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PREFACE TO THE SECOND EDITION

In the years since publicationof thefirst editionofBasicRealAnalysis, many read-
ers have reacted to the book by sending comments, suggestions, and corrections.
People appreciated the overall comprehensive nature of the book, associating this
feature in part with the large number of problems that develop so many sidelights
and applications of the theory. Some people wondered whether a way might
be found for a revision to include some minimal treatment of Stokes’s Theorem
and complex analysis, despite the reservations I expressed in the original preface
about including these topics.
Along with the general comments and specific suggestions were corrections,

well over a hundred in all, that needed to be addressed in any revision. Many of
the corrections were of minor matters, yet readers should not have to cope with
errors along with new material. Fortunately no results in the first edition needed
to be deleted or seriously modified, and additional results and problems could be
included without renumbering.
For the first edition, the author granted a publishing license to Birkhäuser

Boston that was limited to print media, leaving the question of electronic publi-
cation unresolved. A major change with the second edition is that the question of
electronic publication has now been resolved, and a PDF file, called the “digital
secondedition,” is beingmade freely available to everyoneworldwide for personal
use. This file may be downloaded from the author’s own Web page and from
elsewhere.
The main changes to the first edition of Basic Real Analysis are as follows:

• A careful treatment of arc length, line integrals, and Green’s Theorem for
the plane has been added at the end of Chapter III. These aspects of Stokes’s
Theorem can be handled by the same kinds of techniques of real analysis
as in the first edition. Treatment of aspects of Stokes’s Theorem in higher
dimensions would require a great deal more geometry, for reasons given in
Section III.13, and that more general treatment has not been included.

• The core of a first course in complex analysis has been included asAppendixB.
Emphasis is on those aspects of elementary complex analysis that are useful
as tools in real analysis. The appendix includes more than 80 problems, and
somestandard topics in complex analysis are developed in theseproblems. The
treatment assumes parts of Chapters I–III as a prerequisite. How the appendix
fits into the plan of the book is explained in the Guide for the Reader.

xiii



xiv Preface to the Second Edition

• A new section in Chapter IX proves and applies the Riesz–Thorin Convexity
Theorem, a fundamental result about L p spaces that takes advantage of ele-
mentary complex analysis.

• About20problemshavebeenaddedat the endsofChapters I–XII.Chiefly these
are of three kinds: some illustrate the new topics of arc length, line integrals,
and Green’s Theorem; some make use of elementary complex analysis as
in Appendix B to shed further light on results and problems in the various
chapters; and some relate to the topic of Banach spaces in Chapter XII .

• The corrections sent by readers and by reviewers have been made. The most
significant such correction was a revision to the proof of Zorn’s Lemma, the
earlier proof having had a gap.
The material in Appendix B is designed as the text of part of a first course in

complex analysis. I taught such a course myself on one occasion. A course in
complex analysis invariably begins with some preliminary material, and that can
be taken fromChapters I to III; details appear in theGuide to theReader. Appendix
B forms the core of the course, dealing with results having an analytic flavor,
including the part of the theory due to Cauchy. The topic of conformal mapping,
which has a more geometric flavor, has been omitted, and some instructors might
feel obliged to include something on this topic in the course. Appendix B states
the Riemann Mapping Theorem at one point but does not prove it; all the tools
needed for its proof, however, are present in the appendix and its problems. Often
an instructor will end a first course in complex analysis with material on infinite
series and products of functions, or of aspects of the theory of special functions,
or on analytic continuation. Supplementary notes on any such topics would be
necessary.
It was Benjamin Levitt, Birkhäuser mathematics editor in New York, who

encouraged the writing of this second edition, whomade a number of suggestions
about pursuing it, and who passed along comments from several anonymous
referees about the strengths and weaknesses of the book. I am especially grateful
to those readers who have sent me comments over the years. Many of the
corrections that were made were kindly sent to me either by S. H. Kim of South
Koreaor by JacquesLarochelleofCanada. The correction to theproof ofTheorem
1.35 was kindly sent by Glenn Jia of China. The long correction to the proof of
Zorn’s Lemma resulted from a discussion with Qiu Ruyue. The typesetting was
done by the program Textures using AMS-TEX, and the figures were drawn with
Mathematica.
Just as with the first edition, I invite corrections and other comments from

readers. For as long as I am able, I plan to point to a list of known corrections
from my own homepage, www.math.stonybrook.edu/∼aknapp.

A. W. KNAPP
February 2016



PREFACE TO THE FIRST EDITION

This book and its companion volume, Advanced Real Analysis, systematically
develop concepts and tools in real analysis that are vital to every mathematician,
whether pure or applied, aspiring or established. The two books together contain
what the young mathematician needs to know about real analysis in order to
communicate well with colleagues in all branches of mathematics.
The books are written as textbooks, and their primary audience is students who

are learning the material for the first time and who are planning a career in which
they will use advanced mathematics professionally. Much of the material in the
books corresponds to normal course work. Nevertheless, it is often the case that
core mathematics curricula, time-limited as they are, do not include all the topics
that one might like. Thus the book includes important topics that may be skipped
in required courses but that the professional mathematician will ultimately want
to learn by self-study.
The content of the required courses at each university reflects expectations of

what studentsneedbeforebeginning specializedstudyandworkona thesis. These
expectations vary from country to country and from university to university. Even
so, there seems to be a rough consensus aboutwhatmathematics a plenary lecturer
at a broad international or national meeting may take as known by the audience.
The tables of contents of the two books represent my own understanding of what
that degree of knowledge is for real analysis today.

Key topics and features of Basic Real Analysis are as follows:
• Early chapters treat the fundamentals of real variables, sequences and series
of functions, the theory of Fourier series for the Riemann integral, metric
spaces, and the theoretical underpinnings of multivariable calculus and ordi-
nary differential equations.

• Subsequent chapters develop the Lebesgue theory in Euclidean and abstract
spaces, Fourier series and the Fourier transform for the Lebesgue integral,
point-set topology, measure theory in locally compact Hausdorff spaces, and
the basics of Hilbert and Banach spaces.

• The subjects of Fourier series and harmonic functions are used as recurring
motivation for a number of theoretical developments.

• The development proceeds from the particular to the general, often introducing
examples well before a theory that incorporates them.

xv



xvi Preface to the First Edition

• More than 300 problems at the ends of chapters illuminate aspects of the
text, develop related topics, and point to additional applications. A separate
55-page section “Hints for Solutions of Problems” at the end of the book gives
detailed hints for most of the problems, together with complete solutions for
many.
Beyond a standard calculus sequence in one and several variables, the most

important prerequisite for using Basic Real Analysis is that the reader already
know what a proof is, how to read a proof, and how to write a proof. This
knowledge typically is obtained from honors calculus courses, or from a course
in linear algebra, or from a first junior-senior course in real variables. In addition,
it is assumed that the reader is comfortablewith amodest amount of linear algebra,
including row reduction of matrices, vector spaces and bases, and the associated
geometry. A passing acquaintance with the notions of group, subgroup, and
quotient is helpful as well.
Chapters I–IV are appropriate for a single rigorous real-variables course and

may be used in either of two ways. For students who have learned about proofs
from honors calculus or linear algebra, these chapters offer a full treatment of real
variables, leaving out only the more familiar parts near the beginning—such as
elementary manipulations with limits, convergence tests for infinite series with
positive scalar terms, and routine facts about continuity and differentiability. For
students who have learned about proofs from a first junior-senior course in real
variables, these chapters are appropriate for a second such course that begins with
Riemann integration and sequences and series of functions; in this case the first
section of Chapter I will be a review of some of the more difficult foundational
theorems, and the course can conclude with an introduction to the Lebesgue
integral from Chapter V if time permits.
Chapters V through XII treat Lebesgue integration in various settings, as well

as introductions to the Euclidean Fourier transform and to functional analysis.
Typically this material is taught at the graduate level in the United States, fre-
quently in oneof threeways: ThefirstwaydoesLebesgue integration inEuclidean
and abstract settings and goes on to consider the Euclidean Fourier transform in
some detail; this corresponds to Chapters V–VIII. A second way does Lebesgue
integration in Euclidean and abstract settings, treats L p spaces and integration on
locally compact Hausdorff spaces, and concludes with an introduction to Hilbert
and Banach spaces; this corresponds to Chapters V–VII, part of IX, and XI–XII.
A third way combines an introduction to the Lebesgue integral and the Euclidean
Fourier transform with some of the subject of partial differential equations; this
corresponds to some portion of Chapters V–VI and VIII, followed by chapters
from the companion volume, Advanced Real Analysis.
In my own teaching, I have most often built one course around Chapters I–IV

and another around Chapters V–VII, part of IX, and XI–XII. I have normally



Preface to the First Edition xvii

assigned the easier sections of Chapters II and X as outside reading, indicating
the date when the lectures would begin to use that material.
More detailed information about how the book may be used with courses may

be deduced from the chart “Dependence among Chapters” on page xiv and the
section “Guide to the Reader” on pages xv–xvii.
The problems at the ends of chapters are an important part of the book. Some

of them are really theorems, some are examples showing the degree to which
hypotheses can be stretched, and a few are just exercises. The reader gets no
indication which problems are of which type, nor of which ones are relatively
easy. Each problem can be solved with tools developed up to that point in the
book, plus any additional prerequisites that are noted.

Two omissions from the pair of books are of note. One is any treatment of
Stokes’s Theorem and differential forms. Although there is some advantage,
when studying these topics, in having the Lebesgue integral available and in
having developed an attitude that integration can be defined by means of suitable
linear functionals, the topic of Stokes’s Theorem seems to fit better in a book
about geometry and topology, rather than in a book about real analysis.
The other omission concerns the use of complex analysis. It is tempting to try

to combine real analysis and complex analysis into a single subject, but my own
experience is that this combination does not work well at the level of Basic Real
Analysis, only at the level of Advanced Real Analysis.
Almost all of the mathematics in the two books is at least forty years old, and I

make no claim that any result is new. The books are a distillation of lecture notes
from a 35-year period of my own learning and teaching. Sometimes a problem at
the end of a chapter or an approach to the exposition may not be a standard one,
but no attempt has been made to identify such problems and approaches. In the
reverse direction it is possible that my early lecture notes have directly quoted
some source without proper attribution. As an attempt to rectify any difficulties
of this kind, I have included a section of “Acknowledgments” on pages xix–xx
of this volume to identify the main sources, as far as I can reconstruct them, for
those original lecture notes.
I amgrateful toAnnKostant andStevenKrantz for encouraging this project and

for making many suggestions about pursuing it, and to Susan Knapp and David
Kramer for helping with the readability. The typesetting was by AMS-TEX, and
the figures were drawn with Mathematica.
I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP

May 2005
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GUIDE FOR THE READER

This section is intended to help the reader find out what parts of each chapter are
most important and how the chapters are interrelated. Further information of this
kind is contained in the abstracts that begin each of the chapters.
The book pays attention to certain recurring themes in real analysis, allowing

a person to see how these themes arise in increasingly sophisticated ways. Ex-
amples are the role of interchanges of limits in theorems, the need for certain
explicit formulas in the foundations of subject areas, the role of compactness and
completeness in existence theorems, and the approach of handling nice functions
first and then passing to general functions.
All of these themes are introduced in Chapter I, and already at that stage they

interact in subtle ways. For example, a natural investigation of interchanges of
limits in Sections 2–3 leads to the discovery of Ascoli’s Theorem, which is a
fundamental compactness tool for proving existence results. Ascoli’s Theorem
is proved by the “Cantor diagonal process,” which has other applications to
compactness questions and does not get fully explained until Chapter X. The
consequence is that, no matter where in the book a reader plans to start, everyone
will be helped by at least leafing through Chapter I.
The remainder of this section is an overview of individual chapters and groups

of chapters.
Chapter I. Every section of this chapter plays a role in setting up matters

for later chapters. No knowledge of metric spaces is assumed anywhere in the
chapter. Section1will be a review for anyonewhohas alreadyhad a course in real-
variable theory; the section shows how compactness and completeness address
all the difficult theorems whose proofs are often skipped in calculus. Section 2
begins the development of real-variable theory at the point of sequences and series
of functions. It contains interchange results that turn out to be special cases of
the main theorems of Chapter V. Sections 8–9 introduce the approach of handling
nice functions before general functions, and Section 10 introduces Fourier series,
which provided a great deal of motivation historically for the development of real
analysis and are used in this book in that same way. Fourier series are somewhat
limited in the setting of Chapter I because one encounters no class of functions,
other than infinitely differentiable ones, that corresponds exactly to some class of
Fourier coefficients; as a result Fourier series, with Riemann integration in use,

xxi
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are not particularly useful for constructing new functions from old ones. This
defect will be fixed with the aid of the Lebesgue integral in Chapter VI.
Chapter II. Now that continuity and convergence have been addressed on

the line, this chapter establishes a framework for these questions in higher-
dimensional Euclidean space and other settings. There is no point in ad hoc
definitions for each setting, and metric spaces handle many such settings at once.
Chapter X later will enlarge the framework from metric spaces to “topological
spaces.” Sections 1–6 of Chapter II are routine. Section 7, on compactness
and completeness, is the core. The Baire Category Theorem in Section 9 is not
used outside of Chapter II until Chapter XII, and it may therefore be skipped
temporarily. Section 10 contains the Stone–Weierstrass Theorem, which is a
fundamental approximation tool. Section 11 is used in some of the problems but
is not otherwise used in the book.
Chapter III. This chapter does for the several-variable theory what Chapter I

has done for the one-variable theory. Themain results are the Inverse and Implicit
Function Theorems in Section 6 and the change-of-variables formula for multiple
integrals in Section 10. The change-of-variables formula has to be regarded as
only a preliminary version, since what it directly accomplishes for the change
to polar coordinates still needs supplementing; this difficulty will be repaired in
Chapter VI with the aid of the Lebesgue integral. Section 4, on exponentials of
matrices, may be skipped if linear systems of ordinary differential equations are
going to be skipped in Chapter IV. Sections 11–13 contain a careful treatment
of arc length, line integrals, and Green’s Theorem for the plane. These sections
emphasize properties of parametrized curves that are unchanged when the curve
is reparametrized; length is an example. An important point to bear in mind is
that two curves are always reparametrizations of each other if they have the same
image in the plane and they are both traced out in one-one fashion. This theory
is tidier if carried out in the context of Lebesgue integration, but its placement in
the text soon after Riemann integration is traditional. The difficulty with using
Riemann integrals arises already in the standard proof of Green’s Theorem for
a circle, which parametrizes each quarter of the circle twice, once with y in
terms of x and once with x in terms of y. The problem is that in each of these
parametrizations, the derivative of the one variable with respect to the other is
unbounded, and thus arc length is not given by a Riemann integral. Some of
the problems at the end of the chapter introduce harmonic functions; harmonic
functions will be combined with Fourier series in problems in later chapters to
motivate and illustrate some of the development.
Chapter IV provides theoretical underpinnings for the material in a traditional

undergraduate course in ordinary differential equations. Nothing later in the book
is logically dependent on Chapter IV; however, Chapter XII includes a discussion
of orthogonal systems of functions, and the examples of these that arise in Chapter
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IV are helpful as motivation. Some people shy away from differential equations
and might wish to treat Chapter IV only lightly, or perhaps not at all. The subject
is nevertheless of great importance, and Chapter IV is the beginning of it. A
minimal treatment of Chapter IV might involve Sections 1–2 and Section 8, all
of which visibly continue the themes begun in Chapter I.
Chapters V–VI treat the core of measure theory—including the basic conver-

gence theorems for integrals, the development of Lebesgue measure in one and
several variables, Fubini’s Theorem, the metric spaces L1 and L2 and L∞, and
the use of maximal theorems for getting at differentiation of integrals and other
theorems concerning almost-everywhere convergence. In Chapter V Lebesgue
measure in one dimension is introduced right away, so that one immediately has
the most important example at hand. The fundamental Extension Theorem for
gettingmeasures tobedefinedonσ -rings andσ -algebras is statedwhenneededbut
is provedonly after thebasic convergence theorems for integrals havebeenproved;
the proof in Sections 5–6 may be skipped on first reading. Section 7, on Fubini’s
Theorem, is a powerful result about interchange of integrals. At the same time
that it justifies interchange, it also constructs a “double integral”; consequently
the section prepares the way for the construction in Chapter VI of n-dimensional
Lebesguemeasure from 1-dimensional Lebesguemeasure. Section 10 introduces
normed linear spaces along with the examples of L1 and L2 and L∞, and it goes
on to establish some properties of all normed linear spaces. Chapter VI fleshes
out measure theory as it applies to Euclidean space in more than one dimension.
Of special note is the Lebesgue-integration version in Section 5 of the change-
of-variables formula for multiple integrals and the Riesz–Fischer Theorem in
Section 7. The latter characterizes square-integrable periodic functions by their
Fourier coefficients and makes the subject of Fourier series useful in constructing
functions. Differentiation of integrals in approached in Section 6 of Chapter VI
as a problem of estimating finiteness of a quantity, rather than its smallness; the
device is the Hardy–Littlewood Maximal Theorem, and the approach becomes a
routine way of approaching almost-everywhere convergence theorems. Sections
8–10 are of somewhat less importance and may be omitted if time is short;
Section 10 is applied only in Section IX.6.
Chapters VII–IX are continuations of measure theory that are largely indepen-

dent of each other. ChapterVII contains the traditional proof of the differentiation
of integrals on the line via differentiation of monotone functions. No later chapter
is logically dependent on Chapter VII; the material is included only because of its
historical importance and its usefulness as motivation for the Radon–Nikodym
Theorem in Chapter IX. Chapter VIII is an introduction to the Fourier transform
in Euclidean space. Its core consists of the first four sections, and the rest may be
considered as optional if Section IX.6 is to be omitted. Chapter IX concerns L p

spaces for 1 ≤ p ≤ ∞; only Section 6 makes use of material from Chapter VIII.
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Chapter X develops, at the latest possible time in the book, the necessary part
of point-set topology that goes beyond metric spaces. Emphasis is on product
and quotient spaces, and on Urysohn’s Lemma concerning the construction of
real-valued functions on normal spaces.
Chapter XI contains one more continuation of measure theory, namely special

features ofmeasures on locally compactHausdorff spaces. It provides an example
beyond L p spaces in which one can usefully identify the dual of a particular
normed linear space. These chapters depend on Chapter X and on the first five
sections of Chapter IX but do not depend on Chapters VII–VIII.
ChapterXII is a brief introduction to functional analysis, particularly toHilbert

spaces, Banach spaces, and linear operators on them. The main topics are the
geometry of Hilbert space and the three main theorems about Banach spaces.
Appendix B is the core of a first course in complex analysis. The prerequisites

from real analysis for reading this appendix consist of Sections 1–7 of Chapter I,
Section 1–8 of Chapter II, and Sections 1–3, 5–6, and 11–12 of Chapter III;
Section 6 of Chapter III is used only lightly. According to the plan of the book,
it is possible to read the text of Chapters I–XII without using any of Appendix B,
but results of Appendix B are applied in problems at the end of Chapters IV,
VI, and VIII, as well as in one spot in Section IX.6, in order to illustrate the
interplay between real analysis and complex analysis. The problems at the end
of Appendix B are extensive and are of particular importance, since the topics of
linear fractional transformations, normal families, and the relationship between
harmonic functions and analytic functions are developed there and not otherwise
in the book.



STANDARD NOTATION

Item Meaning

#S or |S| number of elements in S
∅ empty set
{x ∈ E | P} the set of x in E such that P holds
Ec complement of the set E
E ∪ F, E ∩ F, E − F union, intersection, difference of setsS

α Eα,
T

α Eα union, intersection of the sets Eα

E ⊆ F, E ⊇ F E is contained in F , E contains F
E × F, ×s∈S Xs products of sets
(a1, . . . , an), {a1, . . . , an} ordered n-tuple, unordered n-tuple
f : E → F, x 7→ f (x) function, effect of function
f ◦ g, f

Ø
Ø
E composition of f following g, restriction to E

f ( · , y) the function x 7→ f (x, y)
f (E), f −1(E) direct and inverse image of a set
δi j Kronecker delta: 1 if i = j , 0 if i 6= j°n
k
¢

binomial coefficient
n positive, n negative n > 0, n < 0
Z, Q, R, C integers, rationals, reals, complex numbers
max (and similarly min) maximum of finite subset of a totally ordered setP
or

Q
sum or product, possibly with a limit operation

countable finite or in one-one correspondence with Z
[x] greatest integer ≤ x if x is real
Re z, Im z real and imaginary parts of complex z
z̄ complex conjugate of z
|z| absolute value of z
1 multiplicative identity
1 or I identity matrix or operator
dim V dimension of vector space
Rn , Cn spaces of column vectors
det A determinant of A
Atr transpose of A
diag(a1, . . . , an) diagonal matrix
∼= is isomorphic to, is equivalent to
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