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CHAPTER V

Lebesgue Measure and Abstract Measure Theory

Abstract. This chapter develops the basic theory of measure and integration, including Lebesgue
measure and Lebesgue integration for the line.
Section 1 introduces measures, including 1-dimensional Lebesgue measure as the primary ex-

ample, and develops simple properties of them. Sections 2–4 introduce measurable functions and
the Lebesgue integral and go on to establish some easy properties of integration and the fundamental
theorems about how Lebesgue integration behaves under limit operations.
Sections 5–6 concern the Extension Theorem announced in Section 1 and used as the final step in

the construction of Lebesgue measure. The theorem allows σ -finite measures to be extended from
algebras of sets to σ -algebras. The theorem is proved in Section 5, and the completion of a measure
space is defined in Section 6 and related to the proof of the Extension Theorem.
Section 7 treats Fubini’s Theorem, which allows interchange of order of integration under rather

general circumstances. This is a deep result. As part of the proof, productmeasure is constructed and
importantmeasurability conditions are established. This sectionmentions that Fubini’s Theoremwill
be applicable to higher-dimensional Lebesgue measure, but the details are deferred to Chapter VI.
Section 8 extends Lebesgue integration to complex-valued functions and to functions with values

in finite-dimensional vector spaces.
Section 9 gives a careful definition of the spaces L1, L2, and L∞ for any measure space,

introduces the notion of a normed linear space, and verifies that these three spaces are examples.
The main theorem of the section about L1, L2, and L∞ is the completeness of these three spaces as
metric spaces. In addition, the section proves a version of Alaoglu’s Theorem concerning weak-star
convergence.

1. Measures and Examples

In the theory of the Riemann integral, as discussed in Chapter I for R1 and in
Chapter III for Rn , we saw that Riemann integration is a powerful tool when
applied to continuous functions. Riemann integration makes sense also when
applied to certain kinds of discontinuous functions, but then the theory has some
weaknesses.
Without any change in the definitions, one of these is that the theory applies

only to bounded functions. Thuswe can compute
R 1
0 x

p dx =
£
x p+1/(p+1)]10 =

(p+ 1)−1 for p ∏ 0, but only the right side makes sense for−1 < p < 0. More
seriouslywemade calculationswith trigonometric series in Section I.10 and found
that 12 log

° 1
2−2 cos θ

¢
=

P∞
n=1

cos nθ
n and 1

2 (π − θ) =
P∞

n=1
sin nθ
n for 0 < θ < 2π .
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268 V. Lebesgue Measure and Abstract Measure Theory

When we tried to explain these similar-looking identities with Fourier series, we
were able to handle the second one because 12 (π − θ) is a bounded function, but
we were not able to handle the first one because 12 log

° 1
2−2 cos θ

¢
is unbounded.

Other weaknesses appeared in Chapters I–IV at certain times: whenwe always
had to arrange for the set of integration to be bounded, whenwe had no cluewhich
sequences {cn} of Fourier coefficients occurred in the beautiful formula given by
Parseval’s Theorem, when Fubini’s Theorem turned out to be awkward to apply
to discontinuous functions, and when the change-of-variables formula did not
immediately yield the desired identities even in simple cases like the change from
Cartesian coordinates to polar coordinates.
TheLebesgue integralwill solve all these difficultieswhen formedwith respect

to “Lebesgue measure” in the setting of Rn . In addition, the Lebesgue integral
will be meaningful in other settings. For example, the Lebesgue integral will be
meaningful on the unit sphere in Euclidean space, while the Riemann integral
would always require a choice of coordinates. The Lebesgue integral will be
meaningful also in other situations where we can take advantage of some action
by a group (such as a rotation group) that is difficult to handlewhen the setting has
to be Euclidean. And the Lebesgue integral will enable us to provide a rigorous
foundation for the theory of probability.
There are five ingredients in Lebesgue integration, and thesewill be introduced

in Sections 1–3 of this chapter:

(i) anunderlyingnonemptyset, suchasR1 in the caseofLebesgue integration
on the line,

(ii) a distinguished class of subsets, called the “measurable sets,” which will
form a “σ -ring” or a “σ -algebra,”

(iii) a measure, which attaches a member of [0,+∞] to each measurable set
and which will be “length” in the case of Lebesgue measure on the line,

(iv) the “measurable functions,” those functions with values in R (or some
more general space) that we try to integrate,

(v) the integral of a measurable function over a measurable set.

Let us write X for the underlying nonempty set. The important thing about
whatever sets are measurable will be that certain simple set-theoretic operations
lead frommeasurable sets to measurable sets. The two main definitions are those
of an “algebra” of sets and a “σ -algebra,” but we shall refer also to the notions of
a “ring” of sets and a “σ -ring” in order to simplify certain technical problems in
constructing measures. An algebra of sets A is a set of subsets of X containing
∅ and X and closed under the operation of forming the union E ∪ F of two
sets and under taking the complement Ec of a set. An algebra is necessarily
closed under intersection E ∩ F and difference E − F = E ∩ Fc. Another
operation under whichA is closed is symmetric difference, which is defined by
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E 1 F = (E − F) ∪ (F − E); we shall make extensive use of this operation1 in
Section 6 of this chapter.
In practice, despite the effort often needed to define an interesting measure on

the sets in an algebra, the closure properties2 of the algebra are insufficient to deal
with questions about limits. For this reason one defines a σ -algebra of subsets of
X to be an algebra that is closed under countable unions (and hence also countable
intersections). Typically a general foundational theorem (Theorem 5.5 below) is
used to extend the constructed would-be measure from an algebra to a σ -algebra.
A ringR of subsets of X is a set of subsets closed under finite unions and under

difference. Then R is closed also under the operations of finite intersections,
difference, and symmetric difference.3 A σ -ring of subsets of X is a ring of
subsets that is closed under countable unions.

EXAMPLES.
(1) A = {∅, X}. This is a σ -algebra.
(2) All subsets of X . This is a σ -algebra.
(3) All finite subsets of X . This is a ring. If the complements of such sets are

included, the result is an algebra.
(4) All finite and countably infinite subsets of X . This is a σ -ring. If the

complements of such sets are included, the result is a σ -algebra.
(5) All elementary sets of R. These are all finite disjoint unions of bounded

intervals in R with or without endpoints. This collection is a ring. To see the
closure properties, we first verify that any finite union of bounded intervals is a
finite disjoint union; in fact, if I1, . . . , In are bounded intervals such that none
contains any of the others, then Ik −

Sk−1
m=1 Im is an interval, and these intervals

are disjoint as k varies; also these intervals have the same union as I1, . . . , In .
Now let E =

S
i Ii and F =

S
j Jj be given. Since Ii ∩ Jj is an interval,

the identity E ∩ F =
S

i, j (Ii ∩ Jj ) shows that E ∩ F is a finite union of
intervals. Since each Ii − Jj is an interval or the union of two intervals, the
identity E − F =

S
i
T

j (Ii − Jj ) then shows that E − F is a finite union of
intervals.
(6) If C is an arbitrary class of subsets of X , then there is a unique smallest

algebra A of subsets of X containing C. Similar statements apply to σ -algebras,

1For some properties of symmetric difference, see Problem 1 at the end of the chapter.
2An algebra of sets really is an algebra in the sense of the discussion of algebras with the

Stone–Weierstrass Theorem (Theorem 2.58). The scalars replacing R or C are the members of the
two-element field {0, 1}, addition is given by symmetric difference, and multiplication is given by
intersection. The additive identity is∅, the multiplicative identity is X , and every element is its own
negative. Multiplication is commutative.

3A ring of sets really is a ring in the sense of modern algebra; addition is given by symmetric
difference, and multiplication is given by intersection.
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rings, and σ -rings. In fact, consider all algebras of subsets of X containing C.
Example 2 shows that there is one. LetA be the intersection of all these algebras,
i.e., the set of all subsets that occur in each of these algebras. If two sets occur
in A, they occur in each such algebra, and their intersection is in each algebra.
Hence their intersection is in A. SimilarlyA is closed under differences.

IfR is a ring of subsets of X , a set function is a function ρ : R → R∗, where
R∗ denotes the extended real-number system as in Section I.1. The set function
is nonnegative if its values are all in [0,+∞], it is additive if ρ(∅) = 0 and if
ρ(E ∪ F) = ρ(E) + ρ(F) whenever E and F are disjoint sets in R, and it is
completely additive or countably additive if ρ(∅) = 0 and if ρ

°S∞
n=1 En

¢
=P∞

n=1 ρ(En) whenever the sets En are pairwise disjoint members of R withS∞
n=1 En in R. In the definitions of “additive” and “completely additive,” it is

taken as part of the definition that the sums in question are to be well defined in
R∗. Observe that completely additive implies additive, since ρ(∅) = 0.

Proposition5.1. Anadditive set functionρ ona ringRof sets has the following
properties:

(a) ρ
°SN

n=1 En
¢

=
PN

n=1 ρ(En) if the sets En are pairwise disjoint and are
inR.

(b) ρ(E ∪ F) + ρ(E ∩ F) = ρ(E) + ρ(F) if E and F are inR.
(c) If E and F are inR and |ρ(E)| < +∞, then |ρ(E ∩ F)| < +∞.
(d) If E and F are in R and if |ρ(E ∩ F)| < +∞, then ρ(E − F) =

ρ(E) − ρ(E ∩ F).
(e) If ρ is nonnegative and if E and F are in R with E ⊆ F , then ρ(E) ≤

ρ(F).
(f) If ρ is nonnegative and if E, E1, . . . , EN are sets in R such that E ⊆SN

n=1 En , then ρ(E) ≤
PN

n=1 ρ(En).
(g) If ρ is nonnegative and completely additive and if E, E1, E2, . . . are sets

inR such that E ⊆
S∞

n=1 En , then ρ(E) ≤
P∞

n=1 ρ(En).
PROOF. Part (a) follows by induction from the definition. In (b), we have

E ∪ F = (E − F) ∪ (E ∩ F) ∪ (F − E) disjointly. Application of (a) gives
ρ(E ∪ F) = ρ(E − F) + ρ(E ∩ F) + ρ(F − E), with +∞ and −∞ not both
occurring. Adding ρ(E ∩ F) to both sides, regrouping terms, and taking into
account that ρ(E) = ρ(E − F)+ρ(E ∩ F) and ρ(F) = ρ(F − E)+ρ(E ∩ F),
we obtain (b). The right side of the identity ρ(E) = ρ(E∩F)+ρ(E−F) cannot
be well defined if ρ(E) is finite and ρ(E ∩ F) is infinite, and thus (c) follows. In
the identity ρ(E) = ρ(E ∩ F)+ρ(E − F), we can subtract ρ(E ∩ F) from both
sides and obtain (d) if ρ(E ∩ F) is finite. For (e), the inclusion E ⊆ F forces
F = (F − E) ∪ E disjointly; then ρ(F) = ρ(F − E) + ρ(E), and (e) follows.
In (f), put Fn = En −

Sn−1
k=1 Ek . Then E =

SN
n=1(E ∩ Fn) disjointly, and (a) and
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(e) give ρ(E) =
PN

n=1 ρ(E ∩ Fn) ≤
PN

n=1 ρ(Fn) ≤
PN

n=1 ρ(En). Conclusion
(g) is proved in the same way as (f). §

Proposition 5.2. Let ρ be an additive set function on a ring R of sets. If ρ
is completely additive, then ρ(E) = limρ(En) whenever {En} is an increasing
sequence of members ofR with union E inR. Conversely if ρ(E) = limρ(En)
for all such sequences, then ρ is completely additive.

PROOF. First we prove the direct part of the proposition. For E and En as in
the statement, let F1 = E1 and Fn = En − En−1 for n ∏ 2. Then En =

Sn
k=1 Fk

disjointly, and ρ(En) =
Pn

k=1 ρ(Fk) by additivity. Also, E =
S∞

k=1 Fk , and
complete additivity gives ρ(E) =

P∞
k=1 ρ(Fk) = lim

Pn
k=1 ρ(Fk) = limρ(En).

The direct part of the proposition follows.
For the converse let {Fn} be a disjoint sequence inR with union F inR. Put

En =
Sn

k=1 Fk . Then En is an increasing sequence of sets in R with union F
in R. We are given that ρ(F) = limρ(En), and we have ρ(En) =

Pn
k=1 ρ(Fk)

by additivity and Proposition 5.1a. Therefore ρ(F) =
P∞

k=1 ρ(Fk), and we
conclude that ρ is completely additive. §

Corollary 5.3. Let ρ be an additive set function on an algebraA of subsets of
X such that |ρ(X)| < +∞. If ρ is completely additive, then ρ(E) = limρ(En)
whenever {En} is a decreasing sequence of members of A with intersection E
in A. Conversely if limρ(En) = 0 whenever {En} is a decreasing sequence of
members of A with intersection empty, then ρ is completely additive.

PROOF. This follows from Proposition 5.2 by taking complements. §

A measure is a nonnegative completely additive set function on a σ -ring of
subsets of X . If no ambiguity is possible about the σ -ring, we may refer to a
“measure on X .” When we use measures to work with integrals, the σ -ring will
be taken to be a σ -algebra; if integration were to be defined relative to a σ -ring
that is not a σ -algebra, then constant functions would not be measurable.
The assumption that our σ -ring is a σ -algebra for doing integration is no loss

of generality. Even when the σ -ring is not a σ -algebra, there is a canonical way
of extending a measure from a σ -ring to the smallest σ -algebra containing the
σ -ring. Proposition 5.37 at the end of Section 5 gives the details.

EXAMPLES.
(1) For {∅, X}, define µ(X) = a ∏ 0. This is a measure.
(2) For X equal to a countable set and with all subsets in the σ -algebra, attach

a weight ∏ 0 to each member of X . Define µ(E) to be the sum of the weights
for the members of E . This is a measure.
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(3) For X arbitrary but nonempty, let µ(E) be the number of points in E , a
nonnegative integer or +∞. We refer to µ as counting measure.

(4) Lebesgue measure m on the ring R of elementary sets of R. If E is a
finite disjoint union of bounded intervals, we let m(E) be the sum of the lengths
of the intervals. We need to see that this definition is unambiguous. Consider
the special case that J = I1 ∪ · · · ∪ Ir disjointly with Ik extending from ak
to bk , with or without endpoints. Then we can arrange the intervals in order
so that bk = ak+1 for k = 1, . . . , r − 1. In this case, m(J ) = br − a1 andPr

k=1m(Ik) =
Pr

k=1 (bk −ak) = br −a1. Thus the definition is unambiguous in
this special case. If E = I1 ∪ · · · ∪ Ir = J1 ∪ · · · ∪ Js , then the special case gives
m(Jk) =

Pr
j=1m(Ij ∩ Jk) and hence

Ps
k=1m(Jk) =

P
j,k m(Ij ∩ Jk). Reversing

the roles of the Ij ’s and the Jk’s, we obtain
Pr

j=1m(Ij ) =
P

j,k m(Ij ∩ Jk). ThusPs
k=1m(Jk) =

Pr
j=1m(Ij ), and the definition of m on R is unambiguous. It is

evident that m is nonnegative and additive. We shall prove that m is completely
additive on R. Even so, m will not yet be a measure, since R is not a σ -ring.
That step will have to be carried out separately. Proving that m is completely
additive on the ring R uses the fact that m is regular on R in the sense that
if E is in R and if ≤ > 0 is given, then there exist a compact set K in R
and an open set U in R such that K ⊆ E ⊆ U , m(K ) ∏ m(E) − ≤, and
m(U) ≤ m(E) + ≤: In the special case that E is a single bounded interval with
endpoints a and b, we can prove regularity by taking U = (a − ≤/2, b + ≤/2)
and by letting K = ∅ if b − a ≤ ≤ or K = [a + ≤/2, b − ≤/2] if b − a > ≤. In
the general case that E is the union of n bounded intervals Ij , choose Kj and Uj
for Ij and for the number ≤/n, and put K =

Sn
j=1 Kj and U =

Sn
j=1Uj . Then

m(K ) =
Pn

j=1m(Kj ) ∏
Pn

j=1
°
m(Ij ) − ≤/n

¢
= m(E) − ≤, and Proposition

5.1f gives m(U) ≤
Pn

j=1m(Uj ) ≤
Pn

j=1
°
m(Ij ) + ≤/n

¢
= m(E) + ≤.

Proposition 5.4. Lebesgue measure m is completely additive on the ring R
of elementary sets in R1.

PROOF. Let {En} be a disjoint sequence in R with union E in R. Since
m is nonnegative and additive, Proposition 5.1 gives m(E) ∏ m

°Sn
k=1 Ek

¢
=Pn

k=1m(Ek) for every n. Passing to the limit, we obtain m(E) ∏
P∞

k=1m(Ek).
For the reverse inequality, let ≤ > 0 be given. Choose by regularity a compact
member K of R and open members Un of R such that K ⊆ E , Un ⊇ En for all
n, m(K ) ∏ m(E) − ≤, and m(Un) ≤ m(En) + ≤/2n . Then K ⊆

S∞
n=1Un , and

the compactness implies that K ⊆
SN

n=1Un for some N . Hence m(E) − ≤ ≤
m(K ) ≤

PN
n=1m(Un) ≤

PN
n=1 (m(En) + ≤/2n) ≤

P∞
n=1m(En) + ≤. Since ≤ is

arbitrary, m(E) ≤
P∞

n=1m(En), and the proposition follows. §
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The smallest σ -ring containing the ring R of elementary sets in R1 is in
fact a σ -algebra, since R1 is the countable union of bounded intervals. For
Lebesguemeasure to be truly useful, itmust be extended fromR to thisσ -algebra,
whose members are called the Borel sets of R1. Borel sets of R1 can be fairly
complicated. Each open set is a Borel set because it is the countable union of
bounded open intervals. Each closed set is a Borel set, being the complement
of an open set, and each compact set is a Borel set because compact subsets of
R1 are closed. In addition, any countable set, such as the set Q of rationals, is a
Borel set as the countable union of one-point sets.
The extension is carried out by the general Extension Theorem that will be

stated now and will be proved in Section 5. The theorem gives both existence
and uniqueness for an extension, but not without an additional hypothesis. The
need for an additional hypothesis to ensure uniqueness is closely related to the
need to assume some finiteness condition on ρ in Corollary 5.3: even though each
member of a decreasing sequence of sets has infinite measure, the intersection
of the sets need not have infinite measure. To see what can go wrong for the
Extension Theorem, consider the ringR0 of subsets of R1 consisting of all finite
unions of bounded intervals with rational endpoints; the individual intervals may
or may not contain their endpoints. If a set function µ is defined on this ring
by assigning to each set the number of elements in the set, then µ is completely
additive. Each interval inR1 can be obtained as the union of two sets—acountable
union of intervals with rational endpoints and a countable intersection of intervals
with rational endpoints. It follows that the smallest σ -ring containing R0 is the
σ -algebra of all Borel sets. The set function µ can be extended to the Borel sets
in more than one way. In fact, each one-point set consisting of a rational must
get measure 1, but a one-point set consisting of an irrational can be assigned any
measure.
The additional hypothesis for the Extension Theorem is that the given nonneg-

ative completely additive set function ∫ on a ring of sets R be σ -finite, i.e., that
any member ofR be contained in the countable union of members ofR on which
∫ is finite. An obvious sufficient condition for σ -finiteness is that ∫(E) be finite
for every set inR. This sufficient condition is satisfied by Lebesgue measure on
the elementary sets, and thus the theorem proves that Lebesgue measure extends
in a unique fashion to be a measure on the Borel sets.
The condition of σ -finiteness is less restrictive than a requirement that X be the

countable union of sets inR of finite measure, another condition that is satisfied
in the case of Lebesgue measure. The condition of σ -finiteness on a ring allows
for some very large measures when all the sets are in a sense generated by the sets
of finite measure. For example, ifR is the ring of finite subsets of an uncountable
set and ∫ is the counting measure, the σ -finiteness condition is satisfied. In most
areas of mathematics, these very large measures rarely arise.
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Theorem 5.5 (Extension Theorem). LetR be a ring of subsets of a nonempty
set X , and let ∫ be a nonnegative completely additive set function on R that is
σ -finite on R. Then ∫ extends uniquely to a measure µ on the smallest σ -ring
containingR.

A measure space is defined to be a triple (X,A, µ), where X is a nonempty
set, A is a σ -algebra of subsets of X , and µ is a measure on X . The measure
space is finite if µ(X) < +∞; it is σ -finite if X is the countable union of sets
on which µ is finite. The real line, together with the σ -algebra of Borel sets and
Lebesgue measure, is a σ -finite measure space.

2. Measurable Functions

In this section, X denotes a nonempty set, and A is a σ -algebra of subsets of X .
Themeasurable sets are the members of A.
We say that a function f : X → R∗ ismeasurable if
(i) f −1([−∞, c)) is a measurable set for every real number c.

Equivalently the measurability of f may be defined by any of the following
conditions:
(ii) f −1([−∞, c]) is a measurable set for every real number c,
(iii) f −1((c,+∞]) is a measurable set for every real number c,
(iv) f −1([c,+∞]) is a measurable set for every real number c.

In fact, the implications (i) implies (ii), (ii) implies (iii), (iii) implies (iv), and (iv)
implies (i) follow from the identities4

f −1([−∞, c]) =
∞\

n=1
f −1([−∞, c + 1

n )),

f −1((c,+∞]) = ( f −1([−∞, c]))c,

f −1([c,+∞]) =
∞\

n=1
f −1((c − 1

n ,+∞]),

f −1([−∞, c)) = ( f −1([c,+∞]))c.

EXAMPLES.
(1) If A = {∅, X}, then only the constant functions are measurable.
(2) If A consists of all subsets of X , then every function from X to R∗ is

measurable.
4Manipulations with inverse images of sets are discussed in Section A1 of Appendix A.
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(3) If X = R1 andA consists of the Borel sets ofR1, the measurable functions
are often called Borel measurable. Every continuous function is Borel measur-
able by (i) because the inverse image of every open set is open. Any function
that is 1 on an open or compact set and is 0 off that set is Borel measurable. It is
shown in Problem 33 at the end of the chapter that not every Riemann integrable
function (when set equal to 0 off some bounded interval) is Borel measurable.
However, let us verify that every function that is continuous except at countably
many points is Borel measurable. In fact, let C be the exceptional countable set.
The restriction of f to themetric spaceR−C is continuous, and hence the inverse
image in R − C of any open set [−∞, c) is open in R − C . Hence the inverse
image is the countable union of sets (a, b)−C , and these are Borel sets. The full
inverse image in R of [−∞, c) under f is the union of a countable set and this
subset of R − C and hence is a Borel set.
(4) If X = R1 and if A consists of the “Lebesgue measurable sets” in a sense

to be defined in Section 5, the measurable functions are often called Lebesgue
measurable. Every Borel measurable function is Lebesgue measurable, and so
is every Riemann integrable function (when set equal to 0 off some bounded
interval).

The next proposition discusses, among other things, functions f +, f −, and
| f | defined by f +(x) = max{ f (x), 0}, f −(x) = −min{ f (x), 0}, and | f |(x) =
| f (x)|. Then f = f + − f − and | f | = f + + f −.

Proposition 5.6.
(a) Constant functions are always measurable.
(b) If f is measurable, then the inverse image of any interval is measurable.
(c) If f is measurable, then the inverse image of any open set in R∗ is measur-

able.
(d) If f is measurable, then the functions f +, f −, and | f | are measurable.

PROOF. In (a), the inverse image of a set under a constant function is either ∅
or X and in either case is measurable. In (b), the inverse image of an interval is the
intersection of two sets of the kind described in (i) through (iv) above and hence
is measurable. In (c), any open set inR∗ is the countable union of open intervals,
and the measurability of the inverse image follows from (b) and the closure ofA
under countable unions. In (d), ( f +)−1((c,+∞)) equals f −1((c,+∞)) if c ∏ 0
and equals X if c < 0. The measurability of f − and | f | are handled similarly. §

Next we deal with measurability of sums and products, allowing for values
+∞ and −∞. Recall from Section I.1 that multiplication is everywhere defined
in R∗ and that the product in R∗ of 0 with anything is 0.
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Proposition 5.7. Let f and g bemeasurable functions, and let a be inR. Then
a f and f g aremeasurable, and f +g is measurable provided the sum f (x)+g(x)
is everywhere defined.

PROOF. For f + g, with Q denoting the rationals,

( f + g)−1(c,+∞] =
[

r∈Q
f −1(c + r,+∞] ∩ g−1(−r,+∞].

If a = 0, then a f = 0, and 0 is measurable. If a 6= 0, then

(a f )−1(c,+∞] =

Ω f −1° c
a ,+∞

§
if a > 0,

f −1£ − ∞, c
a
¢

if a < 0.

If f and g are measurable and are ∏ 0, then

( f g)−1(c,+∞] =

Ω S
r∈Q, r>0 f −1° c

r ,+∞
§
∩ g−1(r,+∞] if c ∏ 0,

X if c < 0.

Hence f g is measurable in this special case. In the general case the formula
f g = f +g+ + f −g− − f +g− − f −g+ exhibits f g as the everywhere-defined
sum of measurable functions. §

Proposition 5.8. If { fn} is a sequence of measurable functions, then the
functions

(a) supn fn ,
(b) infn fn ,
(c) lim supn fn ,
(d) lim inf fn ,

are all measurable.

PROOF. For (a) and (b), we have (sup fn)−1(c,+∞] =
S∞

n=1 f −1
n (c,+∞]

and (inf fn)−1([−∞, c) =
S∞

n=1 f −1
n [−∞, c). For (c) and (d), we have

lim supn fn = infn supk∏n fk and lim infn fn = supn infk∏n fk . §

Corollary 5.9. The pointwise maximum and the pointwise minimum of a
finite set of measurable functions are both measurable.

PROOF. These are special cases of (a) and (b) in the proposition. §

Corollary 5.10. If { fn} is a sequence of measurable functions and if f (x) =
lim fn(x) exists in R∗ at every x , then f is measurable.

PROOF. This is the special case of (c) and (d) in the proposition in which
lim supn fn = lim infn fn . §
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The above results show that the set of measurable functions is closed under
pointwise limits, as well as the arithmetic operations and max and min. Since
the measurable functions will be the ones we attempt to integrate, we can hope
for good limit theorems from Lebesgue integration, as well as the familiar results
about arithmetic operations and ordering properties.
If E is a subset of X , the indicator function5 IE of E is the function that is 1

on E and is 0 elsewhere. The set (IE)−1(c,+∞] is ∅ or E or X , depending
on the value of c. Therefore IE is a measurable function if and only if E is a
measurable set.
A simple function s : X → R∗ is a function s with finite image contained

in R. Every simple function s has a unique representation as s =
PN

n=1 cn IEn ,
where the cn are distinct real numbers and the En are disjoint nonempty sets with
union X . In fact, the set of numbers cn equals the image of s, and En is the
set where s takes the value cn . This expansion of s will be called the canonical
expansion of s. The set s−1(c,+∞] is the union of the sets En such that c < cn ,
and it follows that s is a measurable function if and only if all of the sets En in
the canonical expansion are measurable sets.

Proposition 5.11. For any function f : X → [0,+∞], there exists a sequence
of simple functions sn ∏ 0 with the property that for each x in X , {sn(x)} is a
monotone increasing sequence in R with limit f (x) in R∗. If f is measurable,
then the simple functions s may be taken to be measurable.

PROOF. For 1 ≤ n < ∞ and 1 ≤ j ≤ n2n , let

Enj = f −1
h j − 1
2n

,
j
2n

¥
, Fn = f −1[n,+∞), sn =

n2nX

j=1

j − 1
2n

IEnj + nIFn .

Then {sn} has the required properties. §

By convention from now on, simple functions will always be understood to be
measurable.

3. Lebesgue Integral

Throughout this section, (X,A, µ) denotes ameasure space. Themeasurable sets
continue to be those inA. Our objective in this section is to define the Lebesgue

5Asnoted inChapter III, indicator functions are called “characteristic functions”bymany authors,
but the term “characteristic function” has another meaning in probability theory and is best avoided
as a substitute for “indicator function” in any context where probability might play a role.
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integral. We defer any systematic discussion of properties of the integral to
Section 4.
Just as with the Riemann integral, the Lebesgue integral is defined by means

of an approximation process. In the case of the Riemann integral, the process
is to use upper sums and lower sums, which capture an approximate value of an
integral by adding contributions influenced by proximity in the domain of the
integrand. The process is qualitatively different for the Lebesgue integral, which
captures an approximate value of an integral by adding contributions based on
what happens in the image of the integrand.
Let s be a simple function ∏ 0. By our convention at the end of the previous

section, we have incorporatedmeasurability into the definition of simple function.
Let E be a measurable set, and let s =

PN
n=1 cn IAn be the canonical expansion of

s. We define IE(s) =
PN

n=1 cnµ(An ∩ E). This kind of object will be what we
use as an approximation in the definition of the Lebesgue integral; the formula
shows the sense in which IE(s) is built from the image of the integrand.
If f ∏ 0 is a measurable function and E is a measurable set, we define the

Lebesgue integral of f on the set E with respect to the measure µ to be
Z

E
f dµ =

Z

E
f (x) dµ(x) = sup

0≤s≤ f,
s simple

IE(s).

This is well-defined as a member of R∗ without restriction as long as E is a
measurable set and the measurable function f is ∏ 0 everywhere on X . It is
evident in this case that

R
E f dµ ∏ 0 and that

R
E 0 dµ = 0.

For a general measurable function f , not necessarily ∏ 0, the integral may or
may not be defined. We write f = f + − f −. The functions f + and f − are
∏ 0 and are measurable by Proposition 5.6d, and consequently

R
E f + dµ andR

E f − dµ are well-defined members of R∗. If
R
E f + dµ and

R
E f − dµ are not

both infinite, then we define
Z

E
f dµ =

Z

E
f (x) dµ(x) =

Z

E
f + dµ −

Z

E
f − dµ.

This definition is consistent with the definition in the special case f ∏ 0, since
such an f has f − = 0 and therefore

R
E f − dµ = 0. We say that f is integrable

if
R
E f + dµ and

R
E f − dµ are both finite. In this case the subsets of E where

f is +∞ and where f is −∞ have measure 0. In fact, if S is the subset of E
where f + is +∞, then the inequality

R
E f + dµ ∏ IE(C IS) = Cµ(S) for every

C > 0 shows that µ(S) ≤ C−1 R
E f + dµ for every C ; hence µ(S) = 0. A

similar argument applies to the set where f − is +∞.
We shall give some examples of integration after showing that the definition

of
R
E f dµ reduces to IE( f ) if f is nonnegative and simple. The first lemma
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below will make use of the additivity of µ, and the second lemma will make use
of the fact that µ is nonnegative.

Lemma 5.12. Let s =
PN

n=1 cn IAn be the canonical expansion of a simple
function∏ 0, and let s =

PM
m=1 dn IBm be another expansion in which the dm are

∏ 0 and the Bm are disjoint andmeasurable. Then IE(s) =
PM

m=1 dmµ(Bm∩E).
PROOF. Adjoin the term 0 · I(Sm Bm)c to the second expansion, if necessary, to

make
SM

m=1 Bm = X . Without loss of generality, we may assume that no Bm
is empty. Then the fact that the sets Bm are disjoint and nonempty with union
X implies that the image of s is {d1, . . . , dM}. Thus we can write dm = cn(m)

for each m. Since An = s−1({cn}), we see that Bm ⊆ An(m). Since the Bm are
disjoint with union X , we obtain

Ak =
[

{m | n(m)=k}
Bm

disjointly. The additivity of µ gives µ(Ak ∩ E) =
P

{m | n(m)=k} µ(Bm ∩ E), and
thus ckµ(Ak ∩ E) =

P
{m | n(m)=k} dmµ(Bm ∩ E). Summing on k, we obtain the

conclusion of the lemma. §

Lemma 5.13. If s and t are nonnegative simple functions and if t ≤ s on E ,
then IE(t) ≤ IE(s).

PROOF. If s =
PJ

j=1 cj IAj and t =
PK

k=1 dk IBk are the canonical expansions
of s and t , then

S
j,k (Aj ∩ Bk) = X disjointly. Hence we can write

s =
X

j,k
cj IAj∩Bk and t =

X

j,k
dk IAj∩Bk .

Lemma 5.12 shows that

IE(s) =
X

j,k
cjµ(Aj ∩ Bk ∩ E) and IE(t) =

X

j,k
dkµ(Aj ∩ Bk ∩ E).

We now have term-by-term inequality: either µ(Aj ∩ Bk ∩ E) = 0 for a term, or
Aj ∩ Bk ∩ E 6= ∅ and any x in Aj ∩ Bk ∩ E has t (x) ≤ s(x) and exhibits dk ≤ cj .

§

Proposition 5.14. If s ∏ 0 is a simple function, then
R
E s dµ = IE(s) for

every measurable set E .
PROOF. If t is a simple function with 0 ≤ t ≤ s everywhere, then Lemma

5.13 gives IE(t) ≤ IE(s). Hence
R
E s dµ = sup0≤t≤s IE(t) ≤ IE(s). On

the other hand, we certainly have IE(s) ≤ sup0≤t≤s IE(t) =
R
E s dµ, and thusR

E s dµ = IE(s). §
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EXAMPLES.
(1) Let A = {∅, X} and µ(X) = 1. Only the constant functions are measur-

able, and
R

∅ c dµ = 0 and
R
X c dµ = c.

(2) Let X be a nonempty countable set, let A consist of all subsets of X , and
let µ be defined by nonnegative finite weights wi attached to each point i in X .
If f = { fi } is a real-valued function, then the integral of f over X is

P
fiwi

provided the integrals of f + and f − are not both infinite, i.e., provided every
rearrangement of the series

P
fiwi converges inR∗ to the same sum. By contrast,

f is integrable if and only if the series
P

fiwi is absolutely convergent; this is
a stronger condition since the sum has to be in R. In the special case that all
the weights wi are 1, the theory of the Lebesgue integral over X reduces to the
theory of infinite series for which every rearrangement of the series converges in
R∗ to the same sum. This is a very important special case for testing the validity
of general assertions about Lebesgue integration.
(3) Let (X,A, µ) be the real lineR1 withA consistingof theBorel sets andwith

µ equal to Lebesgue measurem. Recall that real-valued continuous functions on
R1 are measurable. For such a function f , the assertion is that

Z

[a,x)
f dm =

Z x

a
f (t) dt,

the left side being a Lebesgue integral and the right side being a Riemann integral.
Proving this assertion involves using some properties of the Lebesgue integral
that will be proved in the next section. We give the argument now before these
properties have been established, in order to emphasize the importance of each
of these properties: If h > 0, then

1
h

h Z

[a,x+h)
f dm −

Z

[a,x)
f dm

i
− f (x) =

1
h

Z

[x,x+h)
f dm − f (x)

=
1
h

Z

[x,x+h)
[ f − f (x)] dm.

The absolute value of the left side is then

≤
1
h

Z

[x,x+h)
| f − f (x)| dm ≤

1
h

sup
t∈[x,x+h)

| f (t) − f (x)|m([x, x + h))

= sup
t∈[x,x+h)

| f (t) − f (x)|,

and the right side tends to 0 as h decreases to 0, by continuity of f at x . If h < 0,
then the argument corresponding to the first display is

1
h

h Z

[a,x+h)
f dm −

Z

[a,x)
f dm

i
− f (x) = −

1
h

Z

[x−|h|,x)
f dm − f (x)

=
1
|h|

Z

[x−|h|,x)
[ f − f (x)] dm.
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The absolute value of the left side is then ≤ supt∈[x−|h|,x) | f (t) − f (x)|, and
this tends to 0 as h increases to 0, by continuity of f at x . We conclude thatR
[a,·) f dm is differentiable with derivative f . By the Fundamental Theorem of
Calculus for the Riemann integral, together with a corollary of the Mean Value
Theorem,

R
[a,x) f dm =

R x
a f (t) dt + c for all x and some constant c. Putting

x = a, we see that c = 0. Therefore theRiemann andLebesgue integrals coincide
for continuous functions on bounded intervals [a, b).

4. Properties of the Integral

In this section, (X,A, µ) continues to denote a measure space. Our objective
is to establish basic properties of the Lebesgue integral, including properties
that indicate how Lebesgue integration interacts with passages to the limit. The
properties that we establish will include all remaining properties needed to justify
the argument in Example 3 at the end of the previous section.

Proposition 5.15. The Lebesgue integral has these four properties:
(a) If f is a measurable function and µ(E) = 0, then

R
E f dµ = 0.

(b) If E and F are measurable sets with F ⊆ E and if f is a measurable func-
tion, then

R
F f + dµ ≤

R
E f + dµ and

R
F f − dµ ≤

R
E f − dµ. Consequently, ifR

E f dµ is defined, then so is
R
F dµ.

(c) If c is a constant function with its value in R∗, then
R
E c dµ = cµ(E).

(d) If
R
E f dµ is defined and if c is in R, then

R
E c f dµ is defined andR

E c f dµ = c
R
E f dµ. If f is integrable on E , then so is c f .

PROOF. In (a), it is enough to deal with f + and f − separately, and then it is
enough to handle s ∏ 0 simple. For such an s, Proposition 5.14 says that the
integral equals IE(s), and the definition shows that this is 0. In (b), Proposition
5.14 makes it clear that the inequalities are valid for any simple function ∏ 0,
and then the general case follows by taking the supremum first for 0 ≤ s ≤ f +

and then for 0 ≤ s ≤ f −. In (c), if 0 ≤ c < +∞, then c is simple, and the
integral equals IE(c) = cµ(E) by Proposition 5.14. If c = +∞, then the case
µ(E) = 0 follows from (a) and the caseµ(E) > 0 is handled by the observations
that

R
E c dµ ∏ IE(n) = nµ(E) and that the right side tends to +∞ as n tends

to +∞. For c ≤ 0, we have
R
E c dµ = −

R
E(−c) dµ by definition, and then

the result follows from the previous cases. In (d), we may assume, without loss
of generality, that f ∏ 0 and c ∏ 0. Then

R
E c f dµ = sup0≤s≤c f IE(s) =

sup0≤ct≤c f IE(ct) = c sup0≤t≤ f IE(t) = c
R
E f dµ, and (d) is proved. §

Proposition 5.16. If f and g are measurable functions, if their integrals over
E are defined, and if f (x) ≤ g(x) on E , then

R
E f dµ ≤

R
E g dµ.
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REMARK. Observe that the inequality f (x) ≤ g(x) is assumed only on E ,
despite the definitions that take into account values of a function everywhere on
X . This “localization” property of the integral is as one wants it to be.

PROOF. First suppose that f ∏ 0 and g ∏ 0. If s is any simple function with
0 ≤ s ≤ f , define t to equal s on E and to equal 0 off E . Then 0 ≤ t ≤ g, and
Lemma 5.13 gives IE(s) = IE(t) ≤

R
E g dµ. Hence

R
E f dµ ≤

R
E g dµ when

f ∏ 0 and g ∏ 0.
In the general case the inequality f (x) ≤ g(x) on E implies that f +(x) ≤

g+(x) on E and f −(x) ∏ g−(E) on E . The special case gives
R
E f + dµ ≤R

E g
+ dµ and

R
E f − dµ ∏

R
E g

− dµ. Subtracting these inequalities, we obtain
the desired result. §

Corollary 5.17. If f and g are measurable functions that are equal on E and
if

R
E f dµ is defined, then

R
E g dµ is defined and

R
E f dµ =

R
E g dµ.

PROOF. Apply Proposition 5.16 to the following inequalities on E , and then
sort out the results: f + ≤ g+, f + ∏ g+, f − ≤ g−, and f − ∏ g−. §

Corollary 5.18. If f is a measurable function, then f is integrable on E if
either

(a) there is a function g integrable on E such that | f (x)| ≤ g(x) on E , or
(b) µ(E) is finite and there is a real number c such that | f (x)| ≤ c on E .

PROOF. For (a), apply Proposition 5.16 to the inequalities f + ≤ g and f − ≤ g
valid on E . For (b), use the formula for

R
E c dµ in Proposition 5.15c and apply (a).

§

We turn our attention now to properties that indicate how Lebesgue integration
interacts with passages to the limit. These make essential use of the complete
additivity of themeasureµ. We shall bring this hypothesis to bear initially through
the following theorem.

Theorem5.19. Let f beafixedmeasurable function, and suppose that
R
X f dµ

is defined. Then the set function ρ(E) =
R
E f dµ is completely additive.

PROOF. We have ρ(∅) = 0 by Proposition 5.15a, since µ(∅) = 0. We shall
prove that if f ∏ 0, then ρ is completely additive. The general case follows
from this by applying the result to f + and f − separately and by using the fact
that

R
X f + dµ and

R
X f − dµ are not both infinite. Thus we are to show that if

E =
S∞

n=1 En disjointly and if f ∏ 0, then ρ(E) =
P∞

n=1 ρ(En).
For simple s ∏ 0 with canonical expansion s =

PN
n=1 cn IAn , the identity

IF(s) =
PN

n=1 cnµ(An ∩ F) and the complete additivity of µ show that IF(s) is
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a completely additive function of the set F . Thus for s simple with 0 ≤ s ≤ f ,
we have

IE(s) =
∞X

n=1
IEn (s) ≤

∞X

n=1
ρ(En).

ρ(E) = sup
0≤s≤ f

IE(s) ≤
∞X

n=1
ρ(En).Hence

We now prove the reverse inequality. By Proposition 5.15b, ρ(E) ∏ ρ(En)
for every n, since f = f +. Hence if ρ(En) = +∞ for any n, the desired result
is proved. Thus assume that ρ(En) < +∞ for all n. Let ≤ > 0 be given, and
choose simple functions t and u that are ∏ 0 and are ≤ f and have

IE1(t) ∏
Z

E1
f dµ − ≤ and IE2(u) ∏

Z

E2
f dµ − ≤.

Let s be the pointwise maximum s = max{t, u}. Then s is simple, and Lemma
5.13 gives IE1(s) ∏ IE1(t) and IE2(s) ∏ IE2(u). Consequently

ρ(E1 ∪ E2) =
Z

E1∪E2
f dµ ∏ IE1∪E2(s) = IE1(s) + IE2(s)

∏ IE1(t) + IE2(u) ∏
Z

E1
f dµ +

Z

E2
f dµ − 2≤

= ρ(E1) + ρ(E2) − 2≤.

Since ≤ is arbitrary, ρ(E1 ∪ E2) ∏ ρ(E1) + ρ(E2). By induction, we obtain
ρ(E1 ∪ · · · ∪ En) ∏ ρ(E1) + · · · + ρ(En) for every n, and thus ρ(E) ∏
ρ(E1) + · · · + ρ(En) by another application of Proposition 5.15b. Therefore
ρ(E) ∏

P∞
n=1 ρ(En), and the reverse inequality has been proved. §

We give five corollaries that are consequences of Corollary 5.17 and Theorem
5.19. The first three make use only of additivity, not of complete additivity.

Corollary 5.20. If
R
E f dµ is defined, then

R
X IE f dµ is defined and equalsR

E f dµ.

PROOF. It is sufficient to handle f + and f − separately. Then both integrals are
defined, and

R
E f dµ =

R
E IE f dµ +

R
Ec 0 dµ =

R
E IE f dµ +

R
Ec IE f dµ =R

X IE f dµ. §
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Corollary 5.21. If
R
E f dµ is defined, then

Ø
Ø R

E f dµ
Ø
Ø ≤

R
E | f | dµ. If f is

integrable on E , so is | f |.

PROOF. Let E1 = E ∩ f −1([0,+∞]) and E2 = E ∩ f −1([−∞, 0)). Then
use of the triangle inequality gives

Ø
Ø R

E f dµ
Ø
Ø =

Ø
Ø R

E1 f
+ dµ −

R
E2 f

− dµ
Ø
Ø ≤

R
E1 f

+ dµ +
R
E2 f

− dµ

=
R
E1 | f | dµ +

R
E2 | f | dµ =

R
E | f | dµ.

If f is integrable on E , both
R
E1 f

+ dµ and
R
E2 f

− dµ are finite. Their sum isR
E | f | dµ. §

Corollary 5.22. If f is a measurable function and µ(E 1 F) = 0, thenR
E f dµ =

R
F f dµ, provided one of the integrals exists.

PROOF. Without loss of generality, we may assume that f ∏ 0. Then both
integrals are defined. Since E 1 F = (E − F)∪ (F − E), we have µ(E − F) =
µ(F − E) = 0. Then Theorem 5.19 and Proposition 5.15a give

R
E f dµ =R

E−F f dµ +
R
E∩F f dµ = 0 +

R
E∩F f dµ =

R
F−E f dµ +

R
E∩F f dµ =R

F f dµ. §

Corollary5.23. If f is ameasurable functionand if the set A =
©
x

Ø
Ø f (x) 6= 0

™

has µ(A) = 0, then
R
X f dµ = 0. Conversely if f is measurable, is∏ 0, and hasR

X f dµ = 0, then A =
©
x

Ø
Ø f (x) 6= 0

™
has µ(A) = 0.

REMARKS. When a set where some condition fails to hold has measure 0, one
sometimes says that the condition holds almost everywhere, or a.e., or at almost
every point. If there is any ambiguity about what measure is being referred
to, one says “a.e. [dµ].” Thus the conclusion in the converse half of the above
proposition is that f is zero a.e. [dµ].

PROOF. For the first statement, Corollary 5.20 gives
R
X f dµ =

R
X IA f dµ =R

A f dµ = 0. Conversely let An = f −1°£ 1
n ,+∞

§¢
. This is a measurable

set. Since f is ∏ 0, A =
S∞

n=1 An . Proposition 5.1g and complete additivity
of µ give µ(A) ≤

P∞
n=1 µ(An). If µ(An) > 0 for some n, then

R
X f dµ =R

An f dµ+
R
Acn
f dµ ∏

R
An

1
n dµ = 1

n µ(An) > 0, andwe obtain a contradiction.
We conclude that µ(An) = 0 for all n and hence that µ(A) = 0. §

Corollary 5.24. If f ∏ 0 is an integrable function on X , then for any ≤ > 0,
there exists a δ > 0 such that

R
E f dµ ≤ ≤ for every measurable set E with

µ(E) ≤ δ.
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PROOF. Let ≤ > 0 be given. If N > 0 is an integer, then the sets SN =©
x ∈ X

Ø
Ø f (x) ∏ N

™
form a decreasing sequence whose intersection is S =©

x ∈ X
Ø
Ø f (x) = +∞

™
. Since f is integrable,µ(S) = 0 and therefore

R
S f dµ =

0. The finiteness of
R
X f dµ, together with Corollary 5.3 and the complete

additivity of E 7→
R
E f dµ given in Theorem 5.19, implies that limN

R
SN f dµ =

0. Choose N large enough so that
R
SN f dµ ≤ ≤/2, and then choose δ = ≤/(2N ).

If µ(E) ≤ δ, then
R
E f dµ =

R
SN∩E f dµ +

R
ScN∩E f dµ

≤
R
SN f dµ +

R
ScN∩E N dµ ≤ ≤/2+ Nµ(E) ≤ ≤/2+ ≤/2 = ≤,

and the proof is complete. §

In a number of the remaining results in the section, a sequence { fn} of mea-
surable functions converges pointwise to a function f . Corollary 5.10 assures
us that f is measurable. Suppose that

R
E fn dµ exists for each n. Is it true thatR

E f dµ exists, is it true that limn
R
E fn dµ exists, and if both exist, are they

equal? Once again we encounter an interchange-of-limits problem, and there
is no surprise from the general fact: all three answers can be “no” in particular
cases. Examples of the failure of the limit of the integral to equal the integral of
the limit are given below. After giving the examples, we shall discuss theorems
that give “yes” answers under additional hypotheses.

EXAMPLES.
(1) Let X be the set of positive integers, let A consist of all subsets of X , and

let µ be counting measure. A measurable function f is a sequence { f (k)} with
values inR∗. Define a sequence { fn} of measurable functions for n ∏ 1 by taking

fn(k) =

Ω 1/n if k ≤ n,
0 if k > n.

Then
R
X fn dµ = 1 for all n, lim fn = 0 pointwise, and

Z

X
lim fn dµ < lim

Z

X
fn dµ.

(2) Let themeasure space be X = R1 with theBorel sets andLebesguemeasure
m. Define

fn(x) =

Ω n for 0 < x < 1/n,
0 otherwise.

Then the same phenomenon results, and everything of interest is taking place
within [0, 1]. So the difficulty in the previous example does not result from the
fact that X has infinite measure.
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Theorem 5.25 (Monotone Convergence Theorem). Let E be a measurable
set, and suppose that { fn} is a sequence of measurable functions that satisfy

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · ·

for all x . Put f (x) = limn fn(x), the limit being taken in R∗. Then
R
E f dµ and

limn
R
E fn dµ both exist, and

Z

E
f dµ = lim

n→∞

Z

E
fn dµ.

REMARKS. This theorem generalizes Corollary 1.14, which is the special case
of the Monotone Convergence Theorem in which X is the set of positive integers,
every subset is measurable, and µ is counting measure. In the general setting of
the Monotone Convergence Theorem, one of the by-products of the theorem is
that we obtain an easier way of dealing with the definition of

R
E f dµ for f ∏ 0.

Instead of using the totality of simple functions between 0 and f , we may use
a single increasing sequence with pointwise limit f , such as the one given by
Proposition 5.11. The proof of Proposition 5.26 below will illustrate how we can
take advantage of this fact.
PROOF. Since f is the pointwise limit of measurable functions and is ∏ 0, f

is measurable and
R
E f dµ exists in R∗. Since { fn(x)} is monotone increasing

in n, the same is true of
© R

E fn dµ
™
. Therefore limn

R
E fn dµ exists in R∗. Let

us call this limit k. For each n,
R
E fn dµ ≤

R
E f dµ because fn ≤ f . Therefore

k ≤
R
E f dµ, and the problem is to prove the reverse inequality.

Let c be any real number with 0 < c < 1, to be regarded as close to 1, and let
s be a simple function with 0 ≤ s ≤ f . Define

En =
©
x ∈ E

Ø
Ø fn(x) ∏ cs(x)

™
.

These sets are measurable, and E1 ⊆ E2 ⊆ E3 ⊆ · · · ⊆ E . Let us see that
E =

S∞
n=1 En . If f (x) = 0 for a particular x in E , then fn(x) = 0 for all n

and also cs(x) = 0. Thus x is in every En . If f (x) > 0, then the inequality
f (x) ∏ s(x) forces f (x) > cs(x). Since fn(x) has increasing limit f (x), fn(x)
must be > cs(x) eventually, and then x is in En . In either case x is in

S∞
n=1 En .

Thus E =
S∞

n=1 En .
For every n, we have

k ∏
Z

E
fn dµ ∏

Z

En
fn dµ ∏

Z

En
cs dµ = c

Z

En
s dµ.

Since, by Theorem 5.19, the integral is a completely additive set function, Propo-
sition 5.2 shows that lim

R
En s dµ =

R
E s dµ. Therefore k ∏ c

R
E s dµ. Since

c is arbitrary with 0 < c < 1, k ∏
R
E s dµ. Taking the supremum over s with

0 ≤ s ≤ f , we conclude that k ∏
R
E f dµ. §
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Proposition 5.26. If f and g are measurable functions, if their sum h = f +g
is everywhere defined, and if

R
E f dµ +

R
E g dµ is defined, then

R
E h dµ is

defined and Z

E
h dµ =

Z

E
f dµ +

Z

E
g dµ.

REMARK. It may seem surprising that complete additivity plays a role in the
proof of this proposition, since it apparently played no role in the linearity of the
Riemann integral. In fact, although complete additivity is used when f and g
are unbounded, it can be avoided when f and g are bounded, as will be observed
in Problems 42–43 at the end of the chapter. The distinction between the two
cases is that the pointwise convergence in Proposition 5.11 is actually uniform if
the given function is bounded, whereas it cannot be uniform for an unbounded
function because the uniform limit of bounded functions is bounded.

PROOF. The sum h is measurable by Proposition 5.7. For the conclusions
about integration, first assume that f ∏ 0 and g ∏ 0. In the case of simple
functions s = t + u with t ∏ 0 and u ∏ 0, we use Proposition 5.14 and Lemma
5.12. The proposition shows that we are to prove that IE(s) = IE(t) + IE(u),
and the lemma shows that we can use expansions of t and u into sets on which
t and u are both constant and the conclusion about IE(s) is evident. If f and
g are ∏ 0 and are not necessarily simple, then we can use Proposition 5.11 to
find increasing sequences {tn} and {un} of simple functions ∏ 0 with limits f
and g. If sn = tn + un , then sn is nonnegative simple, and {sn} increases to
h. For each n, we have just proved that

R
E sn dµ =

R
E tn dµ +

R
E un dµ, and

therefore
R
E h dµ =

R
E f dµ+

R
E g dµ by theMonotone Convergence Theorem

(Theorem 5.25).
The next case is that f ∏ 0, g ≤ 0, and h = f + g ∏ 0. Then f =

h + (−g) with h ∏ 0 and (−g) ∏ 0, so that
R
E f dµ =

R
E h dµ +

R
E(−g) dµ.

Hence
R
E h dµ =

R
E f dµ +

R
E g dµ, provided the right side is defined.

For a general h ∏ 0, we decompose E into the disjoint union of three sets,
one where f ∏ 0 and g ∏ 0, one where f ∏ 0 and g < 0, and one where f < 0
and g ∏ 0. The additivity of the integral as a set function (Theorem 5.19), in
combination with the cases that we have already proved, then gives the desired
result. Finally for general h, we have only to write h = h+ − h− and consider
h+ and h− separately. §

Corollary 5.27. Let E be a measurable set, and let { fn} be a sequence
of measurable functions ∏ 0. Put F(x) =

P∞
n=1 fn(x). Then

R
E F dµ =P∞

n=1
R
E fn dµ.

PROOF. Apply Proposition 5.26 to the nth partial sum of the series, and then
use the Monotone Convergence Theorem (Theorem 5.25). §
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The next corollary is given partly to illustrate a standard technique for passing
from integration results about indicator functions to integration results about
general functions. This technique is used again and again in measure theory.

Corollary 5.28. If f ∏ 0 is a measurable function and if ∫ is the measure
∫(E) =

R
E f dµ, then

R
E g d∫ =

R
E g f dµ for every measurable function g for

which at least one side is defined.
REMARKS. The set function ∫ is a measure by Theorem 5.19. In the situation

of this corollary, we shall write ∫ = f dµ.
PROOF. By Corollary 5.20 it is enough to prove that

Z

X
g d∫ =

Z

X
g f dµ. (∗)

For g = IE , (∗) is true by hypothesis. Proposition 5.26 shows that (∗) extends to
be valid for simple functions g ∏ 0. For general g ∏ 0, Proposition 5.11 produces
an increasing sequence {sn} of simple functions∏ 0 with pointwise limit g. Then
(∗) for this g follows from the result for simple functions in combination with
monotone convergence. For general g, write g = g+ − g−, apply (∗) for g+ and
g−, and subtract the results using Proposition 5.26. §

Theorem 5.29 (Fatou’s Lemma). If E is a measurable set and if { fn} is a
sequence of nonnegative measurable functions, then

Z

E
lim inf

n
fn dµ ≤ lim inf

n

Z

E
fn dµ.

In particular, if f (x) = limn fn(x) exists for all x , then
Z

E
f dµ ≤ lim inf

n

Z

E
fn dµ.

REMARK. Fatou’s Lemma applies to both examples that precede theMonotone
Convergence Theorem (Theorem 5.25), and strict inequality holds in both cases.
PROOF. Set gn(x) = infk∏n fk(x). Then limn gn(x) = lim inf fn(x), and the

Monotone Convergence Theorem (Theorem 5.25) gives
Z

E
lim inf

n
fn dµ =

Z

E
lim
n
gn dµ = lim

n

Z

E
gn dµ.

But gn(x) ≤ fn(x) pointwise, so that
R
E gn dµ ≤

R
E fn dµ for all n. Thus

lim
Z

E
gn dµ ≤ lim inf

Z

E
fn dµ,

and the theorem follows. §
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Theorem 5.30 (Dominated Convergence Theorem). Let E be a measurable
set, and suppose that { fn} is a sequence of measurable functions such that for
some integrable g, | fn| ≤ g for all n. If f = lim fn exists pointwise, then
limn

R
E fn dµ exists, f is integrable on E , and

Z

E
f dµ = lim

n

Z

E
fn dµ.

PROOF. The set on which g is infinite has measure 0, since g is integrable. If
we redefine g, fn , and f to be 0 on this set, we change no integrals and we affect
the validity of neither the hypotheses nor the conclusion.
By Corollary 5.18, f is integrable on E , and so is fn for every n. Applying

Fatou’s Lemma (Theorem 5.29) to fn + g ∏ 0, we obtain
R
E( f + g) dµ ≤

lim inf
R
E( fn +g) dµ. Since g is integrable and everywhere finite, this inequality

becomes Z

E
f dµ ≤ lim inf

Z

E
fn dµ.

A second application of Fatou’s Lemma, this time to g − fn ∏ 0, givesR
E(g − f ) dµ ≤ lim inf

R
E(g − fn) dµ. Thus

−
Z

E
f dµ ≤ lim inf

Z

E
(− fn) dµ

Z

E
f dµ ∏ lim sup

Z

E
fn dµ.and

Therefore lim
R
E fn dµ exists and has the value asserted. §

Corollary 5.31. Let E be a set of finitemeasure, let c ∏ 0 be inR, and suppose
that { fn} is a sequence of measurable functions such that | fn| ≤ c for all n. If
f = lim fn exists pointwise, then lim

R
E fn dµ exists, f is integrable on E , and

Z

E
f dµ = lim

n

Z

E
fn dµ.

PROOF. This is the special case g = c in Theorem 5.30. §

5. Proof of the Extension Theorem

In this section we shall prove the Extension Theorem, Theorem 5.5. After the
end of the proof, we shall fill in one further detail left from Section 1—to show
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that a measure on a σ -ring has a canonical extension to a measure on the smallest
σ -algebra containing the given σ -ring.
Most of this sectionwill concern the proof of theExtensionTheorem in the case

that X is measurable and ∫(X) is finite. Thus, until further notice, let us assume
that X is a nonempty set,A is an algebra of subsets of X , and ∫ is a nonnegative
completely additive set function defined on A such that ∫(X) < +∞.
In a way, the intuition for the proof is typical of that for many existence-

uniqueness theorems in mathematics: to see how to prove existence, we assume
existence and uniqueness outright, see what necessary conditions each of the
assumptions puts on the object to be constructed, and then begin the proof.
With the present theorem in the case that ∫(X) is finite, we shall assign to each

subset E of X an upper bound µ∗(E) and a lower bound µ∗(E) for the value of
the extended measure on the set E . If the existence half of the theorem is valid,
we must have µ∗(E) ≤ µ∗(E) for E in the smallest σ -algebra containing A. In
fact, we shall see that this inequality holds for all subsets E of X . On the other
hand, if µ∗(E) < µ∗(E) for some E in the σ -algebra of interest and if our upper
and lower bounds are good estimates, we might expect that there is more than one
way to define the extended measure on E , in contradiction to uniqueness. That
thought suggests trying to prove thatµ∗(E) = µ∗(E) for the sets of interest. One
way of doing so is to try to prove that the class of subsets for which this equality
holds is a σ -algebra containing A, and then the common value of µ∗ and µ∗ is
the desired extension.
This procedure in fact works, and the only subtlety is in the definitions of

µ∗(E) and µ∗(E). We give these definitions after one preliminary lemma that
will make µ∗ and µ∗ well defined. For orientation, think of the setting as the
unit interval [0, 1], with Lebesgue measure to be extended from the elementary
sets to the Borel sets. In this case the families U andK in the first lemma contain
all the open sets and all the compact sets, respectively, and may be regarded as
generalizations of these collections of sets.

Lemma 5.32. Let U be the class of all countable unions of sets in A, and let
K be the class of all countable intersections of sets in A. Then µ∗ and µ∗ are
consistently defined on U and K, respectively, by letting

µ∗(U) = lim ∫(An) and µ∗(K ) = lim ∫(Cn)

whenever {An} is an increasing sequence of sets inA with unionU and {Cn} is a
decreasing sequence of sets inAwith intersection K . Moreover, µ∗ and µ∗ have
the following properties:

(a) µ∗ and µ∗ agree with ∫ on sets of A,
(b) µ∗(U) ≤ µ∗(V ) whenever U is in U, V is in U, and U ⊆ V ,
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(c) µ∗(K ) ≤ µ∗(L) whenever K is in K, L is in K, and K ⊆ L ,
(d) limµ∗(Un) = µ∗(U) whenever {Un} is an increasing sequence of sets in

U with union U .
PROOF. If {Bn} is another increasing sequence in A with union U , then

Proposition 5.2 and Theorem 1.13 give

lim
m

∫(Am) = lim
m

°
lim
n

∫(Am ∩ Bn)
¢

= lim
n

°
lim
m

∫(Am ∩ Bn)
¢

= lim
n

∫(Bn).

Hence µ∗ is consistently defined on U. Similarly if {Dn} decreases to K , then
Corollary 5.3 and Theorem 1.13 give

∫(X) − lim
m

∫(Cm) = ∫(X) − lim
m

°
lim
n

∫(Cm ∩ Dn)
¢

= ∫(X) − lim
n

°
lim
m

∫(Cm ∩ Dn)
¢

= ∫(X) − lim
n

∫(Dn),

and hence limm ∫(Cm) = limn ∫(Dn). Thus µ∗ is consistently defined onK. The
set functions µ∗ and µ∗ are defined on all of U and K because a set that is a
countable union (or intersection) of sets in an algebra is a countable increasing
union (or decreasing intersection).
Of the four properties, (a) is clear, and (b) and (c) follow from the inequalities

µ∗(U) = sup
A⊆U, A∈A

∫(A) ≤ sup
A⊆V, A∈A

∫(A) = µ∗(V )

µ∗(K ) = inf
A⊇K , A∈A

∫(A) ≤ inf
A⊇L , A∈A

∫(A) = µ∗(L).and

In (d), U is in U, since the countable union of countable unions is again a
countable union, and (b) shows that limµ∗(Un) ≤ µ∗(U). For each n, let {A(n)

m }
be an increasing sequence of sets from A with union Un . Arrange all the A(n)

m in
a sequence, and let Bk denote the union of the first k members of the sequence.
Then {Bk} is an increasing sequence with union U . Let ≤ > 0 be given, and
choose M large enough so thatµ∗(BM) ∏ µ∗(U)−≤. Since the setsUn increase,
since BM is a finite union of sets A(n)

m , and since A(n)
m ⊆ Un , we must have

µ∗(UN ) ∏ µ∗(BM) for some N . But then

limµ∗(Un) ∏ µ∗(UN ) ∏ µ∗(BM) ∏ µ∗(U) − ≤.

Since ≤ is arbitrary, limµ∗(Un) ∏ µ∗(U). §

For each subset E of X , we define

µ∗(E) = inf
U⊇E,U∈U

µ∗(U) and µ∗(E) = sup
K⊆E, K∈K

µ∗(K ).

Conclusions (b) and (c) of Lemma5.32 show that the new definitions ofµ∗ andµ∗

are consistent with the old ones. The set functionsµ∗ andµ∗ on arbitrary subsets
E of X may be called the outer measure and the inner measure associated to ∫.
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Lemma 5.33. If A and B are subsets of X with A ⊆ B, then µ∗(A) ≤ µ∗(B)
and µ∗(A) ≤ µ∗(B). In addition,

(a) if E ⊆
S∞

n=1 En , then µ∗(E) ≤
P∞

n=1 µ∗(En),
(b) if F and G are disjoint, then µ∗(F) + µ∗(G) ≤ µ∗(F ∪ G).

PROOF. Since µ∗(A) is an infimum over a larger class of sets than µ∗(B) is,
we have µ∗(A) ≤ µ∗(B). Similarly µ∗(A) ≤ µ∗(B).
For (a), let E ⊆

S∞
n=1 En . In the special case in which En is in U for all n,

let {F (n)
m } be, for fixed n and varying m, an increasing sequence of sets inA with

union En . For any N , we then have
S∞

m=1(F
(1)
m ∪ · · · ∪ F (N )

m ) = E1 ∪ · · · ∪ EN .
Hence

µ∗(E) ≤ µ∗
≥ ∞[

n=1
En

¥
= lim

N
µ∗

≥ N[

n=1
En

¥
by Lemma 5.32d

= lim
N

µ∗
≥ ∞[

m=1
(F (1)

m ∪ · · · ∪ F (N )
m )

¥

= lim
N
lim
m

∫(F (1)
m ∪ · · · ∪ F (N )

m ) by definition of µ∗ on U

≤ lim
N
lim
m

NX

n=1
∫(F (n)

m ) by Proposition 5.1f

= lim
N

NX

n=1
µ∗(En) =

∞X

n=1
µ∗(En).

For general subsets En of X , choose Un in U with Un ⊇ En and µ∗(Un) ≤
µ∗(En) + ≤/2n . Then E ⊆

S
n Un , and the special case applied to the Un shows

that
µ∗(E) ≤ µ∗°[

n
Un

¢
≤

X

n
µ∗(Un) ≤

X

n
µ∗(En) + ≤.

Hence µ∗(E) ≤
P

n µ∗(En), and (a) is proved.
For (b), let F and G be disjoint. In the special case in which F and G are in

K, let {Fn} and {Gn} be decreasing sequences of sets in A with intersections F
and G. Then

µ∗(F ∪ G) = lim ∫(Fn ∪ Gn) by definition of µ∗ on K
= lim

°
∫(Fn) + ∫(Gn) − ∫(Fn ∩ Gn)

¢
by Proposition 5.1b

= µ∗(F) + µ∗(G),

the last step holding by Corollary 5.3, since F ∩G is empty. For general disjoint



5. Proof of the Extension Theorem 293

subsets F and G in X , choose K and L in K with K ⊆ F , L ⊆ G, µ∗(K ) ∏
µ∗(F) − ≤, and µ∗(L) ∏ µ∗(G) − ≤. Then

µ∗(F ∪ G) ∏ µ∗(K ∪ L) = µ∗(K ) + µ∗(L) ∏ µ∗(F) + µ∗(G) − 2≤,

themiddle step holding by the special case. Henceµ∗(F∪G) ∏ µ∗(F)+µ∗(G),
and (b) is proved. §

Lemma 5.34. For every subset E of X , µ∗(E) ≤ µ∗(E). Equality holds if E
is in U or K.

PROOF. The proof is in three steps.
First we prove that if U is in U and K is in K, then µ∗(U) ≤ µ∗(U) and

µ∗(K ) ≤ µ∗(K ). In fact, choose C in A with C ⊆ U and µ∗(U) ≤ ∫(C) + ≤.
Then µ∗(U) ≤ ∫(C) + ≤ ≤ µ∗(U) + ≤ by Lemma 5.33 since C ⊆ U . Hence
µ∗(U) ≤ µ∗(U). Similarly choose D inAwith D ⊇ K andµ∗(K ) ∏ ∫(D)−≤.
Then µ∗(K ) ∏ ∫(D) − ≤ ∏ µ∗(K ) − ≤, and hence µ∗(K ) ∏ µ∗(K ).
Second we prove that if K is in K, then µ∗(K ) = µ∗(K ). In fact, choose C

in A with C ⊇ K and ∫(C) − µ∗(K ) ≤ ≤. Then C − K is in U, and

µ∗(K ) ≤ ∫(C) ≤ µ∗(C − K ) + µ∗(K ) by Lemma 5.33a
≤

°
µ∗(C − K ) + µ∗(K )

¢
− µ∗(K ) + µ∗(K ) by the previous step

≤ ∫(C) − µ∗(K ) + µ∗(K ) by Lemma 5.33b
≤ µ∗(K ) + ≤ by the choice of C .

Combining this inequality with the previous step, we see that µ∗(K ) = µ∗(K ).
Third we prove that µ∗(E) ≤ µ∗(E) for every E . In fact, find K in K and U

in U with K ⊆ E ⊆ U , µ∗(K ) ∏ µ∗(E) − ≤, and µ∗(U) ≤ µ∗(E) + ≤. Then
µ∗(E) ≤ µ∗(K ) + ≤ = µ∗(K ) + ≤ ≤ µ∗(U) + ≤ ≤ µ∗(E) + 2≤, and the proof
is complete. §

Define a subset E of X to be measurable for purposes of this section if
µ∗(E) = µ∗(E), and let B be the class of measurable subsets of X . Lemma 5.34
shows that U and K are both contained in B.

Lemma 5.35. If U is in U and K is in K with K ⊆ U , then

µ∗(U − K ) = µ∗(U) − µ∗(K ).

If E is measurable, then for any ≤ > 0, there are sets K in K and U in U with
K ⊆ E ⊆ U and

µ∗(E − K ) ≤ µ∗(U − K ) ≤ ≤.
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PROOF. For the first conclusion, U − K is in U and hence µ∗(U − K ) =
µ∗(U − K ) = µ∗(U) − µ∗(K ) = µ∗(U) − µ∗(K ) by Lemma 5.34, Lemma
5.33b, and Lemma 5.34 again.
For the second conclusion choose K in K and U in U with K ⊆ E ⊆ U ,

µ∗(K ) + ≤
2 ∏ µ∗(E), and µ∗(E) ∏ µ∗(U) − ≤

2 . Since µ∗(E) = µ∗(E) by
the assumed measurability, we see that µ∗(K ) + ≤

2 ∏ µ∗(U) − ≤
2 , hence that

µ∗(U) − µ∗(K ) ≤ ≤. The result now follows from Lemma 5.33 and the first
conclusion of the present lemma. §

Lemma 5.36. The classB of measurable sets is a σ -algebra containingA, and
the restriction of µ∗ to B is a measure.
PROOF. Certainly B ⊇ A. The rest of the proof is in three steps.
First we prove that the intersection of two measurable sets is measurable. In

fact, let F andG be in B, and use Lemma 5.35 to choose K ⊆ F and L ⊆ G with
µ∗(F−K ) ≤ ≤ andµ∗(G−L) ≤ ≤. Since F∩G ⊆ (F−K )∪(K∩L)∪(G−L),

µ∗(F ∩ G)

≤ µ∗(F − K ) + µ∗(K ∩ L) + µ∗(G − L) by Lemma 5.33a
≤ µ∗(K ∩ L) + 2≤ by definition of K and L
= µ∗(K ∩ L) + 2≤ by Lemma 5.34
≤ µ∗(F ∩ G) + 2≤ since K ∩ L ⊆ F ∩ G.

Second we prove that the complement of a measurable set is measurable. Let
E be measurable. By Lemma 5.35 choose K in K and U in U with K ⊆ E ⊆ U
and µ∗(U − K ) ≤ ≤. Since Uc ⊆ Ec ⊆ Kc and Kc −Uc = U − K , we have

µ∗(Ec) ≤ µ∗(Kc −Uc) + µ∗(Uc) by Lemma 5.33a
= µ∗(U − K ) + µ∗(Uc) since Uc is in K
≤ ≤ + µ∗(Ec).

Thus the complement of a measurable set is measurable, and B is an algebra of
sets.
Third we prove that the countable disjoint union of measurable sets is measur-

able, and µ∗ is a measure on B. In fact, let {En} be a sequence of disjoint sets in
B. Application of Lemma 5.33a, Lemma 5.33b, and Lemma 5.34 gives

µ∗
≥ ∞[

n=1
En

¥
≤

∞X

n=1
µ∗(En) =

∞X

n=1
µ∗(En) = lim

N

NX

n=1
µ∗(En)

≤ lim
N

µ∗

≥ N[

n=1
En

¥
≤ µ∗

≥ ∞[

n=1
En

¥
≤ µ∗

≥ ∞[

n=1
En

¥
.
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The end members of this chain of inequalities are equal, and thus equality must
hold throughout: µ∗(

S
n En) = µ∗(

S
n En) =

P
µ∗(En). Consequently

S
n En

is measurable, and µ∗ is completely additive. §

PROOF OF THEOREM 5.5 UNDER THE SPECIAL HYPOTHESES. We continue to
assume that the given ring of subsets of X is an algebra and that ∫(X) is finite.
Define B to be the class of measurable sets in the previous construction. Then
Lemma 5.36 shows that B is a σ -algebra containing A. Hence B contains the
smallest σ -algebra C containing A. Lemma 5.36 shows also that the restriction
of µ∗ to C is a measure extending ∫. This proves existence of the extension under
the special hypotheses.
For uniqueness, suppose that µ0 is an extension of ∫ to C. Proposition 5.2

and Corollary 5.3 show that µ0 has to agree with µ∗ on U and with µ∗ on K. If
K ⊆ E ⊆ U with K in K and U in U, then we have

µ∗(K ) = µ0(K ) ≤ µ0(E) ≤ µ0(U) = µ∗(U).

Taking the supremum over K and the infimum over U gives µ∗(E) ≤ µ0(E) ≤
µ∗(E). Since E is in B, µ∗(E) = µ∗(E), and we see that µ0(E) = µ∗(E).
Thus µ0 coincides with the restriction of µ∗ to C. This proves uniqueness of the
extension under the special hypotheses. §

Now we return to the general hypotheses of Theorem 5.5—thatR is a ring of
subsets of X , that ∫ is a nonnegative completely additive set function on R, and
that ∫ is σ -finite—and we shall complete the proof that ∫ extends uniquely to a
measure on the smallest σ -ring C containingR.

PROOF OF THEOREM 5.5 IN THE GENERAL CASE. If S is an element ofR with
∫(S) finite, define S ∩R =

©
S ∩ R

Ø
Ø R ∈ R

™
. Then (S, S ∩R, ∫

Ø
Ø
S∩R) is a set

of data satisfying the special hypotheses of the Extension Theorem considered
above. By the special case, if CS denotes the smallest σ -algebra of subsets of S
containing S∩R, then ∫

Ø
Ø
S∩R has a unique extension to a measureµS on CS . The

measures µS have a certain consistency property because of the uniqueness: if
S0 ⊆ S, then µS

Ø
Ø
S0∩R = µS0 .

Now let {Sn} be a sequence of sets in R with union S in C and with ∫(Sn)
finite for all n. Possibly replacing each set Sn by the difference of Sn and all
previous Sk’s, we may assume that the sequence is disjoint. We define µS on
the σ -algebra S ∩ C of subsets S by µS(E) =

P
n µSn (E ∩ Sn) for E in S ∩ C.

Let us check that µS is unambiguously defined and is completely additive. If
{Tm} is another sequence of sets in R with union S and with ∫(Tm) finite for
all m, then the corresponding definition of a set function on S ∩ C is µ0

S(E) =P
m µTm (E ∩ Tm). The consistency property from the previous paragraph gives



296 V. Lebesgue Measure and Abstract Measure Theory

us µSn (E ∩ Sn ∩ Tm) = µTm (E ∩ Sn ∩ Tm). Then Corollary 1.15 allows us to
write

µ0
S(E) =

X

m
µTm (E ∩ Tm) =

X

m

X

n
µTm (E ∩ Sn ∩ Tm)

=
X

m

X

n
µSn (E ∩ Sn ∩ Tm) =

X

n

X

m
µSn (E ∩ Sn ∩ Tm)

=
X

n
µSn (E ∩ Sn) = µS(E),

and we see that µS is unambiguously defined. To check that µS is completely
additive, let F1, F2, . . . be a disjoint sequence of sets in S∩Cwith union F . Then
the complete additivity of µSn , in combination with Corollary 1.15, gives

µS(F) =
X

n
µSn (F ∩ Sn) =

X

n

X

m
µSn (Fm ∩ Sn)

=
X

m

X

n
µSn (Fm ∩ Sn) =

X

m
µS(Fm),

and thus µS is completely additive.
The measures µS are consistent on their common domains. To see the consis-

tency, let us see thatµS andµT agree on subsets of S∩T . Let S be the countable
disjoint union of sets Sn inR, and let T be the countable disjoint union of sets Tm
in R. Then S ∩ T is the countable disjoint union of the sets Sn ∩ Tm . If E is in
(S∩T )∩C, then Corollary 1.15 and the consistency property of the set functions
µR for R inR yield

µS(E) =
X

n
µSn (E ∩ Sn) =

X

n
µSn (E ∩ Sn ∩ T )

=
X

n

X

m
µSn (E ∩ Sn ∩ Tm) =

X

n

X

m
µSn∩Tm (E ∩ Sn ∩ Tm)

=
X

m

X

n
µSn∩Tm (E ∩ Sn ∩ Tm) =

X

m

X

n
µTm (E ∩ Sn ∩ Tm)

=
X

m
µTm (E ∩ S ∩ Tm) =

X

m
µTm (E ∩ Tm) = µT (E).

Hence the measures µS are consistent on their common domains.
IfM denotes the set of subsets of X that are contained in a countable union

of members of R on which ∫ is finite, thenM is closed under countable unions
and differences and is thus a σ -ring containingR. It therefore contains C, and we
conclude that every member of C is contained in a countable union of members of
R on which ∫ is finite. It follows that we can define µ on all of C as follows: if E
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is in C, then E is contained in some countable union S of members ofR on which
∫ is finite, and we define µ(E) = µS(E). We have seen that the measures µS
are consistently defined, and hence µ(E) is well defined. If a countable disjoint
union E =

S∞
N=1 En of sets in C is given, then all the sets in question lie in a

single S, and we then have µ(E) = µS(E) =
P∞

n=1 µS(En) =
P∞

n=1 µ(En). In
other words, µ is completely additive. This proves existence.
For uniqueness let E be given in C, and suppose that S is a member of C

containing E and equal to the countable disjoint union of sets Sn inRwith ∫(Sn)
finite for all n. We have seen that the value of µ(E ∩ Sn) = µSn (E ∩ Sn) is
determined by ∫

Ø
Ø
Sn∩R, hence by ∫ on R. By complete additivity of µ, µ(E) is

determined by the values of µ(E ∩ Sn) for all n. Therefore µ on C is determined
by ∫ onR. This proves uniqueness. §

Aswas promised, we shall now fill in one further detail left from Section 1—to
show that a measure on a σ -ring has a canonical extension to a measure on the
smallest σ -algebra containing the given σ -ring.

Proposition 5.37. Let R be a σ -ring of subsets of a nonempty set X , let Rc
be the set of complements in X of the members of R, and let A be the smallest
σ -algebra containingR. Then either

(i) R = Rc = A or
(ii) R ∩Rc = ∅ and A = R ∪Rc.

In the latter case any measure µ on R has a canonical extension to a measure
µ1 on A given by µ1(E) = sup

©
µ(F)

Ø
Ø F ∈ R and F ⊆ E

™
for E in Rc.

This canonical extension has the property that any other extension µ2 satisfies
µ2 ∏ µ1.

PROOF. If X is in R, then R is closed under complements, since R is closed
under differences; hence R = Rc = A. If X is not in R, then R ∩ Rc = ∅
because any set E in the intersection has Ec in the intersection and then also
X = E ∪ Ec in the intersection. In this latter case it is plain that A ⊇ R ∪Rc.
Thus (ii) will be the only alternative to (i) if it is proved that B = R ∪ Rc is
a σ -algebra. Certainly B is closed under complements. To see that B is closed
under countable unions, we may assume, because R is a σ -ring, that we are to
check the union of countably many sets with at least one in Rc. Thus let {En}
be a sequence of sets in R, and let {Fn} be a sequence of sets in Rc. Then
E =

S∞
n=1 En is inR and F =

T∞
n=1 Fc

n is inR, sinceR is a σ -ring. The union
of the sets En and Fn in question is E ∪ Fc = (F − E)c, is exhibited as the
complement of the difference of two sets inR, and is therefore inRc. ThusA is
closed under countable unions and is a σ -algebra.



298 V. Lebesgue Measure and Abstract Measure Theory

In the case of (ii), let us see that µ1 is a measure on A. If we are to check
the measure of a disjoint sequence of sets inA, there is no problem if all the sets
are in R, since µ1

Ø
ØR = µ is completely additive. There cannot be as many as

two of the sets in Rc because no two sets F1 and F2 in Rc are disjoint; in fact,
F1 ∩ F2 = (Fc

1 ∪ Fc
2 )

c exhibits the intersection as in Rc, and the empty set is
not a member of Rc. Thus we may assume that the disjoint sequence consists
of a sequence {En} of sets in R and a single set F in Rc. If E =

S∞
n=1 En ,

then µ1(E) = µ(E) =
P∞

n=1 µ(En) =
P∞

n=1 µ1(En). So it is enough to see
that µ1(E ∪ F) = µ(E) + µ1(F). If E 0 is a subset of F that is in R, then
µ1(E ∪ F) ∏ µ(E ∪ E 0) = µ(E) + µ(E 0). Taking the supremum over all such
E 0 shows that µ1(E ∪ F) ∏ µ(E) + µ1(F). For the reverse inequality let S be
a member of R contained in E ∪ F . Then the sets E ∩ S and F ∩ S = S − Fc

are inR, and thus µ(S) = µ(E ∩ S) + µ(F ∩ S) ≤ µ(E) + µ1(F). Taking the
supremum over S gives µ1(E ∪ F) ≤ µ(E) + µ1(F). Thus µ1 is completely
additive.
Ifµ2 is anyother extension, any set F inRc hasµ2(F) ∏ µ2(E) = µ(E) for all

subsets E of F that are inR. Taking the supremumover E givesµ2(F) ∏ µ1(F),
and thus µ2 ∏ µ1 as set functions on A. §

6. Completion of a Measure Space

If (X,A, µ) is a measure space, we define the completion of this space to be the
measure space (X,A, µ) defined by

A =

Ω
E 1 Z

Ø
Ø
Ø
Ø
E is in A and Z ⊆ Z 0 for
some Z 0 ∈ Awithµ(Z 0) = 0

æ
,

µ(E 1 Z) = µ(E).

It is necessary to verify that the result is in fact a measure space, and we shall
carry out this step in the proposition below. In the case of Lebesgue measure m
on the line, when initially defined on the σ -algebra A of Borel sets, the sets in
σ -algebraA are said to be Lebesgue measurable.

Proposition 5.38. If (X,A, µ) is a measure space, then the completion
(X,A, µ) is a measure space. Specifically

(a) A is a σ -algebra containingA,
(b) the set function µ is unambiguously defined on A, i.e., if E11 Z1 =

E21 Z2 as above, then µ(E1) = µ(E2),
(c) µ is a measure on A, and µ(E) = µ(E) for all sets E in A.
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In addition,
(d) if eµ is any measure on A such that eµ(E) = µ(E) for all E in A, then

eµ = µ on A,
(e) if µ(X) < +∞ and if for E ⊆ X , µ∗(E) and µ∗(E) are defined by

µ∗(E) = sup
A⊆E, A∈A

µ(A) and µ∗(E) = inf
A⊇E, A∈A

µ(A),

then E is in A if and only if µ∗(E) = µ∗(E).

PROOF. For (a), certainly A ⊆ A because we can use Z = Z 0 = ∅ in the
definition of A. Since (E 1 Z)c = (E 1 Z)1 X = (E 1 X)1 Z = Ec 1 Z , A
is closed under complements.
To prove closure under countable unions, let us first prove that

A =

Ω
E ∪ Z

Ø
Ø
Ø
Ø
E is in A and Z ⊆ Z 0 for
some Z 0 ∈ Awithµ(Z 0) = 0

æ
. (∗)

Thus let E ∪ Z be given, with Z ⊆ Z 0. Then E ∪ Z = E 1 (Z 1 (E ∩ Z)) with
Z 1 (E ∩ Z) ⊆ Z 0. So E ∪ Z is inA. Conversely if E 1 Z is inA, we can write
E 1 Z = (E−Z 0)∪((E∩Z 0)−Z)∪(Z−E))with ((E∩Z 0)−Z)∪(Z−E)) ⊆ Z 0,
and then we see that E 1 Z is of the form E 00 ∪ Z 00 with E 00 in A and Z 00 ⊆ Z 0.
Returning to the proof of closure under countable unions, let En ∪ Zn be given

inA with Zn ⊆ Z 0
n and µ(Z 0

n) = 0. Then
S

n(En ∪ Zn) =
°S

n En
¢
∪

°S
n Zn

¢

with
S

n Zn ⊆
S

n Z 0
n and µ

°S
n Z 0

n
¢

= 0. In view of (∗), A is therefore closed
under countable unions.
For (b), we take as given that E11 Z1 = E21 Z2 with Z1 ⊆ Z 0

1, Z2 ⊆ Z 0
2, and

µ(Z 0
1) = µ(Z 0

2) = 0. Then (E11 E2)1 (Z11 Z2) = ∅ and hence E11 E2 =
Z11 Z2 ⊆ Z 0

1∪Z
0
2. Thereforeµ(E1−E2) ≤ µ(E11 E2) ≤ µ(Z 0

1∪Z
0
2) = 0 and

similarlyµ(E2− E1) = 0. It follows thatµ(E1) = µ(E1− E2)+µ(E1∩ E2) =
µ(E1 ∩ E2) = µ(E2 − E1) + µ(E1 ∩ E2) = µ(E2), and µ is unambiguously
defined.
For (c), we see from (∗) thatµ can be defined equivalently byµ(E∪Z) = µ(E)

if Z ⊆ Z 0 and µ(Z 0) = 0. If a disjoint sequence En ∪ Zn is given, then we find
that µ

°S
n(En ∪ Zn)

¢
= µ

°°S
n En) ∪

°S
n Zn

¢¢
= µ

°S
n En

¢
=

P
µ(En) =P

µ(En∪Zn), and complete additivity is proved. Taking Z = ∅ in the definition
µ(E ∪ Z) = µ(E), we obtain µ(E) = µ(E) for E in A.
For (d), we use (∗) as the description of the sets in A. Let E ∪ Z be in A

with E in A, Z ⊆ Z 0, and Z 0 in A with µ(Z 0) = 0. Then Proposition 5.1e gives
eµ(E ∩ Z) ≤ eµ(Z) ≤ eµ(Z 0) = µ(Z 0) = 0, so that eµ(E ∩ Z) = eµ(Z) = 0.
Meanwhile, Proposition 5.1b gives eµ(E ∪ Z) + eµ(E ∩ Z) = eµ(E) + eµ(Z).
Hence eµ(E ∪ Z) = eµ(E) = µ(E).
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For (e), it is immediate that µ∗(E) ≤ µ∗(E) for every subset E of X . Let
E = C ∪ Z be in A with C in A, Z ⊆ Z 0, and Z 0 in A with µ(Z 0) = 0. Then
µ(C) ≤ µ∗(E) ≤ µ∗(E) ≤ µ(C ∪ Z 0) ≤ µ(C) + µ(Z 0) = µ(C). Since the
expressions at the ends are equal, wemust have equality throughout, and therefore
µ∗(E) = µ∗(E).
In the converse direction let µ∗(E) = µ∗(E). We can find a sequence of sets

An ∈ A contained in E with limµ(An) = µ∗(E), and we may assume without
loss of generality that {An} is an increasing sequence. Similarly we can find a
decreasing sequence of sets Bn ∈ A containing E with limµ(Bn) = µ∗(E). Let
A =

S
n An and B =

T
n Bn . When combinedwith the equalityµ∗(E) = µ∗(E),

Proposition 5.2 and Corollary 5.3 show that µ(A) = µ∗(E) = µ∗(E) = µ(B).
Since A ⊆ E ⊆ B, we haveµ(B−A) = µ(B)−µ(A) = 0 and E = A∪(E−A)
with E − A ⊆ B − A and µ(B − A) = 0. By (∗), E is in A. §

A variant of Proposition 5.38e and its proof identifies the σ -algebra on which
the extended measure is constructed in the proof of the Extension Theorem (The-
orem 5.5) in the special case we considered. In the special case of the Extension
Theorem, the given ring of sets is an algebra A, and ∫(X) is finite. The set
function∫ gets extended to ameasureµ on aσ -algebraB that contains the smallest
σ -algebra C containing A. The sets of B are those for which µ∗(E) = µ∗(E),
where

µ∗(E) = inf
U⊇E,U∈U

µ∗(U) and µ∗(E) = sup
K⊆E, K∈K

µ∗(K ),

K and U having been defined in terms of countable intersections and countable
unions, respectively, from A. The variant of Proposition 5.38e is that a subset
E of X has µ∗(E) = µ∗(E) if and only if E is of the form C ∪ Z with C in C,
Z ⊆ Z 0, and Z 0 in Cwithµ(Z 0) = 0. In other words, (X,B, µ) is the completion
of (X, C, µ).
The proof is modeled on the proof of Proposition 5.38e. If E = C ∪ Z is

a set in C with C in C, Z ⊆ Z 0, and Z 0 in C with µ(Z 0) = 0, then µ(C) ≤
µ∗(E) ≤ µ∗(E) ≤ µ(C ∪ Z 0) ≤ µ(C) + µ(Z 0) = µ(C). We conclude that
µ∗(E) = µ∗(E).
In the converse direction let µ∗(E) = µ∗(E). We can find an increasing

sequence of sets An ∈ K ⊆ C contained in E with limµ(An) = µ∗(E), and
we can find a decreasing sequence of sets Bn ∈ U ⊆ C containing E with
limµ(Bn) = µ∗(E). Let A =

S
n An and B =

T
n Bn . Arguing as in the proof

of Proposition 5.38e, we have µ(A) = µ∗(E) = µ∗(E) = µ(B), µ(B − A) =
µ(B)−µ(A) = 0, and E = A∪(E−A)with E−A ⊆ B−A andµ(B−A) = 0.
Thus E = C ∪ Z with C = A and Z = E − A.
This calculation has the following interesting consequence.
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Proposition 5.39. In R1, the Lebesgue measurable sets of measure 0 are
exactly the subsets E of R1 with the following property: for any ≤ > 0, the set E
can be covered by countably many intervals of total length less than ≤.

PROOF. Within a bounded interval [a, b], the above remarks apply and show
that the Lebesgue measurable sets of measure 0 are the sets E with µ∗(E) = 0,
where µ∗(E) = infU⊇E,U∈U µ∗(U). The sets U defining µ∗(E) are countable
unions of intervals, and the proposition follows for subsets of any bounded interval
[a, b].
For general sets E inR1, if the covering condition holds, then Proposition 5.1g

shows that E has Lebesgue measure 0. Conversely if E is Lebesgue measurable
of measure 0, then E∩[−N , N ] is a bounded set of measure 0 and can be covered
by countably many intervals of arbitrarily small total length. Let us arrange that
the total length is< 2−N≤. Taking the union of these sets of intervals as N varies,
we obtain a cover of E by countably many intervals of total length less than ≤. §

7. Fubini’s Theorem for the Lebesgue Integral

Fubini’s Theorem for the Lebesgue integral concerns the interchange of order
of integration of functions of two variables, just as with the Riemann integral
in Section III.9. In the case of Euclidean space Rn , we could have constructed
Lebesgue measure in each dimension by a procedure similar to the one we used
forR1. Then Fubini’s Theorem relates integration of a function of k+ l variables
over a set by either integrating in all variables at once or integrating in the first
k variables first or integrating in the last l variables first. In the context of more
general measure spaces, we need to develop the notion of the product of two
measure spaces. This corresponds to knowing Rk and Rl with their Lebesgue
measures and to constructing Rk+l with its Lebesgue measure.
In the theorem as we shall state it, we are given twomeasures spaces (X,A, µ)

and (Y,B, ∫), and we assume that both µ and ∫ are σ -finite. We shall construct a
product measure space(X × Y,A× B, µ × ∫), and the formula in question will
be Z

X×Y
f d(µ × ∫)

?
=

Z

X

h Z

Y
f (x, y) d∫(y)

i
dµ(x)

?
=

Z

Y

h Z

X
f (x, y) dµ(x)

i
d∫(y).

This formula will be valid for f ∏ 0 measurable with respect to A× B.
The technique of proof will be the standard one indicated in connection with

proving Corollary 5.28. We start with indicator functions, extend the result to
simple functions by linearity, and pass to the limit by the Monotone Convergence
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Theorem (Theorem 5.25). It is then apparent that the difficult step is the case that
f is an indicator function. In fact, it is not even clear in this special case that the
inside integral

R
Y IE(x, y) d∫(y) is a measurable function of X , and this is the

step that requires some work.
We begin by describingA×B, the σ -algebra ofmeasurable sets for the product

X × Y . Recall from Section A1 of Appendix A that X × Y is defined as a set of
ordered pairs. If A ⊆ X and B ⊆ Y , then the set of ordered pairs that constitute
A× B is a subset of X × Y , and we call A× B a rectangle6 in X × Y . The sets
A and B are called the sides of the rectangle.

Proposition 5.40. If A and B are algebras of subsets of nonempty sets X and
Y , then the class C of all finite disjoint unions of rectangles A × B with A in A
and B inB is an algebra of sets in X×Y . In particular, a finite union of rectangles
is a finite disjoint union.

PROOF. The intersection of the rectangles R1 = A1× B1 and R2 = A2× B2 is
the rectangle R = (A1 ∩ A2) × (B1 ∩ B2) because both R1 ∩ R2 and R coincide
with the set

©
(x, y) ∈ X × Y

Ø
Ø x ∈ A1, x ∈ A2, y ∈ B1, y ∈ B2

™
. Therefore

≥ m[

i=1
(Ai × Bi )

¥
∩

≥ n[

j=1
(Cj × Dj )

¥
=

[

i, j

©
(Ai ∩ Cj ) × (Bi ∩ Dj )

™
,

and the right side is a disjoint union if both
S

i (Ai × Bi ) and
S

j (Cj × Dj ) are
disjoint unions. Moreover, the right side is in C if both unions on the left are in C.
Therefore C is closed under finite intersections.
Certainly ∅ and X × Y are in C. The identity

(X × Y ) − (A × B) =
°
(X − A) × B

¢
∪

°
X × (Y − B)

¢

exhibits the complement of a rectangle as a disjoint union of rectangles. Since
the complement of a disjoint union is the intersection of the complements, C is
closed under complementation. Thus C is an algebra of sets, and the proof is
complete. §

If A and B are σ -algebras in X and Y , then we denote the smallest σ -algebra
containing the algebra C of the above proposition by A × B. The set X × Y ,
together with the σ -algebra A × B, is called a product space. The measurable
sets of X × Y are the sets of A× B.

6The word “rectangle” was used with a different meaning in Chapter III, but there will be no
possibility of confusion for now. Starting in Chapter VI, both kinds of rectangles will be in play;
the ones in Chapter III can then be called “geometric rectangles” and the present ones can be called
“abstract rectangles.”
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Let E be any set in X × Y . The section Ex of E determined by x in X is
defined by

Ex =
©
y
Ø
Ø (x, y) is in E

™
.

Similarly the section Ey determined by y in Y is

Ey =
©
x

Ø
Ø (x, y) is in E

™
.

The section Ex is a subset of Y , and the section Ey is a subset of X .

Lemma 5.41. Let {Eα} be a class of subsets of X × Y , and let x be a point of
X . Then

(a)
°S

α Eα

¢
x =

S
α (Eα)x ,

(b)
°T

α Eα

¢
x =

T
α (Eα)x ,

(c) (Eα − Eβ)x = (Eα)x − (Eβ)x and, in particular, (Ec
β)x = Y − (Eβ)x .

PROOF. These facts are special cases of the identities at the end of SectionA1of
Appendix A for inverse images of functions. In this case the function in question
is given by f (y) = (x, y). §

Proposition 5.42. Let A and B be σ -algebras in X and Y , and let E be a
measurable set in X × Y . Then every section Ex is a measurable set in Y , and
every section Ey is a measurable set in X .

PROOF. We prove the result for sections Ex , the proof for Ey being completely
analogous. Let E be the class of all subsets E of X × Y all of whose sections Ex
are in B. Then E contains all rectangles with measurable sides, since a section
of a rectangle is either the empty set or one of the sides. By Lemma 5.41a, E
is closed under finite unions. Hence E contains the algebra C of finite disjoint
unions of rectangles with measurable sides. By parts (a) and (c) of Lemma 5.41,
E is closed under countable unions and complements. It is therefore a σ -algebra
containing C and thus containsA× B. §

A corollary of Proposition 5.42 is that a rectangle in X × Y is measurable if
and only if its sides are measurable. The sufficiency follows from the fact that
a rectangle with measurable sides is in C, and the necessity follows from the
proposition.
From now on, we shall adhere to the convention that a rectangle is always

assumed to be measurable.
We turn to the implementation of the sketch of proof of Fubini’s Theorem

given earlier in this section. The basic question will be the equality of the iterated
integrals in either order when the integrand is an indicator function. If E is
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a measurable set in X × Y , then we know from Proposition 5.42 that Ex is a
measurable subset of Y . In order to form the iterated integral

Z

X

h Z

Y
IE(x, y) d∫(y)

i
dµ(x),

we compute the inside integral as ∫(Ex), and we have to be able to form the
outside integral, which is

R
X ∫(Ex) dµ(x). That is, we need to know that ∫(Ex)

is a measurable function on X . For the iterated integral in the other order, we
need to know that µ(Ey) is measurable on Y .
The proof of this measurability is the hard step, since the class of sets E for

which ∫(Ex) and µ(Ey) are both measurable does not appear to be necessarily
a σ -algebra, even when µ and ∫ are finite measures. To deal with this difficulty,
we introduce the following terminology: a class of sets is called a monotone
class if it is closed under countable increasing unions and countable decreasing
intersections. It is readily verified that the class of all subsets of a set is amonotone
class and that the intersection of any nonempty family of monotone classes is a
monotone class; hence there is a smallest monotone class containing any given
class of sets.
The proof of the lemma below introduces the notation ↑ and ↓ to denote

increasing countable union and decreasing countable intersection, respectively.

Lemma 5.43 (Monotone Class Lemma). The smallest monotone classM
containing an algebra A of sets is identical to the smallest σ -algebrafA contain-
ing A.
PROOF. We haveM ⊆ fA because fA is a monotone class containing A. To

prove the reverse inclusion, it is sufficient to show thatM is closed under the
operations of finite union and complementation, since a countable union can be
written as the increasing countable union of finite unions. The proof is in three
steps.
First we prove that if A is in A and M is inM, then A ∪ M and A ∩ M are

inM. For fixed A in A, let UA be the class of all sets M inM such that A ∪ M
and A ∩ M are inM. Then UA ⊇ A. If we show that UA is a monotone class,
then it will follow that UA ⊇ M. For this purpose let

Un ↑ U and Vn ↓ V with Un and Vn in UA.

By definition of UA, the setsUn ∪ A, Un ∩ A, Vn ∪ A, and Vn ∩ A are inM. But

Un ∪ A ↑ U ∪ A and Un ∩ A ↑ U ∩ A,

Vn ∪ A ↓ V ∪ A and Vn ∩ A ↓ V ∩ A.

Therefore U and V are in UA, and UA is a monotone class.
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Second we prove thatM is closed under finite unions. For fixed N inM, let
UN be the class of all sets M inM such that N ∪ M and N ∩ M are inM. Then
UN ⊇ A by the previous step. The same argument as in that step shows that UN
is a monotone class, and hence UN = M.
Third we prove thatM is closed under complements. Let N be the class of

all sets inM whose complements are inM. Then N ⊇ A, and it is enough to
show thatN is a monotone class. If

Cn ↑ C and Dn ↓ D with Cn and Dn in N,

then C and D are inM since Cn and Dn are inM. Now

Cc
n ↓ Cc and Dc

n ↑ Dc,

and by definition of N, Cc
n and Dc

n are inM. Therefore Cc and Dc are inM,
and C and D must be in N. That is,N is a monotone class. §

Lemma 5.44. If (X,A, µ) and (Y,B, ∫) are σ -finite measure spaces, then
∫(Ex) and µ(Ey) are measurable functions for every E in A× B.
PROOF IF µ(X) < +∞ AND ∫(Y ) < +∞. LetM be the class of all sets E

in A× B for which ∫(Ex) and µ(Ey) are measurable. We shall show thatM is
a monotone class containing the algebra C of finite disjoint unions of rectangles.
If R = A × B is a rectangle, then

∫(Rx) = ∫(B)IA and µ(Ry) = µ(A)IB,

and so R is inM. If E and F are disjoint sets inM, then

∫((E ∪ F)x) = ∫(Ex ∪ Fx) = ∫(Ex) + ∫(Fx)

for each x , and similarly for µ for each y. By Proposition 5.7, ∫((E ∪ F)x) and
µ((E ∪ F)y) are measurable. Hence E ∪ F is inM, andM contains C. If {En}
and {Fn} are increasing and decreasing sequences of sets inM, then the finiteness
and complete additivity of ∫ imply that

∫
≥≥[

n
En

¥

x

¥
= ∫

≥[

n
(En)x

¥
= lim ∫((En)x)

∫
≥≥\

n
Fn

¥

x

¥
= ∫

≥\

n
(Fn)x

¥
= lim ∫((Fn)x),and

and similarly for µ. Since the limit of measurable functions is measurable
(Corollary 5.10), we conclude thatM is amonotone class. ThereforeM contains
A× B by the Monotone Class Lemma (Lemma 5.43). §
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PROOF FOR σ -FINITE µ AND ∫. Write X =
S∞

m=1 Xm and Y =
S∞

n=1 Yn
disjointly, with µ(Xm) < +∞ and ∫(Yn) < +∞ for allm and n. DefineAm and
Bn by

Am =
©
A ∩ Xm

Ø
Ø A is in A

™
and Bn =

©
B ∩ Yn

Ø
Ø B is in B

™
,

and define µm and ∫n onAm and Bn by restriction from µ and ∫. Then the triples
(Xm,Am, µm) and (Yn,Bn, ∫n) are finite measure spaces, and the previous case
applies. If E is in A × B, then Emn = E ∩ (Xm × Yn) is in Am × Bn , and so
∫((Emn)x) and µ((Emn)y) are measurable with respect toAm and Bn , hence with
respect to A and B. Thus

∫(Ex) =
X

m,n
∫((Emn)x) and µ(Ey) =

X

m,n
µ((Emn)y)

exhibit ∫(Ex) andµ(Ey) as countable sums of nonnegativemeasurable functions.
They are therefore measurable.

The next proposition simultaneously constructs the product measure and es-
tablishes Fubini’s Theorem for indicator functions.

Proposition 5.45. Let (X,A, µ) and (Y,B, ∫) be σ -finite measure spaces.
Then there exists a unique measure µ × ∫ on A× B such that

(µ × ∫)(A × B) = µ(A)∫(B)

for every rectangle A × B. The measure µ × ∫ is σ -finite, and

(µ × ∫)(E) =
Z

X
∫(Ex) dµ(x) =

Z

Y
µ(Ey) d∫(y)

for every set E in A× B.
PROOF. In view of the measurability of ∫(Ex) given in Lemma 5.44, we can

define a set function ρ on A× B by

ρ(E) =
Z

X
∫(Ex) dµ(x).

Then ρ(∅) = 0, and ρ is nonnegative. On a rectangle A × B, we have

ρ(A × B) = µ(A)∫(B) (∗)

since ∫((A × B)x) = ∫(B)IA. We shall show that ρ is completely additive. If
{En} is a disjoint sequence in A× B, then
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ρ
≥[

n
En

¥
=

Z

X
∫
≥≥[

n
En

¥

x

¥
dµ(x) by definition of ρ

=
Z

X
∫
≥[

n
(En)x

¥
dµ(x) by Lemma 5.41a

=
Z

X

hX

n
∫((En)x)

i
dµ(x) since the sets (En)x are disjoint

for each fixed x

=
X

n

Z

X
∫((En)x) dµ(x) by Corollary 5.27

=
X

n
ρ(En).

Now X × Y =
S

m,n (Xm × Yn). Since ρ has just been shown to be completely
additive and since µ and ∫ are σ -finite, (∗) shows that ρ is σ -finite. Also, (∗)
completely determines ρ on the algebra C of finite disjoint unions of rectangles.
By the Extension Theorem (Theorem 5.5), ρ is completely determined on the
smallest σ -algebraA× B containing C.
Defining σ (E) =

R
Y µ(Ey) d∫(y) and arguing in the same way, we see that σ

is a measure on A× B agreeing with ρ on rectangles and determined on A× B
by its values on rectangles. Thus we have ρ = σ on A × B, and can define
µ × ∫ = ρ = σ to complete the proof. §

Lemma 5.46. If f is a measurable function defined on a product space X×Y ,
then for each x in X , y 7→ f (x, y) is a measurable function on Y , and for each
y in Y , x 7→ f (x, y) is a measurable function on X .
PROOF. For each fixed x , the formula

©
y
Ø
Ø f (x, y) > c

™
=

©
(x, y)

Ø
Ø f (x, y) > c

™
x

exhibits the set on the left as a section of a measurable set, which must be mea-
surable according to Proposition 5.42. The result for fixed y is proved similarly.

§

Theorem 5.47 (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ∫) be σ -finite
measure spaces, and let (X × Y,A × B, µ × ∫) be the product measure space.
If f is a nonnegative measurable function on X × Y , then

R
Y f (x, y) d∫(y) andR

X f (x, y) dµ(x) are measurable, and
Z

X×Y
f d(µ × ∫) =

Z

X

h Z

Y
f (x, y) d∫(y)

i
dµ(x)

=
Z

Y

h Z

X
f (x, y) dµ(x)

i
d∫(y).
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PROOF. Lemma 5.46 shows that f (x, y) is measurable in each variable sep-
arately and hence that the inside integrals in the conclusion are well defined. If
f is the indicator function of a measurable subset E of X × Y , then the theorem
reduces to Proposition 5.45. The result immediately extends to the case of a
simple function f ∏ 0.
Now let f be an arbitrary nonnegative measurable function. Find by Propo-

sition 5.11 an increasing sequence of simple functions sn ∏ 0 with pointwise
limit f . The sequence of functions

R
Y sn(x, y) d∫(y) is an increasing sequence

of nonnegative functions, and each is measurable by what we have already shown
for simple functions. By the Monotone Convergence Theorem (Theorem 5.25),

lim
n

Z

Y
sn(x, y) d∫(y) =

Z

Y
lim
n
sn(x, y) d∫(y) =

Z

Y
f (x, y) d∫(y).

Therefore
R
Y f (x, y) d∫(y) is the pointwise limit of measurable functions and is

measurable. Similarly
R
X f (x, y) dµ(x) is measurable.

For every n, the result for simple functions gives
Z

X×Y
sn d(µ × ∫) =

Z

X

h Z

Y
sn(x, y) d∫(y)

i
dµ(x).

By a second application of monotone convergence,
Z

X×Y
f d(µ× ∫) = lim

n

Z

X×Y
sn d(µ× ∫) = lim

n

Z

X

h Z

Y
sn(x, y) d∫(y)

i
dµ(x).

By a third application of monotone convergence,

lim
n

Z

X

h Z

Y
sn(x, y) d∫(y)

i
dµ(x) =

Z

X

h
lim
n

Z

Y
sn(x, y) d∫(y)

i
dµ(x).

Putting our results together, we obtain
Z

X×Y
f d(µ × ∫) =

Z

X

h Z

Y
f (x, y) d∫(y)

i
dµ(x).

The other equality of the conclusion follows by interchanging the roles of X
and Y . §

Fubini’s Theorem arises surprisingly often in practice. In some applications
the theorem is applied at least in part to prove that an integral with a parameter
is finite or is 0 for almost every value of the parameter. Here is a general result
concerning integral 0.
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Corollary 5.48. Suppose that (X,A, µ) and (Y,B, ∫) are σ -finite measure
spaces, and suppose that E is a measurable subset of X × Y such that

∫
°©
y
Ø
Ø (x, y) ∈ E

™¢
= 0

for almost every x [dµ]. Then µ
°©
x

Ø
Ø (x, y) ∈ E

™¢
= 0 for almost every y [d∫].

REMARKS. In words, if the x section of E has ∫ measure 0 for almost every
x in X , then the y section of E has µ measure 0 for almost every y in Y . For
example, if one-point sets in X and Y have measure 0 and if every x section of
E is a finite subset of Y , then for almost every y in Y , the y section of E has
measure 0 in X .
PROOF. Apply Fubini’s Theorem to IE . The iterated integrals are equal, and

the hypothesis makes one of them be 0. Then the other one must be 0, and the
conclusion follows. §

When one tries to drop the hypothesis in Fubini’s Theorem that the integrand
is nonnegative, some finiteness condition is needed, and the result in the form of
Theorem 5.47 is often used to establish this finiteness. Specifically suppose that
f is measurable with respect to A × B but is not necessarily nonnegative. The
assumption will be that one of the iterated integrals

Z

X

h Z

Y
| f (x, y)| d∫(y)

i
dµ(x) and

Z

Y

h Z

X
| f (x, y)| dµ(x)

i
d∫(y)

is finite. Then the conclusions are that
(a) f is integrable with respect to µ × ∫;
(b)

R
Y f (x, y) d∫(y) is defined for almost every x [dµ]; if it is redefined to
be 0 on the exceptional set, then it is measurable and is in fact integrable
[dµ];

(c) a similar conclusion is valid for
R
X f (x, y) dµ(x);

(d) after the redefinitions in (b) and (c), the double integral equals each
iterated integral, and the two iterated integrals are equal.

These conclusions follow immediately by applying Fubini’s Theorem to f + and
f − separately and subtracting. The redefinitions in (b) and (c) are what make the
subtractions of integrands everywhere defined.
One final remark is in order: The completion of A× B is not necessarily the

same as the product of the completions of A and B, and thus the statement of
Fubini’s Theorem requires some modification if completions of measure spaces
are to be used. We shall see in the next chapter that Borel sets in Euclidean space
behave well under the formation of product spaces, but Lebesguemeasurable sets
do not. Thus it simplifies matters to stick to integration of Borel-measurable sets
in Euclidean space whenever possible.
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8. Integration of Complex-Valued and Vector-Valued Functions

Fix a measure space (X,A, µ). In this chapter we have worked so far with
measurable functions on X whose values are inR∗, dividing them into two classes
as far as integration is concerned. One class consists ofmeasurable functionswith
values in [0,+∞], and we defined the integral of any such function as a member
of [0,+∞]. The other class consists of general measurable functions with values
in R∗. The integral in this case can end up being anything in R∗, and there are
some such functions for which the integral is not defined.
It is important in the theory to be able to integrate functions whose values

are complex numbers or vectors in Rm or Cm , and it will not be productive to
allow the same broad treatment of infinities as was done for general functions
with values in R∗. On the other hand, it is desirable to have the flexibility with
nonnegativemeasurable functions of being able to treat infinite values and infinite
integrals in the same way as finite values and finite integrals. In order to have
two theories, rather than three, once we pass to vector-valued functions, we shall
restrict somewhat the theory we have already developed for general functions
with values in R∗.
Let us label these two theories of integration as the one for scalar-valued non-

negative measurable functions and the one for integrable vector-valued functions.
The first of these theories has already been established and needs no change. The
second of these theories needs some definitions and comments that in part repeat
steps taken with Riemann integration in Sections I.5, III.3, and III.7 and in part
are new. In applications of this second theory later, if the term “vector-valued”
is not included in a reference to a function either explicitly or by implication, the
convention is that the function is scalar-valued.
In the theory for vector-valued functions, we shall be assuming integrability,

and the integrabilitywill force the function to havemeaningfulfinite values almost
everywhere. Our convention will be that the values are finite everywhere. This
will not be a serious restriction for any function that can be considered integrable,
since we can redefine such a function on a certain set of measure 0 to be 0, and
then the condition will be met without any changes in the values of integrals.
Thus let a function f : X → Cm be given. Since the function can have

its image contained in Rm , we will be handling Rm-valued functions at the same
time. Sincem can be 1, wewill be handling complex-valued functions at the same
time. Since the image can be in Rm and m can be 1, we will at the same time
be recasting our theory of real-valued functions whose values are not necessarily
nonnegative. We impose the usual Hermitian inner product ( · , · ) and norm | · |
on Cm .
The function f̄ : X → Cm is the composition of f followed by complex

conjugation in each entry of Cm . We can write f = Re f + i Im f , where
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Re f = 1
2 ( f + f̄ ) and Im f = 1

2i ( f − f̄ ), and then the functions Re f and Im f
take values in Rm . Following the convention in Section A7 of Appendix A, let
{u1, . . . , um} be the standard basis of Rm .
By a basic open set in Cm , we mean a set that is a product in R2m of bounded

open intervals in each coordinate. In symbols, such a set is centered at some
v0 ∈ Cm , and there are positive numbers ξj and ηj such that the set is

©
v ∈ Cm Ø

Ø |(Re(v −v0), uj )| < ξj and |(Im(v −v0), uj )| < ηj for 1 ≤ j ≤ m}.

We say that f : X → Cm is measurable if the inverse image under f of each
basic open set in Cm is measurable, i.e., lies in A.

Lemma 5.49. A function f : X → Cm is measurable if and only if the inverse
image under f of each open set in Cm is in A.

PROOF. If the stated condition holds, then the inverse image of any basic open
set is in A, and hence f is measurable. Conversely suppose f is measurable,
and let an open set U in Cm be given. Then U is the union of a sequence of
basic open sets Un , and the measurability of f , in combination with the formula
f −1(U) =

S
n f −1(Un), shows that f −1(U) is in A. §

Proposition 5.50. A function f : X → Cm is measurable if and only if Re f
and Im f are measurable.

PROOF. In view of Lemma 5.49, we can work with arbitrary open sets in place
of basic open sets. IfU and V are open sets inRm , then the product setU + iV is
open in Cm , and f −1(U + iV ) = (Re f )−1(U) ∩ (Im f )−1(V ). It is immediate
that measurability of Re f and Im f impliesmeasurability of f . Conversely if we
specialize this formula to V = Rm , then we see that measurability of f implies
measurability of Re f . Similarly if we specialize to U = Rm , then we see that
measurability of f implies measurability of Im f . §

Proposition 5.51. The following conditions on a function f : X → Cm are
equivalent:

(a) f is measurable,
(b) ( f, v) is measurable for each v in Cm ,
(c) ( f, uj ) is measurable for 1 ≤ j ≤ m.

REMARKS. When infinite-dimensional ranges are used in more advanced
texts, (a) is summarized by saying that f is “strongly measurable,” and (b) is
summarized by saying that f is “weakly measurable.”
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PROOF. Suppose (a) holds. The function in (b) is the compositionof f followed
by the continuous function ( · , v) from Cm to C. The inverse image of an open
set inC is then open inCm , and the inverse image of the latter open set under f is
in A. This proves (b). Condition (b) trivially implies condition (c). If (c) holds,
then Proposition 5.50 shows for each standard basis vector uj that (Re f, uj ) and
(Im f, uj ) are measurable from X into R. Thus the inverse image of any open
interval under any of these 2m functions on X is in A. The inverse image of
a basic open set in Cm under f is the intersection of 2m such sets in A and is
therefore in A. Hence (a) holds. §

Proposition 5.52. Measurability of vector-valued functions has the following
properties:
(a) If f : X → Cm and g : X → Cm are measurable, then so is f + g as a

function from X to Cm .
(b) If f : X → Cm is measurable and c is in C, then c f is measurable as a

function from X to Cm .
(c) If f : X → Cm is measurable, then so is f̄ : X → Cm .
(d) If f : X → C and g : X → C are measurable, then so is f g : X → C.
(e) If f : X → Cm is measurable, then | f | : X → [0,+∞) is measurable.
(f) If { fn} is a sequence of measurable functions from X into Cm converging

pointwise to a function f : X → Cm , then f is measurable.

PROOF. Conclusions (a) through (e) may all be proved in the same way. It
will be enough to illustrate the technique with (a). We can write the function
x 7→ f (x) + g(x) as a composition of x 7→ ( f (x), g(x)) followed by addition
(a, b) 7→ a+b. Let an open set inCm be given. The inverse image under addition
is open inCm ×Cm , since addition is continuous (Proposition 2.28). The inverse
image of a product U × V of open sets in Cm × Cm under x 7→ ( f (x), g(x)) is
f −1(U) ∩ g−1(V ), which is inA because f and g are measurable, and therefore
the inverse image of any open set in Cm × Cm under x 7→ ( f (x), g(x)) is in A.
This handles (a), and (b) through (e) are similar.
For (f), we apply Proposition 5.50 to f , and then we apply the equivalence

of (a) and (c) of Proposition 5.51 for Re f and Im f . In this way the result is
reduced to the real-valued scalar case, which is known from Corollary 5.10. §

If E is a measurable subset of X , we say that a function f : X → C is
integrable on E if Re f and Im f are integrable on E , and in this case we defineR
E f dµ =

R
E Re f dµ + i

R
E Im f dµ.

Proposition 5.53. Let E be a measurable subset of X . Integrability on E of
functions from X to C has the following properties:
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(a) If f and g are functions from X intoC that are integrable on E , then f + g
is integrable on E , and

R
X ( f + g) dµ =

R
X f dµ +

R
X g dµ.

(b) If f is a function from X into C that is integrable on E and if c is in C,
then c f is integrable on E , and

R
E c f dµ = c

R
E f dµ.

(c) If f is a measurable function from X into C such that | f | is integrable on
E , then f is integrable on E , and

Ø
Ø R

E f (x) dµ(x)
Ø
Ø ≤

R
E | f (x)| dµ(x).

(d) (Dominated convergence) Let fn be a sequence of measurable functions
from X into C integrable on E and converging pointwise to f . If there is a
measurable function g : X → [0,+∞] that is integrable on E and has | fn(x)| ≤
g(x) for all x in E , then f is integrable on E , limn

R
E fn dµ exists in C, and

limn
R
E fn dµ =

R
E f dµ.

PROOF. Conclusion (a) is immediate from the definitions, and so is (b) for real
scalars. Taking (a) and (b) into account, we see that (b) holds if it holds for c = i .
We have i f = − Im f + i Re f . If f is integrable, then − Im f and Re f are
integrable, and hence i f is integrable. Then

i
R
E f dµ = i

° R
E Re f dµ + i

R
E Im f dµ

¢

=
R
E (− Im f ) dµ +

R
E (i Re f ) dµ =

R
E i f dµ,

and hence (b) is proved.
In (c), if f : X → C is integrable, choose c with |c| = 1 such that c

R
E f dµ

is real and ∏ 0. Application of (b) and Proposition 5.16 gives
Ø
Ø R

E f dµ
Ø
Ø =

c
R
E f dµ =

R
E c f dµ =

R
E Re(c f ) dµ ≤

R
E |c f | dµ =

R
E | f | dµ.

Finally (d) follows by applying the Dominated Convergence Theorem (Theo-
rem 5.30) to Re fn and Im fn separately and then combining the results. §

We turn now to the matter of integrability of vector-valued functions, together
with the value of the integral. One way of proceeding is to go back and adapt
the theory in Sections 3–4 to work directly with vector-valued functions and
approximations by vector-valued simple functions. This approach is useful if
at some stage one wants systematically to allow infinite-dimensional vectors as
values. Examples of this situation will arise in this book, but there are not enough
examples to justify an abstract treatment. One important example arises in thenext
section with functions of the form f (x, y), which can be regarded as functions
of x that take values in a space of functions of y.
Thus we use an abstract definition of integrability that is appropriate only to

the case of finite-dimensional range. If E is a measurable subset of X , we say
that a function f : X → Cm is integrable on E if the complex-valued functions
( f, uj ) are integrable on E for each uj in the standard basis, and in this case we
define

R
E f dµ =

Pm
j=1

° R
E ( f, uj ) dµ

¢
uj .
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Proposition 5.54. Let E be a measurable subset of X . Integrability of vector-
valued functions on E satisfies the following properties:

(a) If f and g are functions from X into Cm that are integrable on E , then
f + g is integrable on E , and

R
X ( f + g) dµ =

R
X f dµ +

R
X g dµ.

(b) If f is a function from X into Cm that is integrable on E , then c f is
integrable on E , and

R
E c f dµ = c

R
E f dµ.

(c) A function f : X → Cm is integrable on E if and only if Re f and Im f
are integrable on E , and then

R
X f dµ =

R
X Re f dµ + i

R
X Im f dµ.

(d) If f is a function from X into Cm that is integrable on E and if v is a
member ofCm , then x 7→ ( f (x), v) is integrable on E and

R
E( f (x), v) dµ(x) =° R

E f (x) dµ(x), v
¢
.

(e) If f is a measurable function from X intoCm such that | f | is integrable on
E , then f is integrable on E , and

Ø
Ø R

E f (x) dµ(x)
Ø
Ø ≤

R
E | f (x)| dµ(x).

(f) (Dominated convergence) Let fn be a sequence of measurable functions
from X into Cm integrable on E and converging pointwise to f . If there is a
measurable function g : X → [0,+∞] that is integrable on E and has | fn(x)| ≤
g(x) for all x in E , then f is integrable on E , limn

R
E fn dµ exists in Cm , and

limn
R
E fn dµ =

R
E f dµ.

PROOF. All of the relevant questions about measurability are addressed by
Propositions 5.50 and 5.52. Conclusions (a), (b), (c), and (f) about integrability
are immediate from Proposition 5.53.
For (d), let v =

P
cjuj with each cj inC. Since f is by assumption integrable,

( f, v) = ( f,
P
cjuj ) =

P
j c̄j ( f, uj ) exhibits ( f, v) as a linear combination

of functions integrable on E . Therefore ( f, v) is integrable on E . To obtain
the formula asserted in (d), we first consider v = ui . Then the definition ofR
E f dµ gives (

R
E f dµ, ui

¢
=

°P
j
° R

E( f, uj ) dµ
¢
uj , ui

¢
=

R
E( f, ui ) dµ.

Multiplying by c̄i and adding, we obtain (
R
E f dµ, v

¢
=

R
E( f, v) dµ. This

proves (d).
For (e), let f : X → Cm be measurable on X with | f | integrable on E . The

asserted inequality is trivial if
R
E f dµ = 0. Otherwise, for every v in Cm ,

Ø
Ø° R

E f dµ, v
¢ØØ =

Ø
Ø R

E( f, v) dµ
Ø
Ø by (d)

≤
R
E |( f, v)| dµ by Proposition 5.53c

≤ |v|
R
E | f | dµ by Proposition 5.16 and

the Schwarz inequality.

Taking v=
R
E f dµ gives

Ø
ØR
E f dµ|2 ≤

Ø
Ø R

E f dµ
Ø
Ø R

E | f | dµ. Since
R
E f dµ has

been assumed nonzero, we can divide by its magnitude, and then (e) follows. §
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9. L1, L2, L∞, and Normed Linear Spaces

Let (X,A, µ) be a measure space. In this section we introduce the spaces L1(X),
L2(X), and L∞(X). Roughly speaking, thesewill be vector spacesof functionson
X with suitable integrability properties. More precisely the actual vector spaces
of functions will form pseudometric spaces, and the spaces L1(X), L2(X), and
L∞(X) will be the corresponding metric spaces obtained from the construction
of Proposition 2.12. They will all turn out to be vector spaces over R or C. It
will matter little whether the scalars for these vector spaces are real or complex.
When we need to refer to operations with scalars, we may use the symbol F to
denoteR orC, and we call F the field of scalars. We shall make explicit mention
of R or C in any situation in which it is necessary to insist on a particular one of
R or C.
The three spaceswewill construct will all be obtained by introducing “pseudo-

norms” in vector spaces of measurable functions. A pseudonorm on a vector
space V is a function k · k from V to [0,+∞) such that7

(i) kxk ∏ 0 for all x ∈ V ,
(ii) kcxk = |c|kxk for all scalars c and all x ∈ V ,
(iii) (triangle inequality) kx + yk ≤ kxk + kyk for all x and y in V .

We encountered pseudonorms earlier in connection with pseudo inner-product
spaces; in Proposition 2.3 we saw how to form a pseudonorm from a pseudo
inner product. However, only the pseudonorm for L2(X) arises from a pseudo
inner product in the construction of L1, L2, and L∞.
The definitions of the pseudonorms in these three instances are

k f k1 =
R
X | f | dµ for L1(X),

k f k2 =
° R

X | f |2 dµ
¢1/2 for L2(X),

k f k∞ = “essential supremum” of f for L∞(X).

Once we have defined “essential supremum,” all the above expressions are mean-
ingful for anymeasurable function f from X to the scalars, and the vector space V
in each of the cases is the space of all measurable functions from X to the scalars
such that the indicated pseudonorm is finite. In other words, V consists of the
integrable functions on X in the case of L1(X), the square-integrable functions
on X in the case of L2(X), and the “essentially bounded” functions on X in the
case of L∞(X).
We need to check that k · k1, k · k2, and k · k∞ are indeed pseudonorms and

that the spaces V are vector spaces in each case.
7The word “seminorm” is a second name for a function with these properties and is generally

used in the context of a family of such functions. We shall not use the word “seminorm” in this text.
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For L1(X), properties (i) and (ii) are immediate from the definition. For (iii),
we have | f (x) + g(x)| ≤ | f (x)| + |g(x)| for all x and therefore k f + gk1 =R
X | f + g| dµ ≤

R
X | f | dµ +

R
X |g| dµ = k f k1 + kgk1.

For L2(X), let V be the space of all square-integrable functions on X . The
space V is certainly closed under scalar multiplication; let us see that it is closed
under addition. If f and g are in V , then we have

(| f (x)| + |g(x)|)2 ≤
°
max{| f (x)|, |g(x)|} +max{| f (x)|, |g(x)|}

¢2

= 4max{| f (x)|2, |g(x)|2} ≤ 4| f (x)|2 + 4|g(x)|2

for every x in X . Integrating over X , we see that f + g is in V if f and g are
in V . Also, the left side is ∏ 4| f (x)| |g(x)|, and it follows that f ḡ is integrable
whenever f and g are in V . Then the definition ( f, g)2 =

R
E f ḡ dµ makes V

into a pseudo inner product-space in the sense of Section II.1. Hence Proposition
2.3 shows that the function k · k2 with k f k2 = ( f, f )1/22 is a pseudonorm on V .
For L∞(X), we say that f is essentially bounded if there is a real number M

such that | f (x)| ≤ M almost everywhere [dµ]. Let us call such anM an essential
bound for | f |. When f is essentially bounded, we define k f k∞ to be the infimum
of all essential bounds for | f |. This infimum is itself an essential bound, since the
countable union of sets ofmeasure 0 is ofmeasure 0. The infimumof the essential
bounds is called the essential supremum of | f |. Certainly k · k∞ satisfies (i) and
(ii). If | f | is bounded a.e. by M and if |g| is bounded a.e. by N , then | f + g| is
bounded everywhere by | f |+|g|, which is bounded a.e. byM+N . It follows that
f + g is essentially bounded and k f + gk∞ ≤ k| f | + |g|k∞ ≤ k f k∞ + kgk∞.
So (iii) holds for k · k∞.
A real or complex vector space with a pseudonorm is a pseudo normed linear

space. Such a space V becomes a pseudometric space by the definition d( f, g) =
k f − gk, according to the proof of Proposition 2.3. Proposition 2.12 shows that
if we define two members f and g of V to be equivalent whenever d( f, g) = 0,
then the result is an equivalence relation and the function d descends to a well-
defined metric on the set of equivalence classes. If we take into account the
vector space structure on V , then we can see that the operations of addition and
scalar multiplication descend to the set of equivalence classes, and the set of
equivalence classes is then also a vector space. The argument for addition is that
if d( f1, f2) = 0 and d(g1, g2) = 0, then d( f1 + g1, f2 + g2) is 0 because

d( f1 + g1, f2 + g2) = k( f1 + g1) − ( f2 + g2)k = k( f1 − f2) + (g1 − g2)k
≤ k f1 − f2k + kg1 − g2k = d( f1, f2) + d(g1, g2) = 0.

The argument for scalar multiplication is similar, and one readily checks that the
space of equivalence classes is a vector space.
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This construction is to be applied to the spaces V we formed in connection
with integrability, square integrability, and essential boundedness. The spaces of
equivalence classes in the respective cases are called L1(X), L2(X), and L∞(X).
These spaces of equivalence classes are pseudo normed linear spaces with the
additional property that k f k = 0 only for the 0 element of the vector space.
If there is any possibility of confusion, we may write L1(µ) or L1(X, µ) or
L1(X,A, µ) in place of L1(X), and similarly for L2 and L∞.
A pseudo normed linear space is called a normed linear space if k f k = 0

implies f is the 0 element of the vector space. Thus L1(X), L2(X), and L∞(X)
are normed linear spaces.
In practice, in order to avoid clumsiness, one sometimes relaxes the terminol-

ogy and works with the members of L1(X), L2(X), and L∞(X) as if they were
functions, saying, “Let the function f be in L1(X)” or “Let f be an L1 function.”
There is little possibility of ambiguity in using such expressions.
The1-dimensionalvector space consistingof thefieldof scalarsFwith absolute

value as norm is an example of a normed linear space. Apart from this and Fm ,
we have encountered one other important normed linear space thus far in the
book. This is the space B(S) of bounded functions on a nonempty set S. It
has various vector subspaces of interest, such as the space C(S) of bounded
continuous functions in the case that S is a metric space. The norm for B(S) is
the supremum norm or the uniform norm defined by

k f ksup = sup
s∈S

| f (s)|.

The corresponding metric is

d( f, g) = k f − gksup = sup
s∈S

| f (s) − g(s)|,

and this agrees with the definition of the metric in the example in Chapter II.
Proposition 2.44 shows that the metric space B(S) is complete. Any vector
subspace of B(S) is a normed linear space under the restriction of the supremum
norm to the subspace.
In working with specific normed linear spaces, we shall often be interested in

seeing whether a particular subset of the space is dense. In checking denseness,
the following proposition about an arbitrary normed linear space is sometimes
helpful. The intersection of vector subspaces of X is a vector subspace, and the
intersection of closed sets is closed. Therefore it makes sense to speak of the
smallest closed vector subspace containing a given subset S of X .

Proposition 5.55. If X is a normed linear space with norm k · k and with F
as field of scalars, then

(a) addition is a continuous function from X × X to X ,
(b) scalar multiplication is a continuous function from F × X to X ,
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(c) the closure of any vector subspace of X is a vector subspace,
(d) the set of all finite linear combinations of members of a subset S of X is

dense in the smallest closed vector subspace containing S.

PROOF. The formula k(x + y) − (x0 + y0)k ≤ kx − x0k + ky − y0k shows
continuity of addition because it says that if x is within distance ≤/2 of x0 and y is
within distance ≤/2 of y0, then x+ y is within distance ≤ of x0+ y0. Similarly the
formula kcx−c0x0k ≤ kc(x− x0)k+k(c−c0)x0k = |c|kx− x0k+|c−c0|kx0k
shows that kcx− c0x0k ≤ δ(|c0|+1)+ δkx0k as soon as δ ≤ 1, |c− c0| ≤ δ, and
kx−x0k ≤ δ. If ≤ with 0 < ≤ ≤ 1 is given and if we set δ = (|c0|+1+kx0k)−1≤,
then we see that |c− c0| ≤ δ and kx − x0k ≤ δ together imply kcx − c0x0k ≤ ≤.
Hence scalar multiplication is continuous. This proves (a) and (b).
From (a) and (b) it follows that if xn → x and yn → y in X and cn → c in F,

then xn + yn → x + y and cnxn → cx . This proves (c).
For (d), the smallest closed vector subspace V1 containing S certainly contains

the closure V2 of the set of all finite linear combinations of members of S. Part (c)
shows that V2 is a closed vector subspace, and hence the definition of V1 implies
that V1 is contained in V2. Therefore V1 = V2, and (d) is proved. §

Proposition 5.56. Let (X,A, µ) be a measure space, and let p = 1 or p = 2.
Then every indicator function of a set of finite measure is in L p(X), and the
smallest closed subspace of L p(X) containing all such indicator functions is
L p(X) itself.

REMARK. Proposition 5.55d allows us to conclude from this that the the set of
simple functions built from sets of finite measure lies in both L1(X) and L2(X)
and is dense in each. It of course lies in L∞(X) as well, but it is dense in L∞(X)
if and only if µ(X) is finite.

PROOF. If E is a set of finite measure, then the equality
R
X (IE)p dµ = µ(E)

shows that IE is in L p for p = 1 and p = 2.
In the reverse direction let V be the smallest closed vector subspace of L p

containing all indicator functions of sets of finite measure. Suppose that s =P
k ck IEk is the canonical expansion of a simple function s ∏ 0 in L p and that

ck > 0. The inequalities 0 ≤ ck IEk ≤ s imply that ck IEk is in L p. Hence IEk is in
L p, and µ(Ek) is finite. Thus every nonnegative simple function in L p lies in V .
Let f ∏ 0 be in L p, and let sn be an increasing sequence of simple functions

∏ 0 with pointwise limit f . Since 0 ≤ sn ≤ f , each sn is in L p. Since | f − sn|p
has pointwise limit 0 and is dominated pointwise for every n by the integrable
function | f |p, dominated convergence gives lim

R
X | f − sn|p dµ = 0. Hence

sn tends to f in L p. Combining this conclusion with the result of the previous
paragraph, we see that every nonnegative L p function is in V . Any L p function
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is a finite linear combination of nonnegative L p functions, and hence every L p

function lies in V . §

Let us digress briefly once more from our study of L1, L2, and L∞ to obtain
two more results about general normed linear spaces. A linear function between
two normed linear spaces is often called a linear operator. A linear function
whose range space is the field of scalars is called a linear functional. The
following equivalence of properties is fundamental and is often used without
specific reference.

Proposition 5.57. Let X and Y be normed linear spaces that are both real or
both complex, and let their respective norms be k · kX and k · kY . Then the
following conditions on a linear operator L : X → Y are equivalent:

(a) L is uniformly continuous on X ,
(b) L is continuous on X ,
(c) L is continuous at 0,
(d) L is bounded in the sense that there exists a constant M such that

kL(x)kY ≤ MkxkX

for all x in X .
PROOF. If L is uniformly continuous on X , then L is certainly continuous on

X . If L is continuous on X , then L is certainly continuous at 0. Thus (a) implies
(b), and (b) implies (c).
If L is continuous at 0, find δ > 0 for ≤ = 1 such that kx − 0kX ≤ δ

implies kL(x) − L(0)kY ≤ 1. Here L(0) = 0. If a general x 6= 0 is given,
then kxkX 6= 0, and the properties of the norm give k(δ

±
kxkX )xkX = δ. Thus

kL((δ
±
kxkX )x)kY ≤ 1. By the linearity of L and the properties of the norm,

(δ
±
kxkX )kL(x)kY ≤ 1. Therefore kL(x)kY ≤ δ−1kxkX , and L is bounded with

M = δ−1. Thus (c) implies (d).
If L is bounded with constant M and if ≤ > 0 is given, let δ = ≤/M . Then

kx1 − x2kX ≤ δ implies

kL(x1) − L(x2)kY = kL(x1 − x2)kY ≤ Mkx1 − x2kX ≤ δM = ≤.

Thus (d) implies (a). §

If L : X → Y is a bounded linear operator, then the infimum of all constants
M such that kL(x)kY ≤ MkxkX for all x in X is again such a constant, and it is
called the operator norm kLk of L . Thus it in particular satisfies

kL(x)kY ≤ kLkkxkX for all x in X.
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As a consequence of the way that L and the norms in X and Y interact with scalar
multiplication, the operator norm is given by the formulas

kLk = sup
kxkX≤1

kL(x)kY = sup
kxkX=1

kL(x)kY

except in the uninteresting case X = 0. It is easy to check that the bounded linear
operators from X into Y form a vector space, and the operator norm makes this
vector space into a normed linear space that we denote by B(X,Y ). When the
domain and range are the same space X , we refer to the members of B(X, X)
as bounded linear operators on X . The normed linear space B(X, X) has a
multiplication operation given by composition.
When Y is the field of scalarsF, the spaceB(X, F) reduces to the space of con-

tinuous linear functionals on X . This is called the dual space of X and is denoted
by X∗. For example, if X = L1(µ), then every member g of L∞(µ) defines a
member x∗

g of X∗ by x∗
g( f ) =

R
f g dµ for f in L1(µ); the linear functional x∗

g
has kx∗

gk ≤ kgk∞. We shall be interested in two kinds of convergence in X∗.
One is norm convergence, in which a sequence {x∗

n } converges to an element x∗

in X∗ if kx∗
n − x∗k tends to 0. The other is weak-star convergence, in which

{x∗
n } converges to x∗ weak-star against X if limn x∗

n (x) = x∗(x) for each x in X .

Theorem 5.58 (Alaoglu’s Theorem, preliminary form). If X is a separable
normed linear space, then any sequence in X∗ that is bounded in norm has a
subsequence that converges weak-star against X .

REMARKS. In Chapter VI we shall see that L1 and L2 are separable in the case
of Lebesgue measure on R1 and in the case of many generalizations of Lebesgue
measure to N -dimensional Euclidean space.

PROOF. Let a sequence {x∗
n }

∞
n=1 be given with kx∗

nk ≤ M , and let {xk} be a
countable dense set in X . For each k, we have |x∗

n (xk)| ≤ kx∗
nkkxkk ≤ Mkxkk,

and hence the sequence {x∗
n (xk)}∞n=1 of scalars is bounded for each fixed k. By the

Bolzano–WeierstrassTheorem, {x∗
n (xk)}∞n=1 has a convergent subsequence. Since

we can pass to a convergent subsequence of any subsequence for any particular k,
we can use a diagonal process to pass to a single convergent subsequence {x∗

nl }
∞
l=1

such that liml x∗
nl (xk) exists for all k.

Now let x0 be arbitrary in X , let ≤ > 0 be given, and choose xk in the dense
set with kxk − x0k < ≤. Then

|x∗
nl (x0) − x∗

nl0 (x0)| ≤ |x∗
nl (x0 − xk)| + |x∗

nl (xk) − x∗
nl0 (xk)| + |x∗

nl0 (xk − x0)|
≤ Mkx0 − xkk + |x∗

nl (xk) − x∗
nl0 (xk)| + Mkxk − x0k

≤ 2M≤ + |x∗
nl (xk) − x∗

nl0 (xk)|.
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Thus lim sup
l,l 0→∞

|x∗
nl (x0) − x∗

nl0 (x0)| ≤ 2M≤. Since ≤ is arbitrary, we conclude that

{x∗
nl (x0)}

∞
l=1 is a Cauchy sequence of scalars. It is therefore convergent. Denote

the limit by x∗(x0), so that liml x∗
nl (x0) = x∗(x0) for all x0 in X . Since limits

respect addition and multiplication of scalars, x∗ is a linear functional on X . The
computation |x∗(x0)| = | liml x∗

nl (x0)| = liml |x∗
nl (x0)| ≤ lim supl kx∗

l kkx0k ≤
Mkx0k shows that x∗ is bounded. Hence {x∗

nl }
∞
l=1 converges to x∗ weak-star

against X . §

Now, as promised, we return to L1, L2, and L∞. The completeness asserted
in the next theorem will turn out to be one of the key advantages of Lebesgue
integration over Riemann integration.

Theorem 5.59. Let (X,A, µ) be any measure space, and let p be 1, 2,
or ∞. Any Cauchy sequence { fk} in L p has a subsequence { fkn } such that
k fkn − fkmkp ≤ Cmin{m,n} with

P
n Cn < +∞. A subsequence { fkn } with this

property is necessarily Cauchy pointwise almost everywhere. If f denotes the
almost-everywhere limit of { fnk }, then the original sequence { fk} converges to f
in L p. Consequently these three spaces L p, when regarded as metric spaces, are
complete in the sense that every Cauchy sequence converges.

REMARKS. The broad sweep of the theorem is that the spaces L1, L2, and L∞

are complete. But the detail is important, too. First of all, the detail allows us
to conclude that a sequence convergent in one of these spaces has a subsequence
that converges pointwise almost everywhere. Second of all, the detail allows us
to conclude that if a sequence of functions is convergent in L p1 and in L p2 , then
the limit functions in the two spaces are equal almost everywhere.

PROOF. Let { fn}beaCauchy sequence in L p. Inductively choose integersnk by
defining n0 = 1 and taking nk to be any integer> nk−1 such that k fm − fnkkp ≤
2−k for m ∏ nk ; we can do so since the given sequence is Cauchy. Then the
subsequence

©
fnk

™
has the property that k fnk − fnlk ≤ 2−min{k,l} for all k ∏ 1

and l ∏ 1. This proves the first conclusion of the theorem.
Now suppose that we have a sequence { fn} in L p such that k fn − fmkp ≤

Cmin{m,n} with
P

n Cn = C < +∞. We shall prove that { fn} is Cauchy pointwise
almost everywhere and that if f is its almost-everywhere limit, then fn tends to
f in L p.
First suppose that p < ∞. Let gn be the function from X to [0,+∞] given by

gn = | f1| +
nX

k=2
| fk − fk−1|, (∗)
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and define g(x) = lim gn(x) pointwise. Then

° R
X g

p
n dµ

¢1/p
= kgnkp ≤ k f1kp +

nX

k=2
k fk − fk−1kp

≤ k f1kp +
nX

k=2
Ck−1 ≤ k f1kp + C.

Bymonotone convergence, we deduce that
° R

X g
p dµ

¢1/p
= kgkp is finite. Thus

g is finite a.e., and consequently the series

∞X

k=2
| fk(x) − fk−1(x)| converges in R for a.e. x [dµ]. (∗∗)

By redefining the functions fk as 0 on a set of µ measure 0, we may assume that
the series (∗∗) converges pointwise to a limit in R for every x . Consequently the
series

∞X

k=2
( fk(x) − fk−1(x))

is absolutely convergent for all x and must be convergent for all x . The partial
sums for the series without the absolute value signs are fn(x)− f1(x), and hence
f (x) = lim fn(x) exists in R for every x . For every n,

| f − fn| ≤
∞X

k=n+1
| fk − fk−1| ≤ g, (†)

and we have seen that gp is integrable. By dominated convergence, we conclude
that limn

R
X | f − fn|p dµ =

R
X limn | f (x)− fn(x)|p dµ(x) = 0. In other words,

limn k f − fnkp = 0. Therefore fn tends to f in L p(µ).
Next suppose that p = ∞. Let { fn} be any Cauchy sequence in L∞. For each

m and n, let Emn be the subset of X where | fm − fn| > k fm − fnk∞, and put
E =

S
m,n Emn . This set has measure 0. Redefine all functions to be 0 on E .

The sequence of redefined functions is then uniformly Cauchy, hence uniformly
convergent to some function f , and then fn tends to f in L∞(X).
For any p, we have shown that the original Cauchy sequence { fn} has a

convergent subsequence { fnk } in L p. Let f be the L p limit of the subsequence.
Given ≤ > 0, choose N such that n ∏ m ∏ N implies k fn − fmkp ≤ ≤, and then
choose K such that k fnk − f kp ≤ ≤ for k ∏ K . Fix k ∏ K with nk ∏ N . Taking
m = nk , we see that k fn − f kp ≤ k fn − fnkkp + k fnk − f kp ≤ 2≤ whenever
n ∏ nk . Thus { fn} converges to f . This completes the proof of the theorem. §
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In Section 8 we introduced integration of functions with values in Rm or Cm .
The definitions of L1, L2, and L∞ may be extended to include such functions,
and we write L1(X, Cm), for example, to indicate that the functions in question
take values in Cm . In the definitions any expression | f (x)| or | f | that arises in
the definition and refers to absolute value in the scalar-valued case is now to be
understood as referring to the norm on the vector space where the functions take
their values. The vector-valued L1, L2, and L∞ spaces are further normed linear
spaces, and one readily checks that Theorem 5.59 with the above proof applies
to them because the range spaces are complete.
The triangle inequality for a pseudo normed linear space says that the norm

of the sum of two elements is less than or equal to the sum of the norms, and of
course the inequality instantly extends to a sum of any finite number of elements.
But what about an integral of elements? In the case that the linear space is one
of the precursor spaces “V ” for L1, L2, or L∞, the setting is that of functions
of two variables. One of the variables corresponds to the measure space under
study, and the other corresponds to the indexing set for the integral of the norms.
Thus we could, if we wanted, force the situation into the mold of vector-valued
functions whose values are in a space of functions. But it is not necessary to do
so, and we do not. Here is the theorem.

Theorem 5.60 (Minkowski’s inequality for integrals). Let (X,A, µ) and
(Y,B, ∫) be σ -finite measure spaces, and put p = 1, 2, or∞. If f is measurable
on X × Y , then

∞
∞
∞

Z

X
f (x, y) dµ(x)

∞
∞
∞
p,d∫(y)

≤
Z

X
k f (x, y)kp,d∫(y) dµ(x)

in the following sense: The integrand on the right side is measurable. If the
integral on the right is finite, then for almost every y [d∫] the integral on the left
is defined; when it is redefined to be 0 for the exceptional y’s, then the formula
holds.

REMARK. An extension of this theorem to values of p other than 1, 2,∞ will
be given in Chapter IX, and that result will have the same name.

PROOF. The right side of the integral formula is unchanged if we replace f by
| f |, and thus we may assume that f ∏ 0 without loss of generality. If p = 1,
then the formula for f ∏ 0 reads

R
Y

h R
X f (x, y) dµ(x)

i
d∫(y)

?
≤

R
X

h R
Y f (x, y) d∫(y)

i
dµ(x).

In fact, equality holds, and the result just amounts to Fubini’s Theorem (Theorem
5.47).
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Let p = 2. We have
k f (x, y)k22,d∫(y) =

Z

Y
| f (x, y)|2 d∫(y),

and this is measurable by Fubini’s Theorem. Hence k f (x, y)k2,d∫(y) is measur-
able. The idea for proving the inequality in the statement of the theorem is to
imitate the argument that derives the triangle inequality for L2 from the Schwarz
inequality. That earlier argument is

kg + hk22 = kgk22 + 2Re(g, h) + khk22 ≤ kgk22 + 2kgk2khk2 + khk22.

The adapted argument is
∞
∞ R

X f (x, y) dµ(x)
∞
∞2
2,d∫(y)=

R
Y

R
x∈X f (x, y) dµ(x)

R
x 0∈X f (x 0, y) dµ(x 0) d∫(y)

=
R
X×X

£ R
Y f (x, y) f (x 0, y)d∫(y)

§
dµ(x) dµ(x 0)

≤
R
X×X k f (x, y)k2,d∫(y)k f (x

0, y)k2,d∫(y) dµ(x) dµ(x 0)

=
£ R

X k f (x, y)k2,d∫(y) dµ(x)
§2

,

the second and third lines following from Fubini’s Theorem and the Schwarz
inequality.
Let p = ∞. This is the hard case of the proof. We proceed in three steps. The

first step is to prove the asserted measurability of k f (x, y)k∞,d∫(y), and we do so
byfirst handling simple functions and then passing to the limit. If s =

PN
n=1 cn IEn

is the canonical expansion of a simple function s ∏ 0 on X × Y and if x is fixed,
thenks(x, y)k∞,d∫(y) = max

©
cn

Ø
Ø∫((En)x) > 0

™
. In otherwords, if kn is the indi-

cator function of the set
©
x ∈ X

Ø
Ø ∫((En)x) > 0

™
, then s = max{c1k1, . . . , cNkN }.

Each functioncnkn ismeasurablebyLemma5.44, and thepointwisemaximum s is
measurablebyCorollary5.9. Returning to our function f ∏ 0,weuseProposition
5.11 to choose an increasing sequence {sn} of nonnegative simple functions with
pointwise limit f . We prove that ksn(x, y)k∞,d∫(y) increases to k f (x, y)k∞,d∫(y)
for each x , and then themeasurability follows fromCorollary5.10. Since x is fixed
in this step, let us drop it and consider an increasing sequence {sn} of nonnegative
measurable functions on Y with limit f on Y ; we are to show that k f k∞ =
lim ksnk∞. The numbers ksnk∞ are monotone increasing and are≤ k f k∞. Thus
lim ksnk∞ ≤ k f k∞. Arguing by contradiction, suppose that equality fails and
that lim ksnk∞ ≤ M < M+≤ < k f k∞. Then

©
y
Ø
Ø sn(y) ∏ M+≤

™
hasmeasure 0

for every n, and so does
S

n
©
y
Ø
Ø sn(y) ∏ M + ≤

™
, by complete additivity. On

the other hand,
©
y
Ø
Ø f (y) > M + ≤

™
is a subset of this union, and it has positive

measure since M + ≤ < k f k∞. Thus we have a contradiction and conclude that
lim ksnk∞ = k f k∞. Consequently k f (x, y)k∞,d∫(y) is measurable, as asserted.
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The second step is to prove that any measurable function F ∏ 0 on Y has
kFk∞ = supg

Ø
Ø R

Y Fg d∫
Ø
Ø, where the supremum is taken over all g ∏ 0 with

kgk1 ≤ 1. Certainly any such g has
Ø
Ø R

Y Fg d∫
Ø
Ø ≤ kFk∞

R
Y g d∫ ≤ kFk∞,

and therefore supg
Ø
Ø R

Y Fg d∫
Ø
Ø ≤ kFk∞. For the reverse inequality, let IE be the

indicator function of a set of finite positivemeasure, and put g = ∫(E)−1 IE . ThenR
Y Fg d∫ = ∫(E)−1

R
E F d∫ ∏ infE(F). If m is less than kFk∞, then the set E

where F is ∏ m has positive measure, and the inequality reads m ≤
R
Y Fg d∫

for the associated g. Hence m ≤ supg
R
Y Fg d∫. Taking the supremum of such

m’s, we obtain kFk∞ ≤ supg
Ø
Ø R

Y Fg d∫
Ø
Ø, and the reverse inequality is proved.

The third step is to use the previous two steps to prove the inequality in the
statement of the theorem for f ∏ 0. Let g be any nonnegative function on Y withR
Y g d∫ ≤ 1. Then Fubini’s Theorem, the result of the first step above, and the
result in the easy direction of the second step above give

R
Y g(y)

£ R
X f (x, y) dµ(x)

§
d∫(y) =

R
X

£ R
Y f (x, y)g(y) d∫(y)

§
dµ(x)

≤
R
X

£
k f (x, y)k∞,d∫(y)

§
dµ(x).

Taking the supremum over g and using the result in the hard direction of the
second step, we obtain the inequality in the statement of the theorem. §

10. Arc Length and Lebesgue Integration

Section III.11 took up the topic of arc length for simple arcs ∞ : [a, b] → Rn .
For any partition P = {tj }mj=0 of [a, b], we wrote `(∞ (P)) for the sum of the
lengths of the line segments connecting the consecutive points ∞ (tj ), namely
`(∞ (P)) =

Pm
j=1 |∞ (tj ) − ∞ (tj−1)|, and we defined

`(∞ ) = sup
P

`(∞ (P)),

the supremum being taken over all partitions P of [a, b]. We called ∞ rectifiable
if `(∞ ) is finite.
In practice the simple arcs of most interest are the ones for which ∞ is of class

C1 on (a, b). We saw in Section III.11 on the one hand that not every simple arc
of this kind is rectifiable but that the simple arcs of this kind with |∞ 0| bounded are
indeed rectifiable. We saw on the other hand that the theory omits vital examples
if we consider only simple arcs in this class for which |∞ 0| is bounded.
To handle this gap, we studied those simple arcs that are “tamely behaved” in

the sense of being of class C1 on (a, b) and having the property that near each
endpoint, each entry of ∞ 0 is either bounded below or bounded above. These arcs
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were sufficient for our purposes. They were all rectifiable, and we derived the
formula

`(∞ ) = lim
a0↓a, b0↑b,
a<a0<b0<b

Z b0

a0
|∞ 0(t)| dt.

Armed with Lebesgue integration, we can sort out these matters and see exactly
which simple arcs under study were rectifiable. The answer is as follows.

Proposition 5.61. A simple arc ∞ : ∞ : [a, b] → Rn that is of class C1 on
(a, b) is rectifiable if and only is |∞ 0| is Lebesgue integrable on [a, b] with respect
to Lebesgue measure m, and then

`(∞ ) =
Z

[a,b]
|∞ 0| dm.

PROOF. Whenever a < a0 < b0 < b, Theorem3.42 andExample 3 of Section 2
show that

`(∞[a0,b0]) =
R b0

a0 |∞ 0(t)| dt =
R
[a0,b0) |∞ 0| dm.

Since the Lebesgue integral is a completely additive set function (Theorem 3.19)
and since the one-point sets {a} and {b} have Lebesgue measure 0, we obtain

lima0↓a, b0↑b,
a<a0<b0<b

`(∞[a0,b0]) =
R
(a,b) |∞ 0| dm =

R
[a,b] |∞

0| dm.

Proposition 3.38 shows that the limit on the left side equals `(∞ ) if ∞ is rec-
tifiable, i.e., if `(∞ ) < ∞, and the proof will be complete if we show thatR
[a,b] |∞

0| dm = ∞ when `(∞ ) = ∞.
Arguing by contradiction, suppose that `(∞ ) = ∞ and that

R
[a,b] |∞

0| dm =
C < ∞. Let M be an upper bound for |∞ (t)| for a ≤ t ≤ b. Because `(∞ ) = ∞,
we can choose a partition P with `(∞ (P)) ∏ C + 4M + 1, say P = {tj }mj=0.
Without loss of generality, we may assume that the points tj are distinct. Put
a0 = t1 and b0 = tm−1. Then we have

`(∞ (P)) = |∞ (a0) − ∞ (a)| +
m−1P

j=2
|∞ (tj ) − ∞ (tj−1)| + |∞ (b) − ∞ (b0)|.

The first and third terms on the right side are each ≤ 2M , and the middle term is
∞[a0,b0](P 0) for the partition P 0 = {tj }m−1

j=1 of [a0, b0]. Thus

C + 4M + 1 ≤ `(∞ (P)) ≤ 4M + `(∞[a0,b0](P 0) ≤ 4M + `(∞[a0,b0]).

The formula of the proposition has been proved for ∞[a0,b0], and thus C + 1 ≤
`(∞[a0,b0]) =

R
[a0,b0] |∞

0| dm ≤
R
[a,b] |∞ | dm = C . Since C has been assumed

finite, this inequality is a contradiction, and the result follows. §
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Corollary 5.62. If a simple arc ∞ : [a, b] → Rn with ∞ of class C1 on (a, b)
is tamely behaved, then |∞ 0| is integrable on [a, b].
PROOF. This is immediate from Theorem 3.42 and Proposition 5.61. §

REMARK. It is instructive to verify Corollary 5.62 by direct calculation. We
omit the details.

11. Problems

1. Let X be a finite set of n > 0 elements.
(a) If A is an algebra of subsets, what are the possible numbers of sets in A?
(b) Show that symmetric difference A1 B = (A− B) ∪ (B − A) is an abelian

group operation on the set of all subsets of X and that every nontrivial
element has order 2.

(c) If B is a class of subsets containing ∅ and X and closed under symmetric
difference, what are the possible numbers of sets in B?

(d) Prove or disprove: The class of sets in (c) is necessarily an algebra of sets.
(e) Show that intersection and symmetric difference satisfy the distributive law

A ∩ (B1C) = (A ∩ B)1 (A ∩ C).
2. Exhibit a completely additive set function ρ on a σ -algebra and two sets A and

B such that ρ(A) < 0 and ρ(B) < 0 but ρ(A ∪ B) > 0.
3. Let {En} be a sequence of subsets of X , and put

A =
∞\

n=1

∞[

k=n
Ek and B =

∞[

n=1

∞\

k=n
Ek .

Prove that the indicator functions of Ek , A, and B satisfy
IA = lim sup

n
IEn and IB = lim inf

n
IEn .

4. Suppose that µ is a finite measure defined on a σ -algebra and {En} is a sequence
of measurable sets with

∞\

n=1

∞[

k=n
Ek =

∞[

n=1

∞\

k=n
Ek .

Call the set on the two sides of this equation E . Prove that limn µ(En) exists and
equals µ(E).

5. Let X be the set of rational numbers, and let R be the ring of all finite disjoint
unions of bounded intervals in X , with or without endpoints. For each set E in
R, let µ(E) be its length.
(a) Show that µ is nonnegative additive.
(b) Show that µ is not completely additive.



328 V. Lebesgue Measure and Abstract Measure Theory

6. Prove that if E is a Lebesgue measurable subset of [0, 1] of Lebesgue measure 0,
then the complement of E is dense in [0, 1].

7. Let µ be a measure defined on a σ -algebra. Prove that if the complement of
every set of measure +∞ is of finite measure, then supµ(A)<+∞ µ(A) is finite
and there is a set B with µ(B) = supµ(A)<+∞ µ(A).

8. If f is a measurable function, prove that f −1(E) is measurable whenever E is a
Borel subset of the real line.

9. For the measure space (X,A, µ) in which X is the positive integers, A consists
of all subsets of X , and µ is the counting measure, the theory of Lebesgue
integration becomes a theory of infinite series. Restate Fatou’s Lemma and the
Dominated Convergence Theorem in this context.

10. Suppose on a finitemeasure space that { fn} is a sequence of real-valued integrable
functions tending uniformly to f . Prove that limn

R
X fn dµ =

R
X f dµ.

11. This problem involves aCantor setC in [0, 1] built using fractions rn as in Section
II.9.
(a) Show that C has Lebesgue measure

Q∞
n=1 (1− rn).

(b) Prove that the indicator function IC is discontinuous at every point of C
and only there. Thus the set of discontinuities of IC is not of measure 0 ifQ∞

n=1 (1− rn) > 0.
(c) Show that if the result of redefining IC on a set of Lebesgue measure 0 is a

function f , then the only possible points of continuity of f are those where
f is 0.

(d) Conclude that there exists a boundedLebesguemeasurable function on [0, 1]
that is not Riemann integrable and cannot be redefined on a set of measure 0
so as to be Riemann integrable.

12. Let (X,A, µ) be any measure space, and let (X,A, µ) be its completion. Prove
that if f is a function measurable with respect to A, then f can be redefined on
a set of µ-measure 0 so as to be measurable with respect to A.

13. Let X be an uncountable set, and let A be the set of all countable subsets of X
and their complements. Prove that the diagonal

©
(x, x)

Ø
Ø x ∈ X

™
is not a member

of the σ -algebra A × A, the smallest σ -algebra containing all rectangles with
sides in A.

14. Let (R1,B,m) be the real line with Lebesgue measure on the Borel sets, and let
(X,A, µ) be a σ -finite measure space. If f ∏ 0 is a measurable function on X ,
prove that the “region under the graph of f ,” defined by

R =
©
(x, y)

Ø
Ø 0 ≤ y < f (x)

™
,

is a measurable subset of X × R1 and that its measure relative to µ × m isR
X f (x) dµ(x).
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15. LetA be a σ -algebra of subsets of a nonempty set X , let F : Cn1 × · · ·×Cnk →
CN be continuous, and let f j : X → Cnj be measurable with respect to A for
1 ≤ j ≤ k. Prove that x 7→ F( f1(x), . . . , fk(x)) is measurable with respect
to A.

16. This problem complements the proof in Theorem 5.59 that L1 is a complete
metric space. For n ∏ 1, suppose that 0 < an < 1 and

P∞
n=1 an = +∞. Find

a measure space (X,A, µ) and a sequence of functions fn with k fnk1 = an and
{ fn(x)} convergent for no x .

17. (Egoroff’s Theorem) Let (X,A, µ) be a finite measure space. Suppose that
fn and f are measurable functions with values in R such that lim fn(x) = f (x)
pointwise. The objective of this problem is to prove that lim fn = f “almost
uniformly.” By considering the sets

EMN =
©
x ∈ X

Ø
Ø | fn(x) − f (x)| < 1/M for n ∏ N

™

for M fixed and N varying, prove that if ≤ > 0 is given, then there exists a
measurable subset E of X withµ(E) < ≤ such that lim fn(x) = f (x) uniformly
for x in Ec.

18. (a) Derive the Dominated Convergence Theorem for a space of finite measure
from Egoroff’s Theorem (Problem 17) and Corollary 5.24.

(b) Derive the Dominated Convergence Theorem for a space of infinite measure
from the Dominated Convergence Theorem for a space of finite measure.

Problems 19–21 use Egoroff’s Theorem (Problem 17) to show how close pointwise
convergence is to L1 convergence on a measure space (X,A, µ) of finite measure.
Theorem 5.59 shows that if a sequence converges in L1(X), then a subsequence
converges almost everywhere. These problems address the converse direction in a
way different from Problem 16. Suppose that fn and f are integrable functions with
values in R such that lim fn(x) = f (x) pointwise.
19. Suppose that fn ∏ 0 for all n and that lim

R
X fn dµ =

R
X f dµ. Prove that

limn
R
E fn dµ =

R
E f dµ for every measurable set E .

20. Suppose that fn ∏ 0 for all n and that lim
R
X fn dµ =

R
X f dµ. Use the previous

problem and Egoroff’s Theorem to prove that lim
R
X | fn − f | dµ = 0.

21. A sequence {gn} of nonnegative integrable functions is called uniformly
integrable if for any ≤ > 0, there is an N such that

R
{x | fn(x)∏N } gn dµ < ≤

for all n. Suppose that the members of the given convergent sequence { fn} are
nonnegative. UsingEgoroff’s Theorem in one direction and the previous problem
in the converse direction, prove that limn

R
X fn dµ =

R
X f dµ if and only if the

fn are uniformly integrable.
Problems 22–24 concern the extension of measures beyond what is given in Theorem
5.5 and Proposition 5.37. Let µ be a finite measure on a σ -algebra A of subsets of
X , and define µ∗ and µ∗ on all subsets of X as in Lemma 5.32 and immediately
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after it. Let E be a subset of X that is not in A, and let B be the smallest σ -algebra
containing E and the members of A.
22. Show that there exist two sets K and U in A such that K ⊆ E ⊆ U , µ∗(E) =

µ(K ), and µ∗(E) = µ(U). Show that K and U have the further properties that
Uc ⊆ Ec ⊆ Kc, µ∗(Ec) = µ(Uc), and µ∗(Ec) = µ(Kc).

23. Show that the setsK andU of thepreviousproblemsatisfyµ∗(A∩E) = µ(A∩K )

and µ∗(A ∩ E) = µ(A ∩U) for every A in A.
24. Fix t in [0, 1]. Show that the set function σ defined for A and B in A by

σ [(A ∩ E) ∪ (B ∩ Ec)]
= tµ∗(A ∩ E) + (1− t)µ∗(A ∩ E) + tµ∗(B ∩ Ec) + (1− t)µ∗(B ∩ Ec)

is defined on all of B, is a measure, agrees with µ on A, and assigns measure
tµ∗(E) + (1− t)µ∗(E) to the set E .

Problems 25–33 concern a construction by “transfinite induction” of all sets in the
smallest σ -algebra containing an algebra of sets. In particular, it describes how to
obtain all Borel sets of the interval [0, 1] of the line from the elementary sets in that
interval. Later problems in the set apply the construction in various ways. This set of
problems makes use of partial orderings as described in Section A9 of Appendix A,
but they do not use Zorn’s Lemma. The set of countable ordinals is an uncountable
partially ordered set ƒ, under a partial ordering ≤, with the following properties:

(i) ƒ has the property that x ≤ y and y ≤ x together imply x = y,
(ii) ƒ is “totally ordered” in the sense that any x and y in the set have either

x ≤ y or y ≤ x ,
(iii) ƒ is “well ordered” in the sense that any nonempty subset has a least element,
(iv) for any x in ƒ, the set of elements ≤ x is at most countable.

Take as known that such a set ƒ exists.

25. Prove that any countable subset of ƒ has a least upper bound.
26. This problem asks for a proof of the validity of transfinite induction as applied

toƒ. Let 1 be the least element ofƒ, and let “<” mean “≤ but not=.” Suppose
that some p(ω) is specified for each ω in ƒ. Suppose further that p(1) is true
and that if for each ω > 1, p(ω0) is true for all ω0 < ω, then p(ω) is true. Prove
that p(ω) is true for all ω in ƒ.

27. Let X be a nonempty set, let A be an algebra of subsets of X , and let B be the
smallest σ -algebra containing A. This problem uses ƒ to describe “construc-
tively” B in terms of A. We define by transfinite induction two successively
larger classes of sets Uα and Kα for each countable ordinal α ∏ 1. Let U1 be
the set of all countable increasing unions of members of A, let Kα for α ∏ 1 be
the set of all countable decreasing intersections of members of Uα , and let Uα

for α > 1 be the set of all countable increasing unions of members of previous
Kβ ’s.
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(a) Prove at each stage α that Uα andKα are both closed under finite unions and
finite intersections.

(b) Prove that B is the union of all Kα for α in ƒ.
28. For the case that ∫(X) < +∞, prove the uniqueness half of the Extension

Theorem (Theorem 5.5) by using the transfinite construction of Problem 27.
[Educationalnote: It is not knownhow toprove the existencehalf of theExtension
Theorem in this “constructive” way.]

29. Prove theMonotoneClass Lemma (Lemma5.43) bymaking use of the transfinite
construction of Problem 27.

30. Devise a transfinite construction of all finite-valued Borel measurable functions
on R1 that starts from continuous functions and alternately allows pointwise
increasing limits and pointwise decreasing limits. The construction is to be in
the spirit of Problem 27. Show that all finite-valued Borel measurable functions
are obtained in this way if the indexing is done with ƒ.

31. This problem“counts” the number ofBorel sets of the real line, usingProblem27.
It uses the material on cardinality in Section A10 of Appendix A.
(a) Prove that

(i) ƒ has the same cardinality as some subset of R,
(ii) the set of all sequences of members of R has the same cardinality

as R,
(iii) if A ⊆ B ⊆ C and if A and C have the same cardinality as R, then

so does B,
(iv) if a set A has the same cardinality as R and if for each α in A, Bα

is a set with the same cardinality as R, then
S

α∈A Bα has the same
cardinality as R.

(b) Deduce that the set of all Borel sets ofR has the same cardinality asR itself.
32. The standard Cantor set C in [0, 1], built using fractions rn = 1/3 as in Section

II.9, is a Borel set of Lebesgue measure 0 by Problem 11. Prove that C has the
same cardinality as R. Conclude that the cardinality of the set of all Lebesgue
measurable sets equals the cardinality of the set of all subsets ofR. [Educational
note: From this andProblem31 it follows that there exists a Lebesguemeasurable
set in [0, 1] that is not a Borel set.]

33. For the standard Cantor set C as in the previous problem, show that the indicator
function IC 0 of any subset C 0 of C is continuous on Cc. Conclude that the cardi-
nality of the set of Riemann integrable functions on [0, 1] equals the cardinality
of the set of all subsets of R. [Educational note: From this and Problems 30–31,
it follows that there exists a Riemann integrable function on [0, 1] that is not
Borel measurable.]

Problems 34–41 showhow to produce nontrivial nonnegative additive set functions on
the set of all subsets of an infinite set fromZorn’s Lemma (SectionA9ofAppendixA).
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A filter F on a nonempty set X is a nonempty class of subsets of X such that
(i) if E is in F and F ⊇ E , then F is in F, i.e., F is closed under the operation

of forming supersets,
(ii) if E and F are in F, so is E ∩ F ,
(iii) ∅ is not in F.

An ultrafilter is a filter that is not properly contained in any larger filter.
34. Verify the following:

(a) {X} is a filter.
(b) Any filter is closed under finite intersections.
(c) A one-point set and all of its supersets form an ultrafilter. (Such an ultrafilter

is called a trivial ultrafilter.)
(d) If X is infinite, then the set F of all subsets whose complements are finite

sets is a filter.
35. Use Zorn’s Lemma to show that every filter is contained in some ultrafilter.
36. Show that if C is a nonempty class of subsets of X , then there is a filter containing

C if and only if no finite intersection of members of C is empty.
37. Prove that a filter F is an ultrafilter if and only if A ∪ B in F implies that either

A is in F or B is in F.
38. Prove that a filter F is an ultrafilter if and only if for every A ⊆ X , either A is in

F or Ac is in F.
39. Prove that the nonzero additive set functions defined on the set of all subsets

of a set X and having image {0, 1} stand in one-one correspondence with the
ultrafilters on X , the correspondence being that the sets in the ultrafilter are
exactly the sets on which the set function is 1. Prove that the set function is
a measure if and only if the corresponding ultrafilter is closed under countable
intersections.

40. Let X be any infinite set. Prove that X has a nontrivial ultrafilter, hence that X
has a nonnegative additive set function µ that assumes only the values 0 and 1
and is not a point mass.

41. Prove that the setZ+ of positive integers has no nontrivial ultrafilter closed under
countable intersections, i.e., that the set function µ in the previous problem is
not a measure.

Problems 42–43 concern a theory of integration in which complete additivity is
dropped as an assumption. An example is given in Problems 39–41 of a nonnegative
additive set function on the set of all subsets of an infinite set that is not completely
additive. For the present set of problems, let X be a nonempty set, let A be a
σ -algebra of subsets, and let µ be a nonnegative additive set function onA such that
µ(X) < +∞. Imagine an integration theory for

R
E f dµ with the definitions just

as in the case that µ is a measure. All the properties of the integral proved in the
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text before the Monotone Convergence Theorem would still be valid, except that the
integral

R
E f dµ as a function of E would be merely additive, rather than completely

additive, and hence we would have to drop Corollary 5.24 and the converse half of
Corollary 5.23.
42. Let f be∏ 0, and let sn be the standard pointwise increasing sequence of simple

functions with limit f , as in Proposition 5.11. Show that the convergence of sn
to f is uniform if f is bounded.

43. Use the result of the previous problem to show in this theory that
R
E ( f +g) dµ =R

E f dµ +
R
E g dµ if f and g are bounded and measurable.




