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CHAPTER V 

Theory of a Single Linear Transformation 

Abstract. This goal of this chapter is to find finitely many canonical representatives of each
similarity class of square matrices with entries in a field and correspondingly of each isomorphism
class of linear maps from a finite-dimensional vector space to itself.
Section 1 frames the problem in more detail. Section 2 develops the theory of determinants over

a commutative ring with identity in order to be able to work easily with characteristic polynomials
det(X I − A). The discussion is built around the principle of “permanence of identities,” which
allows for passage from certain identities with integer coefficients to identities with coefficients in
the ring in question.
Section 3 introduces the minimal polynomial of a square matrix or linear map. The Cayley–

Hamilton Theorem establishes that such a matrix satisfies its characteristic equation, and it follows
that the minimal polynomial divides the characteristic polynomial. It is proved that a matrix is
similar to a diagonal matrix if and only if its minimal polynomial is the product of distinct factors
of degree 1. In combination with the fact that two diagonal matrices are similar if and only if their
diagonal entries are permutations of one another, this result solves the canonical-form problem for
matrices whose minimal polynomial is the product of distinct factors of degree 1.
Section 4 introduces general projection operators from a vector space to itself and relates them to

vector-space direct-sum decompositions with finitely many summands. The summands of a direct-
sum decomposition are invariant under a linear map if and only if the linear map commutes with
each of the projections associated to the direct-sum decomposition.
Section 5 concerns the Primary Decomposition Theorem, whose subject is the operation of

a linear map L : V → V with V finite-dimensional. The statement is that if L has minimal 
polynomial P1(X)l1 · · · Pk (X)lk with the Pj (X) distinct monic prime, then V has a unique direct-
sum decomposition in which the respective summands are the kernels of the linear maps Pj (L)lj , 
and moreover the minimal polynomial of the restriction of L to the j th summand is Pj (X)lj . 
Sections 6–7 concern Jordan canonical form. For the case that the prime factors of the minimal

polynomial of a square matrix all have degree 1, the main theorem gives a canonical form under
similarity, saying that a given matrix is similar to one in “Jordan form” and that the Jordan form
is completely determined up to permutation of the constituent blocks. The theorem applies to all
square matrices if the field is algebraically closed, as is the case for C. The theorem is stated and 
proved in Section 6, and Section 7 shows how to make computations in two different ways. 

1. Introduction 

This chapter will work with vector spaces over a common field of “scalars,” which
will be called K. As was observed near the end of Section IV.5, all the results 
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212 V. Theory of a Single Linear Transformation 

concerning vector spaces in Chapter II remain valid when the scalars are taken
from K rather than just Q or R or C. The ring of polynomials in one indeterminate 
X over K will be denoted by K[X].
For the field C of complex numbers, every nonconstant polynomial in C[X]

has a root, according to the Fundamental Theorem of Algebra (Theorem 1.18).
Because of this fact some results in this chapter will take an especially simple
form when K = C, and this simple form will persist for any field with this 
same property. Accordingly, we make a definition. Let us say that a field K is 
algebraically closed if every nonconstant polynomial in K[X] has a root. We
shall work hard in Chapter IX to obtain examples of algebraically closed fields
beyond K = C, but let us mention now what a few of them are. 

EXAMPLES. 
(1) The subset of C of all roots of polynomials with rational coefficients is an

algebraically closed field. 
(2) For each prime p, we have seen that any finite field of characteristic p has 

pn elements for some n. It turns out that there is one and only one field of pn 

elements, up to isomorphism, for each n. If we align them suitably for fixed p
and take their union on n, then the result is an algebraically closed field. 
(3) If K is any field, then there exists an algebraically closed field having K as 

a subfield. We shall prove this existence in Chapter IX by means of Zermelo’s
Well-Ordering Theorem (which appears in Section A5 of the appendix). 

The general problem to be addressed in this chapter is to find “canonical forms”
for linear maps from finite-dimensional vector spaces to themselves, special ways
of realizing the linear maps that bring out some of their properties. Let us phrase
a specific problem of this kind completely in terms of linear algebra at first. Then
we can rephrase it in terms of a combination of linear algebra and group theory,
and we shall see how it fits into a more general context.
In terms of matrices, the specific problem is to find a way of deciding whether

two square matrices represent the same linear map in different bases. We know
from Proposition 2.17 that if L : V → V is linear on the finite-dimensional 
vector space V and if A is the matrix of L relative to a particular ordered basis in 
domain and range, then the matrix B of L in another ordered basis is of the form 
B = C−1 AC for some invertible matrix C , i.e., A and B are similar.1 Thus one 
kind of solution to the problem would be to specify one representative of each
similarity class of square matrices. But this is not a convenient kind of answer ≥ 

1 0 
≥ 
2 0 to look for; in fact, the matrices A = 

¥ 
and B = 

¥ 
are similar via 0 2 0 1 

1A square matrix A with a two-sided inverse is sometimes said to be nonsingular. A square 
matrix with no inverse is then said to be singular. 



213 1. Introduction 

C = 
≥ 
0 1 

¥
, but there is no particular reason to prefer one of A or B to the other. 1 0 

Thus a “canonical form” for detecting similarity will allow more than one repre-
sentative of each similarity class (but typically only finitely many such represen-
tatives), and a supplementary statement will tell us when two such are similar.
So far, the best information that we have about solving this problem concerning

square matrices comes from Section II.8. In that section the discussion of eigen-
values gave us some necessary conditions for similarity, but we did not obtain a
useful necessary and sufficient condition.
In terms of linear maps, what we seek for a linear L : V → V is to use the 

geometry of L to construct an ordered basis of V such that L acts in a particularly
simple way on that ordered basis. Ideally the description of how L acts on the 
ordered basis is to be detailed enough so that the matrix of L in that ordered basis 
is completely determined by the description, even though the ordered basis may
not be determined by it. For example, if L were to have a basis of eigenvectors, 
then the description could be that “L has an ordered basis of eigenvectors with 
eigenvalues x1, . . . , xn .” In any ordered basis with this property, the matrix of L 
would then be diagonal with diagonal entries x1, . . . , xn . 
Suppose then that we have this kind of detailed description of how a linear 

map L acts on some ordered basis. To what extent is L completely determined? 
The answer is that L is determined up to an isomorphism of the underlying vector
space. In fact, suppose that L and M are linear maps from V to itself such that µ 

L 
∂ µ 

M 
∂ 

= A = for some ordered bases 0 and 1. Then 
00 11 

µ 
L 

∂ µ 
M 

∂ µ 
I 

∂µ 
M 

∂µ 
I 

∂ 

= A = = 
00 11 10 00 01 

∂ ∂µ 
S 

∂−1 µ 
M 

∂µ 
S 

µ 
S−1 MS 

= = ,
00 00 00 00 

µ 
S 

∂ µ 
I 

∂
where S : V → V is the invertible linear map defined by = . 

00 01 
Hence L = S−1 MS and SL = MS. In other words, if we think of having 
two copies of V , one called V1 and the other called V2, that are isomorphic via 
S : V1 → V2, then the effect of M in V2 corresponds under S to the effect of L 
in V1. In this sense, L is determined up to an isomorphism of V . 
Thus we are looking for a geometric description that determines linear maps

up to isomorphism. Two linear maps L and M that are related in this way have 
L = S−1 MS for some invertible linear map S. Passing to matrices with respect to 
some basis, we see that the matrices of L and M are to be similar. Consequently
our two problems, one to characterize similarity for matrices and the other to
characterize isomorphism for linear maps, come to the same thing. 
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These two problems have an interpretation in terms of group theory. In the 
case of n-by-n matrices, the group GL(n, K) of invertible matrices acts on the set 
of all square matrices of size n by conjugation via (g, x) 7→ gxg−1; the similarity
classes are exactly the orbits of this group action, and the canonical form is to
single out finitely many representatives from each orbit. In the case of linear
maps, the group GL(V ) of invertible linear maps on the finite-dimensional vector 
space V acts by conjugation on the set of all linear maps from V into itself; the 
isomorphism classes of linear maps on V are the orbits, and the canonical form
is to single out finitely many representatives from each orbit.
The above problem, whether for matrices or for linear maps, does not have a

unique acceptable solution. Nevertheless, the text of this chapter will ultimately
concentrate on one such solution, known as the “Jordan canonical form.” 
Now that we have brought group theory into the statement of the problem, we

can put matters in a more general context: The situation is that some “important” 
group G acts in an important way on an “interesting” vector space of matrices. The
canonical-form problem for this situation is to single out finitely many represen-
tatives of each orbit and give a way of deciding, in terms of these representatives,
whether two of the given matrices lie in the same orbit. We shall not pursue the
more general problem in the text at this time. However, Problem 1 at the end of
the chapter addresses one version beyond the one concerning similarity: to find
a canonical form for the action of GL(m, K) × GL(n, K) on m-by-n matrices 
by ((g, h), x) = gxh−1. Some other groups that are important in this sense,
besides products of general linear groups, are introduced in Chapter VI, and a
problem at the end of Chapter VI reinterprets two theorems of that chapter as
further canonical-form theorems under the action of a general linear group.
Let us return to the canonical-form problems for similarity of matrices and

isomorphism of linear maps. The basic tool in studying these problems is the
characteristic polynomial of a matrix or a linear map, as in Chapter II. However,
we subtly used a special feature of Q and R and C in working with characteristic
polynomials in Chapter II: we passed back and forth between the characteristic
polynomial det(∏I − A) as a polynomial in one indeterminate (defined by its
expression after expanding it out) and as a polynomial function of ∏, defined for 
each value of ∏ in Q or R or C, one value at a time. This passage was legitimate
because the homomorphism of the ring of polynomials in one indeterminate over
a field to the ring of polynomial functions is one-one when the field is infinite,
by Proposition 4.28c or Corollary 1.14. Some care is required, however, in
working with general fields, and we begin by supplying the necessary details for
justifying manipulations with determinants in a more general setting than earlier.
The end result will be that the characteristic polynomial is a polynomial in one
indeterminate, and we shall henceforth call that indeterminate X , rather than ∏,
so as to emphasize this point of view. 
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2. Determinants over Commutative Rings with Identity 

Throughout this section let R be a commutative ring with identity. The main case
of interest for us at this time will be that R = K[X] is the polynomial ring in one 
indeterminate X over a field K. 
The set of n-by-n matrices with entries in R is an abelian group under entry-

by-entry addition, and matrix multiplication makes it into a ring with identity.
Following tradition, we shall usually write Mn(R) rather than Mnn(R) for this 
ring. In this section we shall define a determinant function det : Mn(R) → R and 
establish some of its properties. For the case that R is a field, some of our earlier
proofs concerning determinants used vector-space concepts—bases, dimensions,
and so forth—and these are not available for general R. Yet most of the properties 
of determinants remain valid for general R because of a phenomenon known as 
permanence of identities. We shall not try to state a general theorem about
this principle but instead will be content to observe a pattern in how the relevant
identities are proved.
If A is in Mn(R), we define its determinant to be 

X
det A = (sgn σ )A1σ (1) A2σ (2) · · · Anσ (n), 

σ ∈Sn 

in effect converting into a definition the formula obtained in Theorem 2.34d when
R is a field. 
A sample of the kind of identity we have in mind is the formula 

det(AB) = det A det B for A and B in Mn(R). 

The key is that this formula says that two polynomials in 2n2 variables, with 
integer coefficients, are equal whenever arbitrary members of R are substituted 
for the variables. Thus let us introduce 2n2 indeterminates X11, X12, . . . , Xnn 

and Y11, Y12, . . . , Ynn to correspond to these variables. Forming the commutative 
ring S = Z[X11, X12, . . . , Xnn, Y11, Y12, . . . , Ynn], we assemble the matrices 
X = [Xi j ], Y = [Yi j ], and XY = 

£P
k Xik Ykj 

§ 
in Mn(S). Consider the two 

members of S given by 

det X det Y 

= 
° P 

(sgn σ )X1σ (1) X2σ (2) · · · Xnσ (n)
¢° P 

(sgn σ )Y1σ (1)Y2σ (2) · · · Ynσ (n)
¢ 

σ ∈Sn σ ∈Sn 

and det(XY ) = 
P 

(sgn σ )(XY )1σ (1)(XY )2σ (2) · · · (XY )nσ (n), 
σ ∈Sn 
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where (XY )i j = 
P

k Xik Ykj . If we fix arbitrary elements x11, x12, . . . , xnn and 
y11, y12, . . . , ynn of Z, then Proposition 4.30 gives us a unique substitution ho-
momorphism 9 : S → Z such that 9(1) = 1, 9(Xi j ) = xi j , and 9(Yi j ) = yi j 
for all i and j . Writing x = [xi j ] and y = [yi j ] and using that matrices with 
integer entries have det(xy) = det x det y because Z is a subset of the field Q, we 
see that 9(det(XY )) = 9(det X det Y ) for each choice of x and y. Since Z is an 
infinite integral domain and since x and y are arbitrary, Corollary 4.32 allows us 
to deduce that 

det(XY ) = det X det Y 

as an equality in S. 
Now we pass from an identity in S to an identity in R. Let 1R be the identity in 

R. Proposition 4.19 gives us a unique homomorphism of rings ϕ1 : Z → R 
such that ϕ1(1) = 1R . If we fix arbitrary elements A11, A12, . . . , Ann and 
B11, B12, . . . , Bnn of R, then Proposition 4.30 gives us a unique substitution 
homomorphism 8 : S → R such that 8(1) = ϕ1(1) = 1R , 8(Xi j ) = Ai j 
for all i and j , and 8(Yi j ) = Bi j for all i and j . Applying 8 to the equality 
det(XY ) = det X det Y , we obtain the identity we sought, namely 

det(AB) = det A det B for A and B in Mn(R). 

Proposition 5.1. If R is a commutative ring with identity, then the determinant 
function det : Mn(R) → R has the following properties: 

(a) det(AB) = det A det B,
(b) det I = 1,
(c) det At = det A,
(d) det C = det A + det B if A, B, and C match in all rows but the j th and if 

the j th row of C is the sum of the j th rows of A and B,
(e) det B = r det A if A and B match in all rows but the j th and if the j th row 

of B is equal entry by entry to r times the j th row of A for some r in R,
(f) det A = 0 if A has two equal rows, 
(g) det 

≥ 
A B 

¥ 
= det A det D if A is in Mk (R), D is in Ml (R), and k + l = n.0 D 

REMARKS. Properties (d), (e), and (f) imply that usual steps in manipulating
determinants by row reduction continue to be valid. 

PROOF. Part (a) was proved above, and parts (c) through (f) may be proved
in the same way from the corresponding facts about integer matrices in Section
II.7. Part (b) is immediate from the definition.
For (g), we first prove the result when the entries are in Q, and then we argue 

in the same way as with (a) above. When the entries are in Q, row reduction 
of D allows us to reduce to the case either that D has a row of 0’s or that D 
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is the identity. If D has a row of 0’s, then det 
≥ 
A B 

¥ 
and det A det D are both 0 D

0 and hence are equal. If D is the identity, then further row reduction shows 
that det 

≥ 
A B 

¥ 
= det 

≥ 
A 0 

¥
, and the right side equals det A = det A det I , as 0 I 0 I

required. § 

Proposition 5.2 (expansion in cofactors). Let R be a commutative ring with 
identity, let A be in Mn(R), and let Aci j be the member of Mn−1(R) obtained by 
deleting the i th row and the j th column from A. Then 

(a) for any j , det A = 
Pn 

=1 (−1)i+ j Ai j det Aci j , i.e., det A may be calculated i
by “expansion in cofactors” about the j th column,

(b) for any i , det A = 
Pn

j=1 (−1)i+ j Ai j det Aci j , i.e., det A may be calculated 
by “expansion in cofactors” about the i th row. 

PROOF. This may be derived in the same way from Proposition 2.36 by using
the principle of permanence of identities. § 

Corollary 5.3 (Vandermonde matrix and determinant). If r1, . . . , rn lie in a 
commutative ring R with identity, then 

 1 1 · · · 1  

r1 r2 · · · rn 
 r2 r2 · · · r2  Y

det  1 2 n  = (rj − ri ). 
. . ..


. . . . 


j>i 

. . . .  

rn−1 rn−1 rn−1· · ·1 2 n 

PROOF. The derivation of this from Proposition 5.2 is the same as the derivation
of Corollary 2.37 from Proposition 2.35. § 

Proposition 5.4 (Cramer’s rule). Let R be a commutative ring with identity, 
let A be in Mn(R), and define Aadj in Mn(R) to be the classical adjoint of A, 
namely the matrix with entries Ai j 

adj = (−1)i+ j det Acj i , where Ackl defined as in 
the statement of Proposition 5.2. Then AAadj = Aadj A = (det A)I . 
PROOF. This may be derived from Proposition 2.38 in the same way as for

Propositions 5.1 and 5.2 using the principle of permanence of identities. § 

Corollary 5.5. Let R be a commutative ring with identity, and let A be 
in Mn(R). If det A is a unit in R, then A has a two-sided inverse in Mn(R). 
Conversely if A has a one-sided inverse in Mn(R), then det A is a unit in R. 
REMARK. If R is a field, then A and any associated linear map are often called 

nonsingular if invertible, singular otherwise. When R is not a field, terminology
varies for what to call a noninvertible matrix whose determinant is not 0. 
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PROOF. If det A is a unit in R, let r be its multiplicative inverse. Then 
Proposition 5.4 shows that r Aadj is a two-sided inverse of A. Conversely if A 
has, say, a left inverse B, then BA = I implies (det B)(det A) = det I = 1, and 
det B is an inverse for det A. A similar argument applies if A has a right inverse.

§ 

3. Characteristic and Minimal Polynomials 

Again let K be a field. If A is in Mn(K), the characteristic polynomial of A is 
defined to be the member of the ring K[X] of polynomials in one indeterminate 
X given by F(X) = det(X I − A). The material of Section 2 shows that F(X)
is well defined, being the determinant of a member of Mn(K[X]). It is apparent 
from the definition of determinant in Section 2 that F(X) is a monic polynomial 
of degree n with coefficient − Tr A = − 

Pn
j=1 Aj j for Xn−1. Evaluating F(X) 

at 0, we see that the constant term is (−1)n det A. 
Since the determinant of a product in Mn(K[X]) is the product of the de-

terminants (Proposition 5.1a) and since C−1(X I − A)C = X I − C−1 AC , we 
have 

det(X I − C−1 AC) = (det C)−1 det(X I − A)(det C) = det(X I − A). 

Thus similar matrices have equal characteristic polynomials. If V is an n-
dimensional vector space over K and L : V → V is linear, then the matrices of 
L in any two ordered bases of V (the domain basis being assumed equal to the
range basis) are similar, and their characteristic polynomials are the same. Conse-
quently we can define the characteristic polynomial of L to be the characteristic 
polynomial of any matrix of L . 
The development of characteristic polynomials has thus be redone in a way

that is valid over any field K without making use of the ring homomorphism from
polynomials in one indeterminate over K to polynomial functions from K into 
itself. The discussion in Section II.8 of eigenvectors and eigenvalues for members
A of Mn(K) and for linear maps L : V → V with V finite-dimensional over K 
is now meaningful, and there is no need to repeat it.
In particular, the eigenvalues of A and L are exactly the roots of their charac-

teristic polynomial, no matter what K is. If K is algebraically closed, then the
characteristic polynomial has a root, and consequently A and L each have at least 
one eigenvalue.
If L : V → V is linear and V is finite-dimensional, then a vector subspace 

U of V is said to be invariant under L if L(U ) ⊆ U . In this case L
Ø
Ø
U is a 

well-defined linear map from U to itself. Since L(U ) ⊆ U , Proposition 2.25 
shows that L : V → V factors through V/U as a linear map L : V /U → V/U . 
We shall use this construction, the existence of eigenvalues in the algebraically
closed case, and an induction to prove the following. 
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Proposition 5.6. If K is an algebraically closed field, if V is a finite-
dimensional vector space over K, and if L : V → V is linear, then V has 
an ordered basis in which the matrix of L is upper triangular. Consequently any 
member of Mn(K) is similar to an upper triangular matrix. 

 
c1 ∗ 

 

.REMARKS. For an upper triangular matrix A = .  in Mn(K), the  . 
0 cn 

characteristic polynomial is 
Qn 

=1 (X − cj ) because the only nonzero term in the j
definition of det(X I − A) is the one corresponding to the identity permutation.
Triangular form is not yet the canonical form we seek for a square matrix because
a particular square matrix may be similar to infinitely many matrices in triangular
form. 

PROOF. We proceed by induction on n = dim V , with the base case n = 1 
being clear. Suppose that the result holds for all linear maps from spaces of 
dimension < n to themselves. Given L : V → V with dim V = n, let v1 be 
an eigenvector of L . This exists by the remarks before the proposition since K 
is algebraically closed. Let U be the vector subspace Kv1. Then L(U ) ⊆ U ,
and Proposition 2.25 shows that L : V → V factors through V /U as a linear 
map L : V/U → V/U . Since dim V /U = n − 1, the inductive hypothesis 
produces an ordered basis (v̄2, . . . , v̄n) of V /U such that the matrix of L is upper 
triangular in this basis. This condition means that L(v̄j ) = 

P
i
j
=2 ci j v̄i for j ∏ 2. 

Select coset representatives v2, . . . , vn of v̄2, . . . , v̄n so that v̄j = vj + U for 
j ∏ 2. Then L(vj + U ) = 

P j
=2 ci j (vi + U ) for j ∏ 2, and hence L(vj )i

lies in the coset 
P

i
j
=2 ci j vi + U for j ∏ 2. For each j ∏ 1, we then have 

L(vj ) = 
P j

=2 ci j vi + c1 j v1 for some scalar c1 j , and we see that (v1, . . . , vn) isi
the required ordered basis. § 

Let us return to the situation in which K is any field. For a matrix A in Mn(K)
and a polynomial P in K[X], it is meaningful to form P(A). We can do so by
two equivalent methods, both useful. The concrete way of forming P(A) is as 
P(A) = cn An + · · · + c1 A + c0 I if P(X) = cn Xn + · · · + c1 X + c0. The 
abstract way is to form the subring T of Mn(K) generated by KI and A. This 
subring is commutative. We let ϕ : K → T be given by ϕ(c) = cI . Then the 
universal mapping property of K[X] given in Proposition 4.24 produces a unique 
ring homomorphism 8 : K[X] → T such that 8(c) = cI for all c ∈ K and 
8(X) = A. The value of P(A) is the element 8(P) of T . 
For A in Mn(K), let us study all polynomials P such that P(A) = 0. For any 

polynomial P and any invertible matrix C , we have 

P(C−1 AC) = C−1 P(A)C 
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because if P(X) = cn Xn + · · · + c1 X + c0, then 

P(C−1 AC) = cn(C−1 AC)n + · · · + c1C−1 AC + c0 I 

= C−1(cn An + · · · + c1 A + c0 I )C. 

Consequently if P(A) = 0, then P(C−1 AC) = 0, and the set of matrices with 
P(A) = 0 is closed under similarity. We shall make use of this observation a 
little later in this section. 

Proposition 5.7. If A is in Mn(K), then there exists a nonzero polynomial P 
in K[X] such that P(A) = 0. 

PROOF. The K vector space Mn(K) has dimension n2. Therefore the n2 + 1 
matrices I, A, A2 , . . . , An2 are linearly dependent, and we have 

c0 + c1 A + c2 A2 + · · · + cn2 An
2 
= 0 

for some set of scalars not all 0. Then P(A) = 0 for the polynomial P(X) = 
c0 + c1 X + c2 X2 +· · ·+ cn2 Xn2 ; this P is not the 0 polynomial since at least one 
of the coefficients is not 0. § 

ALTERNATIVE PROOF IF K IS ALGEBRAICALLY CLOSED. Since the set of poly-
nomials P with P(A) = 0 depends only on the similarity class of A, Proposition 
5.6 shows that there is no loss of generality in assuming that A is upper triangular,  

∏1 ∗ 
 

.say of the form  . . Then A − ∏j I is upper triangular with 0 in the j th 
. 

0 ∏n 

diagonal entry, and 
Qn 

=1 (A − ∏j I ) is upper triangular with 0 in all diagonal j
entries. Therefore 

°Qn 
=1 (A − ∏j I )

¢n 
= 0. §j

With A fixed, we continue to consider the set of all polynomials P(X) such 
that P(A) = 0. Let us think of P(A) as being computed by the abstract proce-
dure described above, namely as the image of A under the ring homomorphism 
8 : K[X] → T such that 8(c) = cI for all c ∈ K and 8(X) = A, where T is 
the commutative subring of Mn(K) generated by KI and A. Then the set of all 
polynomials P(X) with P(A) = 0 is the kernel of the ring homomorphism 8. 
This set is therefore an ideal, and Proposition 5.7 shows that the ideal is nonzero.
We shall apply the following proposition to this ideal. 

Proposition 5.8. If I is a nonzero ideal in K[X], then there exists a unique 
monic polynomial of lowest degree in I , and every member of I is the product 
of this particular polynomial by some other polynomial. 
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PROOF. Let B(X) be a nonzero member of I of lowest possible degree; 
adjusting B by a scalar factor, we may assume that B is monic. If A is in I ,
then Proposition 1.12 produces polynomials Q and R such that A = BQ + R 
and either R = 0 or deg R < deg B. Since I is an ideal, BQ is in I and hence 
R = A − BQ is in I . From minimality of the degree of B, we conclude that 
R = 0. Hence A = BQ, and A is exhibited as the product of B and some other 
polynomial Q. If B1 is a second monic polynomial of lowest degree in I , then we 
can take A = B1 to see that B1 = QB. Since deg B1 = deg B, we conclude that 
deg Q = 0. Thus Q is a constant polynomial. Comparing the leading coefficients 
of B and B1, we see that Q(X) = 1. § 

With A fixed in Mn(K), let us apply Proposition 5.8 to the ideal of all polyno-
mials P in K[X] with P(A) = 0. The unique monic polynomial of lowest degree 
in this ideal is called the minimal polynomial of A. Let us try to identify this 
minimal polynomial. 

Theorem 5.9 (Cayley–Hamilton Theorem). If A is in Mn(K) and if F(X) = 
det(X I − A) is its characteristic polynomial, then F(A) = 0. 

PROOF. Let T be the commutative subring of Mn(K) generated by KI and A,
and define a member B(X) of the ring T [X] by B(X) = X I − A. The (i, j)th 

entry of B(X) is Bi j (X) = δi j X − Ai j , and F(X) = det B(X). 
Let C(X) = B(X)adj denote the classical adjoint of B(X) as a member of 

T [X]; the form of C(X) is given in the statement of Cramer’s rule (Proposition
5.4), and that proposition says that 

B(X)C(X) = (det B(X))I = F(X)I. 

The equality in the (i, j)th entry is the equality δi j F(X) = 
P

j Bik (X)Ckj (X) of 
members of K[X]. Application of the substitution homomorphism X 7→ A gives 

δi j F(A) = 
P 

Bik (A)Ck j (A) = 
P 

(δik A − Aik I )Ck j (A). 
k k 

Multiplying on the right by the i th standard basis vector ei and summing on i , we 
obtain the equality of vectors 

F(A)ej = 
PP 

(δik Aei − Aik ei )Ck j (A) = 
P 
Ck j (A) 

°P 
(δik Aei − Aik ei )

¢ 

i k k i 

since Ckj (A) is a scalar. But 
P

i (δik Aei − Aik ei ) = Aek − 
P

i Aikei = 0 for all 
k, and therefore F(A)ej = 0. Since j is arbitrary, F(A) = 0. § 
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Corollary 5.10. If A is in Mn(K), then the minimal polynomial of A divides 
the characteristic polynomial of A. 
PROOF. Theorem 5.9 shows that the characteristic polynomial of A lies in 

the ideal of all polynomials vanishing on A. Then the corollary follows from 
Proposition 5.8. § 

For our matrix A in Mn(K), let F(X) be the characteristic polynomial, and let 
M(X) be the minimal polynomial. By unique factorization (Theorem 1.17), the
monic polynomial F(X) has a factorization into powers of distinct prime monic 
polynomials of the form 

k1 krF(X) = P1(X) · · · Pr (X) , 

and this factorization is unique up to the order of the factors. Since M(X) is a 
monic polynomial dividing F(X), we must have 

l1 lrM(X) = P1(X) · · · Pr (X)

with l1 ≤ k1, . . . , lr ≤ kr , by the same argument that deduced Corollary 1.7 from
unique factorization in the ring of integers. We shall see shortly that kj > 0 
implies lj > 0 if Pj (X) is of degree 1, i.e., if Pj (X) is of the form X − ∏0; in other 
words, if ∏0 is an eigenvalue of A, then X − ∏0 divides its minimal polynomial.
We return to this point in a moment. Problem 31 at the end of the chapter will
address the same question when Pj (X) has degree > 1. 

EXAMPLES. 
(1) In the 2-by-2 case, 

≥ 
c 0 

¥ 
has minimal polynomial M(X) = X − c, and 

≥ 
c 1

0 c¥ 
has M(X) = (X − c)2. Both matrices have characteristic polynomial 0 c 

F(X) = (X − c)2. 
(2) The k-by-k matrix 

c 1 0 ··· 0 0  
0 c 1 ··· 0 0 

.
. 


. 

 
0 0 0 ··· c 1 
0 0 0 ··· 0 c 

with c in every diagonal entry, with 1 in every entry just above the diagonal, and
with 0 elsewhere has minimal polynomial M(X) = (X − c)k and characteristic 
polynomial F(X) = (X − c)k . 
(3) If a matrix A is made up exclusively of several blocks of the type in

Example 2 with the same c in each case, the i th block being of size ki , then the 
minimal polynomial is M(X) = (X − c)maxi ki , and the characteristic polynomial 
is F(X) = (X − c)

P 
i ki . 
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(4) If A is made up exclusively of several blocks as in Example 3 but with c 
different for each block, then the minimal and characteristic polynomials for A 
are obtained by multiplying the minimal and characteristic polynomials obtained
from Example 3 for the various c’s. 

To proceed further, let us change our point of view, working with linear 
maps L : V → V , where V is a finite-dimensional vector space over K. We 
have already defined the characteristic polynomial of L to be the characteristic 
polynomial of the matrix of L in any ordered basis; this is well defined because
similar matrices have the same characteristic polynomial. In analogous fashion
we can define the minimal polynomial of L to be the minimal polynomial of the 
matrix of L in any ordered basis; this is well defined since, as we have seen, the
set of polynomials P in one indeterminate with P(A) = 0 is the same as the set 
with P(C−1 AC) = 0 if C is invertible. 
Another way of approaching the matter of the minimal polynomial of L is to 

define P(L) for any polynomial P in one indeterminate. As with matrices, we 
can define P(L) either concretely by substituting L for X in the expression for 
P(X), or we can define P(L) abstractly by appealing to the universal mapping
property in Proposition 4.24. For the latter we work with the subring T 0 of linear 
maps from V to itself generated by KI and L . This subring is commutative. We 
let ϕ : K → T 0 be given by ϕ(c) = cI , and we use Proposition 4.24 to obtain the 
unique ring homomorphism 8 : K[X] → T 0 such that 8(c) = cI for all c ∈ K 
and 8(X) = L . Then P(L) is the element 8(P) of T 0. Once P(L) is defined, 
we observe that the set of polynomials P(X) such that P(L) = 0 is a nonzero 
ideal in K[X]; Proposition 5.8 yields a unique monic polynomial of lowest degree
in this ideal, and that is the minimal polynomial of L . 
Linear maps enable us to make convenient use of invariant subspaces. Recall

from earlier in the section that a vector subspace U of V is said to be invariant 
under the linear map L : V → V if L(U ) ⊆ U ; in this case we obtain associated 
linear maps L

Ø
Ø
U : U → U and L : V /U → V/U . Relationships among

the characteristic polynomials and minimal polynomials of these linear maps are
given in the next two propositions. 

Proposition 5.11. Let V be a finite-dimensional vector space over K, let 
L : V → V be linear, let U be a proper nonzero invariant subspace under L , and 
let L : V/U → V /U be the induced linear map on V /U . Then the characteristic 
polynomials of L , L

Ø
Ø
U , and L are related by 

det(X I − L) = det 
°
X I − L

Ø
Ø
U 

¢ 
det(X I − L). 

PROOF. Let 0U = (v1, . . . , vk ) be an ordered basis of U , and extend 0U to 
an ordered basis 0 = (v1, . . . , vn) of V . Then 0 = (vk+1 + U, . . . , vn + U ) 
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is an ordered basis of V/U . Since U is invariant under L , the matrix of L in 

the ordered basis 0 is of the form 
≥ 
A B 

¥
, where A is the matrix of L

Ø
Ø
U in the 0 D 

ordered basis 0U and D is the matrix of L in the ordered basis 0. Passing to the
characteristic polynomials and applying Proposition 5.1g, we obtain the desired
conclusion. § 

Proposition 5.12. Let V be a finite-dimensional vector space over K, let 
L : V → V be linear, let U be a proper nonzero invariant subspace under L , and 
let L : V /U → V/U be the induced linear map on V /U . Then the minimal 
polynomials of L

Ø
Ø
U and L divide the minimal polynomial of L . 

PROOF. Let N (X) be the minimal polynomial of L
Ø
Ø
U . Then N (X) is the 

unique monic polynomial of lowest degree in the ideal of all polynomials P(X)
such that P(L)u = 0 for all u in U . The minimal polynomial M(X) of L has 
this property because M(X)v = 0 for all v in V . Therefore M(X) is in the ideal 
and is the product of N (X) and some other polynomial. 
Among linear maps S from V into V carrying U into itself, the function S 7→ S 

sending S to the linear map S induced on V/U is a homomorphism of rings. It 
follows that if P(X) is a polynomial with P(L) = 0, then P(L) = 0. Taking 
P(X) to be the minimal polynomial of L , we see that the minimal polynomial of 
L is in the ideal of polynomials vanishing on L . Therefore it is the product of the 
minimal polynomial of L and some other polynomial. § 

Let us come back to the unproved assertion before the examples—that kj > 0 
implies lj > 0 if Pr (X) has degree 1. We prove the linear-function version of
this statement as a corollary of Proposition 5.12. 

Corollary 5.13. If L : V → V is linear on a finite-dimensional vector 
space over K and if a first-degree polynomial X − ∏0 divides the characteristic 
polynomial of L , then X − ∏0 divides the minimal polynomial of L . 

PROOF. If X −∏0 divides the characteristic polynomial, then ∏0 is an eigenvalue 
of L , say with v as an eigenvector. Then U = Kv is an invariant subspace under 
L , and the characteristic and minimal polynomials of L

Ø
Ø
U are both X − ∏0. By 

Proposition 5.12, X − ∏0 divides the minimal polynomial of L . § 

Theorem 5.14. If L : V → V is linear on a finite-dimensional vector space 
over K, then L has a basis of eigenvectors if and only if the minimal polynomial 
M(X) of L is the product of distinct factors of degree 1; in this case, M(X) equals 
(X − ∏1) · · · (X − ∏k ), where ∏1, . . . , ∏k are the distinct eigenvalues of L . Con-
sequently a matrix A in Mn(K) is similar to a diagonal matrix if and only if its
minimal polynomial is the product of distinct factors of degree 1. 



225 3. Characteristic and Minimal Polynomials 

PROOF. The easy direction is that v1, . . . , vn are the members of a basis 
of eigenvectors for L with respective eigenvalues µ1, . . . , µn . In this case, let 
∏1, . . . , ∏k be the distinct members of the set of eigenvalues, with µi = ∏j (i) for 
some function j : {1, . . . , n} → {1, . . . , k}. Then (L − ∏j I )(v) = 0 for v equal
to any vi with j (i) = j . Since the linear maps L − ∏j I commute as j varies, Qk

j=1 (L−∏j I )(v) = 0 for v equal to each of v1, . . . , vn , hence for all v. Therefore 
the minimal polynomial M(X) of L divides 

Qk 
=1 (X − ∏j ). On the other hand, j

Corollary 5.13 shows that the deg M(X) ∏ k. Hence M(X) = 
Qk

j=1 (X − ∏j ). 
Conversely suppose that M(X) = 

Qk 
=1 (X − ∏j ) with the ∏j distinct. If S1j

is the linear map S1 = 
Qk 

=2 (L − ∏j I ), then the formula for M(X) shows that j
(L − ∏1 I )S1(v) = 0 for all v in V , and hence image S1 is a vector subspace of the 
eigenspace of L for the eigenvalue ∏1. If v is in ker S1 ∩ image S1, we then have 
0 = S1(v) = 

Qk 
=2 (L − ∏j I )(v) = 

Qk
j=2 (∏1 − ∏j )v. Since ∏1 is distinct from j

∏2, . . . , ∏k , we conclude that v = 0, hence that ker S1 ∩ image S1 = 0. Since 
dim ker S1 + dim image S1 = dim V , Corollary 2.29 therefore gives 

dim V = dim ker S1 + dim image S1 

= dim(ker S1 + image S1) + dim(ker S1 ∩ image S1) 
= dim(ker S1 + image S1). 

Hence V = ker S1 + image S1. Since ker S1 ∩ image S1 = 0, we conclude that 
V = ker S1 ⊕ image S1. 
Actually, the same calculation of S1(v) as above shows that image S1 is the 

full eigenspace of L for the eigenvalue ∏1. In fact, if L(v) = ∏1v, then S1(v) = 
Qk 

=2 (∏1 −∏j )v, and hence v equals the image under S1 of 
°Qk 

=2 (∏1 − ∏j )
¢−1 

v.j j
Next, since L commutes with S1, ker S1 is an invariant subspace under L , and 

∏1 is not an eigenvalue of L
Ø
Ø
ker S1

. Thus X − ∏1 does not divide the minimal 
polynomial of L

Ø
Ø
ker S1

. On the other hand, S1 vanishes on the eigenspaces of 
L for eigenvalues ∏2, . . . , ∏k , and Corollary 5.13 shows for j ∏ 2 that X − ∏j
divides the minimal polynomial of L

Ø
Ø
ker S1

. Taking Proposition 5.12 into account, 
we conclude that L

Ø
Ø
ker S1 

has minimal polynomial 
Qk 

=2 (X − ∏j ). We have j
succeeded in splitting off the eigenspace of L under ∏1 as a direct summand and 
reducing the proposition to the case of k − 1 eigenvalues. Thus induction shows 
that V is the direct sum of its eigenspaces for the eigenvalues ∏2, . . . , ∏k , and L 
thus has a basis of eigenvectors. § 

Theorem 5.14 comes close to solving the canonical-form problem for similarity
in the case of one kind of square matrices: if the minimal polynomial of A is the 
product of distinct factors of degree 1, then A is similar to a diagonal matrix. To 
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complete the solution for this case, all we have to do is to say when two diagonal
matrices are similar to each other; this step is handled by the following easy
proposition. 

Proposition 5.15. Two diagonal matrices A and A0 in Mn(K) with respective 
diagonal entries d1, . . . , dn and d1

0 , . . . , d 0 are similar if and only if there is a n
permutation σ in Sn such that dj0 = dσ ( j) for all j . 

PROOF. The respective characteristic polynomials are 
Qn 

=1 (X − dj ) andjQn
j=1 (X − dj

0). If A and A0 are similar, then the characteristic polynomials are
equal, and unique factorization (Theorem 1.17) shows that the factors X − dj

0

match the factors X − dj up to order. Conversely if there is a permutation σ in 
Sn such that dj0 = dσ ( j) for all j , then the matrix C whose j th column is eσ ( j) has 
the property that A0 = C−1 AC . § 

To proceed further with obtaining canonical forms for matrices under similarity
and for linear maps under isomorphism, we shall use linear maps in ways that
we have not used them before. In particular, it will be convenient to be able to
recognize direct-sum decompositions from properties of linear maps. We take up
this matter in the next section. 

4. Projection Operators 

In this section we shall see how to recognize direct-sum decompositions of a
vector space V from the associated projection operators, and we shall relate these
operators to invariant subspaces under a linear map L : V → V . 
If V = U1 ⊕ U2, then the function E1 defined by E1(u1 + u2) = u1 when u1 

is in U1 and u2 is in U2 is linear, satisfies E12 = E1, and has image E1 = U1 and 
ker E1 = U2. We call E1 the projection of V on U1 along U2. A decomposition 
of V as the direct sum of two vector spaces, when the first of the two spaces is
singled out, therefore determines a projection operator uniquely. A converse is 
as follows. 

Proposition 5.16. If V is a vector space and E1 : V → V is a linear map such 
that E12 = E1, then there exists a direct-sum decomposition V = U1 ⊕ U2 such 
that E1 is the projection of V on U1 along U2. In this case, (I − E1)2 = I − E1,
and I − E1 is the projection of V on U2 along U1. 

PROOF. Define U1 = image E1 and U2 = ker E1. If v is in image E1 ∩ ker E1,
then E1(v) = 0 since v is in ker E1 and v = E1(w) for some w in V since 
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v is in image E1. Then 0 = E1(v) = E1
2(w) = E1(w) = v, and therefore 

image E1 ∩ ker E1 = 0. 
If v ∈ V is given , write v = E1(v) + (I − E1)(v). Then E1(v) is in image E1,

and the computation E1(I − E1)(v) = (E1 − E1
2)(v) = (E1 − E1)(v) = 0 shows 

that (I − E1)(v) = 0. Consequently V = image E1 + ker E1, and we conclude 
that V = image E1 ⊕ ker E1. 
Hence V = U1 ⊕ U2, where U1 = image E1 and U2 = ker E1. In this 

notation, E1 is 0 on U2. If v is in U1, then v = E1(w) for some w, and we have 
v = E1(w) = E1

2(w) = E1(E1(w)) = E1(v). Thus E1 is the identity on U1 and 
is the projection as asserted.
For (I − E1)2, we have (I − E1)2 = I − 2E1 + E1

2 = I − 2E1 + E1 = I − E1,
and I − E1 is a projection. It is 1 on U2 and is 0 on U1, hence is the projection 
of V on U2 along U1. § 

Let us generalize these considerations to the situation that V is the direct sum 
of r vector subspaces. The following facts about the situation in Proposition 5.16,
with the definition E2 = I − E1, are relevant to formulating the generalization: 

(i) E1 and E2 have E12 = E1 and E2 = E2,
(ii) E1 E2 = E2 E1 = 0, 

2 

(iii) E1 + E2 = I . 
Suppose that V = U1 ⊕ · · · ⊕ Ur . Define Ej (u1 + · · · + ur ) = uj . Then Ej
is linear from V to itself with Ej

2 = Ej , and Proposition 5.16 shows that Ej is 
the projection of V on Uj along the direct sum of the remaining Ui ’s. The linear 
maps E1, . . . , Er then satisfy 

(i0) Ej2 = Ej for 1 ≤ j ≤ r , 
(ii0) Ej Ei = 0 if i 6= j ,
(iii0) E1 + · · · + Er = I . 

A converse is as follows. 

Proposition 5.17. If V is a vector space and Ej : V → V for 1 ≤ j ≤ r are 
linear maps such that 

(a) Ej Ei = 0 if i 6= j , and 
(b) E1 + · · · + Er = I , 

then Ej
2 = Ej for 1 ≤ j ≤ r and the vector subspaces Uj = image Ej have the 

properties that V = U1 ⊕ · · ·⊕ Ur and that Ej is the projection of V on Uj along
the direct sum of all Ui but Uj . 

PROOF. Multiplying (b) through by Ej on the left and applying (a) to each 
term on the left side except the j th, we obtain Ej

2 = Ej . Therefore, for each j ,
Ej is a projection on Uj along some vector subspace depending on j . 
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If v is in V , then (b) gives v = E1(v) + · · · + Er (v) and shows that V = 
U1 + · · · + Ur . Suppose that v is in the intersection of Uj with the sum of the 
other Ui ’s. Write v = 

P
i j ui with ui = Ei (wi ) in Ui . Applying Ej and using 6= 

the fact that v is in Uj , we obtain v = Ej (v) = 
P

i j Ej Ei (wi ). Every term of 6= 
the right side is 0 by (a), and hence v = 0. Thus V = U1 ⊕ · · · ⊕ Ur . 
Since Ej Ei = 0 for i = j , Ej is 0 on each Ui for i 6 j . Therefore the sum of 6 = 

all Ui except Uj is contained in the kernel of Ej . Since the image and kernel of 
Ej intersect in 0, the sum of all Ui except Uj is exactly equal to the kernel of Ej . 
This completes the proof. § 

Proposition 5.18. Suppose that a vector space V is a direct sum V = 
U1 ⊕ · · · ⊕ Ur of vector subspaces, that E1, . . . , Er are the corresponding pro-
jections, and that L : V → V is linear. Then all the subspaces Uj are invariant 
under L if and only if LEj = Ej L for all j . 

PROOF. If L(Uj ) ⊆ Uj for all j , then i 6 j implies Ei L(Uj ) ⊆ Ei (Uj ) = 0= 
and L Ei (Uj ) = L(0) = 0. Also, v ∈ Uj implies Ej L(v) = L(v) = LEj (v). 
Hence Ei L = Ei L for all i . 
Conversely if Ej L = LEj and if v is in Uj , then Ej L(v) = LEj (v) = L(v) 

shows that L(v) is in Uj . Therefore L(Uj ) ⊆ Uj for all j . § 

5. Primary Decomposition 

For the case that the minimal polynomial of a linear map L : V → V is the product 
of distinct factors of degree 1, Theorem 5.14 showed that V is a direct sum of its 
eigenspaces. The proof used elementary vector-space techniques from Chapter
II but did not take full advantage of the machinery developed in the present
chapter for passing back and forth between polynomials in one indeterminate
and the values of polynomials on L . Let us therefore rework the proof of that
proposition, taking into account the discussion of projections in Section 4.
We seek an eigenspace decomposition V = V∏1 ⊕ · · · ⊕ V∏k relative to L . 

Proposition 5.17 suggests looking for the corresponding decomposition of the
identity operator as a sum of projections: I = E1 + · · · + Ek . According to that
proposition, we obtain a direct-sum decomposition as soon as we obtain this kind
of sum of linear maps such that Ei Ej = 0 for i 6= j . The Ej ’s will automatically 
be projections.
The proof of Theorem 5.14 showed that S1 = 

Qk
j=2 (L − ∏j I ) has image equal 

to the kernel of L − ∏1 I , i.e., equal to the eigenspace for eigenvalue ∏1. If v 
is in this eigenspace, then S1(v) = 

Qk
j=2 (∏1 − ∏j )v. Hence E1 = c1 S1, where 

c1 
−1 = 

Qk
j=2 (∏1 − ∏j ). The linear map S1 equals Q1(L), where Q1(X) = 



229 5. Primary Decomposition 

Qk
j=2 (X − ∏j ). Thus E1 = c1 Q1(L). Similar remarks apply to the other

eigenspaces, and therefore the required decomposition of the identity operator
has to be of the form I = c1 Q1(L) + · · · + ck Qk (L) with c1, . . . , ck equal to 
certain scalars. 
The polynomials Q1(X), . . . , Ql (X) are at hand from the start, each containing

all but one factor of the minimal polynomial. Moreover, i 6 j implies that = 

k≥Y ¥≥ Y ¥
Qi (L)Qj (L) = (L − ∏l I ) (L − ∏l I ) . 

l=1 l=6 i, j 

The first factor on the right side is the value of the minimal polynomial of L with 
L substituted for X . Hence the right side is 0, and we see that our linear maps 
E1, . . . , Ek have Ei Ej = 0 for i 6= j . 
As soon as we allow nonconstant coefficients in place of the cj ’s in the above 

argument, we obtain a generalization of Theorem 5.14 to the situation that the
minimal polynomial of L is arbitrary. The prime factors of the minimal polyno-
mial need not even be of degree 1. Hence the theorem applies to all L’s even if 
K is not algebraically closed. 

Theorem 5.19 (Primary Decomposition Theorem). Let L : V → V be linear 
on a finite-dimensional vector space over K, and let M(X) = P1(X)l1 · · · Pk (X)lk 

be the unique factorization of the minimal polynomial M(X) of L into the product 
of powers of distinct monic prime polynomials Pj (X). Define Uj = ker(Pj (L)lj )
for 1 ≤ j ≤ k. Then 

(a) V = U1 ⊕ · · · ⊕ Uk ,
(b) the projection Ej of V on Uj along the sum of the other Ui ’s is of the 

form Tj (L) for some polynomial Tj ,
(c) each vector subspace Uj is invariant under L ,
(d) any linear map from V to itself that commutes with L carries each Uj

into itself,
(e) any vector subspace W invariant under L has the property that 

W = (W ∩ U1) ⊕ · · · ⊕ (W ∩ Uk ), 

(f) the minimal polynomial of L j = L
Ø
Ø
Uj 
is Pj (X)lj . 

REMARKS. The decomposition in (a) is called the primary decomposition of 
V under L , and the vector subspaces Uj are called the primary subspaces of V 
under L . 

PROOF. For 1 ≤ j ≤ k, define Qj (X) = M(X)/Pj (X)lj . The ideal in 
K[X] generated by Q1(X), . . . , Qk (X) consists of all products of a single monic 
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polynomial D(X) by arbitrary polynomials, according to Proposition 5.8, and 
D(X) has to divide each Qj (X). Since Qj (X) = 

Q
i j Pi (X)li , D(X) cannot6= 

be divisible by any Pj (X), and consequently D(X) = 1. Thus there exist 
polynomials R1(X), . . . , Rk (X) such that 

1 = Q1(X)R1(X) + · · · + Qk (X)Rk (X). 

Define Ej = Qj (L)Rj (L), so that E1 + · · · + Ek = I . If i 6= j , then 
Qi (X)Qj (X) = M(X) 

Q
=i, j Pr (X)lr . Since M(L) = 0, we see that Ei Ej = 0.r 6

Proposition 5.17 says that each Ej is a projection. Also, it says that if Uj
denotes image Ej , then V = U1 ⊕ · · · ⊕ Uk , and Ej is the projection on Uj along
the sum of the other Ui ’s. With this definition of the Uj ’s (rather than the one in
the statement of the theorem), we have therefore shown that (a) and (b) hold.
Let us see that conclusions (c), (d), and (e) follow from (b). Conclusion 

(c) holds by Proposition 5.18 since L commutes with Tj (L) whenever Tj is a 
polynomial. For (d), if J : V → V is a linear map commuting with L , then 
J commutes with each Ej since (b) shows that each Ej is of the form Tj (L). 
From Proposition 5.18 we conclude that each Uj is invariant under J . For (e), 
the subspace W certainly contains (W ∩ U1) ⊕ · · · ⊕ (W ∩ Uk ). For the reverse 
containment suppose w is in W . Since Ej is of the form Tj (L) and since W 
is invariant under L , Ej (w) is in W . But also Ej (w) is in Uj . Therefore the 
expansion w = 

P
j Ej (w) exhibits w as the sum of members of the spaces 

W ∩ Uj . 
Next let us prove that Uj , as we have defined it, is given also by the definition

in the statement of the theorem. In other words, let us prove that 

image Ej = ker(Pj (L)lj ). (∗) 

We need a preliminary fact. The polynomial Pj (X)lj has the property that 
M(X) = Pj (X)lj Qj (X). Hence Pj (L)lj Qj (L) = M(L) = 0. Multiplying
by Rj (L), we obtain 

Pj (L)lj Ej = 0. (∗∗) 

Now suppose that v is in image Ej . Then Pj (L)lj (v) = Pj (L)lj Ej (v) = 0 
by (∗∗), and hence image Ej ⊆ ker(Pj (L)lj ). For the reverse inclusion, let v be 
in ker(Pj (L)lj ). For i 6 j , Qi (X)Ri (X) = 

°Q
=i, j Pr (X)lr 

¢
Ri (X)Pj (X)lj and= r 6

hence 
Ei (v) = 

°Q
=i, j Pr (L)lr 

¢
Ri (L)Pj (L)lj (v) = 0.r 6

Writing v = E1(v) + · · · + Ek (v), we see that v = Ej (v). Thus ker(Pj (L)lj ) ⊆ 
image Ej . Therefore (∗) holds, and Uj is as in the statement of the theorem. 
Finally let us prove (f). Let Mj (X) be the minimal polynomial of L j = L

Ø
Ø
Uj 
. 

From (∗∗) we see that Pj (L j )lj = 0. Hence Mj (X) divides Pj (X)lj . For the 
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reverse divisibility we have Mj (L j ) = 0. Then certainly Mj (L j )Qj (L j )Rj (L j ),
which equals Mj (L)Ej on Uj , is 0 on Uj . Consider Mj (L)Ej on Ui = image Ei 
when i 6 j . Since Ej Ei = 0, Mj (L)Ej equals 0 on all Ui other than Uj . We = 
conclude that Mj (L)Ej equals 0 on V , i.e., Mj (L)Qj (L)Rj (L) = 0. Since M(X)
is the minimal polynomial of L , M(X) divides 

Mj (X)Qj (X)Rj (X) = Mj (X) 
°
1 − 

P 
Qi (X)Ri (X)

¢
, (†)

i 6 j= 

and the factor Pj (X)lj of M(X) must divide the right side of (†). On that right 
side, Pj (X)lj divides each Qi (X) with i 6 j .= Since Pj (X) does not divide 1, 
Pj (X) does not divide the factor 1 − 

P
i j Qi (X)Ri (X). Since Pj (X) is prime, 6= 

Pj (X)lj and 1 − 
P

i j Qi (X)Ri (X) are relatively prime. We know that Pj (X)lj6= 
divides the product of Mj (X) and 1 − 

P
i j Qi (X)Ri (X), and consequently 6= 

Pj (X)lj divides Mj (X). This proves the reverse divisibility and completes the 
proof of (f). § 

6. Jordan Canonical Form 

Now we can return to the canonical-form problem for similarity of square matrices
and isomorphism of linear maps from a finite-dimensional vector space to itself.
The answer obtained in this section will solve the problem completely if K 
is algebraically closed but only partially if K fails to be algebraically closed.
Problems 32–40 at the end of the chapter extend the content of this section to give
a complete answer for general K. 
The present theorem is most easily stated in terms of matrices. A square matrix

is called a Jordan block if it is of the form 
 
c 1 0 0 · · · 0 0 

 

c 1 0 · · · 0 0 


c 1 · · · 0 0 


 
. .. .

. . . . 


. . , . .  
 c 1 0  
 c 1  

c 

of some size and for some c in K, as in Example 2 of Section 3, with 0 everywhere
below the diagonal. A square matrix is in Jordan form, or Jordan normal form,
if it is block diagonal and each block is a Jordan block. One can insist on grouping
the blocks for which the constant c is the same and arranging the blocks for given 
c in some order, but these refinements are inessential. 
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Theorem 5.20 (Jordan canonical form). 
(a) If the field K is algebraically closed, then every square matrix over K is 

similar to a matrix in Jordan form, and two matrices in Jordan form are similar
to each other if and only if their Jordan blocks can be permuted so as to match
exactly.
(b) For a general field K, a square matrix A is similar to a matrix in Jordan 

form if and only if each prime factor of its minimal polynomial has degree 1.
Two matrices in Jordan form are similar to each other if and only if their Jordan
blocks can be permuted so as to match exactly. 

The first step in proving existence of a matrix in Jordan form similar to a
given matrix is to use the Primary Decomposition Theorem (Theorem 5.19). We
think of the matrix A as operating on the space Kn of column vectors in the 
usual way. The primary subspaces are uniquely defined vector subspaces of Kn ,
and we introduce an ordered basis, yet to be specified in full detail, within each
primary subspace. The union of these ordered bases gives an ordered basis of 
Kn , and we change from the standard basis to this one. The result is that the 
given matrix has been conjugated so that its appearance is block diagonal, each
block having minimal polynomial equal to a power of a prime polynomial and the
prime polynomials all being different. Let us call these blocks primary blocks. 
The effect of Theorem 5.19 has been to reduce matters to a consideration of each 
primary block separately. The hypothesis either that K is algebraically closed
or, more generally, that the prime divisors of the minimal polynomial all have
degree 1 means that the minimal polynomial of the primary block under study
may be taken to be (X − c)l for some c in K and some integer l ∏ 1. In terms 
of Jordan form, we have isolated, for each c in K, what will turn out to be the 
subspace of Kn corresponding to Jordan blocks with c in every diagonal entry. 
Let us write B for a primary block with minimal polynomial (X − c)l . We 

certainly have (B − cI )l = 0, and it follows that the matrix N = B − cI has 
Nl = 0. A matrix N with Nl = 0 for some integer l ∏ 0 is said to be nilpotent. 
To prove the existence part of Theorem 5.20, it is enough to prove the following
theorem. 

Theorem 5.21. For any field K, each nilpotent matrix N in Mn(K) is similar 
to a matrix in Jordan form. 

The proof of Theorem 5.21 and of the uniqueness statements in Theorem
5.20 will occupy the remainder of this section. It is implicit in Theorem 5.21
that a nilpotent matrix in Mn(K) has 0 as a root of its characteristic polynomial 
with multiplicity n, in particular that the only prime polynomials dividing the
characteristic polynomial are the ones dividing the minimal polynomial. We 
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proved such a fact about divisibility earlier for general square matrices when the
prime factor has degree 1, but we did not give a proof for general degree. We
pause for a moment to give a direct proof in the nilpotent case. 

Lemma 5.22. If N is a nilpotent matrix in Mn(K ), then N has characteristic 
polynomial Xn and satisfies Nn = 0. 

PROOF. If Nl = 0, then 

(X I − N )(Xl−1 I + Xl−2 N +· · ·+ X2 Nl−3 + XNl−2 + Nl−1) = Xl I − Nl = Xl I. 

Taking determinants and using Proposition 5.1 in the ring R = K[X], we obtain 

Xln det(X I − N ) det(other factor) = det(Xl I ) = . 

Thus det(X I − N ) divides Xln . By unique factorization in K[X], det(X I − N ) is 
a constant times a power of X . Then we must have det(X I − N ) = Xn . Applying 
the Cayley–Hamilton Theorem (Theorem 5.9), we obtain Nn = 0. § 

Let us now prove the uniqueness statements in Theorem 5.20; this step will in
fact help orient us for the proof of Theorem 5.21. In (b), one thing we are to prove
is that if A is similar to a matrix in Jordan form, then every prime polynomial
dividing the minimal polynomial has degree 1. Since characteristic and minimal
polynomials are unchanged under similarity, we may assume that A is itself in 
Jordan form. The characteristic and minimal polynomials of A are computed in
the four examples of Section 3. Since the minimal polynomial is the product of
polynomials of degree 1, the only primes dividing it have degree 1.
In both (a) and (b) of Theorem 5.20, we are to prove that the Jordan form

is unique up to permutation of the Jordan blocks. The matrix A determines 
its characteristic polynomial, which determines the roots of the characteristic
polynomial, which are the diagonal entries of the Jordan form. Thus the sizes
of the primary blocks within the Jordan form are determined by A. Within each 
primary block, we need to see that the sizes of the various Jordan blocks are
completely determined.
Thus we may assume that N is nilpotent and that C−1 NC = J is in Jordan 

form with 0’s on the diagonal. Although we shall make statements that apply
in all cases, the reader may be helped by referring to the particular matrix J in 
Figure 5.1 and its powers in Figure 5.2. 



234 V. Theory of a Single Linear Transformation 

0 1 0 0  
0 0 1 0  0 0 0 1 


0 0 0 0 




0 1 0 


 
J =  0 0 1 


.

0 0 0 



0 1 


 


0 0 


 0 1 
 

0 0 
0 

FIGURE 5.1. Example of a nilpotent matrix in Jordan form. 

Each block of the Jordan form J contributes 1 to the dimension of the kernel 
(or null space really) of J via the first column of the block, and hence 

dim(ker J ) = #{Jordan blocks in J }. 

In Figure 5.1 this number is 5. 

0 0 1 0 0 0 0 1    
0 0 0 1 0 0 0 0  0 0 0 0   0 0 0 0 


0 0 0 0 

 
0 0 0 0 




0 0 1 
 

0 0 0 


   
J 2 =  0 0 0 

 and J 3 =  0 0 0 



0 0 0 

 
0 0 0 




0 0 
 

0 0 


   


0 0 
 

0 0 


 0 0 
  0 0 

 
0 0 0 0 

0 0 

FIGURE 5.2. Powers of the nilpotent matrix in Figure 5.1. 

When J is squared, the 1’s in J move up and to the right one more step beyond
the diagonal except that blocks of size 2 become 0. When J is cubed, the 1’s in 
J move up and to the right one further step except that blocks of size 3 become 0.
Each time J is raised to a new power one higher than before, each block that
is nonzero in the old power contributes an additional 1 to the dimension of the
kernel. Thus we have 

dim(ker J 2) − dim(ker J ) = #{Jordan blocks of size ∏ 2} 

and dim(ker J 3) − dim(ker J 2) = #{Jordan blocks of size ∏ 3}; 

in the general case, 

dim(ker J k) − dim(ker J k−1) = #{Jordan blocks of size ∏ k} for k ∏ 1. 
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Lemma 5.22 says that J k = 0 when k is ∏ the size of J , and the differences need 
not be computed beyond that point.
For Figure 5.2 the values by inspection are dim(ker J 2) = 9 and dim(ker J 3) = 

11; also J 4 = 0 and hence dim(ker J 4) = 12. The numbers of Jordan blocks 
of size ∏ k for k = 1, 2, 3, 4 are 5, 4, 2, 1, and these numbers indeed match the 
differences 5 − 0, 9 − 5, 11 − 9, 12 − 11, as predicted by the above formula. 
Since C−1 NC = J , we have C−1 NkC = J k and NkC = C J k . The matrix 

C is invertible, and therefore dim(ker J k) = dim(ker C J k ) = dim(ker NkC) = 
dim(ker Nk ). Hence 

dim(ker Nk ) − dim(ker Nk−1) = #{Jordan blocks of size ∏ k} for k ∏ 1, 

and the number of Jordan blocks of each size is uniquely determined by properties
of N . This completes the proof of all the uniqueness statements in Theorem 5.20. 

Now let us turn to the proof of Theorem 5.21, first giving the idea. The 
argument involves a great many choices, and it may be helpful to understand it in
the context of Figures 5.1 and 5.2. Let 6 = (e1, . . . , e12) be the standard ordered 
basis of K12. The matrix J , when operating by multiplication on the left, moves
basis vectors to other basis vectors or to 0. Namely, 

Je1 = 0, Je2 = e1, Je3 = e2, Je4 = e3, 
Je5 = 0, Je6 = e5, Je7 = e6, 

Je8 = 0, Je9 = e8, 
Je10 = 0, Je11 = e10, 

Je12 = 0, 

with each line describing what happens for a single Jordan block. Let us think µ 
L 

∂
of the given nilpotent matrix N as equal to for some linear map L . We 

66 
want to find a new ordered basis 0 = (v1, . . . , v12) in which the matrix of L is µ 

I 
∂

J . In the expression C−1 NC = J , the matrix C equals , and its columns 
60 

are expressions for v1, . . . , v12 in the basis 6, i.e., Cei = vi . For each index i ,
we have Jei = J ei−1 or J ei = 0. The formula NC = C J , when applied to ei ,
therefore says that 

Ω Cei−1 = vi−1 if Jei = ei−1,Nvi = NCei = C Jei = 
0 if Jei = 0. 

Thus we are looking for an ordered basis such that N sends each member of the 
basis either into the previous member or into 0. The procedure in this example 
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will be to pick out v4 as a vector not annihilated by N 3, obtain v3, v2, v1, from 
it by successively applying N , pick out v7 as a vector not annihilated by N 2 and 
independent of what has been found, obtain v6, v5 from it by successively applying 
N , and so on. It is necessary to check that the appropriate linear independence
can be maintained, and that step will be what the proof is really about. 

The proof of Theorem 5.21 will now be given in the general case. The core of
the argument concerns linear maps and appears as three lemmas. Afterward the
results of the lemmas will be interpreted in terms of matrices. For all the lemmas
let V be an n-dimensional vector space over K, and let N : V → V be linear 
with Nn = 0. Define Kj = ker N j , so that 

0 = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn = V . 

Lemma 5.23. Suppose j ∏ 1 and suppose Sj is any vector subspace of V such 
that Kj+1 = Kj ⊕ Sj . Then N is one-one from Sj into Kj and N (Sj ) ∩ Kj−1 = 0. 

PROOF. Since N (ker N j+1) ⊆ ker N j , we obtain N (Sj ) ⊆ Kj ; thus N indeed 
sends Sj into Kj . To see that N is one-one from Sj into Kj , suppose that s is a 
member of Sj with N (s) = 0. Then s is in K1. Since j ∏ 1, K1 ⊆ Kj . Thus s 
is in Kj . Since Kj ∩ Sj = 0, s is 0. Hence N is one-one from Sj into Kj . To see 
that N (Sj ) ∩ Kj−1 = 0, suppose s is a member of Sj with N (s) in Kj−1. Then 
0 = N j−1(N (s)) = N j (s) shows that s is in Kj . Since Kj ∩ Sj = 0, s equals 0.

§ 

Lemma 5.24. Define Un = Wn = 0. For 0 ≤ j ≤ n − 1, there exist vector 
subspaces Uj and Wj of Kj+1 such that 

Kj+1 = Kj ⊕ Uj ⊕ Wj , 

Uj = N (Uj+1 ⊕ Wj+1), 

and N : Uj+1 ⊕ Wj+1 → Uj is one-one. 

PROOF. Define Un−1 = N (Un ⊕ Wn) = 0, and let Wn−1 be a vector subspace 
such that V = Kn = Kn−1 ⊕ Wn−1. Put Sn−1 = Un−1 ⊕ Wn−1. Proceeding
inductively downward, suppose that Un, Un−1, . . . , Uj+1, Wn, Wn−1, . . . , Wj+1 

have been defined so that Uk = N (Uk+1 ⊕ Wk+1), N : Uk+1 ⊕ Wk+1 → Uk is 
one-one, and Kk+1 = Kk ⊕ Uk ⊕ Wk whenever k satisfies j < k ≤ n − 1. We 
put Sk = Uk ⊕ Wk for these values of k, and then Sk satisfies the hypothesis of 
Lemma 5.23 whenever k satisfies j < k ≤ n − 1. We now construct Uj and Wj . 
We put Uj = N (Sj+1). Since Sj+1 satisfies the hypothesis of Lemma 5.23, we 
see that Uj ⊆ Kj+1, N is one-one from Sj+1 into Uj , and Uj ∩ Kj = 0. Thus 
we can find a vector subspace Wj with Kj+1 = Kj ⊕ Uj ⊕ Wj , and the inductive 
construction is complete. § 
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Lemma 5.25. The vector subspaces of Lemma 5.24 satisfy 

V = U0 ⊕ W0 ⊕ U1 ⊕ W1 ⊕ · · · ⊕ Un−1 ⊕ Wn−1. 

PROOF. Iterated use of Lemma 5.24 gives 

V = Kn = Kn−1 ⊕ (Un−1 ⊕ Wn−1) 

= Kn−2 ⊕ (Un−2 ⊕ Wn−2) ⊕ (Un−1 ⊕ Wn−1) 

= · · · = K0 ⊕ (U0 ⊕ W0) ⊕ · · · ⊕ (Un−1 ⊕ Wn−1) 

= (U0 ⊕ W0) ⊕ · · · ⊕ (Un−1 ⊕ Wn−1), 

the last step holding since K0 = 0, K0 being the kernel of the identity function.
§ 

PROOF OF THEOREM 5.21. We regard N as acting on V = Kn by multiplication
on the left, and we describe an ordered basis in which the matrix of N is in Jordan 
form. For 0 ≤ j ≤ n − 1, form a basis of the vector subspace Wj of Lemma 
5.24, and let v( j) be a typical member of this basis. Each v( j) will be used as the 
last basis vector corresponding to a Jordan block of size j + 1. The full ordered 

( j) ( j) ( j) ( j)basis for that Jordan block will therefore be N j v , N j−1v , . . . , N v , v . 
( j)The theorem will be proved if we show that the union of these sets as j and v

vary is a basis of Kn and that N j+1v( j) = 0 for all j and v( j). 
From the first conclusion of Lemma 5.24 we see for j ∏ 0 that Wj ⊆ Kj+1,

and hence N j+1(Wj ) = 0. Therefore N j+1v( j) = 0 for all j and v( j). 
Let us prove by induction downward on j that a basis of Uj ⊕ Wj consists of all 

v( j) and all Nk v( j+k) for k > 0. The base case of the induction is j = n − 1, and 
the statement holds in that case since Un−1 = 0 and since the vectors v(n−1) form 
a basis of Wn−1. The inductive hypothesis is that all v( j+1) and all Nkv( j+1+k) for 
k > 0 together form a basis of Uj+1 ⊕ Wj+1. The second and third conclusions 
of Lemma 5.24 together show that all N v( j+1) and all Nk+1v( j+1+k) for k > 0 
together form a basis of Uj . In other words, all Nk v( j+k) with k > 0 together 
form a basis of Uj . The vectors v( j) by construction form a basis of Wj , and 
Uj ∩ Wj = 0. Therefore the union of these separate bases is a basis for Uj ⊕ Wj ,
and the induction is complete.
Taking the union of the bases of Uj ⊕ Wj for all j and applying Lemma 5.25, 

we see that we have a basis of V = Kn . This shows that the desired set is a basis 
of Kn and completes the proof of Theorem 5.21. § 
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7. Computations with Jordan Form 

Let us illustrate the computation of Jordan form and the change-of-basis matrix
with a few examples. We are given a matrix A and we seek J and C with 
J = C−1 AC . We regard A as the matrix of some linear L in the standard ordered 
basis 6, and we regard J as the matrix of L in some other ordered basis 0. Then µ 

I 
∂

C = , and so the columns of C give the members of 0 written as ordinary 
60 

column vectors (in the standard ordered basis). 

EXAMPLE 1. This example will be a nilpotent matrix, and we shall compute J 
and C merely by interpreting the proof of Theorem 5.21 in concrete terms. Let 

√ −1 1 0 ! 

A = −1 1 0 . 
−1 1 0 

The first step is to compute the characteristic polynomial, which is 
µ X+1 −1 0 

∂
det(X I − A) = det 1 X−1 0 = X det 

≥ 
X+1 −1 

¥ 
= X3 .1 X−11 −1 X 

Then A3 = 0 by the Cayley–Hamilton Theorem (Theorem 5.9), and A is indeed 
nilpotent. The diagonal entries of J are thus all 0, and we have to compute the
sizes of the various Jordan blocks. To do so, we compute the dimension of the
kernel of each power of A. The dimension of the kernel of a matrix equals the
number of independent variables when we solve AX = 0 by row reduction. With 
the first power of A, the variable x1 is dependent, and x2 and x3 are independent. 
Also, A2 = 0. Thus 

dim(ker A0) = 0, dim(ker A) = 2, and dim(ker A2) = 3. 

Hence 

#{Jordan blocks of size ∏ 1} = dim(ker A) − dim(ker A0) = 2 − 0 = 2, 

#{Jordan blocks of size ∏ 2} = dim(ker A2) − dim(ker A) = 3 − 2 = 1. 

From these equalities we see that one Jordan block has size 2 and the other has
size 1. Thus µ 

0 1 
∂

J = 0 0 . 
0 
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We want to set up vector subspaces as in Lemma 5.24 so that Kj+1 = Kj ⊕Uj ⊕Wj
and Uj = A(Uj+1 ⊕ Wj+1) for 0 ≤ j ≤ 2. Since K3 = K2, the equations begin 
with K2 = · · · and are 

K2 = K1 ⊕ 0 ⊕ W1, U0 = A(0 ⊕ W1), K1 = K0 ⊕ U0 ⊕ W0. 

µ x1 
∂

Here K2 = K3 and K1 is the subspace of all X = x2 such that AX = 0. 
x3

The space W1 is to satisfy K2 = K1 ⊕ W1, and we see that W1 is 1-dimensional. 
Let {v(1)} be a basis of the 1-dimensional vector subspace W1. Then U0 is 
1-dimensional with basis {Av(1)}. The subspace K1 is 2-dimensional and contains 
U0. The space W0 is to satisfy K1 = U0⊕W0, and we see that W0 is 1-dimensional. 
Let {v(0)} be a basis of W0. Then the respective columns of C may be taken to be 

(1) (1) (0)Av , v , v . 

Let us compute these vectors.
If we extend a basis of K1 to a basis of K2, then W1 may be taken to be the 

linear span of the added vector. To obtain a basis of K1, we compute that the µ 1 −1 0 
∂

reduced row-echelon form of A is 0 0 0 , and the resulting system consists of 
0 0 0 

the single equation x1 − x2 = 0. Thus x1 = x2, and 

µ x1 
∂ µ 1 

∂ µ 0 
∂ 

x2 = x2 1 + x3 0 . 
x3 0 1 

The coefficients of x2 and x3 on the right side form a basis of K1, and we are to
(1)choose a vector that is not a linear combination of these. Thus we can take v = µ 1 

∂ µ 1 
∂ µ 

−1 
∂ 

(1)0 as the basis vector of W1. Then U0 = A(W1) has Av = A 0 = −1 
0 0 −1

as a basis, and the basis of W0 may be taken as any vector in K1 but not U0. We µ 0 
∂ 

(0)can take this basis to consist of v = 0 . 
1 µ 

−1 1 0 
∂

Lining up our three basis vectors as the columns of C gives us C = −1 0 0 . 
−1 0 1 µ 0 −1 0 

∂
Computation gives C−1 = 1 −1 0 , and we readily check that C−1 AC = J . 

0 −1 1 

EXAMPLE 2. We continue with A and J as in Example 1, but we compute the 
columns of C without directly following the proof of Theorem 5.21. The method
starts from the fact that each Jordan block corresponds to a 1-dimensional space
of eigenvectors, and then we backtrack to find vectors corresponding to the other 
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columns. For this particular A, we know that the three columns of C are to be of 
the form v1 = Av(1), v2 = v(1), and v3 = v(0). The vectors v1 and v3 together
span the 0 eigenspace of A. We find all the 0 eigenvectors, writing them as a 
two-parameter family. This eigenspace is just K1 = ker A, and we found in Ωµ x2 

∂æ 

Example 1 that K1 = x2 . One of these vectors is to be v1, and it has to 
x3 µ x2 

∂
equal Av2. Thus we solve Av2 = x2 . Applying the solution procedure yields 

x3 

−x2 

!√ 
1 −1 0 

0 .0 0 0 
x3 −x20 0 0 

This system has no solutions unless x3 − x2 = 0. If we take x2 = x3 = −1, then 
we obtain the same first two columns of C as in Example 1, and any vector in K1 µ 

−1 
∂

independent of −1 may be taken as the third column. 
−1 

EXAMPLE 3. Let √ 2 1 0 ! 

A = −1 4 0 . 
−1 2 2 

Direct calculation shows that the characteristic polynomial is det(X I − A) = 
X3 − 8X2 + 21X − 18 = (X − 2)(X − 3)2. The possibilities for J are therefore 

µ 3 0 0 
∂ µ 3 1 0 

∂ 
0 3 0 and 0 3 0 ;
0 0 2 0 0 2 

the first one will be correct if the dimension of the eigenspace for the eigenvalue 3
is 2, and the second one will be correct if that dimension is 1.
The third column of C corresponds to an eigenvector for the eigenvalue 2, µ 0 

∂
hence to a nonzero solution of (A − 2I )v = 0. The solutions are v = k 0 ,

1 µ 0 
∂

and we can therefore use 0 . 
1

For the first two columns of C , we have to find ker(A − 3I ) no matter which of 
the methods we use, the one in Example 1 or the one in Example 2. Solving the Ω µ 1 

∂æ
system of equations, we obtain all vectors in the space z 1 . The dimension 

1
of the space is 1, and the second possibility for the Jordan form is the correct one.
Following the method of Example 1 to find the columns of C means that we 

pick a basis of this kernel and extend it to a basis of ker(A − 3I )2. A basis of 
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µ 1 
∂ µ 0 0 0 

∂
ker(A − 3I ) consists of the vector 1 . The matrix (A − 3I )2 is 0 0 0 , and 

1 0 −1 1 
the solution procedure leads to the formula 

µ a ∂ µ 1 
∂ µ 0 

∂ 
b = a 0 + c 1 
c 0 1 

µ 1 
∂

for its kernel. The vector 1 arises from a = 1 and c = 1. We are to make an 

independent choice, say a = 
1 
1 and c = 0. Then the second basis vector to use is µ 1 

∂
0 . This becomes the second column of C , and the first column then has to be 
0 µ 1 

∂ µ 
−1 

∂ µ 
−1 1 0 

∂ 

(A − 3I ) 0 = −1 . The result is that C = −1 0 0 . 
0 −1 −1 0 1 

Following the method of Example 2 for this example means that we retain the µ 1 
∂

entire kernel of A − 3I , namely all vectors v1 = z 1 , as candidates for the 

first column of C . The second column is to satisfy (A
1 
− 3I )v2 = v1. Solvingµ 

−1 
∂ µ 1 

∂
leads to v2 = z 0 + c 1 . In contrast to Example 2, there is no potential 

0 1
contradictory equation. So we choose z and then c. If we take z = 1 and µ 1 

∂ µ 
−1 

∂
c = 0, we find that the first two columns of C are to be 1 and 0 . Then 

1 0 µ 1 −1 0 
∂

C = 1 0 0 . 
1 0 1 

For any example in which we can factor the characteristic polynomial exactly,
either of the two methods used above will work. The first method appears
complicated but uses numbers throughout; it tends to be more efficient with
large examples involving high-degree minimal polynomials. The second method
appears direct but requires solving equations with symbolic variables; it tends to
be more efficient for relatively simple examples. 

8. Problems 

In Problems 1–25 all vector spaces are assumed finite-dimensional, and all linear
transformations are assumed defined from such spaces into themselves. Unless 
information is given to the contrary, the underlying field K is assumed arbitrary. 
1. Let Mmn(C) be the vector space of m-by-n complex matrices. The group 

GL(m, C) × GL(n, C) acts on Mmn(C) by ((g, h), x) 7→ gxh−1, where gxh−1 

denotes a matrix product. Do the following: 
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(a) Verify that this is indeed a group action.
(b) Prove that two members of Mmn(C) lie in the same orbit if and only if they 

have the same rank. 
(c) For each possible rank, give an example of a member of Mmn(C) with that 

rank. 

2. Prove that a member of Mn(K) is invertible if and only if the constant term of its
minimal polynomial is different from 0. 

3. Suppose that L : V → V is a linear map with minimal polynomial M(X) = 
P1(X)l1 · · · Pk (X)lk and that V = U ⊕ W with U and W both invariant under 
L . Let P1(X)r1 · · · Pk (X)rk and P1(X)s1 · · · Pk (X)sk be the respective minimal 
polynomials of L

Ø
Ø
U and L

Ø
Ø
W . Prove that lj = max(rj , sj ) for 1 ≤ j ≤ k. 

4. (a) If A and B are in Mn(K), if P(X) is a polynomial such that P(AB) = 0, 
and if Q(X) = X P(X), prove that Q(BA) = 0. 

(b) What can be inferred from (a) about the relationship between the minimal
polynomials of AB and of BA? 

5. (a) Suppose that D and D0 are in Mn(K), are similar to diagonal matrices, and 
have DD0 = D0 D. Prove that there is a matrix C such that C−1 DC and 
C−1 D0C are both diagonal.

(b) Give an example of two nilpotent matrices N and N 0 in Mn(K) with NN 0 = 
N 0 N such that there is no C with C−1 NC and C−1 N 0C both in Jordan form. 

6. (a) Prove that the matrix of a projection is similar to a diagonal matrix. What
are the eigenvalues?

(b) Give a necessary and sufficient condition for two projections involving the 
same V to be given by similar matrices. 

7. Let E : V → V and F : V → V be projections. Prove that E and F have 
(a) the same image if and only if EF = F and FE = E , 
(b) the same kernel if and only if EF = E and FE = F . 

8. Let E : V → V and F : V → V be projections. Prove that EF is a projection 
if EF = FE . Prove or disprove a converse. 

9. An involution on V is a linear map U : V → V such that U 2 = I . Show 
that the equation U = 2E − 1 establishes a one-one correspondence between all 
projections E and all involutions U . 

9A. Explain how the proof of the converse half of Theorem 5.14 greatly simplifies
once the Primary Decomposition Theorem (Theorem 5.19) is available. 
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10. Let L : V → V be linear. Prove that there exist vector subspaces U and W of V 
such that 

(i) V = U ⊕ W ,
(ii) L(U ) ⊆ U and L(W ) ⊆ W ,
(iii) L is nilpotent on U ,
(iv) L is nonsingular on W . 

11. Prove that the vector subspaces U and W in the previous problem are uniquely 
characterized by (i) through (iv). 

12. (Special case of Jordan–Chevalley decomposition) Let L : V → V be a 
linear map, and suppose that its minimal polynomial is of the form M(X) = Qk

j=1 (X −∏j )
lj with the ∏j distinct. Let V = U1 ⊕· · ·⊕Uk be the corresponding 

primary decomposition of V , and define D : V → V by D = ∏1 E1 +· · ·+∏k Ek ,
where E1, . . . , Ek are the projections associated with the primary decomposition. 
Finally put N = L − D. Prove that 
(a) L = D + N , 
(b) D has a basis of eigenvectors, 
(c) N is nilpotent, i.e., has N dim V = 0, 
(d) DN = ND. 
(e) D and N are given by unique polynomials in L such that each of the 

polynomials is equal to 0 or has degree less than the degree of M(X), 
(f) the minimal polynomial of D is 

Qk 
=1 (X − ∏j ),j

(g) the minimal polynomial of N is Xmax lj . 

13. (Special case of Jordan–Chevalley decomposition, continued) In the previous 
problem with L given, prove that a decomposition L = D + N is uniquely
determined by properties (a) through (d). Avoid using (e) in the argument. 

14. (a) Let N 0 be a nilpotent square matrix of size n0. Prove for arbitrary c ∈ K that 
the characteristic polynomial of N 0 + cI is (X − c)n0 , and deduce that the 
only eigenvalue of N 0 + cI is c. 

(b) Let L = D + N be the decomposition in Problems 12 and 13 of a square ma-
trix L of size n. Prove that L and D have the same characteristic polynomial. 

≥ 
−5 9 15. For the complex matrix A = 

¥
, find a Jordan-form matrix J and an 

−4 7 

invertible matrix C such that J = C−1 AC . 
µ 4 1 −1 

∂
16. For the complex matrix A = −8 −2 2 , find a Jordan-form matrix J and an 

8 2 −2 
invertible matrix C such that J = C−1 AC . 
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17. For the upper triangular matrix 
 2 0 0 1 1 0 0 

2 0 0 0 1 1  2 0 1 0 0 


A = 


2 0 1 2 


, 


2 1 1 


 
2 1 
3 

find a Jordan-form matrix J and an invertible matrix C such that J = C−1 AC . 
18. (a) For M3(C), prove that any two matrices with the same minimal polynomial

and the same characteristic polynomial must be similar.
(b) Is the same thing true for M4(C)? 

19. Suppose that K has characteristic 0 and that J is a Jordan block with nonzero 
eigenvalue and with size > 1. Prove that there is no n ∏ 1 such that Jn is 
diagonal. 

20. Classify up to similarity all members A of Mn(C) with An = I . 
21. How many similarity classes are there of 3-by-3 matrices A with entries in C 

such that A3 = A? Explain. 
22. Let n ∏ 2, and let N be a member of Mn(K) with Nn = 0 but Nn−1 =6 0. Prove 

that there is no n-by-n matrix A with A2 = N . 
23. For a Jordan block J , prove that J t is similar to J . 
24. Prove that if A is in Mn(C), then At is similar to A. 

25. Let N be the 2-by-2 matrix 
≥ 
0 1 

¥
, and let A and B be the 4-by-4 matrices 0 0 ≥ 

N 0 
≥ 
N N A = 

¥ 
and B = 

¥
. Prove that A and B are similar. 0 N 0 N 

Problems 26–31 concern cyclic vectors. Fix a linear map L : V → V from a finite-
dimensional vector space V to itself. For v in V , let P(v) denote the set of all vectors 
Q(L)(v) in V for Q(X) in K[X]; P(v) is a vector subspace and is invariant under 
L . If U is an invariant subspace of V , we say that U is a cyclic subspace if there is 
some v in U such that P(v) = U ; in this case, v is said to be a cyclic vector for U ,
and U is called the cyclic subspace generated by v. For v in V , let Iv be the ideal 
of all polynomials Q(X) in K[X] with Q(L)v = 0. The monic generator of v is the 
unique monic polynomial Mv(X) such that Mv(X) divides every member of Iv . 
26. For v ∈ V , explain why Iv is nonzero and why Mv(X) therefore exists. 
27. For v ∈ V , prove that

(a) the degree of the monic generator Mv(X) equals the dimension of the cyclic 
subspace P(v), 

(b) the vectors v, L(v), L2(v), . . . , Ldeg Mv −1(v) form a vector-space basis of 
P(v), 
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(c) the minimal and characteristic polynomials of L
Ø
Ø
P(v) are both equal to 

Mv(X). 
28. Suppose that Mv(X) = c0 + c1 X +· · ·+ cd−1 Xd−1 + Xd . Prove that the matrix 

of L
Ø
Ø
P(v) in a suitable ordered basis is 

 
−cd−1 1 0 ··· 

 

−cd−2 0 1 
−cd−3 0 0 


 
 . . . . . . . . .

. . . . 



−c2 0 0 ··· 0 1 0 


 
 

−c1 0 0 ··· 0 0 1 
 

−c0 0 0 ··· 0 0 

29. Suppose that v is in V , that Mv(X) is a power of a prime polynomial P(X),
and that Q(X) is a nonzero polynomial with deg Q(X) < deg P(X). Prove that 
P(Q(L)(v)) = P(v). 

30. Let P(X) be a prime polynomial.
(a) Prove by induction on dim V that if the minimal polynomial of L is P(X), 

then the characteristic polynomial of L is a power of P(X). 
(b) Prove by induction on l that if the minimal polynomial of L is P(X)l , then 

the characteristic polynomial of L is a power of P(X). 
(c) Conclude that if the minimal polynomial of L is a power of P(X), then 

deg P(X) divides dim V . 
31. Prove that every prime factor of the characteristic polynomial of L divides the 

minimal polynomial of L . 
Problems 32–40 continue the study of cyclic vectors begun in Problems 26–31, using
the same notation. The goal is to obtain a canonical-form theorem like Theorem 5.20
for L but with no assumption on K or P(X), namely that each primary subspace for 
L is the direct sum of cyclic subspaces and the resulting decomposition is unique
up to isomorphism. This result and the Fundamental Theorem of Finitely Generated
Abelian Groups (Theorem 4.56) will be seen in Chapter VIII to be special cases of
a single more general theorem. Still another canonical form for matrices and linear
maps is an analog of the result with elementary divisors mentioned in the remarks
with Theorem 4.56 and is valid here; it is called rational canonical form, but we shall
not pursue it until the problems at the end of Chapter VIII. The proof in Problems
32–40 uses ideas similar to those used for Theorem 5.21 except that the hypothesis
will now be that the minimal polynomial of L is P(X)l with P(X) prime, rather than 
just Xl . Define Kj = ker(P(L) j ) for j ∏ 0, so that K0 = 0, Kj ⊆ Kj+1 for all j ,
Kl = V , and each Kj is an invariant subspace under L . Define d = deg P(X). 
32. Suppose j ∏ 1, and suppose Sj is any vector subspace of V such that Kj+1 = 

Kj ⊕ Sj . Prove that P(L) is one-one from Sj into Kj and P(L)(Sj ) ∩ Kj−1 = 0. 
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33. Define Ul = Wl = 0. For 0 ≤ j ≤ l − 1, prove that there exist vector subspaces 
Uj and Wj of Kj+1 such that 

Kj+1 = Kj ⊕ Uj ⊕ Wj , 

Uj = P(L)(Uj+1 ⊕ Wj+1), 

P(L) : Uj+1 ⊕ Wj+1 → Uj is one-one. 

34. Prove that the vector subspaces of the previous problem satisfy 

V = U0 ⊕ W0 ⊕ U1 ⊕ W1 ⊕ · · · ⊕ Ul−1 ⊕ Wl−1. 

35. For v 6= 0 in Wj , prove that the set of all Lr P(L)s(v) with 0 ≤ r ≤ d − 1 and 
0 ≤ s ≤ j is a vector-space basis of P(v). 

36. Going back over the construction in Problem 33, prove that each Wj can be 
( j)chosen to have a basis consisting of vectors Lr (v ) for 1 ≤ i ≤ (dim Wj )/di

and 0 ≤ r ≤ d − 1. 

37. Let the index i used in the previous problem with j be denoted by i j for 1 ≤ 
i j ≤ (dim Wj )/d. Prove that a vector-space basis of Uj ⊕ Wj consists of all 

( j+k)Lr P(L)k (v ) for 0 ≤ r ≤ d − 1, k ∏ 0, 1 ≤ i j+k ≤ (dim Wj+k )/d.i j +k 

38. Prove that V is the direct sum of cyclic subspaces under L . Prove specifically 
( j)that each v generates a cyclic subspace and that the sum of all these vectori j

subspaces, with 0 ≤ j ≤ l and 1 ≤ i j ≤ (dim Wj )/d, is a direct sum and 
equals V . 

39. In the decomposition of the previous problem, each cyclic subspace generated 

by some vi
( 
j

j) has minimal polynomial P(X) j+1. Prove that 
Ω
direct summands with minimal polynomial# 

æ 

= (dim Kj+1 − dim Kj )/d.P(X)k for some k ∏ j + 1 

40. Prove that the formula of the previous problem persists for any decomposition
of V as the direct sum of cyclic subspaces, and conclude from Problem 28 that
the decomposition into cyclic subspaces is unique up to isomorphism. 

Problems 41–46 concern systems of ordinary differential equations with constant
coefficients. The underlying field is taken to be C, and differential calculus is used. 
For A in Mn(C) and t in R, define et A = 

P∞ tk Ak . Take for granted that the k=0 k!
series defining et A converges entry by entry, that the series may be differentiated term 
by term to yield dt 

d (et A) = Aet A = et A A, and that es A+t B = es Aet B if A and B 
commute. 
41. Calculate et A for A equal to 

0 1 
¥

(a) 
≥ 

,
−1 0 
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(b) 
≥ 
0 1 

¥ 
,1 0 

(c) the diagonal matrix with diagonal entries d1, . . . , dn . 
42. (a) Calculate et J when J is a nilpotent n-by-n Jordan block. 

(b) Use (a) to calculate et J when J is a general n-by-n Jordan block. 
43. Let y1, . . . , yn be unknown functions from R to C, and let y be the vector-valued 

function formed by arranging y1, . . . , yn in a column. Suppose that A is in 
et AMn(C). Prove for each vector v ∈ Cn that y(t) = v is a solution of the 

system of differential equations dy = Ay(t).dt 

44. With notation as in the previous problem and with v fixed in Cn , use e−t A y(t)
to show, for each open interval of t’s containing 0, that the only solution of 
dy = Ay(t) on that interval such that y(0) = v is y(t) = et Av.dt 

45. For C invertible, prove that etC−1 AC = C−1et AC , and deduce a relationship 

between solutions of dy = Ay(t) and solutions of dy = (C−1 AC)y(t).dt dt 
2 1 0 µ ∂

46. Let A = −1 4 0 . Taking into account Example 3 in Section 7 and Problems 
−1 2 2 

42 through 45 above, find all solutions for t in (−1, 1) to the system dy = Ay(t)dt µ 1 
∂

such that y(0) = 2 . 
3 




