 0 is a bounded linear operator with kLk ≤ C .

13. Let X be a normed linear space, and let {xα} be a subset of X . If supα |x∗(xα)| <

∞ for each x∗ in X∗, prove that supα kxαk < ∞.

14. Let X be a Banach space. A subset E of X is convex if it contains all points
(1− t)x + t y with 0 ≤ t ≤ 1 whenever it contains x and y.
(a) Show that any closed ball {y

Ø
Ø |y − x | ≤ r} is convex.

(b) Give an example of a decreasing sequence of nonempty bounded closed
convex sets in a Banach space with empty intersection.

15. Let X and Y be Banach spaces, and let L be a bounded linear operator from X
onto Y . Suppose that {yn} is a convergent sequence in Y with limit y0. Prove
that there exists a constant M and a sequence {xn} in X such that kxnk ≤ Mkynk
for all n, L(xn) = yn for all n, and {xn} is convergent.

Problems 16–18 introduce “Banach limits,” a kind of universal summability method.
Let X be the real Banach space of real-valued bounded sequences s = {sn}∞n=1 with
the supremum norm.
16. Let X0 be the smallest closed vector subspace of X containing all sequences with

terms s1, s2 − s2, s3 − s2, . . . such that {sn} is in X . Prove that the sequence e
with all terms 1 is not in X0.

17. ABanach limit is defined to be anymember x∗ of X∗ with kx∗k = 1, x∗(e) = 1,
and x∗(x0) = 0 for all x0 in X0. Prove that a Banach limit exists.
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18. Let LIMn→∞ sn denote the value of a Banach limit when applied to the member
{sn} of X . Prove that this satisfies
(a) LIMn→∞ sn ∏ 0 if sn ∏ 0 for all n.
(b) LIMn→∞ sn+1 = LIMn→∞ sn for every {sn} in X .
(c) LIMn→∞ sn = 0 if all terms sn are 0 for n sufficiently large.
(d) lim infn sn ≤ LIMn→∞ sn ≤ lim supn sn for all {sn} in X .
(e) LIMn→∞ sn = c if {sn} is convergent with limit c.

Problems 19–24 establish the Jordan and vonNeumann Theorem that a normed linear
space satisfying the parallelogram law acquires its norm from an inner product, the
definition of the inner product being (x, y) =

P
k
ik
4 kx + i k yk2, where the sum

extends for k ∈ {0, 2} if the scalars are real and extends for k ∈ {0, 1, 2, 3} if the
scalars are complex. The norm is recovered from the inner product by the usual
formula (x, x) = kxk2. Thus let X be a normed linear space with norm k · k such
that the parallelogram law holds.
19. Check from the definition of (x, y) that (x, x) = kxk2, that (x, x) ∏ 0 with

equality if and only if x = 0, and that (x, y) = (y, x).
20. Prove the identity

kx + y + zk2 = kx + yk2 + kx + zk2 + ky + zk2 − kxk2 − kyk2 − kzk2

for all x, y, z in X .
21. Derive the formula (x1 + x2, y) = (x1, y) + (x2, y) from the identity in the

previous problem.
22. Let D be the set of rationals if the scalars are real, or the set of all a + bi with a

and b rational if the scalars are complex. Using the definition of (x, y) and the
result of the previous problem, prove that (r x, y) = r(x, y) if r is in D.

23. By considering kx − ryk2 for r in D with r tending to (x, y)/kyk2, prove that
( · , · ) satisfies the Schwarz inequality.

24. By estimating |r(x, y) − (cx, y)| with the Schwarz inequality when c is a scalar
and r is a member of D tending to c, prove that c(x, y) = (cx, y), thereby
completing the proof that ( · , · ) is an inner product.

Problems 25–27 establish some properties of the Banach space B(X,Y ), where X
and Y are Banach spaces.
25. Prove that the function from B(X,Y ) × X to Y given by (L , x) 7→ L(x) is

continuous.
26. Prove that if L and Ln are members of L(X,Y ) such that limn Ln(x) = L(x)

for all x ∈ X , then kLk ≤ supn kLnk < ∞. Give an example where kLk <

supn kLnk.
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27. Prove that if L and Ln are members of L(X,Y ) such that limn Ln(x) = L(x) for
all x ∈ X and if {un} is a sequence in X with lim un = u, then limn Ln(un) =
L(u).




