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CHAPTER XI

Integration on Locally Compact Spaces

Abstract. This chapter deals with the special features of measure theory when the setting is a
locally compact Hausdorff space and when the measurable sets are the Borel sets, those generated
by the compact sets.
Sections 1–2 establish the basic theorem, the Riesz Representation Theorem, which says that any

positive linear functional on the space Ccom(X) of continuous scalar-valued functions of compact
support on the underlying space X is given by integration with respect to a unique Borel measure
having a property called regularity. The steps in the construction of the measure run completely
parallel to those for Lebesgue measure if one regards the geometric information about lengths of
intervals as being encoded in the Riemann integral. The Extension Theorem of Chapter V is the
main technical tool.
Section 3 studies more closely the nature of regularity of Borel measures. One direct general-

ization of a Euclidean theorem is that the space of continuous functions of compact support in an
open set is dense in every L p space on that open set for 1 ≤ p < ∞. A new result is the Helly–Bray
Theorem—that any sequence of Borel measures of bounded total measure in a locally compact
separable metric space has a weak-star convergent subsequence whose limit is a Borel measure.
Section 4 regardsCcom(X) as a normed linear space under the supremum norm and identifies the

space of continuous linear functionals, with its norm, as a space of signed or complex Borelmeasures
with a regularity property, the norm being the total-variation norm for the signed or complex Borel
measure.

1. Setting

This chapter brings together the measure theory of Chapters V–VI and the theory
of topological spaces of Chapter X in a way that takes many of our earlier most
interesting examples into account. Specificallywe shall study the special features
of measure theory when the underlying space is a locally compact Hausdorff
space. Our primary example from earlier is that of Lebesgue measure, first on
R1 and then in RN . In R1 we considered also the class of all Stieltjes measures
and showed how they are classified by monotone functions satisfying certain
properties. We introduced Borel measures in RN but did not attempt to classify
them.
Along the way we saw glimpses of some other examples: The unit circle of C

can be regarded as [−π, π] if we identify−π and π , and we obtained Lebesgue
measure on the circle. As we saw, any open set or any compact set in RN has
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1. Setting 535

a theory of Borel measures associated with it. Most of our concrete examples
of such measures when N > 1 came about as a consequence of the change-
of-variables formula for multiple integrals. Of particular interest is what we
anticipated in Section VI.5 would ultimately come to be regarded as a “rotation-
invariant measure on the sphere,” the sphere SN−1 being a compact metric space.
This measure corresponds to the expression dω when Lebesgue measure dx on
RN is written in spherical coordinates and the factor r N−1 dr is dropped. In the
concrete case ofR3, in which r is the radius, θ1 is the latitude from the north pole,
and θ2 is the longitude, Lebesgue measure is given by dx = r2 sin θ1 dθ2 dθ1 dr
and we have dω = sin θ1 dθ2 dθ1. The change-of-variables formula in the N -
variable case then reads

Z

RN
f (x) dx =

Z ∞

r=0

Z

ω∈SN−1
f (rω) r N−1 dω dr

for every Borel measurable function f ∏ 0 on RN . We shall be making sense of
dω as a genuine measure on SN−1 in the course of the present chapter.
In the opposite direction it is important not to get the idea that all important

measure-theoretic examples inmathematics arise from locally compactHausdorff
spaces. Examples that arise from probability theory need not fit this pattern. This
fact becomes clearer after one encounters some specific measure spaces that arise
in the theory.1
Let us turn to the setting of this chapter, a locally compact Hausdorff space X .

In order that themeasure theory have some connectionwith the topological-space
structure, we shall build our σ -algebra out of topologically significant sets. There
will be a choice for how to do so, and we come to that point in a moment.
We shall follow asmuch as possible the pattern of the development of Lebesgue

measure on an interval of R1 or on all of R1, as occurred in Chapter V, in order
to construct measures on X . The thing that is missing for general X occurs right
at the start: it is the kind of geometric information that goes into regarding the
length of an interval as a quantityworthy of study. That is where an ingenious idea
comes into play, that of studying linear functionals on the vector space Ccom(X)
of continuous scalar-valued functions on X that vanish off a compact subset of X .
As in earlier chapters, it will not be important whether the scalars for Ccom(X)
are real or complex, and the reader may fix attention on either of these.
On an interval [a, b], we thus consider the space C([a, b]) of scalar-valued

continuous functions on the interval. The particular linear functional of interest
is the Riemann integral `( f ) = R

R b
a f (x) dx , the notation with the R being as

in Section VI.4. This kind of integral is a fairly simple object analytically; it was

1Themeasure-theoretic foundations of probability theory are discussed in the companionvolume,
Advanced Real Analysis.



536 XI. Integration on Locally Compact Spaces

quickly shown to make sense in Theorem 1.26. Our point of view will be that the
Riemann integral encodes information about the lengths of all intervals.
Why might one consider linear functionals? In the subject of linear algebra,

linear functionals play an important role. Two importantways of realizing subsets
of Euclidean space are parametric form and implicit form. In the case of a vector
subspace of Rn , the idea of parametric form leads us to represent the subspace
as all linear combinations of members of a spanning set. If we use implicit form
instead, the subspace is realized as all vectors satisfying a set of homogeneous
linear equations, thus as the kernel of some linear function. The most primitive
case of the latter is that there is just one nontrivial equation. Then the linear
function has range the scalars, and the linear function is a linear functional. When
there are several equations, the subspace is in effect described as the intersection
of the kernels of several linear functionals.
Thus linear functionals in linear algebra arise in describing vector subspaces,

specifically in describing subspaces by limiting their size from the outside. In
analysiswe have occasionally needed this kind of control of a subspace in proving
theorems by an approximation argument. Two nontrivial examples were the
proofs in Chapter VI of differentiation of integrals and the proof in Chapter IX of
the boundedness of the Hilbert transform. In each case we proved a theorem for
“nice” functions, and we obtained some estimate for all functions of interest. To
connect the one conclusion with the other, we needed to know that the subspace
of “nice” functions is dense. Corollary 6.4 was a result of this kind, saying that
Ccom(RN ) is dense in L1(RN ) and in L2(RN ). The proof given for Corollary 6.4
was more like an argument using spanning sets, showing that we can pass from
Ccom(RN ) to simple functions and then recalling that simple functions are dense
as a consequence of basic properties of the Lebesgue integral.
However, we can visualize another argument of this kind, one with continuous

linear functionals. If one could prove, for any proper closed vector subspace of
our total space of functions (L1 or L2 or something else), that there is a nonzero
continuous linear functional on the total space vanishing on the closed subspace,
then we could test whether a given vector subspace is dense by examining the
effect of continuous linear functionals when restricted to the subspace. Histor-
ically this idea began to be applied in analysis in the early part of the twentieth
century at about the same time that people began thinking frequently about spaces
of functions and not just individual functions. The key general existence tool for
such continuous linear functionals was the Hahn–Banach Theorem, which we
shall take up in Chapter XII.
In any event, out of this confluence of ideas arose the idea of considering

continuous linear functionals on Ccom(X) as capturing enough information about
X to make measure theory possible. The continuity of a linear functional will
actually be somewhat concealed in what we do for most of this chapter, and
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instead we impose on the linear functional the natural condition that it needs to
satisfy in order to provide a notion of integration—that it be ∏ 0 on functions
∏ 0.
Let us be more precise about the definitions. Let X be a locally compact

Hausdorff space, and let Ccom(X) be the vector space of scalar-valued functions
on X that vanish outside some compact set. For a specific function f , the support
of f is the closure of the setwhere f is not zero. Themembers ofCcom(X) are then
the continuous scalar-valued functions on X having compact support. A linear
functional ` on Ccom(X) is said to be positive if `( f ) ∏ 0 whenever f ∏ 0.
The Riesz Representation Theorem, to be stated formally in Section 2 with all
details in place, will say that to any such ` corresponds a measure µ on a certain
σ -algebra of “topologically significant” sets such that

`( f ) =
Z

X
f dµ for all f ∈ Ccom(X).

The “topologically significant” sets have to include the sets necessary to make
each f in Ccom(X) measurable. At first glance it might seem that the smallest
σ -algebra containing the open sets is the right object. But in fact this σ -algebra
is unnecessarily large. In an uncountable discrete space, we do not need to have
every subset measurable in order to have all the functions of compact support be
measurable. Accordingly we define the σ -algebra B(X) of Borel sets of X to be
the smallest σ -algebra containing all compact subsets of X .
The plan of attack now follows the steps in the construction of Lebesgue

measure. We take the compact subsets of X to be the analog of the bounded
intervals in R1, and we thus define the elementary sets in X to be the sets in the
smallest ring K(X) containing all the compact sets. In the case of R1, every set
in the ring generated by the bounded intervals is a finite disjoint union of sets that
are the difference of two bounded intervals. We shall prove for X in Section 2
that every member ofK(X) is a finite disjoint union of sets that are the difference
of two compact sets.
For R1, we defined the measure of the difference of two bounded intervals to

be the difference of their lengths as soon as the second interval is contained in
the first; this was no loss of generality because the intersection of two bounded
intervals is a bounded interval. The measure of a finite disjoint union was defined
as the sum of the measures. We showed that this was well defined, and then we
had a finite-valued nonnegative additive set function on a ring of sets.
For X , we define the measure of a compact set K by the natural formula

µ(K ) = inf
f ∈Ccom(X),

IK≤ f

`( f ),

where IK as usual is the indicator function of K . The intersection of two compact
sets is compact, and thus we can define the measure of K1 − K2 for K1 and K2
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compact, to beµ(K1)−µ(K1∩K2). We define the measure of the disjoint union
of such sets K1− K2 to be the sum of the measures. We have to prove that this is
well defined, and then we have a finite-valued nonnegative additive set function
µ on the ring K(X).
The next step for R1 was to prove complete additivity on the ring generated

by the bounded intervals. With X , the problem is the same; we are to prove
complete additivity on the ring K(X). Suppose that this has been done. Since
µ is everywhere finite-valued on K(X), we can apply the Extension Theorem
(Theorem 5.5) to extend µ to the generated σ -ring. Either this σ -ring is already
the generated σ -algebraB(X), or Proposition 5.37 supplies a canonical extension
to a measure on the generated σ -algebra B(X). This completes the construction
of the measure µ on B(X). It is then a fairly easy matter to see that `( f ) is
recovered as the integral of f if f is in Ccom(X): In the case of R1, we carried
out this step by first establishing the Fundamental Theorem of Calculus for the
Lebesgue integral of a continuous function; the argument appears at the end of
Section V.3. A more direct argument would have been possible, and that direct
argument works for general X .
Thus the problem comes down to proving that the set function, as defined on

the ring of sets, is actually completely additive on that ring. In the case ofR1, that
complete additivitywas an easy consequenceof “regularity” of Lebesguemeasure
on the ring generated by the bounded intervals; in other words, the measure of
any set in the ring could be approximated from within by the measure of compact
sets in the ring and from without by the measure of open sets in the ring. Exactly
the same approach works for general X , but the regularity has to be established.
Quantitatively the construction of the measure comes down to defining µ(K )

for K compact as above and then proving three identities:
(i) µ(K1)+µ(K2) = µ(K1∪ K2)+µ(K1∩ K2) if K1 and K2 are compact,
(ii) sup

f ∈Ccom(X),
0≤ f≤IU

`( f ) = µ(K ) − µ(K − U) if U is any open set contained in

some compact set K ,
(iii) sup

K⊆U,
K compact

µ(K ) = sup
f ∈Ccom(X),
0≤ f≤IU

`( f ) if U is open and has compact closure.

Identity (i) and an elementary but lengthy computation in elementary set theory
together allow us to prove that µ is well defined on the ring K(X) under the
definitions above. Onceµ has been so extended, the right side of (ii) is justµ(U)
if U is open with compact closure. Thus (iii) says that µ(U) is the supremum of
µ(K ) over compact sets K contained in U , providedU is open and has compact
closure. Since µ(U) is trivially the infimum of µ(V ) for open sets V in K(X)
containing U , this is the regularity conclusion for U . It is easy to see that the
subclass of K(X) for which regularity holds is a ring and contains the compact
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sets, and hence regularity is established for K(X).
When the locally compact Hausdorff space X is a metric space, the three

identities above are fairly easy to prove. When X is metric, any indicator function
IK forK compact is thepointwisedecreasing limit ofmembersofCcom(X) that are
∏ 0. In fact, if D( · , K ) is the distance to K , then the sequence { fn}with fn(x) =
max{0, 1−nD(x, K )} has the requiredproperties. A little trick proves in this case
that µ(K ) = limn `( fn). To prove (i), we choose such sequences { fn} and {gn}
for K1 and K2. Ifϕ is amember ofCcom(X) that is identically 1 on the union of the
supports of f1 and g1, then fn + gn = min{ fn + gn, ϕ}+

°
max{ fn + gn, ϕ}−ϕ

¢

decomposes fn + gn into the sum of such sequences for K1 ∪ K2 and K1 ∩ K2,
and identity (i) follows from linearity of ` and a passage to the limit. Identities
(ii) and (iii) follow from equally simple arguments.
The difficulty for a general locally compact Hausdorff space X is that the

indicator function of a compact set need not be a pointwise decreasing limit of a
sequence of continuous functions. The technicalities introduced by this fact have
the effect of making the proofs of (i), (ii), and (iii) be more complicated, but these
complications need not obscure the line of argument that is so clear in the metric
case.

2. Riesz Representation Theorem

Throughout this section we fix the locally compact Hausdorff space X . We
continue to letCcom(X) be the space of continuous functions of compact support,
K(X) be the ring of elementary sets, and B(X) be the σ -algebra of Borel sets.
A subset E of X is said to be bounded if it is contained in a compact set,

hence if Ecl is compact; it is σ -bounded if it is contained in the countable union
of compact sets. The class of all σ -bounded Borel sets is a σ -ring containing
K(X), and it is therefore the smallest σ -ring containing K(X).
A measure on the Borel sets of X is called a Borel measure if it is finite on

every compact set. A Borel measure µ is said to be regular if it satisfies

µ(E) = sup
K⊆E,

K compact

µ(K ) for every set E in B(X)

µ(E) = inf
U⊇E,

U open σ -bounded

µ(U) for every σ -bounded set E in B(X).

Theorem 11.1 (Riesz Representation Theorem). If ` is a positive linear func-
tional on Ccom(X), then there exists a unique regular Borel measure µ on X such
that

`( f ) =
Z

X
f dµ for all f ∈ Ccom(X).
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EXAMPLES.
(1) If X is the line R1 and ` is given by Riemann integration l( f ) =

R
R b
a f (x) dx whenever [a, b] contains the support of f , then ` is a positive

linear functional on Ccom(R1) and the corresponding µ is Lebesgue measure.
(2) If X = S2 is the unit sphere in R3, parametrized by latitude θ1 from 0 to π

and by longitude θ2 from 0 to 2π , then `( f ) = R
R π

0
R 2π
0 f (θ1, θ2) sin θ1 dθ2 dθ1

is a positive linear functional on C(S2), and the corresponding measure, which is
written dω in the same way that Lebesgue measure is written as dx , is a rotation-
invariant measure on the sphere such that

R
R3 F(x) dx =

R ∞
0

R
S2 F(rω)r2 dω dr

for every nonnegative Borel function onRN . The proof of this identity and of the
rotation invariance will be indicated in Problem 5 at the end of the chapter.
(3) If X is general and if µ is a regular Borel measure on X , then `( f ) =R

X f dµ is a positive linear functional on Ccom(X).

The proof of Theorem11.1will occupy the remainder of this section. We begin
with some lemmas clarifying the nature of the ring K(X), the linear functional
`, and general compact and open subsets of X . Then we recall the definition of
µ(K ) for compact sets and establish the identities (i), (ii), and (iii) in Section 1.
Finally we give the details of how the three identities imply the theorem.
We begin with information about the ring K(X).

Lemma 11.2. The members of the ring K(X) are exactly all finite disjoint
unions of subsets V of X of the form K − L with K and L compact and L ⊆ K .
The ring K(X) may be characterized also as the smallest ring containing all
bounded open subsets of X .
PROOF. If K1 − L1 and K2 − L2 are two sets of the same kind as V in the

statement of the lemma, then the identity
(K1 − L1) ∪ (K2 − L2)
= ((K1∪K2)− (L1∪ L2))∪ ((K2∩ L1)− (L1∩ L2))∪ ((K1∩ L2)− (L1∩ L2))
shows that a union of two such sets is a disjoint union, and the identity
(K1 − L1) − (K2 − L2) = ((K1 ∩ L2) − (L1 ∩ L2)) ∪ (K1 − (L1 ∪ (K1 ∩ K2)))
shows that the difference of two such sets is such a set. Therefore the collection of
all such sets is a ring of subsets of X . This ring contains all compact sets because
any compact set K is of the form K − ∅, and hence this ring equals K(X).
Any open bounded setU is the difference of the compact setsU cl andU cl−U ,

and hence it lies inK(X). In the reverse direction Corollary 10.23 shows that any
compact set K is contained in the interior Lo of some compact set L . Thus K is
the difference of the bounded open sets Lo and Lo − K , and K(X) is contained
in the smallest ring containing all bounded open sets. §
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Next we observe some properties of the linear functional `. It is to be under-
stood throughout the section that ` is a positive linear functional onCcom(X). The
positivity implies that `( f − g) ∏ 0 if f − g ∏ 0; the linearity therefore gives
`( f ) ∏ `(g) for f ∏ g. The linear functional has a kind of continuity property,
according to the following lemma.

Lemma 11.3. Let K be a compact set, and let { fn} be a sequence in Ccom(X)
converging uniformly to amember f ofCcom(X) in such away that support( fn) ⊆
K for all n. Then limn `( fn) exists and equals `( f ).

PROOF. Corollaries 10.23 and 10.44 show that there exists a function F in
Ccom(X) such that F takes values in [0, 1] and is 1 on K . Since fn− f ≤ | fn− f |
and −( fn − f ) ≤ | fn − f |, we have

|`( fn) − `( f )| = |`( fn − f )| ≤ `(| fn − f |) ≤ `(cnF) = cn`(F),

where cn = k fn − f ksup. The assumed uniform convergence means that cn
tends to 0. Since `(F) is some fixed constant, the asserted convergence of `( fn)
follows. §

Lemma 11.4 (Dini’s Theorem). If { fn} is a sequence of functions in Ccom(X)
decreasing pointwise to 0, then { fn} converges uniformly to 0.

PROOF. Because of the pointwise decrease to 0, all the functions fn have
support contained in the compact set K = support( f1). Let ≤ > 0 be given, and
let Un be the open set where the continuous function fn is < ≤. The pointwise
decrease implies that theUn are increasing with n, and the limit of 0 implies that
each x in K is in some Un . Thus the open sets Un form an open cover of K . By
compactness, there is a finite subcover. Since the sets Un are increasing, some
particular UN covers K . Then k fnksup ≤ ≤ for n ∏ N . §

The final step of preparation is to observe some properties of compact and open
sets. A bounded subset of X is said to be a Gδ if it is the countable intersection of
bounded open sets. It is said to be an Fσ if it is the countable union of compact
sets. We shall be especially interested in compactGδ’s and in open bounded Fσ ’s.

Lemma 11.5. Let f be a member of Ccom(X) with values in [0, 1]. If r > 0,
then the set where f is ∏ r is a compact Gδ. If r ∏ 0, then the set where f is
> r is a bounded open Fσ .

PROOF. The set where f is∏ r is closed because of continuity, and this closed
set is a subset of the compact support. Hence the set is compact. Similarly the
set where f is > r is open because of continuity, and this open set is a subset of
the compact support. Hence the set is bounded.
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When r ∏ 0, the set where f is > r is the union, for n ∏ 1, of the sets where
f is ∏ r + 1

n . For r > 0 when N is large enough so that r − 1
N > 0, the set

where f is ∏ r is the intersection, for n ∏ N , of the sets where f is > r − 1
n .

The lemma follows. §

Lemma 11.6.
(a) If K is a compact Gδ, then there exists a decreasing sequence of bounded

open sets Un such that Un ⊇ U cl
n+1 for all n and ∩∞

n=1Un = K .
(b) If U is a bounded open Fσ , then there exists an increasing sequence of

compact sets Kn such that Kn ⊆ Ko
n+1 for all n and ∪∞

n=1Kn = U .

PROOF. For (a), let {Vn} be a sequence of bounded open sets with intersection
K . This is possible since K is a Gδ. Without loss of generality we may assume
that the Vn decrease with n. We define the sequence {Un} inductively on n. Put
U1 = V1. If Un has been constructed, use Corollary 10.22 to find an open set V 0

n
such that K ⊆ V 0

n and V 0
n
cl ⊆ Un , and then define Un+1 = V 0

n ∩ Vn+1. Then the
sets Un have the required properties.
For (b), let {Ln} be a sequence of compact sets with unionU . This is possible

sinceU is an Fσ . Without loss of generality we may assume that the Ln increase
with n. We define the sequence {Kn} inductively on n. Put K1 = L1. If Kn has
been constructed, use Corollary 10.22 to find an open set V 0

n such that U ⊇ V 0
n
cl

and V 0
n ⊇ Kn . The compact set L 0

n = V 0
n
cl has (L 0

n)
o ⊇ V 0

n . If we define
Kn+1 = L 0

n ∪ Ln+1, then the sets Kn have the required properties. §

Lemma 11.7.
(a) If K is a compact Gδ, then there exists a decreasing sequence of functions

fn in Ccom(X) with values in [0, 1] such that each fn is 1 on some neighborhood
of K and lim fn = IK pointwise.
(b) If U is a bounded open Fσ , then there exists an increasing sequence of

functions fn in Ccom(X) with values in [0, 1] such that each fn has compact
support contained in U and lim fn = IU pointwise.

PROOF. For (a), apply Lemma 11.6a to choose a sequence of bounded open
sets Un with intersection K such that Un ⊇ U cl

n+1 for all n. Using Corollary
10.44, let gn be a member of Ccom(X) with values in [0, 1] such that gn is 1 on
U cl
n+1 and is 0 off Un , and put fn = min{g1, . . . , gn}. Then the functions fn have
the required properties.
For (b), apply Lemma 11.6b to choose a sequence of compact sets Kn with

union U such that Kn ⊆ Ko
n+1 for all n. Using Corollary 10.44, let gn be a

member of Ccom(X) with values in [0, 1] such that gn is 1 on Kn and is 0 off
Ko
n+1, and put fn = max{g1, . . . , gn}. Then the functions fn have the required

properties. §
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Now we begin the proofs of the three identities in Section 1. If K is compact,
let

µ(K ) = inf `( f ),

the infimum being taken over all f in Ccom(X) such that f ∏ IK . Since
`(min{ f, 1}) ≤ `( f ), there is no harm in considering only those f ’s taking
values in [0, 1]. It is immediate from this definition and the positivity of ` that µ
is nonnegative andmonotone in the sense that K 0 ⊆ K implies µ(K 0) ≤ µ(K ).
The next lemma is the key to being able to prove the three identities in Section 1.

Lemma 11.8. If K is a compact subset of X , then the infimum of `( f ) over
all f in Ccom(X) such that f ∏ IK equals the infimum of `( f ) over all f in
Ccom(X) with values in [0, 1] such that f ∏ IN for some neighborhood N of K
depending on f .

REMARK. In particular,µ(K ) canbe computedbyusingonly functions f ∏ IK
that are equal to 1 in some neighborhood of K .

PROOF. The problem is to show that the first infimum I1 is not less than the
second infimum I2. Let ≤ > 0 be given. Choose f in Ccom(X) with values in
[0, 1] such that f ∏ IK and `( f ) ≤ I1 + ≤, and let L be the set where f is
∏ 1. Lemma 11.5 shows that L is a compact Gδ, and Lemma 11.7a produces a
decreasing sequence of functions fn in Ccom(X) with values in [0, 1] such that
each fn is 1 on some neighborhood of L and lim fn = IL pointwise. Then the
sequence {max{ fn, f }} is pointwise decreasing with limit max{IL , f } = f , and
hence {max{ fn, f } − f } is a pointwise decreasing sequence in Ccom(X) with
limit 0. By Dini’s Theorem (Lemma 11.4), the sequence {max{ fn, f } − f }
converges uniformly to 0, and hence `(max{ fn, f }) decreases to `( f ). For some
sufficiently large n0, we therefore have `(max{ fn0, f }) ≤ I1 + 2≤. The function
max{ fn0, f } is one of the functions that figures into I2, and thus I2 ≤ I1 + 2≤.
Since ≤ is arbitrary, I2 ≤ I1. §

Lemma11.8 puts us in a position to prove identity (i) in Section 1 and to deduce
that µ extends in a well-defined fashion to a nonnegative additive set function on
K(X). We make use of the formula a+ b = min{a, b} +max{a, b}, from which
it follows that a = min{a, b} + (max{a, b} − b).

Lemma 11.9. If K1 and K2 are any two compact subsets of X , then

µ(K1) + µ(K2) = µ(K1 ∪ K2) + µ(K1 ∩ K2).

REMARK. The argument in Lemma 11.8 adapts to give a quick proof of the
present lemma when X is a metric space. In the metric case we can find a
decreasing sequence { fn} of functions≤ 1 inCcom(X)with pointwise limit IK1 . If
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f ∏ IK1 , then the proof of Lemma 11.8 shows that fn f converges uniformly
to f and hence `( fn f ) decreases to `( f ). It follows that `( fn) decreases to
µ(K1) whenever fn decreases to IK1 . If we similarly choose {gn} decreasing
to IK2 and choose, by Corollary 10.44, a function ϕ ∈ Ccom(X) with values in
[0, 1] that is identically 1 on the support of f1 + g1, then the formula stated just
above shows that fn + gn = min{ fn + gn, ϕ} +

°
max{ fn + gn, ϕ} − ϕ

¢
. The

first term on the right side decreases pointwise to IK1∪K2 , and the second term
decreases to IK1∩K2 . Thus a passage to the limit in the formula `( fn) + `(gn) =
`(min{ fn + gn, ϕ}) + `

°°
max{ fn + gn, ϕ} − ϕ

¢¢
immediately yields the result

of the present lemma.

PROOF. Let f and g be functions in Ccom(X) with values in [0, 1] such that
f ∏ IK1 and g ∏ IK2 , and choose, by Corollary 10.44, ϕ ∈ Ccom(X) with
values in [0, 1] that is identically 1 on the support of f + g. Then we have
f + g = min{ f + g, ϕ} + (max{ f + g, ϕ} − ϕ). The first term on the right side
is ∏ IK1∪K2 , and the second term is ∏ IK1∩K2 . Therefore

`( f ) + `(g) = `(min{ f + g, ϕ}) + `((max{ f + g, ϕ} − ϕ))

∏ µ(K1 ∪ K2) + µ(K1 ∩ K2).

Taking the infimum over f and then over g, we obtain

µ(K1) + µ(K2) ∏ µ(K1 ∪ K2) + µ(K1 ∩ K2).

For the reverse direction let F be a member of Ccom(X) with values in [0, 1]
that is∏ IK1∪K2 and is equal to 1 at least on some open setU containing K1∪K2.
Similarly let G be a member of Ccom(X) with values in [0, 1] that is ∏ IK1∩K2
and is equal to 1 at least on some open set V containing K1 ∩ K2. Lemma 11.8
shows that F and G are the most general functions of a kind needed for the
computation of µ(K1 ∪ K2) and µ(K1 ∩ K2). The sets U and V have compact
closure in X since they are subsets of the supports of F and G. Choose, by
Corollary 10.44, ϕ ∈ Ccom(X) with values in [0, 1] that is identically 1 on the
support of F + G. Let V0 be an open set with K1 ∩ K2 ⊆ V0 ⊆ V cl0 ⊆ V . Then
(K2 − V0) ∩ K1 = K2 ∩ V c

0 ∩ K1 ⊆ V0 ∩ V c
0 = ∅. So there exists an open set

W such that K2 − V0 ⊆ W ⊆ W cl ⊆ Kc
1 .

We define f and g to be members of Ccom(X) having compact support con-
tained in U and having values in [0, 1] such that

f =

Ω 1 on K1,
0 on W cl,

g =

Ω 1 on K2,
0 on support( f ) − V .

and



2. Riesz Representation Theorem 545

The functions f and g exist by Corollary 10.44 if it is shown that the closed sets
K1 and W cl are disjoint and the closed sets K2 and support( f ) − V are disjoint.
The sets K1 and W cl are disjoint since W cl ⊆ Kc

1 . For K2 and support( f ) − V ,
we observe that support( f ) ⊆ ((W cl)c)cl ⊆ (Wc)cl = Wc ⊆ (K2 − V0)c =
V0 ∪ Kc

2 ⊆ V ∪ Kc
2 . Therefore

(support( f ) − V ) ∩ K2 ⊆ (V ∪ Kc
2) ∩ V c ∩ K2

= (V ∩ V c ∩ K2) ∪ (Kc
2 ∩ V c ∩ K2) = ∅.

We conclude that f and g exist.
By inspection, f ∏ IK1 and g ∏ IK2 , from which f + g ∏ IK1 + IK2 . Then

min{ f + g, ϕ} is 1 on K1 ∪ K2 and is 0 off U . Since F is 1 on U , we obtain

min{ f + g, ϕ} ≤ F. (∗)

Since f + g ∏ IK1 + IK2 = IK1∪K2 + IK1∩K2 , the function max{ f + g, ϕ} − ϕ
equals f + g− 1 on K1 ∪ K2, and this in turn is ≤ 1 everywhere. Let us see that

max{ f + g, ϕ} − ϕ ≤ G (∗∗)

everywhere. The only points x at which (∗∗) could possibly fail are those where
G(x) < 1, hence points of V c. At such points the definition of g shows that
f (x) + g(x) ≤ 1. If also x is in U , then ϕ(x) = 1 and we compute that
max{ f (x) + g(x), ϕ(x)} − ϕ(x) = 1 − 1 = 0. Thus (∗∗) holds at points of
U ∩ V c. At points of Uc ∩ V c, the equality f (x) = g(x) = 0 implies that
max{ f (x) + g(x), ϕ(x)} − ϕ(x) = ϕ(x) − ϕ(x) = 0. Thus again (∗∗) holds,
and hence (∗∗) holds at every point of V c, therefore everywhere.
Addition of (∗) and (∗∗) gives f + g ≤ F + G everywhere. Therefore

`(F) + `(G) = `(F + G) ∏ `( f + g) = `( f ) + `(g) ∏ µ(K1) + µ(K2).

Taking the infimum over F and then over G gives µ(K1 ∪ K2) + µ(K1 ∩ K2) ∏
µ(K1) + µ(K2) and completes the proof of the lemma. §

Lemma 11.9 yields by iteration a corresponding formula with the sum of n
terms on each side. This extension of Lemma 11.9 is a computation in Boolean
algebra involving no analysis at all—only the fact that the collection of compact
sets is closed under finite unions and intersections. The details are carried out in
the next lemma.
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Lemma 11.10. If K1 . . . , Kn are compact subsets of X , then
nX

l=1
µ(Kl) =

nX

k=1
µ

≥ [

1≤i1<···<ik≤n

≥ k\

j=1
Kij

¥¥
.

PROOF. The argument is by induction on n, the base case of the induction being
the case n = 2 that was settled by Lemma 11.9. Thus let n > 2, and assume the
identity for the case n − 1. The inductive hypothesis gives

nX

l=1
µ(Kl) =

n−1X

k=1
µ

≥ [

1≤i1<···<ik<n

≥ k\

j=1
Kij

¥¥
+ µ(Kn). (∗)

We shall prove by induction on r ∏ 1 that
nX

l=1
µ(Kl) =

r−1X

k=1
µ

≥ [

1≤i1<···<ik≤n

≥ k\

j=1
Kij

¥¥

+ µ
≥ [

1≤i1<···<ir=n

≥ r\

j=1
Kij

¥¥
+

n−1X

k=r
µ

≥ [

1≤i1<···<ik<n

≥ k\

j=1
Kij

¥¥
,

the base case of this induction being r = 1, where this identity reduces to (∗). The
proof for the case r = n will complete the inductive step for the outer induction
and thereby will complete the proof of the lemma. To pass from r to r + 1 in the
inner induction, the question is whether

µ
≥ [

1≤i1<···<ir=n

≥ r\

j=1
Kij

¥¥
+ µ

≥ [

1≤i1<···<ir<n

≥ r\

j=1
Kij

¥¥

?
= µ

≥ [

1≤i1<···<ir≤n

≥ r\

j=1
Kij

¥¥
+ µ

≥ [

1≤i1<···<ir+1=n

≥ r+1\

j=1
Kij

¥¥
.

The union of the two sets on the left here is the first set on the right side. In view
of Lemma 11.9, this formula will follow if it is shown that the second set on the
right side is the intersection of the two sets on the left. The intersection of the
two sets on the left side is equal to

[

1≤i1<···<ir=n,
1≤i 01<···<i 0r<n

≥≥ r\

j=1
Kij

¥
∩

≥ r\

j=1
Ki 0j

¥¥
. (∗∗)

A term in the union in this expression is an intersection of at least r+1 of the sets
K1, . . . , Kn , the last of which is Kn , namely the ones corresponding to indices
i 01, . . . , i 0r and ir = n. Every intersection of exactly r + 1 of the sets K1, . . . , Kn
occurs if the last one is Kn because we can take i1 = i 01, . . . , ir−1 = i 0r−1. Any
intersection of more than r + 1 sets is contained in one with exactly r + 1 sets,
and thus (∗∗) equals

S
1≤i1<···<ir+1=n

≥Tr+1
j=1 Kij

¥
, as asserted. §
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A further formality is the derivation from these results thatµ extends in a well-
defined fashion to a nonnegative additive set function on the ring K(X). Again
no analysis is involved, only the one additional fact that the intersection of two
sets of the form K − L with K and L compact is again of this form, specifically
that (K − L) ∩ (K 0 − L 0) = (K ∩ K 0) − (L ∪ L 0).

Lemma 11.11. The set function µ extends in a well-defined fashion to a
nonnegative additive set function on K(X) under the definition

µ
≥ n[

j=1
(Kj − L j )

¥
=

nX

j=1

°
µ(Kj ) − µ(L j )

¢

whenever Kj and L j are compact with L j ⊆ Kj for each j with 1 ≤ j ≤ n and
the sets K1 − L1, . . . , Kn − Ln are pairwise disjoint.

REMARKS. Lemma 11.2 assures us that every member of K(X) is of the form
in this lemma. The subtlety of the lemma arises from the fact that the sets Kj
need not be disjoint.

PROOF. First let us see that µ is well defined in the case j = 1, i.e., that
K 0 − L 0 = K − L with L 0 ⊆ K 0 and L ⊆ K implies µ(K 0) − µ(L 0) =
µ(K )−µ(L). We are to show thatµ(K 0)+µ(L) = µ(K )+µ(L 0), and Lemma
11.9 shows that it is enough to show that K 0 ∪ L = K ∪ L 0 and K 0 ∩ L = K ∩ L 0.
Suppose x is in K 0 ∪ L . If x is in L , then x is in K , hence in K ∪ L 0. If x is in K 0

instead, then either x has to be in L 0 in the case that x is not in K 0 − L 0 or x has
to be in K in the case that x is in K 0 − L 0 = K − L . So K 0 ∪ L ⊆ K ∪ L 0. If x
is in K 0 ∩ L , then x is not in K − L and must be in L 0 in order to avoid being in
K 0 − L 0. So x is in L ∩ L 0 ⊆ K ∩ L 0. Reversing the roles of K 0 − L 0 and K − L ,
we see that K 0 ∪ L = K ∪ L 0 and K 0 ∩ L = K ∩ L 0.
Next suppose that K 0 − L 0 =

Sn
j=1 (Kj − L j ) with L 0 ⊆ K 0, L j ⊆ Kj for

each j , and the sets Kj − L j disjoint. We are to show that µ(K 0) − µ(L 0) =Pn
j=1 (µ(Kj )−µ(L j )), i.e., that µ(K 0)+

Pn
j=1 µ(L j ) = µ(L 0)+

Pn
j=1 µ(Kj ).

The argument will generalize that in the previous paragraph: The set K 0 − L 0 has
complement L 0 ∪ K 0c, and therefore the given condition of disjointness means
that

X = (L 0 ∪ K 0c) ∪
n[

j=1
(Kj − L j ) (∗)

disjointly. Put Ln+1 = K 0 and Kn+1 = L 0, so that we are asking whether

n+1X

j=1
µ(L j )

?
=

n+1X

j=1
µ(Kj ).
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In view of Lemma 11.10, it would be enough to show that
[

1≤i1<···<ik≤n+1

° k\

j=1
Lij

¢
=

[

1≤i1<···<ik≤n+1

° k\

j=1
Kij

¢

for 1 ≤ k ≤ n + 1. The left side is the set of x lying in at least k of the sets
Li , and the right side is the corresponding set for the Ki ’s. Thus it is enough to
prove that the set of x lying in exactly r sets Ki is contained in the set of x lying
in exactly r sets Li , for 1 ≤ r ≤ n + 1.
We check this condition separately for the three cases x ∈ L 0, x /∈ K 0, and

x ∈ K 0 − L 0. From (∗) we see that x in L 0 ∪ K 0c implies that x is not in any
Kj − L j for 1 ≤ j ≤ n. Hence for the first two cases, x is in L j with 1 ≤ j ≤ n
if and only if x is in Kj .
Case 1. x ∈ L 0. For x to be in r of the sets K1, . . . , Kn+1, x must be in r − 1

of the sets K1, . . . , Kn , hence in r − 1 of the sets L1, . . . , Ln . Since x is in L 0, it
is in K 0 = Ln+1. Therefore x is in r of the sets L1, . . . , Ln+1.
Case 2. x /∈ K 0. For x to be in r of the sets K1, . . . , Kn+1, x must be in r of

the sets K1, . . . , Kn , hence in r of the sets L1, . . . , Ln . Since x is not in K 0, it is
not in Ln+1. Therefore x is in r of the sets L1, . . . , Ln+1.
Case 3. x ∈ K 0 − L 0. Since x is not in L 0 ∪ K 0c, (∗) shows that x is in exactly

one Kj − L j with 1 ≤ j ≤ n. For x to be in r of the sets K1, . . . , Kn+1, x must
be in r of the sets K1, . . . , Kn , hence in r − 1 of the sets L1, . . . , Ln . Since x is
in K 0 = Ln+1, it is in r of the sets L1, . . . , Ln+1.
For the general case, suppose that

Sm
j=1 (K 0

j − L 0
j ) =

Sn
j=1 (Kj − L j ). Inter-

secting both sides with K 0
i − L 0

i , we obtain

K 0
i − L 0

i =
n[

j=1
((Kj ∩ K 0

i ) − ((L j ∪ L 0
i ) ∩ (Kj ∩ K 0

i ))).

The case just proved shows that

µ(K 0
i − L 0

i ) =
nX

j=1

°
µ(Kj ∩ K 0

i ) − µ((L j ∪ L 0
i ) ∩ (Kj ∩ K 0

i ))
¢

and hence
mX

i=1
µ(K 0

i − L 0
i ) =

mX

i=1

nX

j=1

°
µ(Kj ∩ K 0

i ) − µ((L j ∪ L 0
i ) ∩ (Kj ∩ K 0

i ))
¢
.

Similarly
nX

j=1
µ(Kj − L j ) =

nX

j=1

mX

i=1

°
µ(Kj ∩ K 0

i ) − µ((L j ∪ L 0
i ) ∩ (Kj ∩ K 0

i ))
¢
.

Therefore
Pm

i=1 µ(K 0
i − L 0

i ) =
Pn

j=1 µ(Kj − L j ), and the proof is complete. §
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In short order, we can now prove identities (ii) and (iii). Lemma 11.12 will
prove (iii), and Lemma 11.13 will prove (ii).

Lemma 11.12. If U is any bounded open subset of X , then

sup
g∈Ccom(X),

0≤g≤IU ,

support g⊆U

`(g) = sup
K⊆U,

K compact

µ(K ) = sup
f ∈Ccom(X),

0≤ f≤IU

`( f ).

PROOF. Let S1, S2, S3 be the three suprema in question. We first check that
S1 ≤ S2 ≤ S3. If g contributes to S1, then g ≤ Isupport g ≤ IU . If h ∈ Ccom(X)
has Isupport g ≤ h, then g ≤ h and hence `(g) ≤ `(h). Taking the infimum over
all such h, we obtain `(g) ≤ µ(support g) ≤ S2. Taking the supremum over all
g therefore gives S1 ≤ S2. Next if K is compact with K ⊆ U , Corollary 10.44
allows us to find f ∈ Ccom(X)with values in [0, 1] such that f is equal to 1 on K
and equal to 0 on Uc. Then IK ≤ f ≤ IU . The definitions of µ(K ) and S3 yield
µ(K ) ≤ `( f ) ≤ S3. Taking the supremum over all K therefore gives S2 ≤ S3.
To complete the proof, we show that S1 ∏ S3. Let ≤ > 0 be given. Choose

f in Ccom(X) such that 0 ≤ f ≤ IU and `( f ) ∏ S3 − ≤, and let V be the set
where f is > 0. Lemma 11.5 shows that V is a bounded open Fσ , and Lemma
11.7b produces an increasing sequence of functions fn in Ccom(X) with values
in [0, 1], each with support some compact subset of V , such that lim fn = IV
pointwise. Then the sequence {min{ fn, f }} is pointwise increasing with limit
min{IV , f }. If x is a point where IV (x) < f (x), then f (x) > 0, x is in V ,
and IV (x) = 1, contradiction. So there is no such point, and min{IV , f } = f .
Therefore the sequence { f − min{ fn, f }} is a pointwise decreasing sequence
in Ccom(X) with limit 0. By Dini’s Theorem (Lemma 11.4), the sequence
{ f −min{ fn, f }} converges uniformly to 0, and hence `(min{ fn, f }) increases to
`( f ). For some sufficiently large n0, we therefore have `(min{ fn0, f }) ∏ S3−2≤.
The function min{ fn0, f } is one of the functions that figures into S1, and thus
S1 ∏ `(min{ fn0, f }) ∏ S3 − 2≤. Since ≤ is arbitrary, S1 ∏ S3. §

Lemma 11.13. Let µ be extended to a nonnegative additive set function on
K(X) as in Lemma 11.11. If U is a bounded open subset of X , then µ(U) =
supK⊆U, K compactµ(K ).

PROOF. For the bounded open set U , let S1, S2, S3 be the three equal suprema
of Lemma 11.12. By definition, µ(U) = µ(L) − µ(L − U) for any compact
set L containing U , and we are to prove that µ(U) = S2. If K is a compact
subset of U , then K ∪ (L − U) is a disjoint union contained in L , and we have
µ(K ) + µ(L −U) = µ(K ∪ (L −U)) ≤ µ(L). Taking the supremum over all
such K , we obtain S2 + µ(L −U) ≤ µ(L), i.e., S2 ≤ µ(U).
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Let h be any member of Ccom(X)with values in [0, 1] such that h ∏ IL−U and
such that h is 1 on an open neighborhood N of L − U . Then L ⊆ N ∪ U . For
each point x of U , find an open neighborhood Ux of x with U cl

x ⊆ U . Then N
and the Ux ’s form an open cover of L , and there is a finite subcover. Let us say
that L ⊆ N ∪Ux1 ∪ · · · ∪Uxn . The set K = U cl

x1 ∪ · · · ∪U cl
xn is a compact subset

of U , and L ⊆ N ∪ K . Choose, by Corollary 10.44, a function f ∈ Ccom(X)
with values in [0, 1] such that f is 1 on K and is 0 off U . This function has
0 ≤ f ≤ IU . Since f is 1 on K and h is 1 on N , h + f is ∏ 1 on L . Hence
µ(L) ≤ `(h + f ) = `(h) + `( f ) ≤ `(h) + S3. Thus µ(L) ≤ µ(L − U) + S3
and µ(U) ≤ S3. Since S3 = S2 by Lemma 11.12, µ(U) = S2 as required. §

PROOF OF EXISTENCE IN THEOREM 11.1. If K is compact, we defineµ(K ), just
as we did earlier in this section, to be the infimum of `( f ) over all f in Ccom(X)
such that f ∏ IK . Lemma 11.11 shows that µ extends, necessarily in a unique
fashion, to a well-defined nonnegative additive set function on K(X).
Consider the set C of allmembers E ofK(X) satisfying the following regularity

property: for each ≤ > 0, there exist compact K and open bounded U with
K ⊆ E ⊆ U and µ(U − K ) < ≤. Lemma 11.13 shows that every open bounded
set is in C. We show closure of C under finite unions. If E1 and E2 are in C, then
we can choose K1 and K2 compact andU1 andU2 bounded open such that K1 ⊆
E1 ⊆ U1, K2 ⊆ E2 ⊆ U2, µ(U1 − K1) < ≤/2, and µ(U2 − K2) < ≤/2. Then
K1∪K2 ⊆ E1∪E2 ⊆ U1∪U2 and (U1∪U2)−(K1∪K2) ⊆ (U1−K1)∪(U2−K2).
It follows that µ((U1 ∪U2)− (K1 ∪ K2)) ≤ µ((U1− K1))+µ((U2− K2)) < ≤,
and C is closed under finite unions.
We show closure of C under differences. If E1 and E2 are in C, then we again

chooseK1 andK2 compact andU1 andU2 boundedopen such thatK1 ⊆ E1 ⊆ U1,
K2 ⊆ E2 ⊆ U2, µ(U1 − K1) < ≤/2, and µ(U2 − K2) < ≤/2. Then K1 −U2 ⊆
E1 − E2 ⊆ U1 − K2, and (U1 − K2) − (K1 − U2) ⊆ (U1 − K1) ∪ (U2 − K2).
Hence µ((U1 − K2) − (K1 − U2)) ≤ µ(U1 − K1) + µ(U2 − K2) < ≤, and C
is closed under differences. By Lemma 11.2, C equals K(X). Thus every set in
K(X) satisfies the regularity property.
Next let us see thatµ is completely additive on C. Let En be a disjoint sequence

of sets in K(X) with union E in K(X). For every N , we have
PN

n=1 µ(En) =
µ(E1 ∪ · · · ∪ EN ) ≤ µ(E). Hence

P∞
n=1 µ(En) ≤ µ(E). For the reverse

inequality, let ≤ > 0 be given. Choose, by the regularity property, K compact and
Un openboundedwithK ⊆ E , En ⊆ Un ,µ(E−K ) < ≤, andµ(Un−En) < ≤/2n .
Then K ⊆ E =

S∞
n=1 En ⊆

S∞
n=1Un . In other words, the sets Un form an open

cover of the compact set K . Some finite subcollection is a cover, and thus
K ⊆ U1 ∪ · · · ∪UN for some N . Then we have
µ(E) = µ(E − K ) + µ(K ) ≤ ≤ + µ(U1 ∪ · · · ∪UN )

≤ ≤ +
PN

n=1 µ(Un) ≤ ≤ +
PN

n=1 (µ(En) + ≤/2n) ≤
P∞

n=1 µ(En) + 2≤.
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Since ≤ is arbitrary, µ(E) ≤
P∞

n=1 µ(En). Therefore µ(E) =
P∞

n=1 µ(En), and
µ is completely additive on K(X).
The Extension Theorem (Theorem 5.5) shows that µ extends uniquely to a

measure on the smallest σ -ring containing K(X), i.e., the σ -ring of σ -bounded
Borel sets. Proposition5.37 shows further thatµ extends canonically to ameasure
on the σ -algebra of all Borel sets under the definition

µ(E) = sup
F⊆E, F∈B(X),

F σ -bounded

µ(F).

This defines µ on B(X). We are left with showing that µ is regular and that
`( f ) =

R
X f dµ for every f ∈ Ccom(X).

In showing that `( f ) =
R
X f dµ for every f ∈ Ccom(X), it is enough to handle

an arbitrary f ∏ 0. Fix ≤ > 0, and fix an integer N such that k f ksup < N≤.
For 0 ≤ n ≤ N , define fn = min{ f, n≤}. Each fn is in Ccom(X), the function
f0 is 0, and the function fN is f . For 0 ≤ n < N , define gn = fn+1 − fn .
We can recover f from the gn’s as f =

PN−1
n=0 gn . For n ∏ 1, define Kn =

{x | f (x) ∏ n≤}, and let K0 = support( f ). All the sets Kn are compact, and
they decrease in size with n. In this notation the formula for gn is

gn(x) =






0 if x /∈ Kn,

f (x) − n≤ if x ∈ Kn − Kn+1,

≤ if x ∈ Kn+1.

Consequently ≤ IKn+1 ≤ gn ≤ ≤ IKn . (∗)

Integration therefore gives

≤µ(Kn+1) ≤
R
X gn dµ ≤ ≤µ(Kn). (†)

The inequality given as IKn+1 ≤ ≤−1gn in (∗) implies that µ(Kn+1) ≤ ≤−1`(gn).
The other inequality ≤−1gn ≤ IKn in (∗) says that any h ∈ Ccom(X) with IKn ≤ h
has ≤−1gn ≤ h. Taking the infimum over h yields ≤−1`(gn) ≤ µ(Kn). Thus we
have

≤µ(Kn+1) ≤ `(gn) ≤ ≤µ(Kn). (††)

Subtracting (†) and (††), we obtain

−≤(µ(Kn) − µ(Kn+1)) ≤
R
X gn dµ − `(gn) ≤ ≤(µ(Kn) − µ(Kn+1)).

Since f =
PN−1

n=0 gn , summing from n = 0 to n = N − 1 gives
Ø
Ø R

X f dµ − `( f )
Ø
Ø ≤ ≤

PN−1
n=0 (µ(Kn) − µ(Kn+1)) = ≤µ(support( f )).
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Since ≤ is arbitrary,
Ø
Ø R

X f dµ − `( f )
Ø
Ø = 0. Thus `( f ) =

R
x f dµ.

Fix a compact subset K0 of X , form the σ -ring B(X) ∩ K0, and let A(K0)
be the collection of members E of B(X) ∩ K0 such that µ(E) is the supremum
of µ(K ) over all compact subsets K of E and µ(E) is the infimum of µ(U)
over all bounded open sets in X that contain E ; the open sets in question need
not lie within K0. Since the sets in A(K0) all have finite measure, the regularity
condition on E is that there exist, for each ≤ > 0, K compact andU bounded open
with K ⊆ E ⊆ U andµ(U−K ) < ≤. The same arguments as at the beginning of
the present proof show that A(K0) is closed under finite unions and differences.
To see closure under countable disjoint unions, let {En} be a disjoint sequence
in A(K0) with union E , let ≤ be given, and choose Kn compact and Un bounded
open with Kn ⊆ En ⊆ Un and µ(Un − Kn) < ≤/2n . Applying Corollary 10.23,
let L be a compact subset of X with K0 ⊆ Lo. The sets Kn are disjoint, and
thus

P∞
n=1 µ(Kn) converges. Choose N such that

P∞
n=N+1 µ(Kn) < ≤. Define

U = Lo ∩
S∞

n=1Un , K =
SN

n=1 Kn , K∞ =
S∞

n=1 Kn , and F =
S∞

n=N+1 Kn .
Then K is compact,U is bounded open, and K ⊆ E ⊆ U . Since K∞ = K ∪ F ,
we have

µ(U − K ) ≤ µ(U − K∞) + µ(F) ≤ µ
≥ ∞[

n=1
(Un − Kn)

¥
+ µ

≥ ∞[

n=N+1
Kn

¥

≤
∞X

n=1
µ(Un − Kn) +

∞X

n=N+1
µ(Kn) ≤

∞X

n=1
≤/2n + ≤ = 2≤.

Thus A(K0) is closed under countable disjoint unions and is a σ -ring. Since the
compact subsets of K0 are in A(K0), we conclude that A(K0) = B(K0).
This proves regularity for all bounded sets. If E is σ -bounded, we can choose

an increasing sequence {Ln} of compact sets whose union contains E . Put En =
E ∩ Ln . Given ≤ > 0, we apply the previous step to choose Kn compact and
Un bounded open such that Kn ⊆ En ⊆ Un and µ(Un − Kn) < ≤/2n . Taking
U =

S∞
n=1Un andK∞ =

S∞
n=1 Kn , wehaveK∞ ⊆ E ⊆ U andµ(U−K∞) < ≤.

Thusµ(U) ≤ µ(E)+ ≤, andµ(E) ≤ µ(K∞)+ ≤. The first of these inequalities,
being possible for any ≤, shows thatµ(E) is the infimum of the measures of open
σ -bounded sets containing E . Since µ(K∞) = limN µ

°SN
n=1 Kn

¢
by complete

additivity, the second of these inequalities, being possible for any ≤, shows that
µ(E) is the supremum of the measures of compact sets contained in E .
This proves regularity for all σ -bounded sets. If E is a Borel set that is not

σ -bounded, we know that µ(E) is the supremum of the measures of µ(F) for
σ -bounded Borel subsets F of E , and we know thatµ(F) is the supremum of the
measures ofµ(K ) for compact subsets K of F . Thereforeµ(E) is the supremum
of the measures of µ(K ) for compact subsets K of E . This completes the proof
of regularity of µ. §
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PROOF OF UNIQUENESS IN THEOREM 11.1. Let µ be the constructed measure,
and let ∫ be a second measure satisfying the properties of the theorem. The
assumed regularity of ∫ implies that it is enough to prove that ∫(K ) = µ(K ) for
every compact subset K of X . Fix K , and let α be the infimum defining µ(K ),
namely the infimum of `( f ) over all f ∈ Ccom(X) with values in [0, 1] such that
IK ≤ f . Integrating this inequalitywith respect to ∫, we see that ∫(K ) ≤

R
X f d∫

and therefore ∫(K ) ≤ α. Suppose that ∫(K ) < α. By Corollary 10.23 and the
assumed regularity of ∫, we can find a bounded open set U with U ⊇ K and
∫(U) < α. By Corollary 10.44 we can find a function g ∈ Ccom(X) with values
in [0, 1] such that g is 1 on K and is 0 off U . Then IK ≤ g ≤ IU . Hence
`(g) =

R
X g dµ =

R
X g d∫ ≤

R
X IU d∫ = ∫(U) < α ≤ `(g), and we obtain a

contradiction. We conclude that ∫(K ) = α = µ(K ), and the uniqueness follows.
§

3. Regular Borel Measures

The fact that compact sets for a general locally compact Hausdorff X need not be
countable intersections of open sets suggests a look at the ring of sets generated
by the compact sets that are indeed such intersections, as well as the associated
σ -algebra. The sets in this σ -algebra are known as “Baire sets,” and it turns
out that the members of Ccom(X) are measurable with respect to this σ -algebra.
The σ -algebra of Baire sets can be strictly smaller than the σ -algebra of Borel
sets, and thus one can make a case for limiting oneself to Baire sets all along.
This would be a fine point, one not worth pursuing here, but for one fact: the
σ -algebra of Baire sets for X×Y is a correctσ -algebra to use in Fubini’s Theorem
for changing iterated integrals over X and Y to a double integral—and this may
not be true when Borel sets are used.
This fact about Fubini’s Theorem might seem to be a telling argument for

replacing Borel sets by Baire sets everywhere in the theory. The difficulty is that
it is a little tedious to check constantly whether sets are Baire sets—for example,
whether one-point sets are Baire sets. Thus the normal practice is to work with
Borel sets and to resort to Baire sets only when Fubini’s Theorem comes into play
in a way that makes the distinction important. The most frequent case that arises
in applications of Fubini’s Theorem in this theory is that a function on X × Y
is continuous with compact support, in which case only Baire sets are involved
anyway.
Thus let X be a locally compact Hausdorff space. The sets in the smallest

σ -algebra B(X) containing the compact sets are the Borel sets, and the sets in
the smallest σ -algebra B0(X) containing the compact Gδ’s are the Baire sets.
Measurable functions in the first case will be calledBorel measurable functions
or Borel functions, and measurable functions in the second case will be called
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Baire measurable functions or Baire functions. We shall observe in Corollary
11.16 below that every member of Ccom(X) is a Baire function.
If the locally compact Hausdorff space X is a metric space, then any closed

set F is the intersection of the sets Un = {x | D(x, F) < 1
n }, where D( · , F) is

the distance to the set F . Consequently every compact subset of X is a Gδ, and
every Borel set is a Baire set.

Proposition 11.14. If K and U are subsets of X with K compact, U open,
and K ⊆ U , then there exist a compact Gδ, say K0, and an open bounded Fσ ,
say U0, such that K ⊆ U0 ⊆ K0 ⊆ U .
PROOF. Choose by Corollary 10.44 a member f of Ccom(X) with values in

[0, 1] such that f is 1 on K and is 0 on Uc. If K0 is the set where f is ∏ 1
2 and

U0 is the set where f is > 1
2 , then Lemma 11.5 shows that K0 and U0 have the

required properties.

Corollary 11.15. Any σ -compact open subset of X is a Baire set.
PROOF. If U =

S∞
n=1 Kn is open with each Kn compact, we can apply

Proposition 11.14 to the inclusion Kn ⊆ U and find a set (Kn)0 that is a compact
Gδ and has Kn ⊆ (Kn)0 ⊆ U . ThenU =

S∞
n=1(Kn)0 exhibitsU as the countable

union of compact Gδ’s, hence as a Baire set.

Corollary 11.16. Every member of Ccom(X) is a Baire function.
PROOF. This is immediate from Lemma 11.5 and Corollary 11.15.

Proposition 11.17. If X and Y are σ -compact, then the product σ -algebra for
X × Y obtained from the Baire sets of X and Y is the σ -algebra of Baire sets of
X × Y .
PROOF. If KX and KY are compactGδ’s in X andY , then KX×KY is a compact

Gδ in X × Y , and it follows that B0(X) × B0(Y ) ⊆ B0(X × Y ). For the reverse
inclusion let K be a compact Gδ in X × Y , and write K as K =

T∞
n=1Un with

eachUn open. We construct open sets Sn in B0(X) ×B0(Y ) with K ⊆ Sn ⊆ Un ,
and then it follows that K =

T∞
n=1 Sn and K is a Baire set.

To do so, it is enough to show that if K ⊆ W with W open, then there is an
open set S in B0(X) ×B0(Y ) with K ⊆ S ⊆ W . For each (x, y) in K , find open
neighborhoodsUx of x and Vy of y such that Ux × Vy ⊆ W . Proposition 11.14,
applied to the inclusion {x} ⊆ Ux and then to the inclusion {y} ⊆ Vy , shows that
we may assume that Ux and Vy are open Fσ ’s. In view of Corollary 11.15, they
are then Baire sets. Hence Ux × Vy is in B0(X) × B0(Y ). As (x, y) varies, the
sets Ux × Vy form an open cover of K , and there is a finite subcover. We can
take S to be the union of the elements in the finite subcover, and then S has the
required properties.
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Now we turn our attention to measures. A Baire measure on X is a measure
on the Baire sets that is finite on every compact Gδ. The restriction of a Borel
measure to the Baire sets is a Baire measure. We are going to prove that Baire
measures are automatically regular in the same sense that Borel measures in RN

are automatically regular.

Proposition 11.18. Every Baire measure µ is regular in the following sense:

µ(E) = sup
K⊆E,

K compact Gδ

µ(K ) for every set E in B0(X),

µ(E) = inf
U⊇E,

U open Fσ

µ(U) for every σ -bounded set E in B0(X).

REMARK. Since Baire sets and Borel sets are the same in a metric space,
this proposition generalizes the known regularity of Borel measures on any open
subset of Rn , as given in Theorem 6.25.
PROOF. If L is a compact Gδ, then µ(L) is certainly the supremum of µ(K )

for the compact Gδ’s contained in L . Suppose that U is σ -bounded open with
L ⊆ U . Proposition 11.14 produces a bounded open setU0 that is an Fσ and has
L ⊆ U0 ⊆ U . Consequently µ(L) is the infimum of µ(U0) for the open Fσ ’s
containing L . Thus every compact Gδ satisfies the stated regularity condition.
The remainder of the proof runs parallel to the proof of regularity at the end

of the proof of existence for Theorem 11.1, and we shall be brief. Fix a compact
Gδ in X , say K0. Form the σ -ring B0(X) ∩ K0, and letA0(K0) be the collection
of members E of B0(X) ∩ K0 such that µ(E) is the supremum of µ(K ) over all
compact subsets K of E that are Gδ’s and µ(E) is the infimum of µ(U) over all
open supersetsU of E that are Fσ ’s; the open sets in question need not lie within
K0. Since the sets in A0(K0) all have finite measure, the regularity condition on
E is that there exist, for each ≤ > 0, K compact and U open of the correct kind
with K ⊆ E ⊆ U and µ(U − K ) < ≤. The same arguments as earlier show that
A0(K0) is closed first under finite unions and differences, then under countable
disjoint unions. Thus A0(K0) is a σ -ring containing all compact Gδ’s, and we
conclude that A(K0) = B(K0).
This proves regularity for all bounded Baire sets. If the Baire set E is

σ -bounded, we can choose an increasing sequence {Ln} of compact Gδ’s whose
union contains E . Put En = E ∩ Ln . Then the same argument as earlier, using
the sets En , shows that the regularity condition holds for E .
Finally if E is a Baire set that is not σ -bounded, we know that µ(E) is the

supremum of the measures of µ(F) for σ -bounded Baire subsets F of E , and we
know that µ(F) is the supremum of the measures of µ(K ) for compact subsets
K of F that are Gδ’s. Therefore µ(E) is the supremum of the measures of µ(K )
for compact subsets K of E that are Gδ’s. §



556 XI. Integration on Locally Compact Spaces

Proposition 11.19. If ∫ is a Baire measure on X , then there is one and only
one regular Borel measure µ on X whose restriction to the Baire sets is µ.

PROOF. Since the members of Ccom(X) are Baire functions (Corollary 11.16),
we can define a positive linear functional ` on Ccom(X) by `( f ) =

R
X f d∫. The

uniqueness of the extendingµ follows from the uniqueness part of Theorem 11.1.
For existencewe takeµ to be the regularBorelmeasure given by the existence part
of Theorem 11.1. We are to prove thatµ and ∫ agree on Baire sets. The measures
µ and ∫ agree on compact Gδ’s by Lemma 11.7a and dominated convergence.
By regularity of Baire measures (Proposition 11.18), µ and ∫ agree on all Baire
sets. §

Proposition 11.20. Suppose that X is compact and that µ and ∫ are Borel
measures on X with µ regular. If ∫ is absolutely continuous with respect to µ,
then ∫ is regular.

PROOF. Let ≤ > 0 be given. The Radon–Nikodym Theorem (Theorem 9.16)
and Corollary 5.24 together show that there exists δ > 0 such that any Borel
set A with µ(A) < δ has ∫(A) < ≤. Let E be a Borel set to be tested for
regularity under ∫. Since µ is regular, we can choose K compact and U open
with K ⊆ E ⊆ U and µ(U − K ) < δ. Then ∫(U − K ) < ≤, and it follows that
∫(E) is approximated within ≤ by ∫(K ) and ∫(U). §

Proposition 11.21. If µ is a regular Borel measure on X and if 1 ≤ p < ∞,
then

(a) Ccom(X) is dense in L p(X, µ),
(b) the smallest closed subspace of L p(X, µ) containing all indicator func-

tions of compact Gδ’s in X is L p(X, µ) itself.

REMARK. This generalizes conclusions (a) and (b) of Proposition 9.9 from
open subsets of RN to all locally compact Hausdorff spaces.

PROOF. If E is a Borel set of finite µ measure and if ≤ is given, the regularity
of µ allows us to choose a compact set K with K ⊆ E and µ(E − K ) < ≤.
Then we can find a bounded open set U with K ⊆ U and µ(U − K ) < ≤, and
Proposition 11.14 gives us a compactGδ set K0 such that K ⊆ K0 ⊆ U . We haveR
X |IE − IK |p dµ = µ(E − K ) < ≤,

R
X |IU − IK |p dµ = µ(U − K ) < ≤, andR

X |IU− IK0 |p dµ = µ(U−K0) < ≤. Consequentlywe see in succession that the
closure in L p(X, µ) of the set of all indicator functions of compact sets contains
all indicator functions of Borel sets of finite µ measure, the closure in L p(X, µ)
of the set of all indicator functions of bounded open sets contains all indicator
functions of Borel sets of finiteµmeasure, and the closure in L p(X, µ) of the set
of all indicator functions of compactGδ’s contains all indicator functions of Borel
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sets of finite µ measure. Proposition 5.56 shows consequently that the smallest
closed subspace of L p(X, µ) containing all indicator functions of compact Baire
sets is L p(X, µ) itself. This proves (b).
For (a), let K0 be a compact Gδ, and use Lemma 11.7a to choose a decreasing

sequence { fn} of real-valuedmembers ofCcom(X)with pointwise limit IK0 . Since
f p1 is integrable, dominated convergence yields limn

R
X | fn − IK0 |p dµ = 0.

Hence the closure of Ccom(X) in L p(X, µ) contains all indicator functions of
compact Gδ’s. By Proposition 5.55d this closure contains the smallest closed
subspace of L p(X, µ) containing all indicator functions of compact Gδ’s. Con-
clusion (b) shows that the latter subspace is L p(X, µ) itself. This proves (a).

§

Corollary 11.22. Suppose that X is a locally compact separable metric space.
If µ is a Borel measure on X and if 1 ≤ p < ∞, then

(a) Ccom(X), as a normed linear space under the supremum norm, is separa-
ble,

(b) L p(X, µ) is separable.

REMARK. This generalizes Corollary 6.27c and Proposition 9.9c from open
subsets of RN to all locally compact separable metric spaces. The measure
µ is automatically regular by Proposition 11.8 since Baire measures and Borel
measures coincide in any locally compact metric space.

PROOF. Part (a) is proved by the same argument as for Corollary 6.27c. What
is required is a substitute for Lemma 6.22a in order to obtain a sequence {Fn}∞n=1
of compact subsets of X with union X such that Fn ⊆ Fo

n+1 for all n. It was
observed at the beginning of Section X.3 that separable implies Lindelöf, and it
follows from Proposition 10.24 that X is consequently σ -compact. Application
of Proposition 10.25 then gives the sequence {Fn}∞n=1. Corollary 2.59 is still to
be applied to C(Fn); since Fn is a compact metric space, the corollary shows that
C(Fn) is separable, and the argument goes through.
Part (b) follows from (a) and Proposition 11.21a in the sameway that Corollary

6.27d follows from parts (a) and (c) of that corollary. The sequence {Fn}∞n=1 of
the previous paragraph is to be used in the argument. §

Theorem 11.23 (Helly–Bray Theorem). Let X be a locally compact separable
metric space. If {µn} is a sequenceofBorelmeasureson X with {µn(X)}bounded,
say by M , then there exist a Borel measureµ on X and a subsequence {µnk } such
that µ(X) ≤ M and limn

R
X f dµnk =

R
X f dµ for all f in Ccom(X).

REMARKS. In the terminology of Section V.9, the measuresµn are continuous
linear functionals on the normed linear space Ccom(X), and the norm of the
linear functional corresponding to µn is µn(X). The convergence is weak-star
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convergence, and the limiting linear functional is given by a Borel measure µ
with µ(X) ≤ M . The theorem amounts to an application of the preliminary
form of Alaoglu’s Theorem (Theorem 5.58) and the identification of the limit as
a measure.

PROOF. The proof consists of filling in the details in the remarks above.
We regard Y = Ccom(X) as a normed linear space with the supremum norm.
Any Borel measure ∫ on X defines by integration a linear functional on Y with
norm given by k∫k = sup f ∈Ccom(X), k f k≤1

Ø
Ø R

X f d∫
Ø
Ø. The right side is certainly

≤ k f ksup∫(X). In the reverse direction, let {Kn} be an increasing sequence
of compact subsets of X with union X , so that limn ∫(Kn) = ∫(X). Choose
functions fn : X → [0, 1] in Ccom(X) by Corollary 10.44 such that fn is 1 on
Kn . Then k fnksup ≤ 1 for all n, and

R
X fn d∫ ∏

R
Kn

d∫ = ∫(Kn). Hence
k∫k ∏ lim supn ∫(Kn) = ∫(X), and we conclude that k∫k = ∫(X).
Thus the given sequence {µn} corresponds to a sequence in Y ∗ with kµnk ≤ M

for all n. Corollary 11.22 shows that Y is separable. Theorem 5.58 therefore
applies and yields a subsequence {µnk } and a member ` of Y ∗ with k`k ≤ M
such that limk

R
X f dµnk = `( f ) for all f in Ccom(X). If f ∏ 0, limk

R
X f dµnk

is certainly∏ 0, and thus ` is a positive linear functional on Ccom(X). The Riesz
Representation Theorem (Theorem 11.1) produces a Borel measure µ on X with
`( f ) =

R
X f dµ for all f in Ccom(X). Since k`k ≤ M , we have µ(X) ≤ M . §

4. Dual to Space of Finite Signed Measures

We continue in this section with X as a locally compact Hausdorff space. We
now change the point of view a little and regardCcom(X) as a normed linear space
under the supremum norm k f ksup = supx∈X | f (x)|. The problem is to identify
all continuous linear functionals on this normed linear space. We shall see shortly
that it is enough to handle the case that X is compact.
If X∗ is the one-point compactification of X , then two spaces to be considered

in conjunction with Ccom(X) are C(X∗), the space of continuous scalar-valued
functions on X∗, and C0(X), the space of continuous scalar-valued functions on
X that “vanish at infinity.” When applied to a function f , the term vanishes at
infinity means that for any ≤ > 0, there is some compact set with the property
that | f (x)| ≤ ≤ outside that set. It is equivalent to say that f extends to a member
of C(X∗) that is 0 at∞.
The three spaces Ccom(X), C0(X), and C(X∗) are related. In the first place,

Ccom(X) is dense inC0(X). In fact, if f is inC0(X) and if ≤ > 0 is given, we find
K compact with | f (x)| ≤ ≤ outside K . Corollary 10.44 supplies a member g of
Ccom(X) with values in [0, 1] that is 1 on K . Then the product f g is in Ccom(X),
and k f − f gksup ≤ ≤. Thus Ccom(X) is dense in C0(X). Any continuous
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linear functional on Ccom(X) is uniformly continuous by Proposition 5.57, and
Proposition 2.47 shows that it extends uniquely to a continuous linear functional
on C0(X). Thus the continuous linear functionals on C0(X) and Ccom(X) are in
one-one correspondence by restriction.
If we identify C0(X) as the subspace of C(X∗) of functions equal to 0 at ∞,

then every continuous linear functional on C(X∗) restricts to a continuous linear
functional on C0(X). In the reverse direction every continuous linear functional
on C0(X) extends (nonuniquely) to a continuous linear functional on C(X∗). In
fact, let `0 be a continuous linear functional on C0(X), and fix a member f0 of
C(X∗) with f0(∞) = 1. If f is any member of C(X∗), then f − f (∞) f0 is in
C0(X) and it makes sense to define `( f ) = `0( f − f (∞) f0). Since

|`( f )| = |`0( f − f (∞) f0)| ≤ k`0kk f − f (∞) f0ksup
≤ k`0k(k f ksup + | f (∞)|k f0ksup) ≤ k`0k(1+ k f0ksup)k f ksup,

` is bounded onC(X∗) and is therefore continuous. Thus the study of continuous
linear functionals on Ccom(X) reduces to the case that X is compact.
The first result below shows that any continuous linear functional onC(X)with

X compact is a finite linear combination of positive linear functionals. In view of
Theorem 11.1, it is therefore given as a finite linear combination of integrations
with respect to regular Borel measures. The remainder of the section will be
devoted to making this result look tidier and seeing what happens to various
norms under the correspondence.

Proposition 11.24. Let X be a compact Hausdorff space, and let ` be a
continuous linear functional on C(X). If ` takes real values on real-valued
functions, define, for f ∏ 0 in C(X),

`+( f ) = sup
0≤g≤ f

`(g) and `−( f ) = `+( f ) − `( f );

then`+ and`− extend topositive linear functionalsonC(X) such that` = `+−`−.
If ` does not necessarily take real values on real-valued functions, then ` is a
complex linear combination of positive linear functionals on C(X).

PROOF. The functions f and g in this argumentwill all be inC(X). For general
` not necessarily taking real values on real-valued functions, define ¯̀( f ) = `( f̄ ).
We readily check that ¯̀ is a continuous linear functional on C(X), that `R =
1
2 (` + ¯̀) and `I = 1

2i (` − ¯̀) are continuous linear functionals on C(X) taking
real values on real-valued functions, and that ` = `R + i`I exhibits ` as a
complex linear combination of continuous linear functionals taking real values
on real-valued functions. This reduces the proposition to the case that ` takes real
values on real-valued functions.
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In this case, for f ∏ 0, inspection gives the following: `( f ) = `+( f )−`−( f ),
`+(0) = `−(0) = 0, `+(c f ) = c`+( f ) for c ∏ 0, and `−(c f ) = c`−( f ) for
c ∏ 0. In addition, `+( f ) ∏ 0 for f ∏ 0 because

`+( f ) = sup
0≤g≤ f

`(g) ∏ `(0) = 0,

and `−( f ) ∏ 0 for f ∏ 0 because

`−( f ) = `+( f ) − `( f ) = sup
0≤g≤ f

`(g) − `( f ) ∏ `( f ) − `( f ) = 0.

To complete the proof, all that we have to do is show that `+( f1 + f2) =
`+( f1) + `+( f2) whenever f1 ∏ 0 and f2 ∏ 0. The argument for ∏ is that

`+( f1 + f2) = sup
0≤g≤ f1+ f2

`(g) ∏ sup
g1,g2,

0≤g1≤ f1,
0≤g2≤ f2

`(g1 + g2)

= sup
0≤g1≤ f1

`(g1) + sup
0≤g2≤ f2

`(g2) = `+( f1) + `+( f2).

For the reverse direction, let g be arbitrary with 0 ≤ g ≤ f1 + f2, and set
g1 = min{g, f1} and g2 = g − g1. Certainly 0 ≤ g1 ≤ f1. Let us show that
0 ≤ g2 ≤ f2. In fact,

g2 = g − g1 = (g + f1) − ( f1 + g1) = max{g, f1} +min{g, f1} − ( f1 + g1)
= max{g, f1} + g1 − ( f1 + g1) = max{g, f1} − f1.

Thus g2 is certainly ∏ 0. In addition, the computation

g2 = max{g, f1} − f1 ≤ max{ f1 + f2, f1} − f1 = ( f1 + f2) − f1 = f2

shows that g2 is≤ f2. Thus any g with 0 ≤ g ≤ f1+ f2 gives us a corresponding
decomposition

`(g) = `(g1 + g2) = `(g1) + `(g2)
≤ sup
0≤g1≤ f1

`(g1) + sup
0≤g2≤ f2

`(g2) = `+( f1) + `+( f2).

Taking the supremum over g, we obtain `+( f1+ f2) ≤ `+( f1)+ `+( f2), and the
proof is complete. §
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Let us reinterpret matters in terms of Borel measures. We begin with the real-
valued case. Recall from Section IX.3 that a real-valued completely additive set
function ρ on a σ -algebra is called a signedmeasure. It is bounded if |ρ(E)| ≤ C
for all E in the algebra. In this case Theorem 9.14 shows that it has a Jordan
decomposition ρ = ρ+ − ρ−, where ρ+ and ρ− are uniquely determined finite
measures such that any decomposition ρ = ∫+ − ∫− as the difference of finite
measures has ρ+ ≤ ∫+ and ρ− ≤ ∫−. We say that a bounded signed measure ρ
on the Borel sets of the compact Hausdorff space X is a regular Borel signed
measure if its Jordan decomposition is into regular Borel measures. If ρ =
∫+ − ∫− is any decomposition of a bounded signed measure ρ on the Borel sets
as the difference of regular Borel measures, then the equalities ρ+ ≤ ∫+ and
ρ− ≤ ∫− that compare the decomposition with the Jordan decomposition force
ρ+ and ρ− to be regular, in view of Proposition 11.20. Hence ρ is a regular Borel
signed measure.
The regular Borel signed measures form a real vector space M(X, R). To

see closure under vector space operations, we observe from the definition of
regularity that the sum of two (nonnegative) regular Borel measures is a regular
Borel measure. From this fact we can see that the sum of two regular Borel signed
measures is regular and hence that M(X, R) is closed under addition: in fact, if
ρ = ρ+ − ρ− and σ = σ+ − σ− are given in their Jordan decompositions, then
the formula (ρ +σ)+ − (ρ +σ)− = (ρ+ +σ+)− (ρ− +σ−) shows that ρ +σ is
the difference of two regular Borel measures and hence is regular. Thus M(X, R)
is a real vector space.

Proposition 11.25. The real vector space M(X, R) becomes a real normed
linear space under the definition kρk = ρ+(X)+ ρ−(X), where ρ = ρ+ − ρ− is
the Jordan decomposition of ρ.

PROOF. Certainly kρk ∏ 0 with equality if and only if ρ = 0. Also, if ρ
has the Jordan decomposition ρ = ρ+ − ρ−, then −ρ = ρ− − ρ+ is the Jordan
decomposition of −ρ, and it follows that kcρk = |c|kρk for any real scalar c.
Finally consider kρ + σk. If ρ = ρ+ − ρ− and σ = σ+ − σ− are Jordan

decompositions, then the formula (ρ+σ)+−(ρ+σ)− = (ρ++σ+)−(ρ−+σ−)
shows that (ρ + σ)+ ≤ ρ+ + σ+ and hence (ρ + σ)+(X) ≤ ρ+(X) + σ+(X).
Similarly (ρ + σ)−(X) ≤ ρ−X) + σ−(X). Adding these inequalities, we obtain
kρ + σk ≤ kρk + kσk. §

Returning to the statement of Proposition 11.24, let us write C(X, R) or
C(X, C) for the space of continuous scalar-valued functions when the field of
scalars is important, reserving the expression C(X) for situations in which the
scalars do not matter. Suppose that ` is a continuous linear function onC(X) that
takes real values on real-valued functions. The proposition shows that ` is the
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difference of two positive linear functionals. By Theorem 11.1, ` operates as the
difference of two integrations: `( f ) =

R
X f d∫+ −

R
X f d∫−, where ∫+ and ∫−

are the regular Borel measures corresponding to `+ and `−. Then ` corresponds
to a regular Borel signed measure ρ and is given by integration: `( f ) =

R
X f dρ,

the integral with respect to the signed measure being interpreted as the difference
of two integrals with respect to measures. Conversely any regular Borel signed
measure ρ yields a continuous linear functional ` on C(X) by the definition
`( f ) =

R
X f dρ.

In particular the passage to integration gives us a real-linear mapping of
M(X, R) onto the space C(X, R)∗ of continuous linear functionals on the real
vector space C(X, R). Both of these spaces are normed linear spaces, and the
theorem is that the map is one-one and that the norms match.

Theorem 11.26. The real-linear map of M(X, R) onto C(X, R)∗ given by
ρ 7→ ` with `( f ) =

R
X f dρ is one-one and norm preserving.

REMARK. As in Section V.9 the norm k`k of ` is the least constantC such that
|`( f )| ≤ Ck f ksup for all f . The constant C equals the supremum of |`( f )| over
all f with k f ksup ≤ 1.

PROOF. To see that the map is one-one, suppose that
R
X f dρ = 0 for all f in

C(X, R). Then
R
X f dρ+ =

R
X f dρ−, and the uniqueness part of Theorem 11.1

shows that ρ+ = ρ−. Hence ρ = ρ+ − ρ− = 0.
Now suppose that ` and ρ correspond. Then we have

|`( f )| =
Ø
Ø R

X f dρ+ −
R
X f dρ−

Ø
Ø

≤
R
X | f | dρ+ +

R
X | f | dρ−

≤ ρ+(X)k f ksup + ρ−(X)k f ksup.

Taking the supremum over all f with k f ksup ≤ 1, we obtain

k`k ≤ ρ+(X) + ρ−(X) = kρk.

For the inequality in the reverse direction, let ≤ > 0be given, and let X = P∪N
be a Hahn decomposition (Theorem 9.15) for ρ. By regularity of ρ+ on P
and ρ− on N , choose compact subsets KP and KN with KP ⊆ P , KN ⊆ N ,
ρ+(P − KP) < ≤, and ρ−(N − KN ) < ≤. Since ρ+(N ) = 0 and ρ−(P) = 0,

ρ+(X − KP) < ≤ and ρ−(X − KN ) < ≤. (∗)

By Urysohn’s Lemma (Corollary 10.43), we can find a continuous function
f : X → [−1, 1] such that f is 1 on KP and is −1 on KN . Then
Ø
Ø`( f ) − kρk

Ø
Ø ≤

Ø
Ø R

KP
f dρ − kρ+k

Ø
Ø +

Ø
Ø R

KN
f dρ − kρ−k

Ø
Ø +

Ø
Ø R

Kc
P∩Kc

N
f dρ|

≤
Ø
Øρ+(KP) − ρ+(X)

Ø
Ø +

Ø
Øρ−(KN ) − ρ−(X)

Ø
Ø +

Ø
Ø R

Kc
P∩Kc

N
f dρ|.
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By (∗) the first two terms on the right side are each< ≤. Since ρ+(Kc
P ∩ Kc

N ) =
ρ+(P−KP) < ≤ and ρ−(Kc

P ∩Kc
N ) = ρ−(N−KN ) < ≤, and since k f ksup ≤ 1,

the third term on the right side is ≤ 2≤. Therefore
Ø
Ø`( f )−kρk

Ø
Ø < 4≤, and our

function f has the property that |`( f )| ∏ (kρk − 4≤)k f ksup. In other words,
k`k ∏ kρk − 4≤. Since ≤ is arbitrary, k`k ∏ kρk. This completes the proof. §

Now let us consider the case in which the values are complex. A regular
Borel complex measure on the compact Hausdorff space X is an expression
ρ = ρR + iρI in which ρR and ρI are regular Borel signed measures. In other
words, it is a complex-valued set function whose real and imaginary parts are
regular Borel signed measures. The space M(X, C) of these is a complex vector
space, and we shall make it into a normed linear space shortly. Meanwhile,
the space C(X, C)∗ of continuous linear functionals on C(X, C) is a complex
normed linear space. Extending the definition of

R
X f dρ to handle members of

M(X, C), we see fromProposition11.24 that the complex-linearmap ofM(X, C)
into C(X, C)∗ given by ρ 7→ ` with `( f ) =

R
X f dρ is one-one and onto.

To have a theorem in this case that parallels Theorem 11.26, we need to define
the norm onM(X, C). Doing so on an element ρ is not just a matter of combining
the norms of the real and imaginary parts of ρ any more than writing the norm of
a complex-valued L1 function can be done in terms of the L1 norms of the real
and imaginary parts. A more subtle definition is needed.
We define the total variation |ρ| of a member ρ of M(X, C) to be the non-

negative set function whose value on a Borel set E is the supremum of all finite
sums

Pn
j=1 |ρ(Ej )| with E =

Sn
j=1 Ej disjointly. The total-variation norm of

the member ρ of M(X, C) is defined to be kρk = |ρ|(X). It is a simple matter
to verify that the total-variation norm is indeed a norm.

Proposition 11.27. The total variation |ρ| of a member ρ of M(X, C) is a
regular Borel measure, there exists a Borel function h with khksup ≤ 1 such
that ρ = h d|ρ|, and the total-variation norm on M(X, C) makes M(X, C) into
a normed linear space in such a way that

Ø
Ø R

X f dρ
Ø
Ø ≤ kρkk f ksup for every

bounded Borel function f . Moreover, |ρ| equals ρ+ + ρ− if ρ is real valued and
has ρ = ρ+ − ρ− as its Jordan decomposition.

REMARK. It follows that if ρ is real valued and if X = P ∪ N is a Hahn
decomposition (Theorem 9.15) for ρ, then the corresponding function h may be
taken to be +1 on P and −1 on N .

PROOF. To see that |ρ| is additive, let E and F be disjoint Borel sets. If
E =

Sm
i=1 Ei disjointly and F =

Sn
j=1 Fj disjointly, then E ∪ F =°Sm

i=1 Ei
¢
∪

°Sn
j=1 Fj

¢
disjointly, and hence

Pm
i=1 |ρ(Ei )| +

Pn
j=1 |ρ(Fj )| ≤

|ρ|(E ∪ F). Taking the supremum over systems {Ei } and then over systems
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{Fj }, we obtain |ρ|(E) + |ρ|(F) ≤ |ρ|(E ∪ F). In the reverse direction let
E ∪ F =

Sp
k=1 Gk disjointly. Then E =

Sp
k=1(E ∩ Gk) disjointly, and

F =
Sp

k=1(F ∩ Gk) disjointly. Hence

pP

k=1
|ρ(Gk)|

=
pP

k=1
|ρ(E ∩ Gk) + ρ(F ∩ Gk)| ≤

pP

k=1
|ρ(E ∩ Gk)| +

pP

k=1
|ρ(F ∩ Gk)|,

and this is ≤ |ρ|(E) + |ρ|(F). Taking the supremum over systems {Gk}, we
obtain |ρ|(E ∪ F) ≤ |ρ|(E) + |ρ|(F). Thus |ρ| is additive.
To prove that |ρ| is completely additive, let E =

S∞
n=1 En disjointly. For every

N ,
PN

n=1 |ρ|(En) = |ρ|(E1 ∪ · · · ∪ EN ) ≤ |ρ|(E), and hence
P∞

n=1 |ρ|(En) ≤
|ρ|(E). For the reverse inequality let {Gk}

p
k=1 be a finite collection of disjoint

Borel sets with union E . Then En =
Sp

k=1(En ∩ Gk) disjointly, and hence

pP

k=1
|ρ(Gk)| =

pP

k=1
|ρ(E ∩ Gk)| =

pP

k=1

Ø
Ø
Ø

∞P

n=1
ρ(En ∩ Gk)

Ø
Ø
Ø

≤
pP

k=1

∞P

n=1
|ρ(En ∩ Gk)| =

∞P

n=1

pP

k=1
|ρ(En ∩ Gk)| ≤

∞P

n=1
|ρ|(En).

Thus |ρ|(E) ≤
P∞

n=1 |ρ|(En), and |ρ| is completely additive.
The measure |ρ| is certainly finite on X and hence on all compact sets. To see

regularity, we write ρ = ρR + iρI = ρ+
R − ρ−

R + iρ+
I − iρ−

I . Writing a set E as
the disjoint union of n sets Ei and writing out ρ(Ei ) according to this expansion
of ρ, we see that |ρ|(E) ≤ (ρ+

R +ρ−
R +ρ+

I +ρ−
I )(E). Each measure on the right

side is regular, and Proposition 11.20 therefore shows that |ρ| is regular.
For the existence of h, let us write ρ in terms of its real and imaginary parts

as ρ = ρR + iρI . If E is a Borel set, then the definitions give |ρ|(E) ∏
|ρ(E)| ∏ |ρR(E)| and similarly |ρ|(E) ∏ |ρI (E)|. Hence ρR ø |ρ| and
ρI ø |ρ|. By the Radon–Nikodym Theorem (Corollary 9.17), there exist
functions hR and hI integrable [d|ρ|] such that ρR = hR d|ρ| and ρI = hI d|ρ|.
Thus the |ρ| integrable complex-valued function h = hR + ih I has ρ = h d|ρ|.
We shall show that h has |h(x)| ≤ 1 a.e. [d|ρ|]. If the contrarywere the case, then
there would exist a constant cwith |c| = 1 and an ≤ > 0 such that Re(ch) ∏ 1+≤
on a set E of positive |ρ| measure and we would have

Ø
Ø R

E h d|ρ|
Ø
Ø =

Ø
Ø R

E ch d|ρ|
Ø
Ø ∏ Re

R
E ch d|ρ| =

R
E Re(ch) d|ρ|

∏ (1+ ≤)|ρ|(E) ∏ (1+ ≤)|ρ(E)| = (1+ ≤)
Ø
Ø R

E h d|ρ|
Ø
Ø,

a contradiction. Thus h exists as asserted.
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The inequality
Ø
Ø R

X f dρ
Ø
Ø ≤ kρkk f ksup follows from the existence of h sinceØ

Ø R
X f dρ

Ø
Ø =

Ø
Ø R

X f h d|ρ|
Ø
Ø ≤ k f hksup

R
X d|ρ| ≤ k f ksup|ρ|(X) = k f ksupkρk.

Finally if ρ is real valued, then any Borel set E satisfies |ρ(E)| =
|ρ+(E) − ρ−(E)| ≤ ρ+(E) + ρ−(E). If E is the disjoint union of Borel sets
E1, . . . , En , we consequently have

nP

j=1
|ρ(E ∩ Ej )| ≤

nP

j=1
(ρ+(E ∩ Ej ) + ρ−(E ∩ Ej )) = ρ+(E) + ρ−(E).

Taking the supremum over all decompositions of E of this kind gives |ρ|(E) ≤
ρ+(E)+ρ−(E). For the reverse inequality let X = P∪N be a Hahn decomposi-
tion (Theorem 9.15) for ρ, so that ρ+(E) = ρ(P∩E) and ρ−(E) = −ρ(N ∩E).
Then E is the disjoint union of E ∩ P and E ∩ N , and thus ρ+(E) + ρ−(E) =
|ρ(E ∩ P)| + |ρ(E ∩ N )| ≤ |ρ|(E). In other words, |ρ| = ρ+ + ρ− as asserted.

§

Theorem11.28. The one-one complex-linearmap ofM(X, C) ontoC(X, C)∗

given by ρ 7→ ` with `( f ) =
R
X f dρ is norm preserving.

PROOF. If f is in C(X), then Proposition 11.27 gives |`( f )| =
Ø
Ø R

X f dρ
Ø
Ø ≤

kρkk f ksup. Taking the supremum over all f with k f ksup ≤ 1, we obtain k`k ≤
kρk.
For the reverse inequality let ≤ > 0 be given, and choose a finite disjoint

collection of Borel sets E1, . . . , En with union X such that
Pn

i=1 |ρ(Ei )| ∏
kρk − ≤. Since |ρ| is regular, we can find compact sets Ki ⊆ Ei such that
|ρ|(Ei − Ki )| ≤ ≤/n for each i .
We shall define disjoint open sets Ui with Ki ⊆ Ui for all i . We do so by

making an inductive construction as follows. For i = 1, Corollary 10.22 produces
disjoint open setsU1 and V1 with K1 ⊆ U1 and K2∪· · ·∪Kn ⊆ V1. Suppose that
the construction has been carried out for stage i with 1 ≤ i < n. Using Corollary
10.22 for the locally compact Hausdorff space Vi and taking into account that
Ki+1 ∪ · · · ∪ Kn ⊆ Vi , we choose disjoint open sets Ui+1 and Vi+1 of Vi with
Ki+1 ⊆ Ui+1 and Ki+2 ∪ · · · ∪ Kn ⊆ Vi+1. At the end of the construction, we
have obtained open setsUi with Ki ⊆ Ui for all i , and we have obtained auxiliary
open sets Vi with Vi+1 ⊆ Vi for all i . Let us see that the sets Ui are disjoint.
In fact, if j > i , then Uj ⊆ Vj−1 ⊆ Vi . Since Vi is disjoint from Ui , its subset
Uj is disjoint from Ui . This proves the required disjointness and completes the
construction of U1, . . . ,Un .
For 1 ≤ i ≤ n, choose fi ∈ C(X) with values in [0, 1] such that fi is 1 on

Ki and is 0 off Ui . Choose ci ∈ C for each i such that ciρ(Ei ) = |ρ(Ei )|, and
define f0 =

Pn
i=1 ci fi . The function f0 has k f0ksup = 1 since the sets Ui are

disjoint. Then
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`( f0) =
R
X f0 dρ =

nP

i=1

R
Ei f0 dρ =

nP

i=1

° R
Ei ci dρ +

R
Ei ( f0 − ci ) dρ

¢

=
nP

i=1
|ρ(Ei )| +

nP

i=1

R
Ei−Ki

( f0 − ci ) dρ.

Hence
Ø
Ø`( f0) −

nP

i=1
|ρ(Ei )|

Ø
Ø ≤

nP

i=1

R
Ei−Ki

| f0 − ci | d|ρ|

≤ 2
nP

i=1
|ρ|(Ei − Ki )| ≤ 2

nP

i=1
≤/n = 2≤

and
Ø
Ø`( f0) − kρk

Ø
Ø ≤

Ø
Ø`( f0) −

nP

i=1
|ρ(Ei )|

Ø
Ø +

Ø
Ø

nP

i=1
|ρ(Ei )| − kρk

Ø
Ø ≤ 3≤.

Therefore

k`k = k`kk f0ksup ∏ |`( f0)| ∏ kρk −
Ø
Ø`( f0) − kρk

Ø
Ø ∏ kρk − 3≤.

Since ≤ is arbitrary, k`k ∏ kρk. §

5. Problems

In all problems for this chapter, X is assumed to be a locally compact Hausdorff
space. Sometimes additional hypotheses are imposed on X .

1. (a) Prove that if X is σ -compact, then the σ -algebra of Borel subsets of X
coincides with the σ -algebra of intersections of X with the Borel subsets of
the one-point compactification X∗.

(b) Prove that if X is an uncountable discrete space, then the σ -algebra of Borel
subsets of X is strictly smaller than the σ -algebra of intersections of X with
the Borel subsets of the one-point compactification X∗.

2. Prove that if X is σ -compact and f : X → C is continuous, then f is a Borel
function.

3. Suppose that X is σ -compact. Prove that if µ is a regular Borel measure on X
and if f is Borel measurable, then there exists a Baire measurable function g
such that f = g except on a Borel set of µ measure 0.

4. (Lusin’s Theorem) Let X be compact, letµ be a regular Borel measure on X , let
f be a Borel function on X , and let ≤ > 0 be given. By first considering simple
functions and then passing to the limit via Egoroff’s Theorem, prove that there
exists a compact subset K of X with µ(Kc) < ≤ such that f

Ø
Ø
K is continuous.
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5. This problem establishes the rotation invariance of the Borel measure dω on the
sphere S2 ⊆ R3 obtained fromRiemann integrationwith respect to sin θ1 dθ1 dθ2,
where θ1 and θ2 are latitude and longitude with 0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ 2π .
Themeasure dωwas constructed bymeans of the Riesz Representation Theorem
as one of the examples in Section 2.
(a) A rotation in R3 is the linear function L determined by a matrix A with

AAtr = 1 and det A = 1. For 0 < a < 1 < b < ∞, let Sab be the subset of
R3 given in spherical coordinates by a < r < b, 0 ≤ θ1 ≤ π , 0 ≤ θ2 ≤ 2π .
Show that Sab is carried to itself by any such rotation L .

(b) For any bounded Borel function F : Sab → C, let (LF)(x) = F(L−1x) if
x is in Sab and L is a rotation. Prove that

R
Sab LF dx =

R
Sab F dx .

(c) Let f : S2 → C be any continuous function, and define (L f )(ω) =
f (L−1ω). Extend f to a function F defined on Sab by the definition
F(rω) = f (ω). Prove that

R
Sab F dx =

° R b
a r

2 dr
¢° R

S2 f (ω) dω
¢
and

deduce that
R
S2 L f dω =

R
S2 f dω.

(d) Deduce from (c) that dω(L(E)) = dω(E) for every Borel subset E of S2.

6. Let X be compact.
(a) Let {Kα} be a collection of compact subsets of X closed under finite inter-

sections, and let K =
T

α Kα . Prove that every regular Borel measure µ on
X has the property that µ(K ) = infα µ(Kα).

(b) If µ is a nonzero regular Borel measure on X assuming only the values 0
and 1, prove that µ is a point mass.

(c) If µ is a nonzero regular Borel measure on X with
Z

X
f g dµ =

≥ Z

X
f dµ

¥≥ Z

X
g dµ

¥

for all f and g in C(X), prove that µ is a point mass.
(d) If ` is a positive linear functional on C(X) that is multiplicative in the sense

that `( f g) = `( f )`(g) for all f and g in C(X), prove that ` is zero or ` is
evaluation at some point of X .

7. This problem continues the investigation of harmonic functions and Poisson
integrals in the unit disk of R2, following up on Problems 7–8 at the end of
Chapter IX. Problem 8 in that series provides orientation. The new ingredient
for the present problem is weak-star convergence of sequences in M(S1, C)

against C(S1), where S1 is the unit circle.
(a) State and prove a characterization of the harmonic functions u(r, θ) on the

open unit disk such that sup0≤r<1 ku(r, · )k1 is finite.
(b) (Herglotz’s Theorem) Prove that if u(r, θ) is a nonnegative harmonic

function on the open unit disk, then there is a Borel measure µ on the
circle such that u(r, θ) =

R
(−π,π] Pr (θ − ϕ) dµ(ϕ).
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Problems 8–10 construct a Borel measure µ on a compact space such that µ is not
regular. The totally ordered set ƒ of countable ordinals was introduced in Problems
25–33 at the end of Chapter V. Let ƒ∗ = ƒ ∪ {∞}, totally ordered so that every
element ofƒ is less than {∞}. Giveƒ∗ the order topology, as discussed in Problems
25–32 at the end of Chapter X.
8. Prove that ƒ∗ is compact Hausdorff.
9. Prove that the class of all relatively closed uncountable subsets of ƒ is closed

under the formation of countable intersections.
10. Defineµ on theBorel sets ofƒ∗ to be 1 on those sets E such that E−{∞} contains

a relatively closed uncountable subset of ƒ, and put ∫(E) = 0 otherwise. Prove
that µ is a Borel measure that is not regular.

Problems 11–14 concern decomposing any finite Borel measure on a compact X into
a regular Borel measure and a “purely irregular” Borel measure. They make use of
Zorn’s Lemma (Section A9 of Appendix A). A Borel measureµwill be called purely
irregular if there is no nonzero regular Borel measure ∫ such that 0 ≤ ∫(E) ≤ µ(E)

for every Borel set E .
11. Use Zorn’s Lemma to show that any Borel measure on X is the sum of a regular

Borel measure and a purely irregular Borel measure.
12. Prove that if∫ is a regularBorelmeasure, ifµ is purely irregular, and if 0 ≤ µ ≤ ∫,

then µ = 0.
13. Deduce from the Jordan decomposition (Theorem 9.14) that the decomposition

of Problem 11 is unique.
14. Prove that the irregular Borel measure constructed in Problem 10 is purely

irregular.

Problems 15–19 concern extension of measures from finite products of compact
metric spaces to countably infinite such products. Let X be a compact metric space,
and for each integer n ∏ 1, let Xn be a copy of X . Define ƒ(N ) = ×N

n=1Xn ,
and let ƒ = ×∞

n=1Xn . Each of ƒ(N ) and ƒ is given the product topology. If E
is a Borel subset of ƒ(N ), we can regard E as a subset of ƒ by identifying E with
E ×

°×∞
n=N+1Xn). In this way any Borel measure on ƒ(N ) can be regarded as a

measure on a certain σ -subalgebra Fn of B(ƒ).
15. Prove that

S∞
n=1Fn = F is an algebra.

16. Let ∫n be a (regular) Borel measure on ƒ(n) with ∫(ƒ(n)) = 1, and regard ∫n
as defined on Fn . Suppose for each n that ∫n agrees with ∫n+1 on Fn . Define
∫(E) for E in F to be the common value of ∫n(E) for n large. Prove that ∫ is
nonnegative additive, and prove that in a suitable sense ∫ is regular on F.

17. Using the kind of regularity established in the previous problem, prove that ∫ is
completely additive on F.
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18. In view of Problems 16 and 17, ∫ extends to a measure on the smallest σ -algebra
for ƒ containing F. Prove that this σ -algebra is B(ƒ).

19. Let X be a 2-point space, and let ∫n be 2−n on each one-point subset of ƒ(n).
Exhibit a homeomorphism ofƒ onto the standard Cantor set in [0, 1] that carries
∫ to the Cantor measure defined in Problems 17–20 at the end of Chapter VI.




