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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. We are interested in odd p’s such that
°m
p
¢

= +1. Factorm as
Q

j p
kj
j . Then qua-

dratic reciprocity gives
°m
p
¢
=

Q
j
°pj
p
¢kj =

Q
kj odd

°pj
p
¢
=

Q
kj odd(−1)

1
4 (p−1)(pj−1)

° p
pj

¢
.

We consider p ≡ 1 mod 4 and p ≡ 3 mod 4 separately. For p ≡ 1 mod 4, the set
in question consists of those p’s for which

° p
pj

¢
is −1 for an even number of those

kj ’s that are odd. This is the union over all such systems of minus signs of the
intersection over j of the finitely many arithmetic progressions for which the residue° p
pj

¢
equals the j th sign. For a single system of minus signs, the result is an arithmetic

progression of the form k
Q

kj odd pj + b by the Chinese Remainder Theorem. Each
of these contains a nonempty set of primes by Dirichlet’s Theorem, and hence P is
nonempty.
For p ≡ 3 mod 4, if

Q
kj odd(−1)

1
2 (pj−1) is +1, then the set in question is of the

same form as above. If
Q

kj odd(−1)
1
2 (pj−1) is−1, then the set in question consists of

those p’s for which
° p
pj

¢
is −1 for an odd number of those kj ’s that are odd, and this

again is the finite union of arithmetic progressions.
2. For (a), the proof of necessity of Theorem 1.6b remains valid when the prime p

is replaced by the integerm. For (b), the first paragraph of the proof of the sufficiency
of Theorem 1.6b handles matters if m is odd.
3. For D = −56, H has order 4, but H 0 has order 3 because 3x2 ± 2xy + 5y2

are improperly equivalent but not properly equivalent. A 3-element set has no group
structure such that a 4-element group maps homomorphically onto it.
4. For (a), the product of any two integers representable as ax2 + bxy + cy2 is

representable by the class of the square, which is the class of the inverse because the
class is assumed to have order 3. The class of the inverse is the class of (a,−b, c),
and this represents the same integers as (a, b, c).
For (b), we seek reduced triples. These are (a, b, c) with |b| ≤ a ≤ c and with

b2 − 4ac = D = −23, and we know that 3ac ≤ |D| and that b has the same
parity as D. Hence b is odd, and the inequalities 3b2 ≤ 3a2 ≤ 3ac ≤ 23 show
that |b| = 1. For |b| = 1, we have 1 − 4ac = −23 and ac = 6. Since a ≤ c, the
possibilities with |b| = 1 are (1,±1, 6) and (2,±1, 3). Since (1, 1, 6) and (1,−1, 6)
are properly equivalent by Proposition 1.7, |b| = 1 leads to just the three possibilities
(1, 1, 6), (2, 1, 3), and (2,−1, 3). Proposition 1.7 shows that these lie in distinct
proper equivalence classes, and thus h(−23) = 3.

649



650 Hints for Solutions of Problems

For (c), the general theory shows that (1, 1, 6) corresponds to the identity class,
and therefore the other two reduced forms are in classes of order 3.
For (d), we first track down what happens to the forms. If we write ∼ for proper

equivalence, then we have

(2, 1, 3)(2, 1, 3) ∼ (2, 1, 3)(3,−1, 2) ∼ (2, 5, 6)(3, 5, 4)
= (6, 5, 2) ∼ (2,−5, 6) ∼ (2,−1, 3),

and the last form is improperly equivalent to (2, 1, 3). The next step is to interpret this
chain with actual variables. If the initial variables are x1, y1, x2, y2, then the change
at the first step from (2, 1, 3) to (3,−1, 2) comes from x2 = y0

2, y2 = −x 0
2 while

leaving x1 and y1 unchanged as x1 = x 0
1, y1 = y0

1. The change at the second step
from (2, 1, 3) to (2, 5, 6) and from (3,−1, 2) to (3, 5, 4) comes from the translations
x 0
1 = x 00

1 + y00
1 , y

0
1 = y00

1 , x
0
2 = x 00

2 + y00
2 , y

0
2 = y00

2 . The multiplication step comes from
Proposition 1.9 and is given by x3 = x 00

1 x
00
2−2y00

1 y
00
2 and y3 = 2x 00

1 y
00
2+3x 00

2 y
00
1+5y00

1 y
00
2 .

And so on. The final result is that

(2x21 + x1y1 + 3y21)(2x
2
2 + x2y2 + 3y22) = 2X2 + XY + 3Y 2,

where X = x1(−x2 + y2) + y1(x2 + 2y2) and Y = y1(x2 − y2) + x1(x2 + y2).

5. The equality
≥

1 0
−a−1b 1

¥ ≥
2a b
b 2c

¥ ≥
1 −a−1b
0 1

¥
=

≥
2a −b
−b 2c

¥
shows this.

6. For reduced forms we seek (a, b, c) with a > 0, c > 0, |b| ≤ a ≤ c. We know
that 3ac ≤ |D| = 67, and D odd implies b odd. From 3b2 ≤ 3a2 ≤ 3ac ≤ 67, we
obtain 3b2 ≤ 67 and |b| ≤ 4. So |b| is 1 or 3. For |b| = 1, 14 (b

2−D) = 1
4 (b

2+67) =
17; then 17 = ac, and a = 1 and c = 17. Since (1, 1, 17) is properly equivalent
to (1,−1, 17) by Proposition 1.7, we obtain only one proper equivalence class from
this pair. For |b| = 3, 14 (b

2 − D) = 1
4 (9+ 67) = 19 forces ac = 19 and then a = 1

and c = 19. Then |b| ≤ a is not satisfied. So |b| = 3 gives no proper equivalence
classes, and h(−67) = 1.
7. The 6 cycles are

(1, 8,−15), (−15, 7, 2), (2, 7,−15), (−15, 8, 1);
(−1, 8, 15), (15, 7,−2), (−2, 7, 15), (15, 8,−1);
(3, 8,−5), (−5, 7, 6), (6, 5,−9), (−9, 4, 7), (7, 3,−10), (−10, 7, 3);
(−3, 8, 5), (5, 7,−6), (−6, 5, 9), (9, 4,−7), (−7, 3, 10), (10, 7,−3);
(5, 8,−3), (−3, 7, 10), (10, 3,−7), (−7, 4, 9), (9, 5,−6), (−6, 7, 5);
(−5, 8, 3), (3, 7,−10), (−10, 3, 7), (7, 4,−9), (−9, 5, 6), (6, 7,−5).

8. The form (1, 1, 12) corresponds to the identity class, the classes of (2,±1, 6) are
inverses of one another, and the classes of (3,±1, 4) are inverses of one another. The
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group structure has to be cyclic, and any element other than the identity can be taken as
a generator. Let us take a to be the class of (2, 1, 6). We are to identify a2. The form
(2, 1, 6) is aligned with itself (having the same b component), it has j = 6/2 = 3,
and the composition formula of Proposition 1.9 leads to (2 · 2, 1, j) = (4, 1, 3).
This is properly equivalent to (3,−1, 4), and we do not have to follow through the
algorithm of Theorem 1.6a to identify the product in our list. The result is that
a ↔ (2, 1, 6), a2 ↔ (3,−1, 4), a3 = (a2)−1 ↔ (3, 1, 4), a4 = a−1 ↔ (2,−1, 6),
and a5 = 1 ↔ (1, 1, 12).
10. For (a), the result is known for n prime by Theorem 1.2. By induction and

the definition of the Jacobi symbol, it is enough to handle n = ab when a and
b can be handled. We have 1

2 (n − 1) = 1
2 (ab − 1) = 1

2b(a − 1) + 1
2 (b − 1)

≡ 1
2 (a − 1) + 1

2 (b − 1) mod 2, the last step following because b is odd. Therefore
(−1)

1
2 (n−1) = (−1)

1
2 (a−1)+

1
2 (b−1) =

°−1
a

¢°−1
b

¢
=

°−1
n

¢
, the last step following by

Problem 9a.
For (b), we argue similarly, and the key computation is 18 (n

2−1) = 1
8 (a

2b2−1) =
1
8b
2(a2 − 1) + 1

8 (b
2 − 1) ≡ 1

8 (a
2 − 1) + 1

8 (b
2 − 1) mod 2, the last step following

because b2 is odd.
11. Allowing primes to appear more than once, write factorizations of m and n as

m =
Qr

i=1 pi and n =
Qs

j=1 qj . Then Theorem 1.2 gives
°m
n
¢

=
Qs

j=1
Qr

i=1
°pi
qj

¢
=

Qs
j=1

Qr
i=1

°qj
pi

¢
(−1)

1
2 (pi−1)

1
2 (qj−1) =

°n
m
¢
(−1)

Ps
j=1

Pr
i=1

1
2 (pi−1)

1
2 (qj−1). Since

Ps
j=1

Pr
i=1

1
2 (pi − 1) 12 (qj − 1) =

£Ps
j=1

1
2 (qj − 1)

§£Pr
i=1

1
2 (pi − 1)

§

and since
Ps

j=1
1
2 (qj −1) ≡ 1

2 (n−1) mod 2 and
Pr

i=1
1
2 (pi −1) ≡ 1

2 (m−1) mod 2
by the same argument as in Problem 10a, the required formula follows.
12. For (a), choose by Dirichlet’s Theorem a sufficiently large prime p that is

≡ 3 mod 8 and is in particular ≡ 3 mod 4. If 8 divides |G|, then the fact that |G|
divides p + 1 implies that 8 divides p + 1. So p ≡ −1 mod 8. Since p was chosen
with p ≡ 3 mod 8, this is a contradiction. So 8 cannot divide |G|.
For (b), choose by Dirichlet’s Theorem a sufficiently large prime p that is ≡

7 mod 12 and is in particular≡ 3 mod 4. If 3 divides |G|, then 3 divides p+1. Thus
p ≡ −1 mod 3. Since also p ≡ 3 mod 4, p ≡ 11 mod 12. But p was chosen with
p ≡ 7 mod 12. This is a contradiction, and 3 cannot divide |G|.
For (c)with an oddprimeq > 3given, choosebyDirichlet’s Theorema sufficiently

large prime p that is ≡ 3 mod 4q and is in particular ≡ 3 mod 4. If q divides |G|,
then q divides p+ 1, and p+ 1 ≡ 0 mod q. Meanwhile, p ≡ 3 mod 4q implies that
p + 1 ≡ 4 mod 4q and p + 1 ≡ 4 mod q, contradiction. So q cannot divide |G|.
13. For (a), choose by Dirichlet’s Theorem a sufficiently large prime p that is

≡ 5 mod 12 and is in particular ≡ 2 mod 3 and ≡ 1 mod 4. If 4 divides |G|, then 4
divides p + 1, which is ≡ 2 mod 4. So 4 cannot divide |G|.
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For (b), choose by Dirichlet’s Theorem a sufficiently large prime p that is ≡
2 mod 9 and is in particular≡ 2 mod 3. If 9 divides |G|, then 9 divides p+ 1, which
is ≡ 3 mod 9. So 9 cannot divide |G|.
For (c)with an oddprimeq > 3given, choosebyDirichlet’s Theorema sufficiently

large prime p that is ≡ 2 mod 3q and is in particular ≡ 2 mod 3. If q divides |G|,
then q divides p + 1, which is ≡ 3 mod 3q and hence is ≡ 3 mod q. So q cannot
divide |G|.
14. The integers in ha, ri are exactly the multiples of a, since such an integer n has

to be of the form n = ca + dr for integers c and d. This equation says that n = ca
and 0 = dr , since 1 and r are linearly independent overQ. The integer N (s) = sσ (s)
is in I because s is in I and σ (s) is in R, and thus N (s) has to be a multiple of a.
15. Write I = ha, ri with a > 0 an integer and r in I by Lemma 1.19b. As in the

previous problem, the integer a is characterized uniquely in terms of I as the least
positive integer in I . Put r = b + gδ for suitable integers b and g. Without loss of
generality, we may assume that g > 0. Using the division algorithm and possibly
replacing b by b − na for some integer n, we may assume that 0 ≤ b < a.
With these conventions in place, let us see that g necessarily divides a. The fact

that aδ has to be in I means that aδ has an expansion aδ = c1a + c2(b + gδ) with
integer coefficients. Then aδ = c2gδ, and g must divide a.
In particular, 0 < g ≤ a is forced. To see that b and g are uniquely determined,

let {a, b0 + g0δ} be another suchZ basis. Since b0 + g0δ = c1a+c2(b+ gδ) and since
symmetrically we have b + gδ = c01a + c02(b

0 + g0δ), we obtain g0 = c2g = c2c02g
0.

Therefore |c2| = 1. Meanwhile, we must have

c1a + c2b = b0 and c2gδ = g0δ.

The second of these equations shows that c2 > 0. Thus c2 = 1. Finally c1a = b0 − b
with 0 ≤ b < a and 0 ≤ b0 < a forces b0 −b = 0. Therefore a, b, and g are uniquely
determined.
To complete the proof, weneed to see that g dividesb and thatag divides N (b+gδ).

Since aδ is in I , aδ = c001a + c002(b + gδ). Hence c002g = a and c001a + c002b = 0.
Substituting the first of these equations into the second gives c001c

00
2g+ c002b = 0. Since

c002 6= 0 from the equality c002g = a, c001g + b = 0. Thus g divides b.
To see that ag divides N (b + gδ), we use the fact that gσ (δ)(b + gδ) is in I to

write bgσ (δ) + δσ (δ)g2 = d1ag + d2g(b + gδ) for some integers d1 and d2. Then
N (b + gδ) = b2 + bg(δ + σ (δ)) + δσ (δ)g2 = b2 + bgδ + d1ag + d2g(b + gδ).
Equating coefficients of δ and 1 gives

0 = bg + d2g2 and N (b + gδ) = b2 + d1ag + d2bg.

Since g > 0, the first of these equations gives d2 = −bg−1. Substituting into the
second equation gives

N (b + gδ) = b2 + d1ag − (bg−1)bg = d1ag,

and we see that ag divides N (b + gδ).
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16. We are to show thatZa+Z(b+gδ) is closed under multiplication by arbitrary
members of R. It is enough to treat multiplication by 1 and by δ. There is no problem
for 1. Since δ+σ (δ) is inZ, it is enough to show that there exist integers c1, c2, d1, d2
with

δa = c1a + c2(b + gδ) and σ (δ)(b + gδ) = d1a + d2(b + gδ).

In viewof the assumeddivisibility, we can put c2 = ag−1, c1 = −bg−1, d2 = −bg−1,
and d1 = N (b + gδ)(ag)−1. Then the first equation is certainly satisfied, and the
question concerning the second equation, once we have multiplied it by g, is whether
we have an equality

gσ (δ)(b + gδ) ?
= N (b + gδ) − b2 − bgδ.

The left side is N (b + gδ) − b(b + gδ), and thus equality indeed holds.
17. From Section 7 the relevant formula is N (I ) = |

p
D |−1|r1σ (r2) − σ (r1)r2|.

Here we can take r1 = a and r2 = c + dδ. Substitution gives

N (I ) = |
p
D |−1|a||σ (c + dδ) − (c + dδ)|

= |
p
D |−1|a||c + dσ (δ) − c − dδ| = |

p
D |−1|ad||σ (δ) − δ|.

The expression |
p
D |−1|σ (δ) − δ| arose in Section 7 in the computation of N (R)

and was shown to be 1. Thus N (I ) = |ad|.
18. For (a), the algorithm of Section IV.9 of Basic Algebra shows how to align

matters so as to compute the quotient of a free abelian group by a subgroup when
the subgroup is given by generators. The given relationship between the generators
a and b + gδ of Problem 15 with the Z basis of R is

≥ a
b+gδ

¥
=

≥
a 0
b g

¥ ≥
1
δ

¥
.

The procedure is to do row and column operations on the coefficient matrix to bring
it into diagonal form. Since g divides b, a column operation replaces the b by 0.
We obtain a diagonal matrix with diagonal entries a and g, and the quotient group
is identified as (Z/aZ) ⊕ (Z/gZ). Thus ag is identified as the number of elements
in the quotient group R/I . Problem 17 identified ag as N (I ), and thus N (I ) is the
number of elements in R/I .
For (b), the inclusion I ⊆ J induces a quotient mapping of the finite group R/I

onto R/J . As a homomorphic image of R/I , R/J must have an order that divides
the order of R/I . In view of (a), N (J ) divides N (I ). The equality I = J holds if
and only if the quotient mapping is one-one, and this happens, because of the finite
cardinalities, if and only if N (J ) = N (I ).
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19. The relevant arguments for the first three parts of this problem already appear
in Chapters VIII and IX of Basic Algebra, and thus we can be brief. For (a), the
Chinese Remainder Theorem (Theorem 8.27 of Basic Algebra) shows that R/I J ∼=
R/I × R/J , and then N (I J ) = N (I )N (J ) by Problem 18a. For (b), the in-
ductive argument for (∗∗) in the proof of Theorem 9.60 of Basic Algebra shows
that dimZ/pZ R/Pe = e f , and thus |R/Pe| = pef . For (c), Corollary 8.63 of
Basic Algebra and Problem 18a above together show that N (I ) =

Qn
j=1 N (Pkjj ) if

I =
Qn

j=1 P
kj
j is the unique factorization of the ideal I . Since N (Pkkj ) = N (Pj )kj

by (b), N (I ) =
Qn

j=1 N (Pj )kj , and (c) follows immediately.
For (d), we use Problem 15 to write I = ha, b + gδi; then

Iσ (I ) = (a2, a(b + gδ), a(b + gσ (δ)), N (b + gδ)).

Each of the generators on the right side lies in the principal ideal (ag). In fact, a2 is in
(ag) because g divides a, a(b+ gδ) and a(b+ gσ (δ)) are in (ag) because g divides
b, and N (b+ gδ) is in (ag) because ag divides N (b+ gδ). Therefore Iσ (I ) ⊆ (ag).
Since N (I ) = ag by Problem 17, Problem 19c shows that N (Iσ (I )) = N ((ag)).
Then Iσ (I ) = (ag) = (N (I )) by Problem 18b.
20. The only ideal I with N (I ) = 1 is I = R. Problem 19c therefore shows that a

nontrivial factorization of (p)R leads to a nontrivial factorization of its norm, which
is p2. This factorization must be p2 = p · p, and thus I factors nontrivially at most
into two factors, each with norm p.
21. For (a), we use Problem 15 to write a nontrivial factor I of (2)R as I =

ha, b + gδi. Problem 17 shows that 2 = N (I ) = ag with g dividing a. Therefore
a = 2 and g = 1. So the only possible factors are of the form I = h2, b + δi with
0 ≤ b < a = 2. Thus b = 0 or b = 1. When D is odd, we have Tr(δ) = 1 and
N (δ) = 1

4 (1−m). Then N (b+ δ) = b2 + b Tr(δ) + N (δ) = b2 + b+ 1
4 (1−m) ≡

1
4 (1−m) mod 2. If m ≡ 5 mod 8, then we see that 2 does not divide N (b+ δ), and
thus (2)R cannot have a nontrivial factor.
For (b), we again have N (b+ δ) = b2 + b Tr(δ) + N (δ) = b2 + b+ 1

4 (1−m) ≡
1
4 (1 − m) mod 2, and the condition m ≡ 1 mod 8 makes the right side 0. Thus 2
divides N (b+δ), and h2, δi and h2, 1+δi are both ideals by Problem 16. The product
of these ideals is h2, δih2, 1+ δi = (4, 2δ, 2(1+ δ), δ2) and contains (2)R because
2 = 2(1+ δ) − 2δ. Moreover, the product has norm 4 by Problems 17 and 19c, and
this matches the norm of (2)R. Thus Problem 18b shows that h2, δih2, 1+δi = (2)R.
For (c) and (d), δ = −

p
m. Thus N (b + δ) = b2 + b Tr(δ) + N (δ) = b2 − m =

b − 1
4D. If D/4 ≡ 3 mod 4, then b − 1

4D is divisible by 2 for b = 1. If D/4 ≡
2 mod 4, then b − 1

4D is divisible by 2 for b = 0. With b taking on the appropriate
value in the two cases, h2, b + δi is an ideal by Problem 16. The square of this ideal
is (4, 2(b + δ), (b −

p
m )2) = (4, 2(b + δ), b2 + m − 2m

p
b ). The definition of b

makes b2 +m even in every case, and hence h2, b+ δi2 ⊇ (2)R. Since the norms of
the ideals on the two sides are both 4, the two ideals must be equal.
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22. Arguing as in the previous problem, we see that any nontrivial factor of (p)R
must have norm p and therefore must be given by hp, x + δi for some x such that p
divides N (x + δ) = x2 + x Tr(δ) + N (δ).
For (a), Tr(δ) = 1 and N (δ) = 1

4 (1 − m) = 1
4 (1 − D), and the condition is that

p divide x2 + x + 1
4 (1 − D). This means that x2 + x + 1

4 (1 − D) ≡ 0 mod p
is to have a solution. When this happens, Problem 16 ensures that hp, x + δi is
an ideal. Then hp, x + σ (δ)i is an ideal as well, and the product of the two is
(p2, p(x + δ), p(x +σ (δ)), N (x + δ)). Since p divides N (x + δ), this product ideal
is contained in (p)R. The product ideal and (p)R both have norm p2, and therefore
they are equal.
For (b), Tr(δ) = 0 and N (δ) = −m = −D/4, and the condition is that p divide

x2 − D/4. This means that x2 − D/4 ≡ 0 mod p is to have a solution. When this
happens, Problem 16 ensures that hp, x + δi is an ideal. Then hp, x + σ (δ)i is an
ideal as well, and the product of the two is (p2, p(x + δ), p(x + σ (δ)), N (x + δ)).
Since p divides N (x + δ), this product ideal is contained in (p)R. The product ideal
and (p)R both have norm p2, and therefore they are equal.
For (c), the respective conditions for factorization in (a) and (b) are that

x2 + x + 1
4 (1− D) ≡ 0 mod p and x2 − D/4 ≡ 0 mod p be solvable. In both cases

the quadratic expression on the left side has discriminant D. Hence factorization
occurs if and only if D is a square modulo p.
23. In both cases we are assuming that (p)R has a factor I = hp, x + δi with

0 ≤ x < p. Using Problem 15, let us write σ (I ) = hp, x + σ (δ)i = hp, y + δi
with 0 ≤ y < p. Choose integers c and d with x + σ (δ) = cp + d(y + δ). Since
σ (δ) = Tr(δ) − δ, the equation is x + Tr(δ) − δ = cp + dy + dδ, and we obtain
x + Tr(δ) = cp + dy and −δ = dδ. Thus d = −1, x + Tr(δ) = cp − y, and
cp = x + y+Tr(δ). From 0 ≤ x < p and 0 ≤ y < p, we have 0 ≤ x + y+Tr(δ) ≤
2(p − 1) + Tr(δ) ≤ 2p − 1. So c in the equation cp = x + y + Tr(δ) has to be 1
or 0, and the equation is x + y = p − Tr(δ) or x + y = −Tr(δ). The condition that
σ (I ) = I is the condition that x = y, hence that 2x = p − Tr(δ) or 2x = −Tr(δ).
When D is odd, this says that x = 1

2 (p − 1); when D is even, it says that x = 0.
24. Since σ (hp, x + δi) = hp, x + σ (δ)i, the two factors are the same if and only

if σ (I ) = I . Problem 23 says that the latter equality holds for D odd if and only if
x = 1

2 (p − 1) and that it holds for D even if and only if x = 0. In the two cases we
know from Problem 14 that p divides N (x + δ) = x2 + x Tr(δ) + N (δ).
When D is odd, this result says that p divides x2 + x + 1

4 (1 − D), hence that it
divides 4x2 + 4x + (1 − D) = (2x + 1)2 − D. Then p divides D if and only if p
divides 2x + 1, if and only if x = 1

2 (p − 1).
When D is even, we know from Problem 14 that p divides x2 − m. Hence p

divides 4(x2 − m) = 4x2 − D = (2x)2 − D. Then p divides D if and only if p
divides 2x , if and only if x = 0.
25. Theorem1.14 shows that the genus groupG is the quotient of the abelian group

H modulo its subgroup of squares. The subgroup of squares consists of the elements
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in the product of the cyclic subgroups of orders 2k1−1, . . . , 2kr−1, ql11 , . . . , qlss , and the
quotient is the product of r copies of a cyclic group of order 2. Thus G has order 2r .
The subgroup of elements of H whose order divides 2 is the product of the 2-element
subgroups of the cyclic groups of orders 2k1, . . . , 2kr . It is a product of r copies of a
cyclic group of order 2 and hence is abstractly isomorphic to G.
26. If P is a nonzero prime ideal, then so is σ (P). Since σ 2 = 1, the mapping

P 7→ σ (P) is a permutation of order 2 on the nonzero prime ideals. Evidently the
prime ideals of type (i) above are permuted in 2-cycles, and the prime ideals of types
(ii) and (iii) are left fixed.
If a nonzero ideal I has prime factorization I =

Q
i P

ki
i , then σ (I ) =

Q
i σ (Pi )ki .

When σ (I ) = I , we can match the factors and their exponents. We conclude that the
factorization of I is as

I =
≥ Q

pairs (Pi ,σ (Pi ))
of type (i)

(Piσ (Pi ))ki
¥≥ Q

ideals Pi
of type (ii)

Pkii
¥≥ Q

ideals Pi
of type (iii)

Pkii
¥
.

Each factor in the first product is of the form (N (Pi ))ki by Problem 19d, each factor
in the second product is of the form (p)ki for some prime p not dividing D, and each
P2i contributing to the third factor is of the form (p) for some prime p dividing D.
The result follows.
27. For (a), the only nontrivial step in the displayed formula is the third equality,

which follows because xσ (x) = N (x) = 1 by hypothesis. If we take y = (1+ x)−1,
then the displayed formula gives x = (1+ x)(1+ σ (x))−1 = y−1σ (y) as required.
For (b), the equality σ (y)y−1 = x remains valid when y is replaced by ny with

n ∈ Z, and thus we may take y to be in R. Now let y and z be in R with σ (z)z−1 =
x = σ (y)y−1. Then σ (zy−1) = zy−1, and zy−1 is in Q. Among all y ∈ R with
σ (y)y−1 = x , let y0 be one with |N (y)| as small as possible; y0 exists because |N (y)|
is an integer in each case. If σ (z)z−1 = x , write z = u+vδ, y0 = a+bδ, and zy−1

0 =
p/q with GCD(p, q) = 1. Then qu+ qvδ = qz = py0 = pa+ pbδ, and we obtain
qu = pa and qv = pb. Therefore q divides a and b, and q−1y0 = q−1a + q−1bδ is
in R. Then y = q−1y0 is another element in R with σ (y)y−1 = x , and it contradicts
the minimal choice of |N (y0)| unless |q| = 1. We conclude that z = ±py0.
28. In (a), N (I 2) = N ((x)) says that N (I )2 = |N (x)|N (R) = |N (x)|. Therefore

N (x−1N (I )) = |N (x)|−1N ((N (I )) = |N (x)|−1N (I )2 = 1, and xN (I )−1 has
norm 1.
In (b), Problem 27b gives us y0 ∈ R with σ (y0)y−1

0 = xN (I )−1. Then we
compute that σ ((y0)I ) = σ (y0)σ (I ) = y0xN (I )−1σ (I ) = y0N (I )−1(x)σ (I ) =
y0N (I )−1 I 2σ (I ) = y0N (I )−1((N (I ))I = y0 I .
For (c), suppose N (y0) > 0. Then Problem 26a shows that (y0)I = (a)JS for

some a ∈ Z, and this gives the required strict equivalence. If N (y0) < 0, then
N (y0

p
m ) > 0, and σ ((y0

p
m )I ) = (y0

p
m )I ; Problem 26a shows that (y0

p
m )I

= (a)JS for some a ∈ Z, and this gives the required strict equivalence.
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29. For (a), since m < 0 and m is neither −1 nor −3, the possible units are
ε = ±1. The equality σ (x) = εx says that x is in Z if ε = +1, and it says that x is
in Z

p
m if ε = −1.

For (b), when m = −1 or m = −3, we have D = −4 or D = −3; thus g = 0,
and there is nothing to prove. For other values of m < 0, consider JS . Then
N (JS) =

Q
p∈S p, and this is some divisor D0 of D with no repeated factors. Let us

write JS = ha, b + gδi by Problem 15. Then ag = D0 and g divides a. Since D0 is
square free, a = D0 and g = 1. If JS is principal, then (a) shows that JS = (c) for an
integer c or JS = (d

p
m ) for an integer d.

Suppose JS = (c). Then b + δ = rc for some r ∈ R. Write r = x + yδ for
integers x and y. Then b+ δ = cx + cyδ shows that 1 = cy and hence that c divides
1. Thus JS = R, and the set S is empty.
Suppose JS = (d

p
m ). Then b+δ = dx

p
m+dyδ

p
m for some integers x and y.

If D is odd, then the equation reads b+ 1
2 (1−

p
m ) = dx

p
m+ dy 12 (1−

p
m )

p
m.

This implies that− 1
2
p
m = d(x + 1

2dy)
p
m, hence that−1 = d(2x + 1). Therefore

d = 1, JS = (
p
m ) = (

p
D ), N (JS) = |D|, and S = E . If D is even, then the

equation reads b −
p
m = dx

p
m − dym, and we obtain −1 = dx . So d = 1,

JS = (
p
m ), N (JS) = m = D/4 = D0. This is the product of all prime divisors of

D if D/4 ≡ 2 mod 4 and all of them but 2 if D/4 ≡ 3 mod 4.
For (c), let E 0 be a subset of g members of E , and assume that the element of E

that is not in E 0 is not 2 unless D = −4. If S and S0 are two subsets of E 0, then
JS JS0 = (n)JT , where n =

Q
p∈S∩S0 p and T = (S − S0) ∪ (S0 − S). If JS and JS0

represent the same genera, then JS JS0 is principal, and JT must be principal. The set
T can be empty only if S = S0, and it has to be a subset of E 0 and thus cannot be
all of E . According to (b), the only way that JT can be principal is thus that S = S0

or that all of the conditions D even, D/4 ≡ 2 mod 4, and T = E 0 = E − {2} are
satisfied. In the latter case the construction of E 0 shows that D = −4, T is empty,
and S = S0. Thus the ideals JS for S ⊆ E 0 represent distinct genera in every case.
For (d), the roots of unity are±εk1. Since N (ε1) = −1, the roots of unity of norm 1

are the ±ε2n1 . So suppose that ε = ±ε2n1 . Put ε0 = εn1 . Then ε0σ (ε0) = N (ε0) =
(−1)n , and σ (εn1 x) = σ (ε0)σ (x) = σ (ε0)εx = (−1)nε−1

0 εx = ±(−1)nε−n
1 ε2n1 x =

±(−1)nεn1 x = sεn1 x with s = ±(−1)n . If s = +1, then εn1 x is in Z, while if s = −1,
then εn1 x is in Z

p
m. Then the same steps as in (b) and (c) finish the argument.

For (e), the four mentioned ideals are principal, and we have (1) = JS for S
empty and (

p
m ) = JS for S equal to the set of prime divisors of m. For these two

ideals, N (1) > 0 and N (
p
m ) < 0. Consider (y+

0 ) and (y−
0 ). The ideal (y+

0 ) has
σ ((y+

0 )) = (σ (y+
0 )) = (y+

0 ε1) = (y+
0 ), and hence it is of the form (n)JS for some S.

Then y+
0 = nr for some r ∈ R, and it follows that n−1y+

0 is in R. This contradicts
the minimality of |N (y+

0 )| unless |n| = 1. Hence (y+
0 ) = JS for some S. Similarly

(y−
0 ) = JS for some S. Thus all four principal ideals are of the form JS .
Let us see that the four principal ideals are distinct. Neither ideal (y+

0 ) nor (y−
0 )

can equal (1). In fact, if (y+
0 ) were to equal (1), then y+

0 would be a unit ε, and we
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would have ε1 = σ (y+
0 )(y+

0 )−1 = σ (ε)ε−1 = ε−2, in contradiction to the fact that
ε1 is fundamental. Similarly (y−

0 ) cannot equal (1).
Since σ (y+

0
p
m )(y+

0
p
m )−1 = −σ (y+

0 )
p
m (y+

0 )−1(
p
m )−1 = −σ (y+

0 )(y+
0 )−1

= −ε1, the definition of y−
0 shows that y

+
0

p
m = ny−

0 for some integer n. Passing
to norms gives −mN (y+

0 ) = n2N (y−
0 ). Therefore N (y+

0 ) and N (y−
0 ) have opposite

sign.
We have seen that two of the four elements 1, y+

0 , y−
0 ,

p
m have positive norm,

two have negative norm, and the two of positive norm generate distinct principal
ideals. To see that the two of negative norm generate distinct ideals, we consider
separately the cases N (y−

0 ) < 0 and N (y+
0 ) < 0. If N (y−

0 ) < 0, we use the equation
−mN (y+

0 ) = n2N (y−
0 ) proved in the previous paragraph. If (y−

0 ) = (
p
m ), then

cancellation gives N (y+
0 ) = +1; then y+

0 is a unit, and we have seen that it cannot
be. If N (y+

0 ) < 0, we use the definition of y+
0 in the same way as in the previous

paragraph to obtain −mN (y−
0 ) = n2N (y+

0 ) for some integer n. Cancellation shows
that N (y−

0 ) = +1; then y−
0 is a unit, and we have seen that it cannot be. Thus the

four principal ideals are distinct.
Now suppose that (x) is any principal ideal fixed by σ . As in the statement of the

problem, we have σ (x) = εx for some unit ε. The most general unit is of the form
ε = ±εn1 . We shall produce constructively the element of Problem 27 corresponding
to ε. Put y0,n = ε

n/2
1 if n is even and y0,n = ε

(n+1)/2
1 y0 if n is odd. For n even we

have

σ (y0,nx) = σ (y0,n)εx = ±σ (ε
n/2
1 )εn1 x = ±ε

−n/2
1 εn1 x = ±y0,nx,

and for n odd we have

σ (y0,nx) = σ (y0,n)εx = ±σ (ε
(n+1)/2
1 y0)εn1 x = ±ε

−(n+1)/2
1 σ (y0)εn1 x

= ±ε
(n−1)/2
1 σ (y0)x = ±ε

(n−1)/2
1 y0ε1x = ±y0,nx .

Thus σ (y0,nx) = ±y0,nx for all n. Therefore y0,nx is in Z or in Z
p
m, depending

on the sign ±. Depending on the sign, |N (y0,nx)| = |N (y0,n)||N (x)| thus is either
the square of an integer or m times the square of an integer. If n is even, then
|N (y0,n)| = 1, and |N (x)| is therefore either the square of an integer or m times the
square of an integer. Since |N (x)| is the value of the norm of (x), there are only two
possible S’s for which this can happen. If n is odd, then |N (y0,n)| = a for a certain
square-free integer> 1, as we have seen. Therefore |N (x)| has to be either a−1 times
the square of an integer orma−1 times the square of an integer. So there are only two
possible S’s in this case. Thus there are only four possible S’s in all cases, and these
have been accounted for. So the number of principal ideals among the JS’s is exactly
four. To complete the proof, we now argue as in (c) but consider only possibilities
for which the product of two JS’s is n2 times one of the two JS’s given by a principal
ideal with a generator of positive norm.



Chapter I 659

30. Since D is fundamental, (a1, b1, c1) is automatically primitive. Then Lemma
1.10 produces a properly equivalent form that represents some integer a relatively
prime to D. The rest follows from the argument in the second paragraph of the proof
of sufficiency in Theorem 6b.
31. For (a), choose an integer r such that b+ 2ar = kD for some integer k; this is

possible because GCD(D, 2a) = 1. Then the translation x = x 0 + ry0, y = y0 leads
fromax2+bxy+cy2 toax 02+kDx 0y0+c0y02 for some c0. The discriminant of the new
form is still D = k2D2 − 4ac0, and thus 4ac0 ≡ 0 mod D. Since GCD(4a, D) = 1,
c0 ≡ 0 mod D.
For (b), b has to be even because D = b2−4ac is even. Write b = 2b̄. Choose an

integer s such that b̄+as = kD for some k; this is possible because GCD(a, D) = 1.
Then the translation x = x 0 + sy0, y = y0 leads from ax2 + bxy + cy2 to
ax 02 + 2kDx 0y0 + c0y02 for some c0. The discriminant of the new form is D =
4k2D2 − 4ac0, where c0 = (4a)−1D(4k2D − 1) = a−1(D/4)(4k2D − 1). Modulo
D, this expression is −ā(D/4), where ā is an integer with āa ≡ 1 mod D. Here
a is odd, and hence a2 ≡ 1 mod 8. If 2u is the exact power of 2 dividing D,
then āa ≡ 1 mod 2u , and hence ā ≡ a mod 2u . If p is any odd prime dividing
D, then p divides D/4, and hence ā(D/4) ≡ 0 ≡ a(D/4) mod p. Therefore
ā(D/4) ≡ a(D/4) mod D, and we conclude that c0 ≡ −a(D/4) mod D.
32. For (a), clearing fractions in the expression ax2 + kDxy + lDy2 = r yields

au2+kDuv+lDv2 = rw2. Suppose a prime p divides GCD(w, D). Then p divides
au2. Since GCD(a, D) = 1, p divides u. Referring back to the equation, we see that
p2 divides au2 and kDuv, hence divides lDv2. Thus p divides lv2. The discriminant
is D = k2D2 − 4alD, and divisibility of l by p would force p2 to divide the left side
D. Hence p does not divide l, and p must divide v. Then p divides both u and v,
in contradiction to the minimality of the common denominator w. We conclude that
GCD(w, D) = 1. Taking the equation au2 + kDuv + lDv2 = rw2 modulo D gives
au2 ≡ rw2 mod D. Since r and w are relatively prime to D, so is u. Thus we can
rewrite this congruence as a ≡ d2r mod D for some integer d relatively prime to D.
For (b), the same argument gives a0 ≡ d 02r mod D. Since d is relatively prime to

D, we can rewrite the congruence for a as r ≡ d−2a mod D, and then a0 ≡ d 02r ≡
(d−1d 0)2a mod D.
For (c), the given forms are properly equivalent over Z to (a, kD, lD) and to

(a0, k0D, l 0D), respectively, by Problem 31a. Proper equivalence over Q means that
the two forms take on the same rational values, one of which is the integer a0. Part
(b) therefore shows that a0 = as2 + nD for some integers s and n, necessarily with
GCD(s, D) = 1. Modulo D, the forms are given by ax2 and a0x 02, and the first
can be transformed into the second by the substitution x = sx 0, y = s−1y0, where
s−1 is the multiplicative inverse of s in Z/DZ. In fact, substitution into ax2 gives
a(sx 0)2 = (as2)x 02 ≡ a0x 02 mod D. This substitution is given by the matrix

≥
s 0
0 s−1

¥

in SL(2, Z/DZ).
33. Part (a) is almost the same as Problem 32a. Clearing fractions leads to
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au2 + kDuv + (lD − a(D/4))v2 = rw2, and the argument that no odd prime p
divides GCD(w, D) is the same. Suppose that 2 divides w. The equation modulo 4
is then au2 − a(D/4)v2 ≡ 0 mod 4 with D/4 congruent to 2 or 3 modulo 4. Since
2 divides w, at least one of u and v must be odd. If D/4 ≡ 3 mod 4, the congruence
becomes a(u2 + v2) ≡ 0 mod 4, which is impossible with at least one of u and v

odd. If D/4 ≡ 2 mod 4, the congruence becomes a(u2 + 2v2) ≡ 0 mod 4, which
again is impossible with at least one of u and v odd. Thus GCD(w, D) = 1. Taking
the equation modulo D and using the invertibility of r and w modulo D, we have
ar−1w−2(u2 − (D/4)v2) ≡ 1 mod D.
For (b), let p be an odd prime divisor of D. The above congruence then becomes

ar−1w−2u2 ≡ 1 mod p. Similarly with the second form, there is some w0 prime to
D such that a0r−1w0−2u02 ≡ 1 mod p. Comparing the two expressions, we see that
a modulo p is the product of a0 and an invertible square.
For (c), the above congruence becomesar−1w−2(u2+v2) ≡ 1 mod 4. This forces

u2+ v2 ≡ 1 mod 4. Sincew has to be odd,w2 ≡ 1 mod 4. Hence ar−1 ≡ 1 mod 4.
Similarly a0r−1 ≡ 1 mod 4, and therefore a ≡ a0 mod 4.
For (d), the above congruence becomes ar−1(u2 − (D/4)v2) ≡ 1 mod 8, sincew

is odd. If D/4 ≡ 2 mod 8, we obtain ar−1(u2 − 2v2) ≡ 1 mod 8. Here u has to be
odd, and thus ar−1(1− 2v2) ≡ 1 mod 8. If v is even, this says that a ≡ r mod 8; if
v is odd, it says that a ≡ −r mod 8. Putting this conclusion together with a similar
conclusion about the second form, we obtain a0 ≡ ±a mod 8.
If D/4 ≡ 6 mod 8, we obtain ar−1(u2 + 2v2) ≡ 1 mod 8. Here u has to be odd,

and thus ar−1(1 + 2v2) ≡ 1 mod 8. If v is even, this says that a ≡ r mod 8; if v

is odd, it says that a ≡ 3r mod 8. Putting this conclusion together with a similar
conclusion about the second form, we obtain a0 ≡ a mod 8 or a0 ≡ 3a mod 8.
For (e), we shall assemble a member of SL(2, Z/DZ) one prime at a time and

use the Chinese Remainder Theorem. For odd primes p dividing D, choose sp with
a0 ≡ s2pa mod p, and introduce thematrixMp =

≥ sp 0
0 s−1p

¥
in SL(2, Z/pZ). If D/4 ≡

3 mod 4, introduce the matrix M2 =
≥
1 0
0 1

¥
in SL(2, Z/4Z). If D/4 ≡ 2 mod 4, let

M2 =
≥
1 6
1 7

¥
in SL(2, Z/8Z) if D/4 ≡ 6 mod 8, and letM2 =

≥
1 2
1 3

¥
in SL(2, Z/8Z)

if D/4 ≡ 2 mod 8. The Chinese Remainder Theorem produces a unique matrix with
entries in Z/DZ that is congruent to Mp modulo each odd prime divisor of D and is
congruent to M2 modulo the power of 2 dividing D. Call this matrix M =

≥
α β

∞ δ

¥
.

It has determinant 1 modulo D and hence lies in SL(2, Z/DZ). Then substitution of
x = αx 0 + βy0 and y = ∞ x 0 + δy0 into the form a(x2 − (D/4)y2) modulo D leads
to the form a0(x2 − (D/4)y2) modulo D.

34. These problems establish a function from the set of equivalence classes of
binary quadratic forms over Z with discriminant D, the equivalence relation being
proper equivalence over Q, onto the set of equivalence classes of binary quadratic
forms over Zwith discriminant D, the equivalence relation being proper equivalence
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over Z/DZ. The number of elements in the domain has to be ∏ the number of
elements in the range.
35. The steps in solving Problems 32 and 33 involve relating a to r modulo

each prime power dividing D. These relationships are the same as the relationships
between a and r 0 if the form modulo D represents r 0 and GCD(r 0, D) = 1, and the
relationships are transitive. Thus the genus characters take the same values at r as
they do at r 0, and they take the same values at a as well.
36. Multiplication is the operation on proper equivalence classes of forms that

corresponds to composition of aligned representatives of the classes, and composition
is defined in such a way that the set of values of the composition is the set of products
of a value of one form by a value of the other. The values are unaffected by proper
equivalence over Z.
37. For (a), D/4 has an odd number 2t + 1 of prime factors 4k + 3. Use of the

Jacobi symbol with a odd and p varying over the prime divisors of D/4 gives

Q

p

°a
p
¢

=
Q

p=4k+1

°a
p
¢ Q

p=4k+3

°a
p
¢

= ξ(a)2t+1
Q

p=4k+1

°p
a
¢ Q

p=4k+3

°p
a
¢

= ξ(a)
°D/4
a

¢
.

Therefore
ξ(a)

Q

p

°a
p
¢

=
°D/4
a

¢
=

°2
a
¢2°D/4

a
¢

=
°D
a
¢
.

For (b) and (c), say that the number of prime factors 4k + 3 of D/8 is t . With
p varying over the odd prime divisors of D, the same computation as above givesQ

p

°a
p
¢

= ξ(a)t
°D/8
a

¢
. Then

°D
a
¢

=
°2
a
¢°D/8

a
¢

= η(a)ξ(a)t
Q

p

°a
p
¢
. One easily checks

that t is even if D/4 ≡ 2 mod 8 and is odd if D/4 ≡ 6 mod 8, and the result follows.
38. For each odd prime divisor p of D, choose a residue rp modulo p such that°rp

p
¢

= sp. If D is even, choose an odd residue r2 modulo 8 such that α(r2) = s2.
The Chinese Remainder Theorem produces an integer b prime to D such that b ≡
rp mod p for the odd p’s and b ≡ r2 mod 8. For this integer b and every k ∏ 0, we
have

°b+kD
p

¢
= rp for each odd p and α(b + kD) = s2. Dirichlet’s Theorem says

that b+ kD is a prime q for a suitable choice of k, and this prime q has the required
properties.
39. Problem 37 showed that the product of the genus characters for an odd integer

a such that GCD(a, D) = 1 is
°D
a
¢
. Using the genus characters at a = q, we see

that
°D
q
¢

= 1. Theorem 1.6b shows that q is primitively representable by some form
(q, b, c) of discriminant D. The values of the genus characters for this form are
their values on q, and we have arranged that these values are the various numbers
sp. Since there are g + 1 genus characters and the first g of them can be specified
arbitrarily and still give a similarity class modulo D, there are at least 2g similarity
classes modulo D.
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40. Problem29 shows that the number of classes of type (i) is exactly 2g . Problems
30–33 show that equivalence of type (i) implies equivalence of type (ii), and they
therefore give a mapping of the set of classes of type (i) onto the set of classes of
type (ii). The definition of “similar modulo D” immediately implies that equivalence
of type (ii) implies equivalence of type (iii), and therefore we obtain a mapping of
the set of classes of type (ii) onto the set of classes of type (iii). Finally Problem 39
shows that there are at least 2g classes of type (iii). The result follows.

Chapter II

1. The unital left CG modules correspond (via the universal mapping property of
a group algebra) to representations of G on complex vector spaces. The theory in
Chapter VII of Basic Algebra shows that every representation splits as the direct sum
of irreducible representations, which correspond to simple left CG modules. Hence
every unital left CG module is semisimple. The left regular representation of G,
which corresponds to the left CG moduleCG, decomposes as the sum of irreducible
representations, each irreducible representation occurring asmany times as its degree.
The sum of all the irreducible subspaces of a given isomorphism type gives one of
the factors Mn(C) of CG, and every factor arises this way.
2. For (a), rad A = (C + CX)(X2 + 1), and S will be the sum of two copies

of C. Finding S requires some computation. We can identify A/(rad A) with the
quotient C[X]/(X2 + 1), and direct computation shows that the two idempotents in
this notation having sum 1 are 1

2i (X + i) and − 1
2i (X − i). The proof of Proposition

2.23 shows how to lift these to idempotents in A. For the first one, put a = 1
2i (X + i)

and b = 1 − a = − 1
2i (X − i), and observe that (ab)2 = 0. The proposition

gives the formula e =
P2

k=0
°4
k
¢
a4−kbk = a4 + 4a3b, the term for k = 2 being 0.

Then e = a3(a + 4b) = 1
16 (X + i)3(−3X + 5i). So one contribution to S comes

from Ce; the other will come from the complex conjugate in the form of C f , where
f = 1

16 (X − i)3(−3X − 5i).
We can check directly that e is an idempotent. In fact,

e2 − e = e
£ 1
16 (X + i)3(−3X + 5i) − 1

§
.

The polynomial in square brackets vanishes at X = i , and so does its derivative.
Thus the polynomial is divisible by (X − i)2, and e2 − e = (X + i)3(−3X + 5i)×
[(X − i)2Q(X)] is divisible by (X2 + 1)2.
For (b), the answer is yes. This problem anticipates Problem 5 below. The algebra

S is spanned linearly by its idempotents, and Problem 5 shows that the idempotents
are determined uniquely in the commutative case.
For (c), rad A = (R+RX)(X2+1). Call the subalgebra S0. This subalgebra will

be a 2-dimensional real subalgebra isomorphic to C. To find it, we can go through
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the proof of Theorem 2.17 or we can use the Galois group. The latter method is a
good bit easier. Thus we seek those members of S as in (a) that are fixed by complex
conjugation. Since S = Ce+ Cē, the result is that S0 = R(e+ ē) + iR(e− ē). This
is unique; in fact, any choice of S0 has the property that S0 ⊗R C is an S for (a), and
we know that the S for (a) is unique.
3. Since rad A is a nilpotent ideal of A, (rad A) ⊗F B is a nilpotent ideal of

A ⊗F B, and therefore (rad A) ⊗F B ⊆ rad(A ⊗F B). For the reverse inclusion
Proposition 2.31 shows that rad(A⊗F B) = I ⊗F B for some two-sided ideal of A.
If (rad(A⊗F B))n = 0 and a1, . . . , an are in I , then (a1 ⊗ 1) · · · (an ⊗ 1)must be 0,
and hence a1 · · · an = 0. Therefore I ⊆ rad A, and rad(A ⊗F B) ⊆ (rad A) ⊗F B.
4. For (a), suppose on the contrary that there is an infinite sequence M1,M2, . . .

of distinct maximal ideals. Then we obtain a decreasing sequence of ideals R ⊇
M1 ⊇ M1M2 ⊇ M1M2M3 ⊇ · · · , and the Artinian property shows that M1 · · ·Mn =
M1 · · ·MnMn+1 for some n. Since Mn+1 is prime and Mn+1 ⊇ M1 · · ·Mn , Mn+1
contains Mj for some j with 1 ≤ j ≤ n. By maximality, Mn = Mj , and we have a
contradiction.
In (b), every element of rad R is nilpotent because rad R is nilpotent. Conversely

if x ∈ R is nilpotent with xn = 0, then Rx is nilpotent with (Rx)n = 0, since
a1xa2x · · · anx = a1a2 · · · anxn = 0 for any a1, . . . , an ∈ R. Thus Rx ⊆ rad R, and
the nilpotent element x lies in rad R. This proves (b), and (c) follows because R is
semisimple if and only if rad R = 0.
For (d), R semisimple implies that R is a product of full matrix rings over division

rings. Commutativity implies that the matrices are all of size 1-by-1 and the division
rings are all fields.
5. If e0 is a second representative, then e0 = e + r with r ∈ rad R. If n is an odd

integer large enough to have rn = 0, then

0 = rn = (e0 − e)n =
nP

k=0
(−1)k

°n
k
¢
(e0)n−kek = e0 +

n−1P

k=1
(−1)k

°n
k
¢
e0e − e

= e0 +
≥ nP

k=0
(−1)k

°n
k
¢¥
e0e − e0e + e0e − e = e0 + 0− e0e + e0e − e = e0 − e.

6. Let M1, . . . ,Mn be the finitely many maximal ideals, and put N = M1 · · ·Mn .
Nakayama’s Lemma says that if I is any ideal contained in all maximal ideals, then
the only finitely generated unital R module M having the property that I M = M is
M = 0. The Artinian property shows that Nk+1 = Nk for some k. We take I = N
and M = Nk in Nakayama’s Lemma. The R module M is finitely generated because
Artinian implies Noetherian (Theorem 2.15), and hence Nakayama’s Lemma shows
that Nk = 0.
7. Let the maximal ideals be M1, . . . ,Mn , and let (M1 · · ·Mn)

k = 0. If P is a
prime ideal, then P ⊇ 0 = (M1 · · ·Mn)

k . Since P is prime, P contains one of the
factors. Thus P ⊇ Mj for some j .
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8. It helps to have a multiplication table available. If the rows index a factor on
the left and the columns index a factor on the right, then the resulting products are

given by
µ R M 0
0 0 M
0 0 S

∂
.

If I2 is a left ideal of S and I1 is a left R submodule of R ⊕ M containing MI2,
then RI2 = 0, MI2 ⊆ I1, and SI2 ⊆ I2. Also, RI1 ⊆ I1, MI1 = 0, and SI1 = 0.
Thus AI1 ⊆ I1 and AI2 ⊆ I1 ⊕ I2. Consequently I1 ⊕ I2 is a left ideal of A.
In the reverse direction if J is a left ideal in A, then I1 =

≥
1 0
0 0

¥
J ⊆ R ⊕ M

and I2 =
≥
0 0
0 1

¥
J ⊆ S are such that J = I1⊕ I2. Also, r ∈ R implies

≥
r 0
0 0

¥ ≥
1 0
0 0

¥
J

=
≥
1 0
0 0

¥
r J ⊆ I1, while (M ⊕ S)I1 = 0; and s ∈ S implies

≥
0 0
0 s

¥ ≥
0 0
0 1

¥
J =

≥
0 0
0 1

¥
s J ⊆ I2, while RI2 = 0 and m ∈ M implies

≥
0 m
0 0

¥ ≥
0 0
0 1

¥
J =

≥
0 m
0 0

¥
J ⊆

≥
1 0
0 0

¥ ≥
0 m
0 0

¥
J ⊆

≥
1 0
0 0

¥
J = I1.

9. For (a), suppose A is left Noetherian. The table produced in the solution of
Problem 8 shows that M⊕ S and R⊕M are two-sided ideals of A, and the respective
quotient rings are R and S. As quotients of a left Noetherian ring, R and S have to be
left Noetherian. If {Mi } is an ascending chain of R submodules of M , then

n≥
0 Mi
0 0

¥o

is an ascending chain of left ideals of A, by Problem 8. The latter must be constant
from some point on, and then the same thing is true for {Mi }.
Conversely suppose that R and S are left Noetherian and that the left R module M

satisfies the ascending chain condition. If {Ji } is an ascending chain of left ideals of A,
then the corresponding sequence {(I2)i } is an ascending chain of left ideals in S, and
{(I1)i } is an ascending chain of left R submodules of R ⊕ M containing MI2. Since
S is left Noetherian, {(I2)i } is constant from some point on. Since R = (R⊕ M)/M
and M satisfy the ascending chain condition for their left R submodules, so does
R ⊕ M , and therefore {(I1)i } is constant from some point on.
10. In view of Problem 9a, showing that A is left Noetherian amounts to showing

that R and S are (left) Noetherian and M satisfies the ascending chain condition for
its left R submodules. The ring S is Noetherian by assumption, and R is a field,
hence is Noetherian. The action of R on M is the action of a field on itself, and the
R submodules are trivial. In view of Problem 9b, A fails to be right Noetherian if the
ascending chain condition fails for the right S submodules ofM = R. If the ascending
chain condition were to hold, then R would be a finitely generated S module, and
the only denominators needed for members of the full field R of fractions would be
those dividing the product of the denominators of the generators; these fractions are
already in S, and hence S would equal R, contradiction.
The analogs of the results of Problem 9 for the Artinian case show that A fails to

be either left or right Artinian if S is not Artinian. If s is a nonunit in S, then the
chain of principal ideals {(sk)} is properly descending, since (sk) = (sk+1) implies
εsk = sk+1 for some unit ε and since the hypothesis that S is an integral domain
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allows us to cancel and obtain ε = s, contradiction.
11. Since R and S are fields, they are left and right Noetherian and Artinian. In

view of Problem 9, we are to show that M = R satisfies both chain conditions for
its left R modules and neither chain condition for its right S modules. Since R is a
field, M = R has only trivial R submodules and satisfies both chain conditions. For
the S action on R, we are to examine the S vector subspaces of S. Since dimS R
is infinite, there exist both a properly increasing sequence of such subspaces and a
properly decreasing one. Hence neither chain condition is satisfied.
12. For (a), the vector-space dimension over F is certainly 4, and computation

shows that A is closed under products. The choices a = 1 and b = 0 show that A
has an identity.
For (b), let x 6= 0 be in a two-sided ideal I . If x =

≥
a 0
0 σ (a)

¥
, then x is invertible,

and hence I = A. Otherwise suppose that some matrix x =
≥

a b
rσ (b) σ (a)

¥
with b 6= 0

is in I . With c as in the statement of the problem, cx − xc =
≥

0 2b
p
m

−2rσ (b)
p
m 0

¥
is

in I ; this matrix is invertible since b 6= 0, and thus I = A.
To see that A is central, let x be in the center. The computation 0 = cx− xc shows

that b = 0. Thus x is of the form
≥
a 0
0 σ (a)

¥
. Such an x does not commute with

≥
0 1
r 0

¥

unless a = σ (a), in which case x is in F .
13. The determinant is aσ (a) − rbσ (b) = NK/F (a) − r NK/F (b) and equals 0

for a given r if and only if some pair (a, b) 6= (0, 0) has NK/F (a) = r NK/F (b).
Since r 6= 0, both a and b are nonzero, and this equality then holds if and only if
r = NK/F (ab−1).
In other words, some nonzero member of A has determinant 0 if r is a norm, and

then A cannot be a division algebra. Conversely if r is not a norm, then every nonzero
member of A is invertible as a matrix. Computation of the inverse matrix shows that
it has the correct form to be in A. Hence A is a division algebra.
When A is not a division algebra, it is anywayfinite-dimensional and central simple

and has to be of the form Mn(D) for some n and some division algebra D over F
such that dimMn(D) = 4. The dimensional formula says that n2 dimF D = 4. Since
n 6= 1, we must have n = 2 and D = F .

14. The isomorphism follows from the computation
≥
c 0
0 1

¥ ≥
a b

rσ (b) σ (a)

¥ ≥
c 0
0 1

¥−1
=

≥
a bc

rc−1σ (b) σ (a)

¥
=

≥
a bc

r 0σ (c)σ (b) σ (a)

¥
=

≥
a bc

r 0σ (bc) σ (a)

¥
.

15. Direct computation.
16. If K is a maximal subfield, then dimF K = 2. Since the characteristic is not 2,

K = F(
p
m ) for some nonsquare m ∈ F . Define i ∈ K be to

p
m.

The map f : K → D given by f (a + bi) = a − bi is an algebra homomorphism
into the central simple algebra D. So the Skolem–Noether Theorem produces j ∈ D
with j (a + bi) j−1 = a − bi for all a + bi in K , necessarily with j invertible.
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As in the proof of Theorem 2.50, j2 = r lies in F . Define k = i j . Then k2 =
i j i j = i( j i j−1) j2 = i(−i) j2 = −rm, and −rm = k2 = i jk implies that k =
−rm( j−1)(i−1) = −rm(r−1 j)(m−1i) = − j i .
Let us check the multiplication table for {1, i, j, k}. We know that i2 = m, j2 = r ,

k2 = −rm, i j = k, and j i = −k. In addition, we have

jk = j i j = ( j i j−1) j2 = (−i)r = −ri,

k j = i j j = i( j2) = ri,

ki = i j i = i( j i j−1) j = i(−i) j = −mj,

ik = i i j = (i2) j = mj.

Hence the F linearmapϕ from A into the given central simple algebra is an algebra
homomorphism sending 1 into 1. Since A is simple, ϕ is one-one. Since A and the
given algebra both have dimension 4, ϕ is onto. Thus ϕ is an algebra isomorphism.
(We did not have to check directly that {1, i, j, k} is linearly independent over F .)
17. A is an algebra by routinely checking that it is closed under multiplication.

Manifestly A has an identity and has dimension 9 over F . If I is a nonzero two-sided
ideal in A, let x = a+bj+cj2 be nonzero in I , and assume that x is chosen in I such
that as few of the coefficients a, b, c are nonzero as possible. Possibly by multiplying
x by j or j2 on the right, wemay assume that a 6= 0. Choose d ∈ K with d, σ (d), and
σ 2(d) distinct. Computation shows that dx − xd has one fewer nonzero coefficient.
By minimality we must have dx − xd = 0; hence x must have had just one nonzero
coefficient. Such an x is invertible, and thus 1 is in I and I = A. Hence A is simple.
To see that A has just F as center, we test a general element x = a + bj + cj2 for
commutativity with both d ∈ K and the element j , and we find that b = c = 0 and
a = σ (a) = σ 2(a).
18. Since A is finite-dimensional central simple, A ∼= Mn(D) for some n and

some central division algebra D over F . Then 9 = dim A = n2 dimF D, and the only
possibilities are that n = 3 and D = F , or that n = 1. In the first case, A ∼= M3(F),
and in the second case, A is a division algebra. In the first case any column of A
(when viewed as M3(F)) is a 3-dimensional left A module; in the second case A has
no proper nonzero left A modules.
19. Left multiplication by K makes A into a K vector space, and the left K

submodules of A are the K vector subspaces. The F dimension of such a subspace
is 3 times the F dimension. Hence the left K submodules of A are the subspaces of
K dimension 1, which consist of all left K multiples of any nonzero vector.
Let x = a0+b0 j+c0 j2 be nonzero in A. Then Kx is a left Amodule if and only if

j x lies in Kx . Here j x = σ (a0) j+σ (b0) j2+σ (c0) j3 = rσ (c0)+σ (a0) j+σ (b0) j2.
This equals dx for some d ∈ K if and only if

rσ (c0) = da0, σ (a0) = db0, and σ (b0) = dc0. (∗)
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Combining the secondand third equationsgives the necessary condition thatσ 2(a0) =
σ (db0) = σ (d)σ (b0) = σ (d)dc0. Applying σ gives the necessary condition a0 =
σ 3(a0) = σ (σ (d)dc0) = σ 2(d)σ (d)σ (c0) = σ 2(d)σ (d)r−1da0 = NK/F (d)r−1a0.
Thus it is necessary that some d ∈ K have NK/F (d) = r . Conversely if d ∈ K has
NK/F (d) = r , then x0 = 1 + d−1 j + d−1σ (d)−1 j2 has a0 = 1, b0 = d−1, and
c0 = d−1σ (d)−1, and we observe that the conditions (∗) are satisfied; thus Kx0 is a
left A submodule.

Chapter III

1. For (a), define f : A × K → EndBo A by f (a, c)(a0) = aa0c just as in the
proof of Theorem3.3. The verification that the action of rightmultiplication by b ∈ B
commutes with f (a, c), i.e., that f (a, c) is in EndBo A, uses that B commutes with
K , and the verification that the extended map f : A ⊗F K → EndBo A respects
multiplication uses that K is commutative; otherwise the argument is the same as
with Theorem 3.3. The algebra A⊗F K is central simple over K , and B is an algebra
over K because B contains K . Since A ⊗F K is simple, f is one-one.
For (b), let V be the unique-up-to-isomorphism simple finite-dimensional left B

module. If the left B module B is the direct sum of m copies of V , then the proof
of Theorem 2.2 shows that Bo ∼= EndB B ∼= Mm(Do), where Do is the central
division algebra over K given by Do = EndB V . Hence B ∼= Mm(D). If V o

denotes the unique-up-to-isomorphism simple finite-dimensional left Bo module and
if D0o = EndBo(V o), then we have B ∼= EndBo(Bo) ∼= Mm0(D0o), and it follows that
m = m0 and D0 ∼= Do.
Since B ⊆ A, A is a right B module, hence a left Bo module, and A has to

be the direct sum of some number n of copies of V o. Then the same argument
gives an isomorphism EndBo A ∼= Mn(D0o) ∼= Mn(D). The Double Centralizer
Theorem gives dimF A = (dimF B)(dimF K ), and thus dimK A = dimF B =
(dimF K )(dimK B) = (dimF K )(m dimK V ). Meanwhile, dimK A = n dimK V
and thus n dimK V = (dimF K )(m dimK V ). So n = m dimF K . Consequently
dimF EndBo A = n2 dimF D = m2(dimF D)(dimF K )2 = (dimF B)(dimF K )2 =
(dimF A)(dimF K ) = dimF (A ⊗F K ), and the map f in (a) is onto.
For (c), application of (b) and an isomorphism from above gives A ⊗F K ∼=

EndBo(A) ∼= Mn(D), and we have seen that B ∼= Mm(D). Thus A ⊗F K and B lie
in the same Brauer equivalence class in B(K ).
2. Take the product over σ of the equalityρ(a(σ, τ ))a(ρ, στ ) = a(ρ, σ )a(ρσ, τ ),

and get ρ
°Q

σ a(σ, τ )
¢Q

σ a(ρ, σ ) =
Q

σ a(ρ, σ )
Q

σ a(σ, τ ). Canceling gives
ρ
°Q

σ a(σ, τ )
¢

=
Q

σ a(σ, τ ). Thus
Q

σ a(σ, τ ) is fixed by every member of the
Galois group and is in F×.
3. Proposition 3.32 and Theorem 3.31 show that H2k(Gal(K/F), K×) ∼=

H2(Gal(K/F), K×) for k ∏ 1 and H2k+1(Gal(K/F), K×) ∼= H1(Gal(K/F), K×)
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for k ∏ 0. Then Corollary 3.34 gives H2k ∼= F×
±
NK/F (K×) for all k ∏ 1, and

Theorem 3.17 gives H2k+1 = 0 for all k ∏ 0. Finally H0 is the subgroup of elements
in K× fixed by Gal(K/F), and this is F×.
4. For (a), it is shown in Chapter IX of Basic Algebra that Q(e2π i/p) is a Galois

extension of Q with cyclic Galois group of order p − 1 whenever p is prime. Here
p = 7. Complex conjugation is a member of the Galois group of order 2, and K is the
subfield fixed by this subgroup. Hence K has degree 6/2 = 3 over Q, and its Galois
group is the quotient of a cyclic group of order 6 by the subgroup of order 2, hence is
cyclic of order 3. The powers ≥ 1, . . . , ≥ 6 form a basis of theQ vector spaceQ(≥ ), and
the sums of them with their images under complex conjugation span K . These sums
are τ1, τ2, τ3. Since there are only 3 such sums, they must be linearly independent
over Q. Put τk = ≥ k + ≥−k . Then τk depends only on k mod 7, and τk = τ−k .
Hence the only τk’s that are not any of τ1, τ2, τ3 are the ones with k ≡ 0 mod 7. The
members of the Galois group ofQ(≥ ) carry ≥ to ≥ k for 1 ≤ k ≤ 6 and therefore carry
τ1 to τk , τ2 to τ2k , and τ3 to τ3k . None of k, 2k, 3k is divisible by 7, and the result
follows.
For (b), let σ ∈ Gal(K/Q) have σ (τ1) = τ2, σ (τ2) = τ3, and σ (τ3) = τ1. For

x ∈ K , we have NK/Q(x) = xσ (x)σ 2(x). With x = aτ1+bτ2+ τ3, we get 27 terms
when everything is expanded out, and they are the ones listed.
For (c), τ1 + τ2 + τ3 = −1 because

P3
j=−3 ≥ j = 0. Next, τ1τ2 = (≥ 1 + ≥−1)×

(≥ 2 + ≥−2) = ≥ 3 + ≥−3 + ≥−1 + ≥ 1 = τ1 + τ3, and the other two identities on the
second line are similar. Finally τ 21 = (≥ 1 + ≥−1)2 = ≥ 2 + 2+ ≥−2 = τ2 + 2, and the
other two identities are similar.
For (d), let α,β, ∞ , δ be the expressions involving τ1, τ2, τ3 on the right side in

(b). First we have τ 31 = τ 21 τ1 = (τ2 + 2)τ1 = τ1τ2 + 2τ1 = 3τ1 + τ3. Summing this
expression and similar expressions for τ 32 and τ 33 gives α = 4(τ1 + τ2 + τ3) = −4.
Second β = τ1τ2τ3 = (τ1 + τ3)τ3 = τ2 + τ3 + τ1 + 2 = 1. In (d), the coefficient
of abc is α + 3β = −4 + 3 = −1, and the coefficient of a3 + b3 + c3 is β = 1.
Third τ 21 τ2 = τ1(τ1 + τ3) = (τ2 + 2) + (τ2 + τ3) = τ3 + 2τ2 + 2. Similarly
τ 22 τ3 = τ1+2τ3+2 and τ 23 τ1 = τ2+2τ1+2. The sum is ∞ = 3(τ1+τ2+τ3)+6 = 3.
Fourth τ1τ

2
2 = τ1(τ3 + 2) = τ2 + τ3 + 2τ1. Similarly τ2τ

2
3 = τ1 + τ3 + 2τ2 and

τ3τ
2
1 = τ1 + τ2 + 2τ3. The sum is δ = 4(τ1 + τ2 + τ3) = −4.
For (e), the normmodulo 3 is (a3+b3+c3)−abc− (a2c+ab2+bc2), and this is

≡ (a+b+ c)−abc− (a2c+ab2+bc2) mod 3. Any nonzero square is≡ 1 mod 3,
and we consider cases. If 3 does not divide abc, then a2 ≡ b2 ≡ c2 ≡ 1 mod 3, and
the norm is ≡ −abc 6≡ 0 mod 3. If 3 divides a but not bc, then b2 ≡ c2 ≡ 1 mod 3,
and the norm is ≡ (b + c) − b ≡ c 6≡ 0 mod 3. If 3 divides a and b but not c, then
the norm is ≡ c 6≡ 0 mod 3, while if 3 divides a and c but not b, then the norm is
≡ b 6≡ 0 mod 3. The case that 3 divides all of a, b, c is excluded by the condition that
GCD(a, b, c) = 1, and all other cases are handled by symmetry. Thus in all cases
the norm is not divisible by 3.
For (f), let x, y, z be members ofQ not all 0. Choose integers a, b, c and relatively
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prime integers n and d such that x = n−1da, y = nd−1db, z = nd−1c, and
GCD(a, b, c) = 1. Then NK/Q(xτ1 + yτ2 + zτ3) = d−3n3NK/Q(aτ1 + bτ2 + cτ3).
Applying (e) and supposing that 3 is a norm, we obtain 3 = d−3n3(3k + (1 or 2))
for some integer k. Thus 3d3 = n3(3k + (1 or 2)). This equality forces n to divide
d, and we may therefore take n = 1. Thus 3d3 = 3k + (1 or 2). The left side is
divisible by 3, and the right side is not. Hence 3 is not a norm.
5. For (a), Dirichlet’s Theorem (Theorem 1.21) says that there are infinitely many

primes of the form p = kn+ 1. For any such p, n divides p− 1. For (b) with this p,
the Galois group of Q(e2π i/p)/Q is cyclic of order p − 1 and has a cyclic subgroup
of order (p− 1)/n. The corresponding subfield is a Galois extension ofQ of degree
n with cyclic Galois group.
6. For 0 ≤ k < n and 0 ≤ l < n, we have xσ k xσ l = j k j l = j k+l . Meanwhile,

xσ k+l equals j k+l if k + l < n and equals j k+l−n if k + l ∏ n. So xσ k xσ l = xσ k+l if
k + l < n and xσ k xσ l = jnxσ k+l−n = r xσ k+l−n if k + l ∏ n. Thus a(σ k, σ l) has the
stated value.
7. It is just a question of checking that cσ kσ k(cσ l ) = a(σ k, σ l)cσ k+l with a(σ k, σ l)

as in the previous problem.
8. We have @0(1, σ k) = 1− σ k and thus

f0@0(1, σ k) = 1− σ k = (σ − 1)(−(1+ σ + · · · + σ k−1)).

If we put f1(1, σ k) = −(1+σ +· · ·+σ k−1), thenwe have T f1(1, σ k) = f0@0(1, σ k)
for all k.
Next, for k ≤ l, we have @1(1, σ k, σ l) = (σ k, σ l) − (1, σ l) + (1, σ k) =

σ k(1, σ l−k) − (1, σ l) + (1, σ k). Then f1@1(1, σ k, σ l) equals

−σ k(1+ σ + · · · + σ l−k−1) + (1+ σ + · · · + σ l−1) − (1+ σ + · · · + σ k−1) = 0.

For k > l, the term (σ k, σ l) is replaced by σ k(1, σ n+l−k). Thus @1(1, σ k, σ l) =
σ k(1, σ n+l−k) − (1, σ l) + (1, σ k). Then f1@1(1, σ k, σ l) is

−σ k(1+ σ + · · · + σ n+l−k−1) + (1+ σ + · · · + σ l−1) − (1+ σ + · · · + σ k−1)

= −(1+ σ + · · · + σ n+l−1) + (1+ σ + · · · + σ l−1)

= σ l(−(1+ σ + · · · + σ n−1)).

If we define f2 as in the problem, then in the two cases we have

k ≤ l : N f2(1, σ k, σ l) = (1+ σ + · · · + σ n−1)(0) = 0 = f1@1(1, σ k, σ l),

k > l : N f2(1, σ k, σ l) = (1+ σ + · · · + σ n−1)(−σ l) = f1@1(1, σ k, σ l).

9. To √ in HomZG(ZG, K×), the chain map of the previous problem associates
√ ◦ f2 in HomZG(ZG({(1, g1, g2)}), K×), and then the corresponding member
of C2(G, K×) is 82(√ f2) whose value at (g1, g2) is √ f2(1, g2, g1g2). That is,
82(√ f2)(σ k, σ l) = √ f2(1, σ k, σ k+l), and this by Problem 8 is √(0) if k + l < n
and is √(−σ k+l−n) = √(σ k+l−n)−1 if k + l ∏ n.
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10. Taking Proposition 3.32 into account, we see that the mapping whose kernel
gives the cocycles is Hom(T, 1) : HomZG(ZG, K×) → HomZG(ZG, K×). Here
Hom(T, 1)√ = √ ◦ T . We are identifying √ with √(1) and also √ ◦ T with
√(T (1)) = √(σ − 1) = (σ − 1)√(1) in additive notation. Hence the effect of
Hom(T, 1) is to carry y to σ (y)y−1 in multiplicative notation. A necessary and
sufficient condition for σ (y)y−1 to be 1 is that y be in F×, since the subgroup of K×

fixed by G is F×.
11. Since √(0) = 1 and √(σ k+l−n) = σ k+l−n√(1) = √(1) = r−1, the member

a of C2(G, K×) that corresponds to √ has

a(σ k, σ l) =

Ω 1 if k + l < n,
r if k + l ∏ n,

and this is the 2-cocycle of Problem 6.
12. Corollary 3.34 and Theorem 3.14 combine to give us a group isomorphism

B(K/F) ∼= F×
±
NK/F (K×), and the above problems show that the element r of F×

used in defining A corresponds under this isomorphism to the coset of r−1. Hence
the order of the Brauer equivalence class of A equals the order of the coset of r , as
required.
If A is not a division algebra, then A ∼= Mm(D) for some central division algebra

D over F and for some integer m > 1. Here dimF D = (n/m)2 < n2. Corollary
3.15 then gives the contradiction that the order of the Brauer equivalence class of D,
which is the same as the order of the class of A, divides n/m, which in turn is < n.
13. The Skolem–Noether Theorem shows that the image matrices under two

different isomorphisms ϕ and √ have to be conjugate to one another, say with ϕ =
C−1√C . Then

det(ϕ(X1− a ⊗ 1)) = det(C−1√(C(X1− a ⊗ 1)))

= (detC)−1 det(√(X1− a ⊗ 1))(detC)

= det(√(X1− a ⊗ 1)).

14. Let B = A ⊗F K . The left B module B is semisimple and is the direct sum
of n isomorphic simple modules of dimension n. On each the operation of a ⊗ 1 has
characteristic polynomial det(X1− a⊗ 1), and the characteristic polynomial for the
direct sum of the spaces is the product of the characteristic polynomials.
15. Arguing by contradiction, we may assume that the statement is false for

some monic P = P(X) and that P has the lowest possible degree among all monic
polynomials for which the assertion is false. Factor P over K into powers of distinct
irreducible polynomials as P = Pd11 · · · Pdkk . The n-fold product of P

d1
1 · · · Pdkk

with itself is in F[X] by assumption and is therefore invariant under Gal(K/F).
Consequently for each σ ∈ Gal(K/F) and each Pi , there exists some Pj such that
Pj = σ (Pi ). It follows that if H is the subgroup of G = Gal(K/F) fixing P1, then
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Q =
Q

σH∈G/H σ P1 is the product of distinct irreducible factors of P and hence
divides P . The polynomial Q is fixed by every member of G and hence is monic
in F[X]. Thus Q 6= P . Then Qn is in F[X], and hence (P/Q)n is in F[X]. The
fact that P is not in F[X] implies that Q 6= P . Therefore deg(P/Q) < deg P . By
the minimal choice of deg P , P/Q is in F[X]. Therefore P = (P/Q)Q is in F[X],
contradiction.
16. For a matrixm with entries in a field, passing to a larger field does not change

det(X1 − m). Suppose we start with two finite Galois extensions K1 and K2 of F
that split A. Let K1 be a splitting field for a polynomial g1 ∈ F[X], and let K2 be
a splitting field for g2 ∈ F[X]. Define K to be a splitting field for g1g2. Then K is
a finite Galois extension of F , and we can regard it as containing both K1 and K2.
Applying the first sentence of this paragraph first to K1 and K and then to K2 and K ,
we see that the reduced characteristic polynomial is the same over K1 as it is over K2.
17. The formulas for NrdA/F (ab) and NrdA/F (1) follow from properties of

determinants. From Problem 14 we observe that det a = (−1)n2 det(−a) and
det(−ϕ(a ⊗ 1)) = (−1)n det(ϕ(a ⊗ 1)). Substituting X = 0 into the formula
therefore gives us NA/F (a) = det a = (−1)n2 det(−a) = (−1)n2 det(−ϕ(a⊗1))n =

(−1)n2((−1)n)n det(ϕ(a ⊗ 1))n = det(ϕ(a ⊗ 1))n = NrdA/F (a)n . If a is invert-
ible, then 1 = NrdA/F (1) = NrdA/F (aa−1) = NrdA/F (a)Nrd(a−1) shows that
NrdA/F (a) is nonzero. Conversely if NrdA/F (a) 6= 0, thenNrdA/F (a) 6= 0 and hence
det L(a) 6= 0. If P(X) is the algebra polynomial of L(a), then the Cayley–Hamilton
Theorem shows that P(L(a)) = 0. Since det L(a) 6= 0, P(X) has a nonzero constant
term. Therefore we can separate the constant term in the equation P(L(a)) = 0 to
exhibit an identity of the form L(a)Q(L(a)) = 1 for some polynomial Q(X), and
the element Q(a) is a 2-sided inverse to a in A. This proves (a), and the conclusion
about division algebras is immediate.
18. The definition gives

m(dxρ) =
P

µ
µ(d)a(µ, ρ)Eµ,µρ,

m(cxτ ) =
P

σ
σ (c)a(σ, τ )Eσ,στ ,

m
°
(dxρ)(cxτ )

¢
= m

°
dρ(c)a(ρ, τ )xρτ

¢
=

P

µ
µ

°
dρ(c)a(ρ, τ )

¢
a(µ, ρτ )Eµ,µρτ .

Also we have

m(dxρ)m(dxρ) =
P

µ,σ
µ(d)a(µ, ρ)σ (c)a(σ, τ )Eµ,µρEσ,στ

=
P

µ
µ(d)µρ(c)a(µ, ρ)a(µρ, τ )Eµ,µρτ .

This matches m
°
(dxρ)(cxτ )

¢
by the cocycle relation for a.
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For the reduced norm we have two one-one F algebra homomorphisms of A into
Mn(K ), one via the mapping m above and one by the embedding A → A ⊗F 1 ⊆
A⊗F K ∼= Mn(K ), and these are conjugate by the Skolem–Noether Theorem. Hence
the determinant gives the same result in the two cases. The determinant in the second
case gives the reduced norm, and hence it must give the reduced norm in the first case.

19. The algebra H can be realized as all complex matrices x =
≥

α β

−β̄ ᾱ

¥
, and

NrdH/R(x) = |α|2 + |β|2 and NH/R(x) = (|α|2 + |β|2)2 as a special case of
Problem 18.
20. Let D be a finite-dimensional central division algebra over F , say with

dimF D = n2. Choose a basis {xk} of D over F , and expand elements of D
as x =

Pn2
j=1 cj xj . The function P(c1, . . . , cn2) = NrdD/F

°Pn2
j=1 cj xj

¢
is easily

checked to be a homogeneous polynomial of degree n in n2 variables, and condition
(C1) says that it has a nontrivial zero if n < n2. In this case the correspondingmember
x of D would be a nonzero element of D that fails to be invertible, and there is no such
element. We conclude that n < n2 is false, and that means that n = 1. Therefore F
is the only finite-dimensional central division algebra over F , and B(F) = 0.

Chapter IV

1. For (a), every free abelian group of finite rank is in the category, and such
groups provide enough projectives.
Let I = F ⊕ T be a decomposition of an injective I as the direct sum of a free

abelian group F of rank k and a torsion group T . The sequence 0 → F ⊕ T →
2F ⊕ T → (Z/2Z)k → 0 is exact but not split unless k = 0, and thus F = 0. Thus
every injective in the category is a finite group, and no infinite group in the category
embeds into an injective.
For (b), every abelian group and in particular every torsion abelian group is a

subgroup of a divisible group. The torsion subgroup of the divisible group is still
divisible and is still an injective, and thus every group in the category embeds in an
injective in the category.
Let P be a projective in the category mapping onto Z/2Z = {0, 1} by a homo-

morphism τ , and let x be an element of P with τ (x) = 1. If g is a generator of a
cyclic group G of order 2k , then there is a homomorphism ϕ of G onto Z/2Z with
ϕ(g) = τ (x) = 1. Since P is projective, there exists a homomorphism σ : P → G
with ϕσ = τ , and then we have 1 = τ (x) = ϕσ (x). Then σ (x) = gm for some odd
integer m, and this has order 2k . Hence x has order at least 2k . Since k is arbitrary,
x must have infinite order. But all groups in the category are torsion groups, and P
therefore cannot exist.
2. Let p be a prime, and let C be the category of all abelian groups that are the

underlying additive group of a vector space over the field of p elements. This category
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coincides with the category of all direct sums of copies of Z/pZ. Every such abelian
group is projective and injective for the category.
3. Every unital left R module is the direct sum of simple R modules. Hence every

short exact sequence splits, and every module is both projective and injective for CR .
4. For (a), let I be injective. Given x ∈ I and a 6= 0 in R, let B = C = R, let

τ : R → I have τ (r) = r x , and let ϕ : R → R have ϕ(r) = ra. Setting up Figure
4.4, we obtain σ : R → I with τ = σϕ. If we put y = σ (1) and evaluate both sides
at 1, then we obtain x = τ (1) = σ (ϕ(1)) = σ (a) = aσ (1) = ay, as required.
For (b), suppose that the unital left R module I is divisible. Suppose that J is an

ideal of R, and write J = (a). Let ϕ : J → I be an R homomorphism. Since I is
divisible, there exists y in I with ay = ϕ(a). Then ϕ extends to the R homomorphism
8 with 8(1) = y. By Proposition 4.15, I is injective.
5. Proposition 4.20 shows that there exists an injective I0 containing an isomorphic

copy M of M . Problem 4 shows that I0 is divisible, and hence I1 = I0/M is divisible.
ByProblem4, I1 is injective. Then0 → M → I0 → I1 → 0 is an injective resolution
of M .
6. If a module M in C is given, we form the appropriate kind of resolution X in C

needed to compute the derived functors of G, and the same X will be appropriate for
computing the derived functors of F ◦ G. The derived functors of G come from the
homology or cohomology of G(X) with G(M) removed, and the derived functors of
F ◦ G come similarly from F(G(X)). Thus the result follows from Proposition 4.4.
7. If a module M in C is given, we form the appropriate kind of resolution X in C

needed to compute the derived functors ofG ◦ F on M . Then F(X) is the appropriate
kind of resolution for computing the derived functors of G on F(M), and the result
follows.
8. For n odd, Hn(G,M) is the cohomology of the complex

HomZG(ZG,M)
N

√− HomZG(ZG,M)
T

√− HomZG(ZG,M),

while for n even, Hn(G,M) is the cohomology of the complex

HomZG(ZG,M)
T

√− HomZG(ZG,M)
N

√− HomZG(ZG,M).

This proves the isomorphisms concerning cohomology. For n odd Hn(G,M) is the
homology of the complex

ZG ⊗ZG M N
−→ ZG ⊗ZG M T

−→ ZG ⊗ZG M,

while for n even, Hn(G,M) is the homology of the complex

ZG ⊗ZG M T
−→ ZG ⊗ZG M N

−→ ZG ⊗ZG M.

This proves the isomorphisms concerning homology.
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9. For (a), let TAB : HomD(F(A), B) → HomC(A,G(B)) be the natural isomor-
phism. Naturality in B says for any √ : B → B0 that we have

HomC(1A,G(√)) ◦ TAB = TAB 0 ◦ HomD(1F(A),√)

on HomD(F(A), B). Let P be projective in C. We are to prove that F(P) is
projective in D, thus to prove that HomD(F(P), · ) is exact. We need to show that
whenever √ : B → B0 is onto in D, then HomD(1F(P),√) is onto. By hypothesis,
G(√) : G(B) → G(B0) is onto in C. The displayed equation with A = P has
HomC(1P ,G(√)) onto, and TPB and TPB 0 are given as isomorphisms. Therefore
HomD(1F(P),√) is onto, as we were to show. The proof of (b) is similar.
10. Conclusion (a) follows from the natural isomorphism HomS(PS

R A, B) =
HomS(S ⊗R A, B) ∼= HomR(A,FR

S B). Conclusion (b) follows from Problem 9a
with F = PS

R and G = FR
S , sinceFR

S is exact and therefore carries onto maps to onto
maps. For (c), PS

R A is given by the tensor product S ⊗R A, and this tensor product
is an exact functor of A if S is projective as a right R module, by Proposition 4.19a.
For (d), part (c) says that M 7→ PS

RM is an exact functor. Taking it to be F in
Problem 7a and G to be HomS( · , N ), we have ExtkS(P

S
RM, N ) = Gk(F(M)). Prob-

lem 7a says that this is equal to (G ◦ F)k . Since (G ◦ F)(M) = HomS(PS
RM, N ) ∼=

HomR(M,FR
S N ) has (G ◦ F)k(M) = ExtkR(M,FR

S N ), we obtain ExtkS(P
S
RM, N ) ∼=

ExtkR(M,FR
S N ).

For (e), (b) shows that the chain complex PS
R X is projective over P

S
RM , and we

are assuming that Y is exact (and projective) over PS
RM . Theorem 4.12 says that the

identity map on PS
RM extends to a chain map f : PS

R X → Y that is unique up to
homotopy. Dropping the terms in degree −1 and applying the functor HomS( · , N )

to the diagram gives us a cochain map from the complex HomS(Y, N ) to the complex
HomS(PS

R X, N ) ∼= HomR(X,FR
S N ). Thus we get homomorphisms on cohomology

Ext∗S(PR
S M, N ) → Ext∗R(M,FR

S N ).
11. Conclusion (a) follows from the natural isomorphisms HomS(A, I SR B) =

HomS(A,HomR(S, B)) ∼= HomR(S ⊗S A, B) ∼= HomR(FR
S A, B). Conclusion (b)

follows from Problem 9b because FR
S is exact and therefore carries one-one maps

to one-one maps. For (c), I SR = HomR(S, · ) is exact if S is projective as a right R
module, by Proposition 4.19a.
For (d), part (c) says that M 7→ I SRM is an exact functor. Taking it to be F

in Problem 7b and G to be HomS(M, · ), we have ExtkS(M, I SR N ) = Gk(F(N )).
Problem7b says that this is equal to (G◦F)k . Since (G◦F)(N ) = HomS(M, I SR N ) ∼=
HomR(FR

S M, N ) has (G ◦ F)k(M) = ExtkR(FR
S M, N ), we obtain ExtkS(N , I SR N ) ∼=

ExtkR(FR
S M, N ).

For (e), (b) shows that the cochain complex I SR X is injective over I
S
R N , and we

are assuming that Y is exact (and injective) over I SR N . Theorem 4.16 says that the
identity map on I SR N extends to a cochain map f : Y → I SR X that is unique up to
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homotopy. Dropping the terms in degree −1 and applying the functor HomS(M, · )
to the diagram gives us a cochainmap from the complex HomS(M,Y ) to the complex
HomS(M, I SR X) ∼= HomR(FR

S M, X). Thus we get homomorphisms on cohomology
Ext∗S(M, I RS N ) → Ext∗R(FR

S M, N ).
12. For (a), the definition of 8q is

(8qϕ)(g1, . . . , gq) = ϕ(1, g1, g1g2, . . . , g1 · · · gq)

for ϕ ∈ HomZG(Fq ,M). Putting f = 8qϕ gives (ρ∗ f )(g1, . . . , gq) = ρ∗(8qϕ) =
8q(ϕ ◦ ρ) = (8qϕ) ◦ ρ, as asserted.
For inflation the groups are (G,G 0) = (G,G/H), and the map ρ is the quo-

tient map; the effect is given by (Inf f )(g1, . . . , gq) = f (g1H, . . . , gq H) for f in
Cq(G/H,MH ). For restriction the groups are (G,G 0) = (H,G), and the map
is the inclusion; the effect is given by (Res√)(h1, . . . , hq) = √(h1, . . . , hq) for
√ ∈ Cq(G,M).
For (b), let f be in C1(G/H,MH ). Then Res(Inf( f ))(h) = Inf( f )(h) =

f (hH) = f (H). The condition for f to be a cocycle is that δ1 f = 0, i.e., that
f (uv) = f (u)+u( f (v)) for u and v in G/H . Taking u and v to be the identity coset
H shows that f (H) = 0.
For (c), let f ∈ C1(G/H,MH ) be a cocycle. Then Inf( f )(g) = f (gH). If

this is a coboundary in C1(G,M), then there exists √ ∈ M with δ0√ = f , i.e.,
with f (gH) = g√ − √ for all g. The left side depends only on the coset gH , and
hence so must the right side. Then it follows that gh√ = g√ for all h ∈ H and that
√ is in MH . Then the formula f (gH) = g√ − √ exhibits f as a coboundary in
C1(G/H,MH ).
For (d), let f be a cocycle in C1(G,M) such that Res f is a coboundary in

C1(H,M). The formula is (Res f )(h) = f (h), and the coboundary condition shows
that there is some √ ∈ MH with f (h) = h√ − √ for h ∈ H . Since √ is in MH ,
f (h) = 0 for all h ∈ H . The cocycle condition on f is that f (uv) = f (u)+u( f (v))

for all u and v in G. Taking v to be in H shows that f (gh) = f (g) for all h ∈ H .
Taking instead u to be in H shows that f (hg) = h( f (g)) for all h ∈ H . Since H is
normal, h( f (g)) = f (g) for all h ∈ H . Therefore f takes values in MH and is Inf
of the cocycle f̄ in C1(G/H,MH ) given by f̄ (gH) = f (g).
13. For (a), we have (g0ϕm)(g) = ϕm(gg0) = gg0m = ϕg0m(g), and m 7→ ϕm is

aZG homomorphism. Suppose that ϕm = 0. Then gm = 0 for all g and in particular
for g = 1. Therefore m = 0, and m 7→ ϕm is one-one. Then it follows that the
sequence is exact.
For (b), we know that ZG as an abelian group is free abelian. Then Problem 11d

shows that Hk(G,B)=ExtkZG(Z,B)=ExtkZG(Z, IZG
Z (FZ

ZGM)) ∼= ExtkZ(Z,FZ
ZGM).

Since HomZ(Z, · ) is exact from CZ to itself, ExtkZ(Z,FZ
ZGM) = 0 for k ∏ 1.

For (c), a Z basis of ZG consists of all 1-tuples (g) with g ∈ G, and a Z basis of
ZH consists of all (h)with h ∈ H . Let {v} be a set of representatives of the cosets of
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G/H , and let A be the free abelian group on {v}. TheZ-bilinearmap (v, (h)) 7→ (vh)
extends to a homomorphism of A ⊗Z ZH into ZG that is manifestly onto, and it is
one-one because

P
ni (vi hi ) = 0 implies ni = 0 for all i . Thus it is an isomorphism.

For (d), use of (c) givesFZH
ZG B ∼= FZH

ZG HomZ(ZG,M) ∼= HomZ(FZH
ZG (ZG),M)

∼= HomZ(A⊗ZZH,M) ∼= HomZ(ZH,HomZ(A,M)), and thenHk(H,FZH
ZG B) = 0

for k ∏ 1 by the same argument as in (b).
For (e), the long exact sequence for Ext∗H (Z, · ) that comes from the short exact

sequence in (a) shows that 0 → H0(H,M) → H0(H, B) → H0(H, N ) →
H1(H,M) is exact. The right member is assumed to be 0, and the three middle
members are isomorphic to MH , BH , and NH .
For (f), consider theZ bilinearmap (1, (g)) 7→ (gH) ofZ×ZG intoZ(G/H), and

extend it to a Z linear map of Z ⊗Z ZG into Z(G/H). The group H acts trivially on
Z on the right, and it acts on Z(G/H) by left translation. Let h be in H . The passage
Z × ZG → Z(G/H) has (1h, (g)) 7→ (gH) and (1, h(g)) 7→ h(gH) = (gH);
thus the group homomorphism Z ⊗Z ZG → Z(G/H) descends to a homomorphism
of Z ⊗ZH ZG into Z(G/H). This is certainly onto. To see that it is one-one, letP

i ni1 ⊗ (gi ) 7→ 0. Then
P

i ni (gi H) = 0, and for each coset representative v

in G,
P

gi∈vH ni (gi ) = 0. So
P

i ni (h
−1
i v) = 0, and

°P
i ni (h

−1
i )

¢
(v) = 0. Then

P
i ni (h

−1
i ) = 0 in ZH because (v) is invertible in ZG, and it follows that the map

is one-one.
For (g), (f) gives BH = HomZH (Z,HomZ(ZG,M)) ∼= HomZ(Z⊗ZH ZG,M) ∼=

HomZ(Z(G/H),M), and the same argument as in (b) shows that Hk(G/H, BH ) = 0
for k ∏ 1.
Conclusion (h) is immediate because q ∏ 2 and because all the cohomology

associated with B has been shown to be 0 in degrees ∏ 1.
The commutativity in conclusion (i) follows because the inflation and restriction

mappings are clearly functorial. The vertical mappings have been shown to be
isomorphisms in (h). To see via induction that the top row is exact, we have to
verify that Hk(H, N ) = 0 for k ≤ q − 2; but Hk(H, N ) ∼= Hk+1(H,M) for all
k ∏ 1, and Hk+1(H,M) is assumed to be 0 for k+ 1 ≤ q − 1. Therefore the bottom
row is exact, and the induction is complete.
14-16. These problems are routine verifications.
17. Part (a) follows because R⊗R A is naturally isomorphic to A. For (b), F⊗R A

∼=
L

s∈S (Fs⊗R A) and 1F⊗ f corresponds to
L

(1Fs ⊗ f ). The values of the various
R homomorphisms are in the various spaces Fs ⊗R B, whose sum is direct, and thus
the kernel of 1F ⊗ f is the direct sum of the kernels. Then (b) follows. For (c), we
see from (a) and (b) that free R modules are flat. In CR , every projective is a direct
summand of a free module, and thus (c) follows by a second application of (b).
18. Consider 1⊗ f : M ⊗R A → M ⊗R B. Any element of ker(1⊗ f ) is a finite

sum
P
mi ⊗ ai , and this lies in ker((1⊗ f )

Ø
Ø
MF

), where F is the finite set of indices
in question. Thus ker(1 ⊗ f ) 6= 0 implies ker((1 ⊗ f )

Ø
Ø
MF

) 6= 0 for some F . The
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converse is immediate because ker((1⊗ f )
Ø
Ø
MF

) ⊆ ker(1⊗ f ) for all F .
19. The long exact sequence for tensor product over R is of the form

· · · → TorR1 (A, F) → TorR1 (A, B) → A ⊗R K → A ⊗R F → A ⊗R B → 0,

and TorR1 (A, F) = 0 because F is projective for CR . This establishes the exactness
of the sequence in the problem. If A is flat, then

0 → TorR1 (A, B) → A ⊗R K → A ⊗R F → A ⊗R B → 0

is exact for each B, and TorR1 (A, B)must be 0 for each B. Conversely if TorR1 (A, B)

is 0 for each B, then A⊗R ( · ) is an exact functor by Proposition 4.3. Hence A is flat
by definition.
20. On the one hand, the long exact sequence associated to tensoring the short

exact sequence given in (a) by B is of the form

0 → TorR1 (M, B) → TorR1 (T (M), B) → F⊗R B → M⊗R B → T (M)⊗R B → 0,

since F free implies TorR1 (F, B) = 0. On the other hand, the given short exact
sequence splits, and tensoring it by B must directly produce a short exact sequence

0 → F ⊗R B → M ⊗R B → T (M) ⊗R B → 0.

Thus ker(F ⊗R B → M ⊗R B) = 0, and we must therefore have

image(TorR1 (T (M), B) → F ⊗R B) = ker(F ⊗R B → M ⊗R B) = 0.

Consequently 0 → TorR1 (M, B) → TorR1 (T (M), B) → 0 is exact. This proves (a).
For (b), Problem 18 shows that M is flat if and only if each MF is flat, and

(a) in combination with Problem 19 shows that each MF is flat if and only if each
T (MF ) is flat. Now suppose that M is flat, so that T (MF ) is flat for each finite
subset F of M . This is true in particular for each finite subset F 0 of T (M), and
T (MF 0) = MF 0 = (T (M))F 0 . HenceProblem18shows thatT (M) is flat. Conversely
suppose that T (M) is flat. Then T (M)F 0 is flat for each finite subset F 0 of T (M).
Let F be a finite subset of M . Then MF is a finitely generated R submodule, and
the structure theorem shows that T (MF ) is finitely generated. Let F 0 be a set of
generators for it. Then T (MF ) = MF 0 = T (M)F 0 . This is flat by Problem 18, since
T (M) is flat, and the first sentence of this paragraph allows us to conclude that M is
flat.
For (c), T (M) 6= 0 means that am = 0 for some nonzero a ∈ R and m ∈ M .

Let i : (a) → R be the inclusion, which is one-one. Then i ⊗ 1 : (a) ⊗R M →
R ⊗R M ∼= M has (i ⊗ 1)(a ⊗ m) = am = 0. Thus the one-one map i is carried to
the map i ⊗ 1 that is not one-one, and tensoring with M is not exact. So M is not flat.
For (d), if M is flat, then T (M) = 0 by (c). Conversely if T (M) = 0, then T (M)

is flat, and (b) shows that M is flat.
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21. Since @ 0
p,q and @ 00

p,q both lower p + q by 1, they both carry Ep+q to Ep+q−1.
Also, the hypotheses give (@ 0

p,q + @ 00
p,q)

2 = @ 0
p−1,q@

0
p,q + @ 0

p,q−1@
00
p,q + @ 00

p−1,q@
0
p,q +

@ 00
p,q−1@

00
p,q = 0, and we have a chain complex.

22. We compute that @ 0
p−1,q@

0
p,q = (αp−1 ⊗ 1)(αp ⊗ 1) = αp−1αp ⊗ 1 =

0, @ 0
p,q−1@

00
p,q + @ 00

p−1,q@
0
p,q = (αp−1 ⊗ 1)(−1)p(1 ⊗ βq) + (−1)p−1(1 ⊗ βq)×

(αp ⊗ 1) = (−1)p(αp ⊗ βq) − (−1)p(αp ⊗ βq) = 0, and that @ 00
p,q−1@

00
p,q =

(−1)p(1⊗ βq−1)(−1)p(1⊗ βq) = 1⊗ βq−1βq = 0.
23. The formulas for @ 0

p,q and @ 00
p,q show that ker @ 0

p,q = kerαp ⊗R Dq and that
ker @ 00

p,q = Cp ⊗R kerβq . Since @ 0
p,q Ep,q and @ 00

p,q Ep,q lie in independent spaces,
ker(@ 0

p,q+@ 00
p,q) = ker @ 0

p,q∩ker @ 00
p,q = kerαp⊗Rkerβq . Similarly@ 0

p+1,q(Ep+1,q) =
αp+1(Cp+1) ⊗R Dq and @ 00

p,q+1(Ep,q+1) = Cp ⊗R βq+1(Dq+1), and hence

image(@ 0
p+1,q + @ 00

p,q+1) = αp+1(Cp+1) ⊗R Dq + Cp ⊗R βq+1(Dq+1).

Thus if c is in Cp, d is in Dq , c0 is in αp+1(Cp+1), and d 0 is in βq+1(Dq+1), then
(@ 0
p,q + @ 00

p,q)
°
(c + c0) ⊗ (d + d 0)

¢
is the sum of (@ 0

p,q + @ 00
p,q)(c ⊗ d) and three

terms that are in image(@ 0
p+1,q + @ 00

p,q+1). Consequently we obtain a well-defined
homomorphism of Hp(C) ⊗R Hq(D) into Hp+q(E).
24. Let @ 0 and @ 00 be the boundary operators; these satisfy @ 0@ 00 = −@ 00@ 0. Let a

be a cycle in E−1,k , i.e., let @ 00a = 0. Since @ 0a = 0, the exactness for @ 0 produces
c0,k ∈ E0,k with a = @ 0c0,k . Since @ 00a = 0, this has @ 0@ 00c0,k = −@ 00@ 0c0,k =
−@ 00a = 0. Now suppose inductively on i ∏ 0 that j ∏ 0 is defined by i + j = k and
that ci, j ∈ Ei, j is given with @ 0@ 00ci, j = 0. By the assumed exactness, @ 0@ 00ci, j = 0
implies @ 00ci, j = @ 0ci+1, j−1 for some ci+1, j−1 ∈ Ei+1, j−1, and then @ 0@ 00ci+1, j−1 =
−@ 00@ 0ci+1, j−1 = −@ 00@ 00ci, j = 0. The induction leads us nonuniquely to ck,0 ∈ Ek,0
such that @ 0@ 00ck,0 = 0. Define b ∈ Ek,−1 by b = @ 00ck,0, and then @ 0b = 0. The result
of the construction is therefore that we pass nonuniquely from the cocycle a ∈ E−1,k
for @ 00 to a cocycle b ∈ Ek,−1 for @ 0.
Inverting the steps and the choices,we see thatwe canpass fromb back toa. Thus if

we can address the nonuniqueness, then the isomorphism in homologywill have been
established. We are to show that if a ∈ E−1,k at the start is a boundary relative to @ 00,
then any system of choices leads to a result b ∈ Ek,−1 that is a boundary for @ 0. Since
a is assumed to be a boundary for @ 00, a = @ 00a0 with a0 ∈ E−1,k+1. The element a0 has
@ 0a0 = 0, and thus a0 = −@ 0a0,k+1 for some a0,k+1 ∈ E0,k+1. Meanwhile, the above
construction makes a = @ 0c0,k . So @ 0@ 00a0,k+1 = −@ 00@ 0a0,k+1 = @ 00a0 = a = @ 0c0,k .
By exactness, c0,k − @ 00a0,k+1 = @ 0b1,k for some b1,k ∈ E1,k . This proves that c0,k
is of the form c0,k = @ 00a0,k+1 + @ 0b1,k with a0,k+1 ∈ E0,k+1 and b1,k ∈ E1,k . (Note
that this form for c0,k already implies that @ 0@ 00c0,k = 0.)
Now suppose inductively on i ∏ 0 that j ∏ 0 is defined by i + j = k and

that ci, j ∈ Ei, j is given with ci, j = @ 00ai, j+1 + @ 0bi+1, j . The constructed element
ci+1, j−1 ∈ Ei+1, j−1 has @ 00ci, j = @ 0ci+1, j−1 for some ci+1, j−1 ∈ Ei+1, j−1. Thus
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@ 0ci+1, j−1 = @ 00@ 0bi+1, j = −@ 0@ 00bi+1, j , and ci+1, j−1 + @ 00bi+1, j = @ 0bi+2, j−1. If
we put ai+1, j = −bi+1, j , then we have ci+1, j−1 = @ 00ai+1, j + @ 0bi+2, j−1, and the
induction goes through to i = k. Consequently any choice of ck,0 obtained starting
from the boundary a is of the form ck,0 = @ 00ak,1+@ 0bk+1,0. The final step is to define
b = @ 00ck,0, and then we have b = @ 00@ 0bk+1,0 = −@ 0@ 00bk+1,0, and b is exhibited as
a boundary relative to @ 0.
25. Since eachCp is projective for p ∏ 0,Cp⊗R D is exact. SimilarlyC⊗R Dq is

exact for q ∏ 0. The hypotheses of Problem 24 are satisfied, and the two homologies
match.
26. H0(C) = H0(C 0) = H0(D) = Z/2Z, and Hp(C) = Hp(C 0) = Hp(D) = 0

for p 6= 0. H0(C ⊗Z D) = H0(C 0 ⊗Z D) = Z/2Z, H1(C ⊗Z D) = 0 and
H1(C 0 ⊗Z D) = Z/2Z, Hp(C ⊗Z D) = Hp(C 0 ⊗Z D) = 0 for p /∈ {0, 1}.
27. Let Zp = ker @ 0

p ⊆ Cp, Bp = image @ 0
p+1 ⊆ Cp, and B0

p = Bp−1. Since R
is a principal ideal domain, Problem 20 shows that flat is equivalent to torsion free.
Modules of the complex C are flat by assumption, hence torsion free. Modules of Z
and B0 are R submodules of these, hence are torsion free, hence are flat.
28. The long exact sequence in homology shows that

TorR1 (B0, D) → Z ⊗R D → C ⊗R D → B0 ⊗R D → 0

is exact. Since B0 is flat, Problem 19 shows that TorR1 (B0, D) = 0.
29. For (a), the boundarymap on B0

p⊗R Dq in B0 ⊗R D is @ 0 ⊗1+(−1)p(1⊗@ 00),
and @ 0 = 0 on boundaries in B0

p.
For (b), tensoring with B0 is an exact functor, since B0 is flat. Therefore the

exactness of 0 → Z → D @ 00

→ B0
→ 0 implies the exactness of

0 → (B0 ⊗R Z)n → (B0 ⊗R D)n
(1⊗@ 00)n−→ (B0 ⊗R B

0
)n → 0

for each n. From the exactness of this sequence, we can read off that ker(1 ⊗ @ 00)n
within (B0⊗R D)n is (B0⊗R Z)n and that image(1⊗@ 00)n on (B0⊗R D)n is (B0⊗R B

0
)n ,

which is the same thing as (B0 ⊗R B)n−1.
For (c), the results of (b) show that

Hn(B0 ⊗R D) ∼= ker(1⊗ @ 00)n/ image(1⊗ @ 00)n+1 = (B0 ⊗R Z)n/(B0 ⊗ B)n.

Since tensoring with B0 is exact, the exactness of 0 → B → Z → H(D) → 0
implies the exactness of

0 → B0 ⊗R B → B0 ⊗R Z → B0 ⊗R H(D) → 0

in each degree. Thus B0 ⊗R H(D) = (B0 ⊗R Z)/(B0 ⊗R B), and Hn(B0 ⊗R D) ∼=
(B0 ⊗ H(D))n = (B ⊗R H(D)n−1.
Part (d) is handled in a fashion similar to (c).
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30. For (a), TorR1 (Z , H(D)) = 0 because Z is flat.
In (b), comparison of the exact sequence with kerωn−1 with the exact sequence

displayed before part (a) (but with n replaced by n − 1) shows that kerωn−1 is
isomorphic to TorR1 (H(C), H(D))n−1. Substituting for kerωn−1 and incorporating
the isomorphism into the mapping into Hn(B0 ⊗R D) leads to β 0

n−1 as the one-one
mapping.
In (c), we have

coker(∂ ⊗ 1) = Hn(C ⊗R D)/ image(∂n ⊗ 1) = Hn(C ⊗R D)/ ker(@ 0
n ⊗ 1)

∼= image(@ 0
n ⊗ 1) = kerωn−1 ∼= TorR1 (H(C), H(D))n−1.

The composition of maps leading from Hn(C ⊗R D) to Hn(B0 ⊗R D) has to be
@ 0
n ⊗ 1, and thus β 0

n−1βn−1 = @ 0
n ⊗ 1. The map βn−1, apart from isomorphisms, is

onto because q was constructed as onto.
Part (d) is completely analogous, and the resulting map αn is one-one.
For (e), we know thatα is one-one and thatβ is onto. Also, we haveβ 0

n−1βn−1αnα
0
n

= (@ 0
n ⊗ 1)(∂n ⊗ 1) = 0. Since β 0

n−1 is one-one and α0
n is onto, βn−1αn = 0.

Finally suppose that x is in kerβn−1. Then x is in ker(β 0
n−1βn−1) = ker(@ 0

n ⊗ 1) =
image(∂n ⊗ 1) = image(αnα0

n) = imageαn . This completes the proof of exactness.
31. This is immediate.
32. Let X = {Xn} and Y = {Yn}. Then Morph(X,Y ) is the subgroup ofQ∞
n=−∞Hom(Xn,Yn) consisting of those elements in the product satisfying the chain

map conditions. A zero object is any tuple of 0’s, and certainly product and coproduct
make sense. One readily verifies that the tuple of kernels of a chain map furnishes a
kernel for a chain map and that the tuple of cokernels furnishes a cokernel.
33. The additional objects and morphisms at the top of the extended diagram are

C0 = 2Z/8Z, B0 = Z, k given by 2 mod 8 7→ 2 mod 8,ek given by × 2, e√ given by
1 7→ 2 mod 8, and eϕ given by × 4. Since the composition ofek followed by β = × 2
is not 0, (B0,ek) cannot be the kernel of β.
The additional objects and morphisms at the bottom of the extended diagram are

A0
0 = Z/4Z, B0

0 = Z/16Z, p given by 1 7→ 1 mod 4, ep given by 1 7→ 1 mod 16, eϕ0

given by 1 mod 4 7→ 4 mod 16, and e√ 0 given by 1 mod 16 7→ 1 mod 4.

34. We give the argument only for Hom(M, · ). Let 0 → A
ϕ
→ B

√
→ C → 0 be

a given exact sequence, and form the sequence

0 −−−→ Hom(M, A)
Hom(1,ϕ)

−−−−−−−→ Hom(M, B)
Hom(1,√)

−−−−−−−→ Hom(M,C).

We are to show that Hom(1,ϕ) is one-one and that exactness holds at Hom(M, B).
If σ is in Hom(M, A) with Hom(1,ϕ)(σ ) = 0, then ϕσ = 0, and it follows that

σ = 0 because ϕ is a monomorphism.
For the exactness at Hom(M, B), we use Theorem 4.42e. We know immediately

that Hom(1,√)Hom(1,ϕ) = Hom(1,√ϕ) = Hom(1, 0) = 0. Thus suppose that
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τ ∈m Hom(M, B) has Hom(1,√)τ ≡ 0. This condition means that √τ ≡ 0. Since
the given sequence is exact, Theorem 4.42e produces some τ 0 ∈m A with ϕτ 0 ≡ τ .
In turn, this says that Hom(1,ϕ)τ 0 ≡ τ . By Theorem 4.42, we have exactness at
Hom(M, B).
35. We give the proof only that the splitting of exact sequences as indicated

implies that P is projective. Thus suppose that a morphism τ ∈ Hom(P, B) and an
epimorphism √ ∈ Hom(C, B) are given. We are to produce σ ∈ Hom(P,C) with
τ = √σ . Let (W, e√,eτ ) be a pullback of (√, τ ). Then τ e√ = √eτ , and Proposition
4.40 shows that e√ is an epimorphism. Then it follows that

0 → domain(ker e√)
kere√
−→ W

e√
−→ P → 0

is exact, and it must split by assumption. Thus there exists ρ ∈ Hom(P,W ) with
e√ρ = 1P . Put σ = eτρ. Then √σ = √eτρ = τ e√ρ = τ1P = τ , as required.

Chapter V

1. If ξ is a root of F(X), then the given formula shows that D(ξ) is−23 and−31
in the two cases. These contain no square factor and therefore equal DK in the two
cases.
2. For (a), let G(X) = F(X + 2

3 ) = X3 − 4
3 X + 22

27 . Then F(X) and G(X)

have the same discriminant, and the discriminant for G(X) is given by the formula
of Problem 1. It is −44.
For (b), let x = a + bξ + cξ2 be given with a, b, c all in {0, 1}. The matrix of

left-by-x in the ordered basis (1, ξ, ξ2) works out to be

µ a −2c −2b−4c
b a −2c
c b+2c a+2b+4c

∂
,

and the determinant of it is

a3 + 2a2(b + 4c) + 4c3 − 2b(b + 2c)2 + 4ac(b + 2c) + 2bc(a + 2b + 4c).

For x to be twice an algebraic integer, this determinant, which is the norm of x , has
to be≡ 0 mod 8. All the terms are even except possibly the first, and thus a has to be
even. That is, a = 0. The determinant then reduces to 4c3−2b(b+2c)2+4bc(b+2c).
All terms here are divisible by 4 except possibly −2b2. Thus b must be even. That
is, b = 0. The determinant reduces in this case to 4c3. For this to be divisible by 8, c
must be even. That is, c = 0. Proposition 5.2 consequently says that a further factor
of 22 cannot be eliminated from the discriminant.
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3. For (a), Theorem 5.21 and the remarks after it show that every equivalence
class contains an ideal whose norm is < (0.283)D1/2K . Proposition 5.8 shows that
DK = 35 = 243. Thus every equivalence class contains an ideal with norm ≤ 4.
Conclusion (b) is immediate from Theorem 5.6 with F(X) = X3−3. Conclusion

(c) follows because (
3p3−1)( 3p9+ 3p3+1) = (

3p3 )3−1 = 3−1 = 2. Conclusion
(d) is immediate from Proposition 5.10d.
For (e), any nonzero ideal is the product of powers of prime ideals associated with

the various prime numbers. The ones corresponding to the prime numbers 2 and 3 are
principal ideals by (b), (c), and (d). These are the only ones that need to be checked,
according to (a). Thus every nonzero ideal is principal.
4. Conclusion (a) is immediate from Theorem 5.6, since X3 − 7 factors modulo 2

as (X + 1)(X2 + X + 1). For (b), we show that no element x = a + b 3p7+ c 3p49
has norm ±2. Left multiplication by x carries 1 to a + b 3p7+ c 3p49, carries 3p7 to
7c + a 3p7+ b 3p49, and carries 3p49 to 7b + 7c 3p7+ a 3p49. Thus its matrix is

µ a 7c 7b
b a 7c
c b a

∂
.

The determinant is a3 + 49c3 + 7b3 − 21abc, which is congruent modulo 7 to a3.
Modulo 7, the cubes are 0 and ±1, and thus the congruence a3 ≡ ±2 mod 7 has no
solution.
5. Since the element

p
−1+

p
−5 has degree 4 over Q, the minimal polynomial

has degree 4. The product of (X − (+
p

−1 +
p

−5 )) and the Galois transforms
(X − (+

p
−1−

p
−5 )), (X − (−

p
−1+

p
−5 )), and (X − (−

p
−1−

p
−5 )) is

X4 + 12X2 + 16, which is in Z[X].
6. Theminimal polynomial of ξ = 1

2 (
p

−1+
p

−5 ) is H(X) = X4+2−212X2+
2−416 = X4 + 3X2 + 1 with |D(ξ)| = |NK/Q(H 0(ξ))|. Here H 0(X) = 4X3 +
6X = 2(2X2 + 3). Since ξ4 + 3ξ2 + 1 = 0, we have ξ2 = − 3

2 ± 1
2
p
5; thus

2ξ2 + 3 = ±
p
5. So |D(ξ)| = |NL/Q(±2

p
5 )|. The four conjugates of

p
5 are

+
p
5 twice and−

p
5 twice, and the norm is the product of the four conjugates. Thus

|D(ξ)| = |NL/Q(±2
p
5 )| = 2452.

7. These follow immediately by applying Theorem 5.6 to the indicated prime, 2
or 5, and the respective polynomials: X2 + 5, X2 + X − 1, and X2 + 1.
8. WithQ ⊆ K0 ⊆ L, the (e, f, g) forL/Q has to be entry by entry∏ the triple for

K0/Q. The triple for K0/Q is given in Problem 7b as (1, 2, 1) for p = 2. Similarly
from Q ⊆ K00 ⊆ L, the (e, f, g) for L/Q has to be ∏ (2, 1, 1). Thus e ∏ 2, f ∏ 2,
and g ∏ 1. Since e f g = 4, equality must hold throughout: (e, f, g) = (2, 2, 1).
This proves (a). Similarly for (b), we must have (e, f, g) ∏ (2, 1, 1) and (e, f, g)

∏ (1, 1, 2). Thus (e, f, g) ∏ (2, 1, 2). Since e f g = 4, (e, f, g) = (2, 1, 2).
9. In (a), Problem 8a shows that (2)T = P2, and we know that (2)R = ℘22 . Then

P2 = (2)T = (2)RT = ℘22T = (℘2T )(℘2T ). Since P is prime, P divides ℘2T .
For the equality P2 = (℘2T )2 to hold, we must have P = ℘2T .
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Similarly (5)T = P21 P
2
2 and (5)R = ℘25 . Then P

2
1 P

2
2 = (5)T = (5)RT =

℘25T = (℘5T )2. Since P1 and P2 are prime, P1 and P2 must divide ℘5T . Therefore
P1P2 = ℘5T .
In (b), conclusion (a) shows that no prime ideal of R that divides (2)R or (5)R

ramifies in T . Since D(ξ) is divisible by no prime numbers other than 2 and 5,
Theorem 5.6 shows that no prime ideal (p) of Z ramifies in T . Hence no prime ideal
of R containing such a prime (p) of Z ramifies in T .
10. Roots of unity must map to roots of unity under the embedding, and there

are only two roots of unity within R. Hence there are no real-valued embeddings
when p > 2. Thus the embeddings come in complex-conjugate pairs. The product
σ (x)σ (x) is positive for x > 0, and NK/Q(x) is the product of these expressions over
all such pairs.
11. For (a), F(X) is the minimal polynomial of ≥ k when GCD(k, p) = 1. Then

≥ k − 1 is a root of G(X) = F(X + 1) of the correct degree, and therefore G(X) is
the minimal polynomial of ≥ k − 1. If H(X) is the field polynomial of an element η,
then NK/Q(η) = (−1)[K:Q]H(0). In this instance [K : Q] = p − 1 is even. Taking
η = ≥ k − 1, we obtain NK/Q(≥ k − 1) = G(0) = F(1) = p.
For (b), ≥ − 1 divides ≥ k − 1, and hence the quotient is in R. If l is chosen with

lk ≡ 1 mod p, then ≥ − 1 = ≥ lk − 1, and ≥ k − 1 divides ≥ lk − 1. Therefore the
reciprocal of (≥ k − 1)/(≥ − 1) is in R.
12. With F(X) and G(X) as in the previous problem, F 0(≥ k) = G 0(≥ k − 1).

Here F(X) = (X p − 1)/(X − 1) makes G(X) = X−1[(X + 1)p − 1] and G 0(X) =
X−2[pX (X + 1)p−1 − (X + 1)p + 1]. Since ≥ kp = 1,

F 0(≥ k) = G 0(≥ k−1) = (≥ k−1)−2[p(≥ k−1)≥ k(p−1)−≥ kp+1] = (≥ k−1)−1 p≥ k(p−1).

The result now follows from the formula D(≥ k) = F 0(≥ k).
13. Continuing from the previous problem gives

NK/Q(F 0(≥ k)) = NK/Q(≥ k − 1)−1 pp−1NK/Q(≥ k(p−1)) = pp−2.

The result follows from the computation (−1)(p−1)(p−2)/2D(≥ k) = NK/Q(D(≥ k)) =
NK/Q(F 0(≥ k)) = pp−2.

14. For (a), we have ∏k = (1 − ≥ )k =
Pk

j=0 (−1) j
°k
j
¢
≥ j and ≥ k = (1 − ∏)k =

Pk
j=0 (−1) j

°k
j
¢
∏ j . Conclusion (b) is a version of Problem11b because the conjugates

of ≥ are the powers ≥ j for 1 ≤ j ≤ p − 1. For (c), we have p =
Qp−1

k=1 (1− ≥ k) =
Qp−1

k=1 (1−≥ )uk = (1−≥ )p−1
Qp−1

k=1 uk , where uk = (1−≥ k)/(1−≥ ). Each element
uk is a unit by Problem 11c, and (c) follows.
15. The identity (p)R = (1 − ≥ )p−1 is immediate from Problem 14c. The

extension K/Q being Galois, we know that the prime decomposition of the ideal
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(p)R is of the form (p)R = Pe1 · · · Peg , where p − 1 = e f g and f is the common
value of all dimFp (R/Pj ). This latter fact says that no factorization of (p)R into
proper ideals can have more than p − 1 factors, and p − 1 factors occur only if all
factors are prime. In this case, (1− ≥ ) is a proper ideal because NK/Q(1− ≥ ) = p.
Thus each factor (1− ≥ ) is prime.
16. Following Proposition 5.2, suppose that aj is an integer for each j with

s ≤ j ≤ k such that 0 ≤ aj ≤ p − 1, as 6= 0, ak = 1, and

as∏s + a1∏s+1 + a2∏s+2 + · · · + ak−1∏k−1 + ak∏k = pr

with r in R. Subtracting all terms from the left side but the first and applying
Problem 15 shows that as∏s lies in (∏)s+1. Thus (as)(∏)s ⊆ (∏)s+1. Canceling gives
(as) ⊆ (∏), and this inclusion is a contradiction becauseGCD(N ((as)), N ((∏))) = 1.
17. Each step toward a Z basis multiplies a discriminant by a square, and it is

enough to prove that a primitive element ξ forK/Q lying in R has sgn D(ξ) = (−1)r2 .
We are thus to compute the sign of

Q
i< j (σi (ξ)−σj (ξ))2. For a given pair (i, j), the

factor (σi (ξ)−σj (ξ))2 is matched by its complex conjugate elsewhere in the product
unless σi and σj are both real or are complex conjugates of one another. The factor
and its mate have a positive product, and pair with σi and σj both real contributes a
positive square. If σj = σ i , then σi (ξ) − σj (ξ) is purely imaginary, and its square is
negative. Hence the sign is (−1)r2 .
18. Let g be in Gal(K/Q) = {σ1, . . . , σn}. Replacing each σj by gσj has the

effect of permuting the columns of [σj (αi )]. If the permutation is even, then the
terms contributing to P are the same before and after the permutation; otherwise they
are interchanged. In either case, P + N and PN are fixed. Since P + N and PN
are fixed by the Galois group, they are in Q. The entries σj (αi ) of the matrix are in
R, and thus P and N are in R. Consequently P + N and PN are in Z. The formula
D(0) = (P + N )2 − 4PN shows that D(0) ≡ (P + N )2 mod 4. Any square of a
member of Z is congruent to 0 or 1 modulo 4, and the result follows.
19. Let J be an ideal of S−1R. Proposition 8.47 of Basic Algebra shows that

I = R ∩ J is an ideal in R and that J = S−1 I . Since I1, . . . , Ih is a complete set
of representatives for the equivalence classes, aI = bIj for some j with 1 ≤ j ≤ h.
Let (a)S and (b)S be the principal ideals of S−1R generated by a and b. The fact that
u is in Ij ∩ S means that S−1 Ij = S−1R, and thus

(a)S J = S−1(a)S−1 I = S−1(a)I = S−1(b)Ij
= S−1(b)S−1 Ij = S−1(b)S−1R = (b)S.

(∗)

Hence J is principal. (In fact, the equality shows that aj = b for some j ∈ J .
Hence ba−1 = j is an element of J ⊆ S−1R, the principal ideal (ba−1)S of S−1R is
meaningful, and (ba−1)S ⊆ J . For the reverse inclusion let j ∈ J be given, and use
(∗) to write aj = bx with x ∈ S−1R. Then j = (ba−1)x shows that j is in (ba−1)S ,
and J ⊆ (ba−1)S .)
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20. For (a), write ab = uk . Then a−1 = u−kb exhibits a−1 as in S−1R. For (b),
if u−ma is a unit in S−1R, then u−ma−1 = u−l c for some c ∈ R. Hence ac = ul−m .
Since ac is in R and u is not, l − m = k with k ∏ 0. Then a divides uk .
21. For (a), write (u)= Pe11 · · · Pell . Then (uh) = (Ph1 )e1 · · · (Phl )el = (be11 · · · bell ).

Thus uh = be11 · · · bell ε for some unit ε in R, each bj divides uh , and the conclusion
follows from Problem 20a.
For (b), we have (a)(b) = (u)k = Pke11 · · · Pkell . Since a and b are in R, this

equality implies that (a) = Pr11 · · · Prll . For each j , use the division algorithm to
write rj = njh + tj with 0 ≤ tj < h. Then Prjj = (Phj )nj Ptjj = (bj )nj P

tj
j , and

consequently (a) = (d)Pt11 · · · Ptll as required, where d =
Ql

j=1 b
nj
j .

The argument for (c) was given in parentheses at the end of the solution of
Problem 19.
22. Because of Problem 21d, we now have (a) = (d)(ci ). Thus a = dciε for

some unit ε in R. Since uk = ab = cidbε, ci divides uk and is a unit in S−1R by
Problem 20a.
23. Problem 22 shows that any unit of S−1R is a product of a power of u by a

product
Ql

j=1 b
nj
j , an element ci , and a unit ε of R. Problem 21a shows that each bj is

a unit in S−1R, and Problem 22 shows that each ci is a unit in S−1R. Thus (S−1R)×

is generated by u, the finitely many elements bj and ci , and a finite set of generators
of R×. (The group R× is finitely generated by the Dirichlet Unit Theorem.)
24. G(4/ξ) = (64ξ−3 − 16ξ−2 + 8ξ−1 + 8) = 8ξ−3(ξ3 + ξ−2 − 2ξ + 8) =

8ξ−3F(ξ) = 0. The element η is in K, and it is exhibited as the root of a monic
polynomial in Z[X]; therefore it is in R.
25. For (a), 0 = F(ξ)/ξ = ξ2 + ξ − 2 + 8ξ−1 = ξ2 + ξ − 2 + 2η. For (b),

0 = G(η)/η = η2−η+2+8/η = η2−η+2+2ξ . Solving the first equation for ξ2
gives the first formula in the table, and solving the second equation for η2 gives the
second formula in the table. The formula ξη = 4 is immediate from the definition
η = 4/ξ . The formulas in the table together show that any integer polynomial in ξ

and η reduces to a Z combination of 1, ξ , and η.
Conclusion (c) is clear. For (d), we have η = 1 − 1

2 (ξ
2 + ξ), and this is not in

Z({1, ξ, ξ2}). For (e), we have D((1, ξ, ξ2)) = −22·503. Since the only square factor
is 22, it follows that Z({1, ξ, ξ2}) has index 2 in Z({1, ξ, η}) and that D((1, ξ, η)) =
−503. This latter discriminant is square free and thus cannot be reduced further.
Therefore DK = −503, and {1, ξ, η} is a Z basis of R. Finally the formula η =
1− 1

2 (ξ
2 + ξ) shows that Z({1, ξ, η}) = Z({1, ξ, 12 (ξ

2 + ξ)}).

26. Application of ϕ to ξ2 = ξ + 2 − 2η gives ξ
2

= ξ . Similarly η2 = η. The
elements of a finite field of characteristic 2 fixed by the squaring map are 0 and 1.
Hence ξ and η are in {0, 1}. Since F = ϕ(R) is generated by the values of ϕ on 1,
ξ , and η, F has two elements. From ξη = 4, it follows that ξη = 0. Thus ξ and η

cannot both be 1, and the only possibilities are the ones in the table.
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27. Define ϕ : R → F2 on ξ and η by one of the lines of the table of Problem 26,
and set ϕ(1) = 1. Then ϕ extends to a well-defined additive homomorphism on
Z({1, ξ, η}). We have to check that ϕ respects multiplication. It is enough to do so
on additive generators. Thus we have to check that ϕ(ξ2) = (ϕ(ξ))2, that ϕ(η2) =
(ϕ(η))2, and that ϕ(ξη) = (ϕ(ξ))(ϕ(η)). Thus, for example, in the first one we
want −ϕ(ξ) + 2ϕ(1) − 2ϕ(η) = (ϕ(ξ))2. If we write the values of ϕ as triples
corresponding to the three possible ϕ’s, the left side is −(0, 1, 0) + 2(1, 1, 1) −
2(0, 0, 1) ≡ (0, 1, 0) mod 2, while the right side is (0, 1, 0)2 ≡ (0, 1, 0) mod 2.
These match, and this relation is verified. The other two relations are verified in
similar fashion.
28. The norm of a kernel equals the number of elements in the image of the

homomorphism, which is 2 in each case. Since each ideal has prime norm, the
ideal is prime. Moreover, these ideals contain (2)R and hence all figure into the
prime factorization of (2)R. On the other hand, we must have

P
ei fi = 3 for

the decomposition, and we have seen that there are at least three terms. So there
are exactly three terms, and we must have ei = fi = 1 in each case. Therefore
(2)R = P0,0P1,0P0,1.
29. For (a), the elements listed are additive generators of the ideal in each case,

and hence they are also ideal generators. For (b), η = η(ξ + 1) − 2 · 2 shows that
η is in the ideal (2, ξ + 1). Thus (2, ξ + 1, η) ⊆ (2, ξ + 1). The reverse inclusion
is clear. In (c), the argument for (2, η + 1) is completely symmetric. Let us see that
(2, ξ, η) = (2, ξ − η). The inclusion⊇ is clear. For the inclusion⊆, we use the two
formulas

(−1− η)2+ (−ξ)(ξ − η) = −2− 2η − (−ξ + 2− 2η) + 4 = ξ,

(3+ ξ)2+ (−η)(ξ − η) = 6+ 2ξ − 4+ (−2ξ − 2+ η) = η.

30. For (a), the field polynomial of θ −q is H(X +q), and so the norm of θ −q is
−H(0+q), as required. In (b), the first two formulas come from the field polynomials
F(X) and G(X) of ξ and η, and the other formulas follow from (a).
In (c), the fact that N ((ξ)) = |NL/Q(ξ)| = 8 shows that the prime factorization

of (ξ) is into prime ideals whose norms are powers of two. Problem 28 shows that
all such ideals have been identified, and thus (ξ) = Pa0,0P

b
1,0P

c
0,1 for some exponents

∏ 0. Comparing norms shows that a + b + c = 3. Similar remarks apply to (η).
In (d), use of Problem 28 shows that P20,0P

2
1,0P

2
0,1 = ((2)R)2 = (4)R = (ξ)(η) =

Pa+α
0,0 Pb+β

1,0 Pc+∞
0,1 . Then a+α = 2, b+β = 2, and c+∞ = 2 by unique factorization.

For (e), we observe from the kernels, or else we see from Problem 29a, that ξ is not
in P1,0 and thatη is not in P0,1. Hence P1,0 doesnot appear in theprime factorizationof
(ξ), and P0,1 does not appear in the prime factorization of (η). Therefore b = ∞ = 0.
For (f), the results of (e) and (d) combine to show that a + α = 2, β = 2, and

c = 2. Since a + c = 3 and α + β = 3, a = α = 1.
31. For (a), we see immediately from Problem 29a that ξ + l lies in P1,0 but

not in P0,0 and not in P0,1. For (b), the formula |NK/Q(ξ + 3)| = 22 shows that
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(ξ + 3) is the product of exactly two of the prime ideals of norm 2; thus (a) implies
that (ξ + 3) = P21,0. Similarly |NK/Q(ξ − 1)| = 23, and (a) gives (ξ − 1) = P31,0.
Conclusion (c) is immediate from Problem 29a.
For (d), we have (2)R ⊆ (2, ξ); thus (2, ξ) is of the form Pa0,0P

b
1,0P

c
0,1 with

a + b + c ≤ 3. Since ξ is not in P1,0, b = 0. Since ξ is in P0,0 and P0,1, we must
have a > 0 and c > 0. Since the inclusion (2)R ⊆ (2, ξ) is proper

°
because ξ is not

in (2)R = 2Z({1, ξ, η})
¢
, N ((2, ξ)) ≤ 4. Thus a = c = 1, and (2, ξ) = P0,0P0,1.

For (e), Problem 29a shows that P0,1 = (2, ξ, η + 1). Thus P20,1 contains 4 and
ξ(η + 1) = 4 + ξ , hence ξ . If P20,1 contains also ξ + l with l ≡ 2 mod 4, then it
contains ξ + 2, hence 2. This would mean that P20,1 ⊇ (2, ξ) = P0,0P0,1. Since P20,1
and P0,0P0,1 both have norm 4, they would have to be equal, and we would obtain
P0,1 = P0,0, contradiction.
For (f), Problem 30b gives N ((ξ + 2)) = 8. In view of (c), (ξ + 2) = Pa0,0P

c
0,1

with a + c = 3 and c ∏ 1. Part (d) shows that c ≤ 1. Thus (ξ + 2) = P20,0P0,1. The
argument for (ξ − 2) is similar.
32. For (a), this kind of argument is done in a parenthetical remark at the end of

the solution of Problem 19. For (b), we have (ξ +2) = r20,0P0,1 and (ξ −1) = P31,0 =
(ξ + 3)P1,0. Thus the same kind of argument shows that P0,1 and P1,0 are principal.
For (c), we factor X3 + X2 − 2X + 8 modulo 3; there is no root in F3, and hence

the reduced polynomial is irreducible. By Theorem 5.6 the only prime ideal whose
norm is a power of 3 has norm 33.
For (d), we factor X3+ X2− 2X + 8 modulo 5 as (X + 1)(X2− 2), and Theorem

5.6 gives us one prime ideal of norm 5 and one of norm 52. The one of norm 5,
according to the theorem, is (2, 1+ ξ). For (e), the technique of Problem 30a shows
that N ((1+ ξ)) = 10. Thus the only possibility for the prime factorization of (1+ ξ)

is as (2, 1+ ξ)P , where P is one of the three ideals of norm 2. For (f), since (1+ ξ)

and P are principal, (2, 1+ ξ) is principal, by the same technique as in earlier parts.
For (g), the prime factorization of nonzero ideals allows us to conclude that every

nonzero ideal of norm ≤ 6 is principal. Application of the technique after Theorem
5.21 shows that every ideal class has a representative with norm< 6.35, hence norm
≤ 6. All such ideals are principal, and therefore R is a principal ideal domain.

Chapter VI

1. Apply the Cauchy criterion. Since |an +an+1+· · ·+am |p ≤ maxn≤k≤m |ak |p,
the series is Cauchy, hence convergent, if and only if the terms tend to 0.
2. In (a), the equality GCD(3, 2n) = 1 implies that there exist integers xn and yn

such that 3xn − 2n yn = 1. Then xn − 1
3 = 2n3−1yn . Applying the 2-adic absolute

value gives |xn − 1
3 |2 = 2−n|yn|2 ≤ 2−n , and this tends to 0. For example take

xn = 1
3 (2

2n−1 + 1). In (b), the argument with a
b replacing

1
3 is similar: to get
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|x − a
b |2 ≤ 2−n , start by finding x and y with bx − 2n y = a.

3. Write ideles as tuples indexed by ∞, 2, 3, 5, . . . . If q is in Q, then ∂(q) =
(q, q, q, q, . . . ). If this is to be in R× ×

Q
p Z×

p , then the only restriction on the first
coordinate is that q 6= 0, but the other coordinates are restricted by |q|p = 1 for all
primes p. This means that q in lowest terms has no p in either the numerator or the
denominator. So q = ±1. This proves (a).
In (b), let (x∞, x2, x3, . . . ) be in I. Since |xp|p 6= 1 for only finitely many p, there

exists a unique positive rational q such that |q|p = |xp|p for all p. Define zp = xpq−1

as a member of Q×
p . Then |zp|p = |xp|p|q|−1p = 1 shows that |zp|p = 1 for all p.

Finally define r = x∞q−1 as a member of R×. Then (r, z2, z3, . . . ) is in I(S∞), and
(x∞, x2, x3, . . . ) = (q, q, q, . . . )(r, z2, z3, . . . ).
4. In (a), the norm of the ideal divides the norm of any element, and if the

norm of the ideal is prime, then the ideal is prime. With K = Q(
p

−5 ), we have
NK/Q(1±

p
−5 ) = 6, NK/Q(3) = 9, and NK/Q(2) = 4. Therefore N ((1±

p
−5, 3))

divides GCD(6, 9) = 3, and N ((1±
p

−5, 2)) divides GCD(6, 4) = 2. One checks
that these ideals are not all of R, and then the respective norms are 3 and 2. So
the ideals are prime. In (b), (1 +

p
−5 ) = (1 +

p
−5, 2)(1 +

p
−5, 3), and (3) =

(1+
p

−5, 3)(1−
p

−5, 3).
In (c), 13 (1+

p
−5 )R = (1+

p
−5, 2)(1+

p
−5, 3)(1+

p
−5, 3)−1(1−

p
−5, 3)−1

= (1+
p

−5, 2)(1−
p

−5, 3)−1, and (1+
p

−5, 3) does not appear.
In (d), 1+

p
−5
3 = 2(1+

p
−5 )

2·3 = 2(1+
p

−5 )

(1+
p

−5 )(1−
p

−5 )
= 2

1−
p

−5 .

5. The mapping ϕ : 1 + Pnv → Pnv /Pn+1v induced by 1 + x 7→ x + Pn+1v is
a homomorphism from 1 + Pnv under multiplication into Pnv /Pn+1v under addition
because the equalities ϕ(1+ x) = x + Pn+1v , ϕ(1+ y) = y + Pn+1v , and

ϕ
°
(1+ x)(1+ y)

¢
= ϕ(1+ x + y + xy)

= x + y + xy + Pn+1v = x + y + Pn+1v

show that ϕ
°
(1 + x)(1 + y)

¢
= ϕ(1 + x) + ϕ(1 + y). The kernel of ϕ is the set of

all 1+ x with x ∈ Pn+1v , i.e., 1+ Pn+1v , and the image is certainly all of Pnv /Pn+1v .
6. The composition I1/∂(K×) → I/∂(K×) → I/P induced by the inclusion

I1 → I and the passage from I to I discussed in Section 10 is onto I/P because the
composition is affected by only the nonarchimedean places and because any member
of I can be adjusted at the archimedean places so as to be in I1. In addition, the
composition is continuous if I/P is given the discrete topology. Since I1/∂(K×) is
compact, the discrete space I/P has to be compact and must be finite.
7. Fix a finite subset S of places containing S∞. Then the projection of

Q
w∈S K×

w

to K×
v is continuous for each v ∈ S. Since also the inclusion K×

v → Kv is continuous,
the composition

Q
w∈S K×

w → Kv is continuous. Thus the corresponding mappingQ
w∈S K×

w →
Q

w∈S Kw is continuous. In similar fashion
Q

w/∈S Z×
w → Zv is a
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continuous function as a composition of continuous functions. Thus
Q

w/∈S Z×
w →Q

w/∈S Zw is continuous. Putting these two compositions together shows that
IK (S) → AK (S) is continuous, and therefore IK (S) → AK is continuous. Since
this is true for each S, it follows that IK → AK is continuous.
8. Each xn lies inAQ(S∞), which is an open set inAQ. For each prime p, xn,p = 1

if n is large enough, and also xn,∞ = 1 for all n. Since AQ(S∞) has the product
topology, {xn} converges to (1). On the other hand, if {xn} were to converge to some
limit x in IQ, then x would have to lie in some I(S), and the ideles xn would have to
be in I(S) for large n. But (xn,v) is not in I(S) as soon as v is outside S.
9. For fixed g in G, we have d(8(gx)) = d(8(g)8(x)) = d(8(x)), and hence

d(8( · )) and d( · ) are Haarmeasures onG. Any twoHaarmeasures are proportional,
and the result follows.
10. In (a) the equality is trivial if c1c2 = 0. When c1c2 6= 0, we have d(c1c2x) =

|c1c2|F dx and also d(c1c2x) = |c1|Fd(c2x) = |c1|F |c2|F dx , and it follows that
|c1c2|F = |c1|F |c2|F in this case as well.
The proof of continuity is harder (but is essential tomake sense out of (b)). We first

check continuity at each c0 6= 0. Let f be a continuous real-valued function vanishing
off a compact set S, and let N be a compact neighborhood of c0 not containing 0. If c
is in N , then f (c−1x) is nonzero only for x in the compact set NS. Let ≤ > 0 be given.
Continuityof (c, x) 7→ f (c−1x) allowsus tofind, for each x in NS, an open subneigh-
borhood Nx of c0 and an open neighborhoodUx of x such that | f (c−1y)− f (c−10 x)| <

≤ for c ∈ Nx and y ∈ Ux . Then | f (c−1y) − f (c−10 y)| < 2≤ for c ∈ Nx and y ∈ Ux .
The open sets Ux cover NS. Forming a finite subcover and intersecting the cor-
responding finitely many sets Nx , we obtain an open neighborhood N 0 of c0 such
that | f (c−1y) − f (c−10 y)| < 2≤ for c ∈ N 0 whenever y is in NS. As a result,
c 7→

R
V f (c−1x) dx is continuous at c = c0. Therefore c 7→ |c|V

R
V f (x) dx is

continuous at c0, and so is c 7→ |c|V .
To prove continuity at c = 0, we are to show that limc→0

R
V f (c−1x) dx = 0 for

f as above. LetU be any compact neighborhood of 0 in V . Find a sufficiently small
neighborhood N of 0 in V such that c ∈ V implies that cS does not meet Uc. Then
c−1Uc ∩ S = ∅. For such c’s, we have

Ø
Ø R

V f (c−1x) dx
Ø
Ø =

Ø
Ø R

U f (c−1x) dx
Ø
Ø ≤

k f ksup (dx(U)), and the desired limit relation follows.
For (b), we have d(cx)/|cx |F = (|c|F dx)/(|c|F |x |F ) = dx/|x |F . For (c), |x |F =

|x | if F = R, and |x |F = |x |2 if F = C. For (d), |x |F = |x |p if F = Qp. For (e),
we have I = pZp, and therefore the Haar measure of I is the product of |p|p = p−1

times the Haar measure of Zp. Hence the Haar measure of I is p−1.
11. If F has characteristic p0 6= 0, then the sum 1 + · · · + 1 with p0 terms is 0

in R, and it must be 0 in R/p. So R/p must have characteristic p0. Thus any such
p0 6= 0 must be p.
12. In (a), apply Corollary 6.29 with f (X) = Xq−1 − 1 in R[X]. Every nonzero

ā is a simple root of the reduced polynomial f (X) = Xq−1 − 1 in Fq [X], simple
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because (q − 1)(ā)q−1 6= 0. The corollary produces a root a of f (X) whose image
in R/p is ā. In this way we obtain q − 1 distinct roots of 1 in R, each corresponding
to a different coset in R/p. Together with 0, these exhaust the cosets of R/p.
In (b), if F has characteristic p, then raising to the pth power is a field mapping

of F into itself. Since q = pm , raising to the q th power is the m-fold iterate of
a field map and is a field map. If a and b are two (q − 1)st roots of 1 in R, then
(a ± b)q = aq + (±b)q = a + (±b), and so a ± b is a (q − 1)st root of 1. Since the
nonzero elements of E are closed under inverses, E is a subfield.
13. In (a) let x be in R. Problem 12 produces a unique a0 ∈ E with x−a0 in p, i.e.,

with v(x − a0) ∏ 1. Then v
°
t−1(x − a0)

¢
∏ 0, and Problem 12 produces a unique

a1 in E with t−1(x − a0) − a1 in p. Continuing in this way, we obtain a0, . . . , aN in
E with

t−1(t−1(· · · (t−1(x − a0) − a1) − · · · ) − aN−1) − aN

in p. Thus v
°
x −

PN
k=0 aktk

¢
∏ N + 1. Since F is complete,

P∞
k=0 aktk converges

with sum x . The statement about the value of v is clear.
In (b), the part about the series giving an element in R is immediate fromProblem1,

since tk has limit 0. The operations on R nowmatch those on Fq [[t]], and the isomor-
phism follows. For (c), let x be givenwith x /∈ R. Set v(x) = −N . Then v(t N x) = 0,
andwecanapply (a) towrite t N x =

P∞
k=0 aktk . Then x =

P∞
k=0 aktk−N , as required.

14. In (a), the inclusion of the integers into R, followed by passage to the quotient
R/p, is an additive homomorphism. Since R/p has order q, q must map to the 0
coset, namely p.
Part (a) shows that v(q) ∏ 1. Since v(q) = v(pm) = mv(p), v(p) is positive,

and (b) is proved. The same argument as in the proof of Ostrowski’s Theorem shows
that v(p0) = 0 for all prime numbers other than p, and then (c) is immediate. For
(d), it is enough to check equality of the absolute values in question on the element
p, and for that we have |p|1/(mv0)

F = q−v(p)/(mv0) = q−1/m = p−1.
For (e), the map of Q0 to Q, when composed with the completion Q → Qp, is a

homomorphism of valued fields into a complete field. It therefore extends uniquely
as a homomorphism of the closure Q0 into Qp. The dense set Q0 maps to the dense
set Q, and hence the extended map is an isomorphism.
Part (f) is just a repetition of the argument in Problems 13a and 13c. In (g), let

x =
P∞

k=0 aktk be the expansion of f , and put cj0 =
Pv0−1

k=0 aktk . Since v(t) = 1, we
obtain v(x − cj0) ∏ v(tv0) = v0v(t) = v0. Therefore v(p−1(x − cj0)) ∏ 0. Iterating
this procedure as in Problem 13a, we obtain a convergent expansion x =

P∞
k=0 cjk pk .

For (h), we then have x =
P∞

k=0 cjk pk =
Pl

j=1 cj
P

{k| jk= j} pk , and we see that x
lies in

Pl
j=1 Q0cj . Therefore dim[F : Q0] ≤ l.

15. Part (a) is immediate, and (b) follows from Theorem 6.33. For (c), R/p
corresponds to extracting the constant term from a power series in t , and thus L/℘ ∼=
Fq f is of dimension f over R/p ∼= Fq . The computation ℘T = tUT = tT =
t RT = pT = Pe shows that K/L has ramification index e. For (d), each index
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(residue class degree and ramification index) for K/F is the product of that index for
K/L and that index for L/F . So e for L/F is 1, and f for K/L is 1.
16. For (a), the irreducible polynomial g(X) has to be separable, and therefore all

of its roots in kK are simple. Application of Hensel’s Lemma in the form of Corollary
6.29 produces α. For (b), the polynomial g(X) is monic with coefficients in R, and
its root α is therefore a member of L integral over R. Thus α lies in U . The natural
field mapU/℘ → T/P takes u+℘ to u+ P , hence takes α+℘ to α+ P = α. Thus
we can regard α as a member of kL . Since kF and α generate kK by construction of
α, kL = kF .
For (d), let us use subscripts on the indices e and f to indicate the field extension

in question. Then we have eL/F fL/F = [L : F] = deg g(X) = deg g(X) =
[kK : kF ] = fK/F on the one hand and fK/F = [kK : kF ] = [kL : kF ] = fL/F on
the other hand. The two chains of equalities together show that eL/F = 1, and the
second one in combination with fK/F = fK/L fL/F shows that fK/L = 1.
17. In (a), the element yj exists and is unique because of the nondegeneracy of the

trace form, which holds because K/F is separable (Theorem 8.54 and Section IX.15
of Basic Algebra).
In (b), the expression for the zk’s in terms of the yj ’s shows that

Pn
k=1 Rzk ⊆Pn

j=1 Ryj . The assumption det A = ±1 implies that B = A−1 lies in Mn(R). Since
yj =

P
k Bkj zk , we obtain

Pn
j=1 Ryj ⊆

Pn
k=1 Rzk .

For (c), it is evident that the degree is atmost n−1. Write g(X) =
Q

j (X−ξj ). The
opening computations of Section V.4 show that g0(ξi ) =

Q
j 6=i (ξi − ξj ). Therefore

the value of the left side at ξk for the identity in question is
nX

i=1

Q
j 6=i (ξk − ξj )

Q
j 6=i (ξi − ξj )

.

The numerator is 0 unless i = k. Thus only the i th term makes a contribution, and its
value, namely 1, matches the value of the right side. Then (d) is a routine computation.
For (e), the rational expression (1 + c1X + · · · + cn Xn)−1 on the left side is

expanded in series using (1 + Z)−1 = 1 − Z + Z2 − Z3 + · · · . Thus the left side
is the sum of Xn and a series beginning with a multiple of Xn+1. The right side isP∞

k=0 TrK/F
°
g0(ξ)−1ξ k Xk+1

¢
, and the conclusion of the problem results by equating

the indicated coefficients.
For (f), the result of (e) handles the entries with i + j ≤ n + 1. For those with

n+2 ≤ i+ j ≤ 2n, we write ξ i+ j−2g0(ξ)−1 as ξnξ i+ j−n−2g0(ξ)−1, substitute for ξn
recursively from the field polynomial, and check that the traces are in R by applying
(e). Thus all Ai j are in R.
For (g), conclusion (f) shows that A is triangular with 1’s on the off diagonal, and

hence the determinant of A is ±1. Put zk =
P

j Ajk yj . Since xi = ξ i−1,

TrK/F (zkxi ) =
P

j Ajk TrK/F (yj xi ) = Aik
= TrK/F ((g0(ξ)−1ξ k−1)ξ i−1) = TrK/F ((g0(ξ)−1ξ k−1)xi ).
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Therefore zk = g0(ξ)−1ξ k−1. Combining this equality with (b) shows that bN =P
j Ryj =

P
k Rzk =

P
k Rg0(ξ)−1ξ k−1 = g0(ξ)−1N .

18. For (a), the assumption f = n makes dimkF (kK ) = n. Thus deg g(X) =
deg g(X) = n. Since g(X) is irreducible, so is g(X). The root α of g(X) in K is
such that F(α) is an n-dimensional subspace of K , hence equals K .
For (b), the conclusion bN ⊇ bT follows from the definition. SincebT = D(K/F)−1,

we obtain D(K/F)−1 ⊆ bN = g0(α)−1N ⊆ g0(α)−1T .
For (c), the polynomial g(X) was constructed as irreducible, and g(X) was con-

structed to reduce to g(X). Then g0(α) 6= 0, and it follows that g0(α) is in T but not
P . Thus g0(α) is a unit in T , and g0(α)−1T = T . Then D(K/F)−1 ⊆ T . Since
D(K/F)−1 ⊇ T also, D(K/F)−1 = T , and D(K/F) = T .
19. For (a), we may assume that v(x1) ≤ v(xj ) for j > 1. If v(x1) < v(xj )

for all j > 1, then induction and use of property (vi) of discrete valuations shows
inductively that v(0) = v(x1 + · · · + xm) = v(x1), contradiction.
For (b), the element π is in T , and its minimal polynomial has coefficients in R

because T is integral over R; in turn, the field polynomial is a power of the minimal
polynomial. Since cj is in R, we have vK (cj ) = nvF (cj ), and therefore vK (cj ) is
divisible by n.
For (c), apply (a) to the equality c0πn + c1πn−1+· · ·+ cn = 0 to produce indices

i < j with v(ciπn−i ) = v(cjπn− j ) and with v(ckπn−k) ∏ v(ciπn−i ) for all k. The
equality involving i and j implies that j − i = vK (cj ) − vK (ci ). From i < j ≤ n,
we have n − i > 0. Thus v(ciπn−i ) ∏ v(ciπ) > 0. By (b), v(ciπn−i ) ∏ n. So
v(ckπn−k) ∏ n.
In (d), the right side of the equality j − i = vK (cj ) − vK (ci ) is divisible by n,

by (b), and the left side is between 1 and n. Hence the two sides equal n, and we
conclude that i = 0 and j = n. Thus the equality says that n = vK (cn). Since cn is
in F and since vK = nvF , vF (cn) = 1. Therefore cn is in p but not p2. The inequality
vK (ckπn−k) ∏ n implies that vK (ck) ∏ k. For 1 ≤ k ≤ n, this conclusion implies
that vK (ck) ∏ 1. Since cK is in F and since vK = nvF , vF (ck) > 0 for k ∏ 1. Thus
ck is in p for k ∏ 1.
In (e), the irreducibility is immediate from the Eisenstein irreducibility criterion, R

being a principal ideal domain. Since the field polynomial is a power of the minimal
polynomial, the field polynomial equals the minimal polynomial. Then the degree of
F(π) is n. Since F(π) is an n-dimensional subfield of the n-dimensional field K ,
K = F(π).
Part (f) is proved in the same way as Problem 14g. For (g), the expansion can be

rewritten as
P∞

k=0 ak yk =
P∞

i=0
P
0≤ j<e aei+ j yei+ j =

P
0≤ j<e π j °P∞

i=0 aei+ j∏
i ¢.

The term in parentheses is the most general member of R, and the left side is the most
general member of T . Thus (g) follows.
In (h), conclusion (g) shows that N =

Pn−1
k=0 Rπk equals T , and Problem 17 with

ξ = π shows that bN = g0(π)−1N . ThusD(K/F)−1 = bT = g0(π)−1T . Multiplying
by (g0(π))D(K/F), we obtain D(K/F) = (g0(π)).
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For (i), g0(π) = eπe−1 +
Pn−1

k=1 cn−kkπk−1 = eπe−1 + b. In each term of b,
vK (kcn−k) ∏ evF (cn−k) ∏ e, and vK (πk−1) = k− 1. Thus vK (b) ∏ e. Meanwhile,
vK (eπe−1) = (e − 1) + vK (e). Thus vK (g0(π)) ∏ min

°
(e − 1) + vK (e), vK (b)

¢
,

and property (vi) of discrete valuations shows that equality holds if the two members
(e − 1) + vK (e) and vK (b) of the minimum are unequal. If vK (e) = 0, then the
members are unequal, and we obtain vK (g0(π)) = e − 1. Otherwise, we obtain
vK (g0(π)) ∏ e. We know that D(K/F) = (g0(π)) = Pvk(g0(π)), and Lemma 6.47
follows.

Chapter VII

1. If x and y are members of L purely inseparable over K , then x pe and y pe
0

are
in K for suitable e and e0. Without loss of generality, let e0 ≤ e. Then x pe and y pe

are in K , and hence (x ± y)pe = x pe ± y pe are in K and so are (xy)pe = x pe y pe and
(xy−1)p

e
= x pe y−pe if y 6= 0. So x ± y, xy, and xy−1 are purely inseparable over

K , the last of these if y 6= 0.
2. In view of Proposition 7.10, the given conditions imply that [K (α) : K ] =

pe[K (α pe) : K ] and that X pµ
− α pe is irreducible over K (α pe) for every µ ∏ 0.

Since α pe−µ is a root of this polynomial within K (α) for each µ ≤ e, K (α) has a
chain of subfields

K (α pe) $ K (α pe−1) $ · · · $ K (α p) $ K (α)

in which the consecutive degrees of the extensions are all p. Let β be separable over
K , and let K (α pr ) be the first of these fields to contain β. Arguing by contradiction,
suppose that r < e. Then β and α pr+1 generate K (α pr ) because [K (α pr ) : K (α pr+1)]
is prime. The separabilityofβ over K implies thatβ is separableover K (α pr+1), hence
that K (α pr ) is separable over K (α pr+1), hence that α pr is separable over K (α pr+1).
Since (α pr )p lies in K (α pr+1), α pr is also purely inseparable over K (α pr+1). By
Corollary 7.12, α pr lies in K (α pr+1). This contradicts the fact that the above chain
of subfields is strictly increasing. We conclude that r = e. Hence all elements β

separable over K lie in K (α pe).
3. For suitable integers Ra , we form the tuple z = (Ra + aZ)a∏1, using the

realization of the inverse limit in Proposition 7.27. We have to specify the integers
Ra . The condition for z to lie inbZ, coming from the condition fab ◦ fb = fa when a
divides b, works out to be that Rb − Ra is divisible by a whenever a divides b. After
the integers Ra have been defined for all a, it is enough to check that Rpa − Ra is
divisible by a whenever p is prime.
For n odd, define R2cn = nk + 1, where k is the unique integer from 0 to 2c − 1

such that nk + 1 is divisible by 2c. This k exists and is unique because −n has an
inverse modulo 2c. One checks that R2c+1n − R2cn is divisible by 2c and by n, and
that R2c pn − R2cn is divisible by 2c and by n if p is an odd prime. The definition
makes R2 = 0 and Rq = 1 for every odd prime q, and therefore z is not of the form
zc for any integer c.



694 Hints for Solutions of Problems

4. The first part is immediate from Theorem 7.34. For the second part the group
Gal(R/Q) is trivial. In fact, any member of Gal(R/Q)must fixQ and map squares in
R to squares. It therefore respects the ordering. For any r ∈ R, it fixes each rational
less than r , and hence it fixes r .
5. Use Kn = Q(

pp1, . . . ,
ppn ), where pn is the nth prime, and Proposition 7.30

to see that Gal(K/Q) is an infinite product of groups of order 2. (A problem at the
end of Chapter IX of Basic Algebra can help with this step.) The open subgroups of
index 2 correspond to quadratic extensions ofQ, of which there are countably many.
Since Gal(K/Q) has uncountably many subgroups of index 2, such a subgroup H
exists that is not open. The field extension K/Q is normal, and thus Gal(K/Q) is a
homomorphic image of Gal(Qalg/Q), say by a homomorphism ϕ. Then ϕ−1(H) is
the required subgroup of Gal(Qalg/Q).
6. Suppose I is primary. If b+ I is a zero divisor in R/I , then ab is in I for some

a not in I . Since I is primary, bm is in I for some m. Thus (b+ I )m = bm + I = I ,
and b + I is nilpotent in R/I .
If every zero divisor in R/I is nilpotent, then the ideal 0 in R/I is primary because

whenever (a + I )(b + I ) = I and a + I 6= I , then the nilpotence of b + I implies
that bm + I = I for some m. This says that the 0 ideal 0+ I in R/I is primary.
If the 0 ideal in R/I is primary and if ab is in I with a not in I , then (a+ I )(b+ I ) =

I with a+ I 6= I , and hence (b+ I )m = I for somem, 0 being primary in R/I . This
means that bm is in I , and I is primary.
7. In (a), if xy is in

p
I , then (xy)m is in I for some m, and therefore either xm is

in I or ymn is in I for some n, i.e., either x is in
p
I or y is in

p
I .

In (b), let x be in
p
I , and choose n such that xn is in I . Then xn is in J because

I ⊆ J . Since J is prime, some factor of xn is in J , i.e., x is in J .
8. In (b), R/I ∼= C[y]/(y2). The zero divisors of R/I are cy with c ∈ C, and

(cy)2 = 0 in R shows that cy is nilpotent in R. By Problem 6, I is primary. The
radical P =

p
I is (x, y) by inspection, and this is prime. Since P2 = (x2, xy, y2),

we have P2 $ I $ P . If I = Qn for some prime ideal Q, then I ⊆ Q, and
Problem 7b shows that

p
I ⊆ Q. Since

p
I is maximal in this case, Q has to be P .

In (c), R/P ∼= K [X,Y, Z ]/(XY − Z2, X, Z) ∼= K [Y ], and this is an integral
domain. Hence P is prime. Next, P2 = (x2, xz, z2). Thus xy = z2 lies in P2.
However, x is not in P2, and ym is not in P2 for any m > 0. So P2 is not primary.
9. Let a and b be in R with ab in I and a not in I . To show that I is primary,

we are to show that b is in
p
I . We do this by showing that (b) + I ⊆

p
I . The

ideal (b) + I is proper, since otherwise 1 = cb + x with x ∈ I , which implies that
a = cba + xa is in I , contradiction. Let J be a maximal ideal with (b) + I ⊆ J .
It is enough to show that

p
I ⊆ J ; in fact, then

p
I = J because

p
I is assumed

maximal, and (b) + I ⊆
p
I as asserted. So let u be in

p
I . Then um is in I ⊆ J for

some m, and u is in J because J is prime.
This proves the first part. The second part follows from the observation that if J



Chapter VIII 695

is maximal, then
p
Jn = J . In fact, Jn contains all elements an for a ∈ J . So

p
Jn

has to contain all elements a ∈ J . Since J is maximal and
p
Jn has to be proper,p

Jn = J .
10. In (a), let P be a prime ideal, and suppose that P = I ∩ J nontrivially. If i is

in I but not J and if j is in J but not I , then i j is in P , but i is not in P because i is
not in J and similarly j is not in P because j is not in I .
In (b), I 2 = (x2, xy, y2) is primary by Problem 9. The equality of I 2 with

(Rx + I 2) ∩ (Ry + I 2) holds by inspection.
11. Arguing by contradiction, we can use the Noetherian property to obtain an

ideal I maximalwith respect to the property of not being a finite intersection of proper
irreducible ideals. Since I is not irreducible, I = A∩ B nontrivially. By maximality,
A and B are intersections, and then so is I , contradiction.
12. Let Q be a proper irreducible ideal in R. Then 0 is a proper irreducible

ideal in R/Q. We show that 0 is primary in R/Q, and then Problem 6 shows that
Q is primary. Thus let xy = 0 in R/Q with y 6= 0 in R/Q. We want to see
that some power of x is 0 in R/Q. In R/Q, we form the sequence of annihilators
Ann(x) ⊆ Ann(x2) ⊆ · · · and use the Noetherian property of R and its quotient R/Q
to obtain Ann(xl) = Ann(xl+1) for some l. Let us see that the intersection (xl)∩ (y)
is 0 in R/Q. In fact, if a is in (y), then xy = 0 implies ax = 0, and if a is in (xl), then
a = bxl and 0 = ax = bxl+1, from which we see that b is in Ann(xl+1) = Ann(xl).
Therefore a = bxl = 0 in R/Q. Thus indeed (xl) ∩ (y) = 0. Since 0 is irreducible
in R/Q and (y) 6= 0, we conclude that (xl) = 0 and xl = 0 in R/Q. This is what
we were to show.
13. If ab is in Q and a is not in Q, then ab is in Qi for all i and a is not in Qi0

for some i0. Since Qi0 is primary, bm is in Qi0 for some m, i.e., b is in
p
Qi0 = P .

Since
p
Qi = P for all i , bki is in Qi for some ki depending on i . Taking N to be

the maximum of the integers ki , we see that bN is in each Qi and hence is in their
intersection Q. Thus Q is primary.
Problem 7b shows that

p
Q ⊆ P . On the other hand, if b is in P , we have just

seen that some power bN lies in Q. So b lies in
p
Q. Therefore

p
Q = P .

14. Problem11 shows that every ideal is the finite intersection of proper irreducible
ideals, and Problem 12 shows that these are primary. Thus if I is given, we have
I =

T
Qi with each Qi primary. Group all Qi ’s whose associated prime ideal is

the same Pj , and denote the intersection of these by Q0
j . The ideal Q

0
j is primary

by Problem 13. Then I =
T
Q0
j , and the Q

0
j have distinct associated prime ideals.

So condition (ii) is satisfied. Finally among all expressions for I as intersections
satisfying (ii), choose one that involves the smallest number of primary ideals. This
minimality forces (i) to hold.

Chapter VIII

1. (qn+1 − 1)/(q − 1) = 1+ q + q2 + · · · + qn .
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3. It is enough to consider a monomial F(X1, . . . , Xn) = Xα1 · · · Xαn withPn
j=1 αj = d. Then Xj @

@Xj
(Xα1 · · · Xαn ) = αj Xα1 · · · Xαn , and the sum on j equals

dXα1 · · · Xαn .
4. If f ∂ and g∂ have a nontrivial common factor in B[X], then 0 = R( f ∂, g∂) =

∂(R( f, g)). Since ∂ is one-one, R( f, g) = 0. Therefore f and g have a nontrivial
common factor in A[X].
5. Let us show that if gn 6= 0 and fm = 0, then Theorem 8.1 for indices (m−1, n)

implies the theorem for indices (m, n), and vice versa. Assume for the moment that
m ∏ 2. Let R( f, g) be the resultant matrix of size m + n that takes into account all
coefficients f0, . . . , fm of f , and let R( f, g) be its determinant. With fm = 0, let
R0( f, g) be the resultant matrix of sizem+n−1, and let R0( f, g) be its determinant.
ThematrixR0( f, g) is obtainedby erasing themth rowand last columnofR( f, g). On
the other hand, the only nonzero entry in the last column ofR( f, g) is gn . Expansion
in cofactors therefore gives R0( f, g) = gn R( f, g). The hypotheses of Theorem 8.1
apply to f and g for either of these resultants, and we have just seen that the two
conditions (c) are equivalent. Certainly the two conditions (a) are equivalent. For the
two conditions (b), the resultant of size m + n− 1 tells us that a0 f + b0g = R0( f, g)
with deg a0 < n and deg b0 < m − 1. Certainly this implies that a f + bg = R( f, g)
with a = a0gn and b = b0gn . Conversely if a f + bg = R( f, g) with deg a < n and
deg b < m, we define a0 = ag−1

n and b0 = bg−1
n . Then a0 f + b0g = R0( f, g) with

deg a0 < n, and we need to see that deg b0 = deg b < m − 1. Since fm = 0, all the
powers of X in a f are ≤ (n − 1) + (m − 1), and the same must be true in bg. Since
g has degree n, we must have deg b ≤ m − 2 < m − 1, as required.
Next we check what happens when m = 1 and we are comparing the resultant of

size n + 1 and a degenerate resultant whose matrix is of size n and contains only the
entries of g. The determinant formula is still valid, and we see that R0( f, g) = gn0 ,
which is nonzero. Thus (a) and (c) are false for both sizes. For (b), we cannot have
a f + bg = 0 with deg b < 0 and b 6= 0. We need to check that a f + bg = 0 cannot
happen with deg a < n and deg b < 1; in fact, then deg bg = deg g = n, while
f1 = 0 implies that deg a f < n + deg f = n. So we cannot have a f + bg = 0 in
this case either.
The result of these calculations is that Theorem 8.1 for (m, n) is equivalent to the

theorem for (m−1, n) if gn 6= 0 and fm = 0. Using induction,we see that the theorem
for (m, n) is equivalent to the theorem for (k, n) if gn 6= 0 and fk+1 = · · · = fm = 0.
Taking k = deg f gives the desired result.
6. Proof via Nullstellensatz: Since f is irreducible and K [X1, . . . , Xn] is a unique

factorization domain, the principal ideal ( f ) is prime. Corollary 7.2 shows that g lies
in ( f ): hence g = h f for some h.
Proof via resultants: The idea is to arrange to have

a f + bg = R( f, g), (∗)
with the resultant taken with respect to Xn . Proposition 8.1 shows that this happens
if f and g are of positive degree in Xn , and we shall show that either this is the case
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or else f divides g for easy reasons. Since f is nonconstant, it depends nontrivially
on some Xj , and renumbering the variables allows us to assume that f depends
nontrivially on Xn . Then f is of the form

f (X1, . . . , Xn)
= c0(X1, . . . , Xn−1) + c1(X1, . . . , Xn−1)Xn + · · · + cr (X1, . . . , Xn−1)Xrn

with r > 0 and with cr nonzero in K [X1, . . . , Xn−1]. If g = 0, then certainly f
divides g. So we may assume that g 6= 0. Choose a1, . . . , an−1 in K such that

g(a1, . . . , an−1, Xn)cr (a1, . . . , an−1) 6= 0. (∗∗)

Then f (a1, . . . , an−1, Xn) is a polynomial in Xn whose coefficient of Xrn is nonzero.
Since K is algebraically closed, this polynomial in Xn has a root, say an . Since
f (a1, . . . , an) = 0, the hypothesis shows that g(a1, . . . , an−1, an) = 0, and (∗∗)

allows us to conclude that g = g(X1, . . . , Xn) depends nontrivially on Xn . This
proves (∗).
To complete the proof, we show that cr R is 0 at every point (b1, . . . , br−1). Since

K is infinite, it will follow that the polynomial cr R is 0; thus R = 0 because cr
is not the 0 polynomial. Then f and g will have a nontrivial common factor by
Proposition 8.1, and f will have to divide g because f is prime. Thus suppose that
cr (b1, . . . , br−1) 6= 0. Then f (b1, . . . , br−1, Xn) is a nonconstant polynomial in Xn
and must have a root br , since K is algebraically closed. Hence f (b1, . . . , br ) = 0,
and the hypothesis on g shows that g(b1, . . . , br ) = 0. By (∗), R(b1, . . . , br−1) = 0.
This completes the proof.
7. Y 3 − 2XY 2 + 2X2Y − 4X3 = (Y − 2X)(Y + i

p
2 X)(Y − i

p
2 X).

8. The resultant matrix in the W variable is



XY 4−Y 5 −2X2Y 2 X3 0

0 XY 4−Y 5 −2X2Y 2 X3
Y 4 Y 3 −X2 0
0 Y 4 Y 3 −X2



 ,

and its determinant is −X3Y 9(Y − 2X)2. Substituting into either of the equations
F = 0 and G = 0 gives the projective solutions (x, y, w) equal to (1, 0, 0), (0, 0, 1),
and (1, 2, 4 ± 4

p
2), up to nonzero scalar factors. (One has to check that both the

equations F = 0 and G = 0 are satisfied.)
9. Introduce a new indeterminate T = Yi − Zj , and remove Yi . Then R(F,G) =

R(Y1, . . . , T + Zj , . . . ,Ym, Z1, . . . , Zn) is a polynomial in T , the Zj ’s, and all the
Y ’s except for Yi . Also, R(F,G) = 0 when T is set equal to 0. Hence R(F,G) is
divisible by T . Then (a) and (b) follow. For (c), the polynomials Yi − Zj are distinct
primes. Since each divides R(F,G), their product must divide. Their product has
the same degree as R(F,G), and the result follows.
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10. We may assume that K is algebraically closed and that f is monic, say with
f (X) =

Qm
i=1 (X − ξi ) and f 0(X) = m

Qm−1
j=1 (X − ηj ). Then the previous problem

gives f 0(ξi ) = m
Qm−1

j=1 (ξi − ηj ), and

R( f, f 0) = mmcm,m−1
Q

i, j
(ξi − ηj ) = mmcm,m−1

mQ

i=1
f 0(ξi )

with cm,m−1 equal to the constant c from Problem 9c when n = m− 1. According to
Section V.4, the product is (−1)n(n−1)/2) times the discriminant D( f ) of f . So the
result follows.
11. Replace G by G(X,Y,W ) − (X2 + Y 2)F(X,Y,W ) to get YWH(X,Y,W ),

where H(X,Y,W ) = (X2 + Y 2)(X2 − 3Y 2) − 4X2YW . Then

I (P, F ∩ G) = I (P, F ∩ YWH) = I (P, F ∩ Y ) + I (P, F ∩ W ) + I (P, F ∩ H).

For I (P, F ∩ Y ), we use the method of Section 4, looking at F(t, 0, 1), which is t4;
thus I (P, F ∩ Y ) = 4. Since P is not on W , I (P, F ∩ W ) = 0.
For I (P, F ∩ H), replace H by H(X,Y,W ) − F(X,Y,W ) to get Y J (X,Y,W ),

where J (X,Y,W ) = −4X2Y − 4Y 3 − 7X2W + Y 2W . Then

I (P, F ∩ H) = I (P, F ∩ Y J ) = I (P, F ∩ Y ) + I (P, F ∩ J ),

and again I (P, F ∩ Y ) = 4. If the local expressions of F and J are denoted by f
and j , then their lowest-order terms f3(x, y) and j2(x, y) are given by

f3(x, y) = 3x2y − y3 = y(
p
3 x + y)(

p
3 x − y),

j2(x, y) = −7x2 + y2 = −(
p
7 x + y)(

p
7 x − y).

Thus F and J have no tangent lines in common at P , and I (P, F ∩ J ) = 3 · 2 = 6.
Collecting the results, we find that I (P, F ∩ G) = 4+ 4+ 6 = 14.
12. Let P = [x0, y0, w0], and choose 8 ∈ GL(3, K ) with 8(x0, y0, w0) =

(0, 0, 1). The local versions of G and L are g(X,Y ) = G(8−1(X,Y, 1)) and
l(X,Y ) = L(8−1(X,Y, 1)). The expansion of g as a sum of homogeneous poly-
nomials is g = gm + · · · + gd because m = mP(G) > 0, and l is of the form
l(X,Y ) = aX +bY because P lies on L . We can parametrize l by ϕ(t) = (bt,−at),
and then the definition of intersection multiplicity is that I (P, L ∩ G) is the least
integer k such that the expression gk(ϕ(t)) = tkgk(b,−a) is nonzero. The defi-
nition of tangent line is any projective line Li whose local version li is one of the
factors of gm(X,Y ) = c

Q
i (αi X + βi Y )mi . Then gm(ϕ(t)) = tmgm(b,−a) =

c
Q

i (αi b−βi a)mi . If (a, b) is a multiple of some (αi ,βi ), then gm(ϕ(t)) = 0; hence
I (P, L ∩ G) ∏ m + 1. Otherwise gm(ϕ(t)) 6= 0, and I (P, L ∩ G) = m.
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13. The linear span LT(I ) of the members LT( f ) for f in I is a monomial ideal and
is of the form (M1, . . . ,Mk) for suitable monomials Mj each of the form LM( f j ) for
some f j in I . Then { f1, . . . , fk} is a subset of I such that

°
LT( f1), . . . , LT( fk)

¢
=

LT(I ), and { f1, . . . , fk} is a Gröbner basis of I by definition.
14. If α,β, ∞ are vectors of exponents in monomials such that the first i with

w(i) · α 6= w(i) · β has w(i) · α > w(i) · β, then it equally true that the first i with
w(i) · (α + ∞ ) 6= w(i) · (β + ∞ ) has w(i) · (α + ∞ ) > w(i) · (β + ∞ ). This proves that
property (i) of monomial orderings holds with no further conditions on the weights.
Property (ii) says for each vector α of nonnegative exponents not all 0 that the first i
with w(i) · α 6= 0 has w(i) · α > 0. Applying this condition as a necessary condition
to the j th standard basis vector α = ej , we see that the first i such that w(i)

j 6= 0 must
havew

(i)
j > 0 for (ii) to hold. On the other hand, if this condition holds for all j , then

a suitable positive linear combination of these conditions gives (ii) for any α.
15. In (a), a > a0 implies that Xa−a0

∏ X > Yb0 for all b0 ∏ 0. Multiplying
by Xa0 gives Xa > Xa0Yb0 . Since Yb ∏ 1 implies XaY b ∏ Xa , we conclude that
XaY b > Xa0Yb0 for all b and b0. For a = a0, we observe that b > b0 implies that
Yb−b0

> 1 and hence that Yb > Yb0 . Multiplying by Xa gives XaY b > XaY b0 .
Hence the ordering is lexicographic.
In (b), weobserve that an inequalitybetween Xa andYb implies the same inequality

between Xna and Ynb. Consequently the particular inequality for Xa and Yb depends
only on the rational number a/b. The assumption for (b) is that X < Yq , hence that
Xa ≤ Yqa ≤ Yb if qa ≤ b, thus if a/b ≤ q−1. Thus the set S of rationals a/b
such that Xa > Yb is bounded below by q−1. Let r−1 be the greatest lower bound
of S. We know then that q−1 ≤ r−1, hence that r ≤ q. So 0 ≤ r < ∞, and r is a
well-defined real number.
Suppose that u/v < r−1. Then u/v is not in S, and so Xu ≤ Y v . In the reverse

direction, suppose that u/v > r−1. Then there is some rational c/d in S with
u/v > c/d ∏ r−1; this has Xc > Yd . Then Xud > Xvc > Y vd . Since d > 0,
Xu < Y v would imply Xud < Y vd , which is false. Thus we must have Xu > Y v .
This proves (b).
For (c), the only rational u/v for which the inequality between Xu and Yd is not

decided is u/v = r−1, and that only if r is rational. In this case a single weight vector
will decide the correct inequality. All other inequalities between monomials follow
from these. In fact, what needs deciding is the inequality between XaY b and Xa0Yb0

when a > a0 and b < b0, and this is the same as the inequality between Xa−a0 and
Yb0−b.
16. The formulas for f are a matter of computation. Both satisfy the conditions

of Proposition 8.20 because LM( f ) = X2Y is ∏ each of LM((X + Y ) f1) = X2Y ,
LM(1 f2) = Y 2, LM(X f1) = X2Y , and LM((X + 1) f2) = XY 2 and because no term
of r1 or r2 is divisible by LM( f1) = XY or LM( f2) = Y 2.
17. In (a), we check that {X2+ cXY, XY } is a Gröbner basis using Theorem 8.23.

The leading monomials of the two generators are X2 and XY , and neither divides the
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other. Since the leading coefficients are 1, this Gröbner basis is minimal.
In (b) when c 6= 0, X2+ cXY has a nonzero term whose monomial is divisible by

the leading monomial of another generator; specifically the term cXY in X2 + cXY
is divisible by the XY from the other generator. Following the procedure in Theorem
8.28, we find that {X2, XY } is the reduced Gröbner basis.
18. If (c1, . . . , cn) lies in VK (I ), then cj is one of finitely many roots of Pj (X),

for each j . Hence |VK (I )| ≤
Qn

j=1 deg Pj .
19. Fix j , and choose a polynomial Qj in X that vanishes at the j th coordinate of

every member of VK (I ). Then Pj (X1, . . . , Xn) = Qj (Xj ) is a polynomial vanishing
on VK (I ), and the Nullstellensatz shows that some power of it is in I . The result is a
polynomial in Xj alone, as required.
20. If VK (I ) is a finite set, then Problem 19 shows that I contains a nonconstant

polynomial in Xj for each j . The leading monomial for the j th such polynomial
has to be a power of Xj , and it lies in LT(I ). Conversely suppose that a power
Xljj lies in LT(I ) for each j . Form a reduced Gröbner basis of I . Since the only
monomials dividing Xljj are powers of Xj , there exist members gj of the Gröbner
basis for 1 ≤ j ≤ n such that

gj (X1, . . . , Xn) = Xmj
j + Xmj−1

j aj,mj−1 + · · · + Xjaj,1 + aj,0
for suitable polynomials aj,mj−1, . . . , aj,0 in Xj+1, . . . , Xn . Then VK (I ) is contained
in VK ((g1, . . . , gn)), and any member (c1, . . . , cn) of the latter has the property for
each j that cj is a root of a polynomialof degreemj in onevariable, once (cj+1, . . . , cn)
is fixed. Thus VK (I ) is contained in a finite set and has to be finite.
21. For (a), the coefficients ai1,...,in are given as in K (X), and we look for solutions

of F(T1, . . . , Tn) = 0. Clearing fractions in the coefficients, we see that it is enough
to find a solution when each ai1,...,in has denominator 1.
For (b), substitution of Ti =

PN
j=1 bi j X j , where each bi j is an unknown in K ,

into the equation F(T1, . . . , Tn) = 0 gives

P

i1,...,in
ai1,...,in

° NP

j=1
bi j X j ¢i1 · · ·

° NP

j=1
bi j X j ¢in = 0.

We expand this out and set the coefficient of each power of X equal to 0. The largest
possible power of X that can appear is the sumof the largest power of X in any ai1,...,in ,
namely δ, and

Pn
k=1 Nik . Since F is homogeneous of degree d,

Pn
k=1 ik = d. Thus

the largest possible power of X is Nd + δ. We get one equation for each power of X
that appears, and the unknowns are the various bi j ’s.
22. The number of equations is≤ Nd+ δ +1, since the powers of X go from 0 to

at most Nd+ δ. The number of unknowns is one for each index i with 1 ≤ i ≤ n and
each possible power of X from 0 to N , hence exactly (N + 1)n. For N sufficiently
large we want to see that Nd + δ + 1 ≤ (N + 1)n. Since d < n, the inequality in
question is δ + 1− n ≤ N (n − d), and this is satisfied by taking N large enough.
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23. In the context of Problem 22, we have a homogeneous system with more
unknowns than equations (for large N ). If the number of unknowns is n + 1 and
the number of equations is m, then we are looking for solutions in PnK . Since the
inequality m ≤ n is satisfied, the quoted theorem applies and produces a nonzero
solution for the bi j ’s.

Chapter IX

1. For (a), we argue by contradiction. Suppose that c1(x), . . . , cn(x) are members
of k(x), not all 0, such that

P
j cj (x)tj = 0. Clearing fractions, we may assume that

each cj (x) lies in k[x]. If necessary, we can divide through by a power of x and
arrange that some cj (x), say cj0(x), has a nonzero constant term. The element x is
by assumption transcendental over k. Applying the substitution homomorphism of
k[x] into k given by evaluation at 0 yields

P
j cj (0)tj = 0. By the assumed linear

independence of t1, . . . , tn over k, cj (0) = 0 for all j . This contradicts the fact that
cj0(0) 6= 0. Then (b) is immediate. For (c), we know that [F : k(x)] < ∞, and
therefore [k0(x) : k(x)] < ∞. By (b), [k0 : k] < ∞.

2. This is immediate from Proposition 7.15. Alternatively, here is a direct proof.
We may assume that the characteristic is p. It is enough to prove that if K is perfect
and L is a finite extension, then L is perfect. Arguing by contradiction, we may
assume that [L : K ] is as small as possible among all counterexamples. The image
M of L under x 7→ x p is a subfield of L , and M contains K because K is perfect.
We cannot have M = L , since L is assumed not to be perfect. By construction of
L , M is perfect. Composing x 7→ x p from L into M with x 7→ x1/p from M into
itself, we obtain a field map of L onto M that fixes M . The result is a one-one M
linear transformation of the finite-dimensionalM vector space L onto a proper vector
subspace, contradiction.

3. Let F be a function field in one variable over k. Since k is perfect, Theorem
7.20 shows that F is separably generated. Let us write F = k(x1, . . . , xn). Theorem
7.18 shows that there is some xj such that F is a separable extension of k(xj ). If we
write x for xj , then the Theorem of the Primitive Element shows that F = k(x)[y]
for some y algebraic over k(x). Put R = k[x][y] = k[x, y]; the field of fractions of
R is F. Let g(x,Y ) be the minimal polynomial of y over k(x). If d(x) is a common
denominator for the coefficients of g(x,Y ), then d(x) 6= 0 because x is transcendental
over k. If we set f (X,Y ) = d(X)g(X,Y ), then f (x, y) = 0. Hence the substitution
homomorphism k[X,Y ] → R given by replacing X by x and Y by y factors through
to a homomorphism ϕ carrying k[X,Y ]/( f (X,Y )) onto R. The ring R is an integral
domain; hence the ideal ( f (X,Y )) is prime, and f (X,Y ) is irreducible. We can find
an ideal I in k[X,Y ] containing ( f (X,Y )) such that ϕ descends to an isomorphism
of k[X,Y ]/I onto R. This ideal I has to be prime, and we let J be a maximal ideal
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of k[X,Y ] containing it. Then we have a chain of inclusions of prime ideals

0 $ ( f (X,Y )) ⊆ I ⊆ J.

Theorem 7.22 shows that k[X,Y ] has Krull dimension 2, and it follows that either
( f (X,Y )) = I in the above chain of inclusions, or I = J . The latter equality would
mean that I is maximal and therefore that R ∼= k[X,Y ]/I is a field; this is not the
case, and thus ( f (X,Y ))= I . Hence R ∼= k[X,Y ]/( f (X,Y )). Here f (X,Y ) is an
affine plane curve irreducible over k, and the field of fractions of R is by definition
the function field of the curve; this field is F, and the argument is complete.
4. The singular points are common zeros of f , @ f

@X , and
@ f
@Y . If there are infinitely

many, then Bezout’s Theorem says that f and @ f
@X have a nontrivial common factor,

and so do f and @ f
@Y . Since f is irreducible and the partial derivatives reduce degrees

in one or the other variable, we must have @ f
@X = @ f

@Y = 0 as polynomials. This is
impossible in characteristic 0. In characteristic p, the first condition says that the
only powers of X that appear in f are powers of X p, and the second condition says
that the only powers of Y that appear are powers of Y p. The coefficients of f are
powers of p because k is assumed perfect, and thus f is exhibited as a pth power, in
contradiction to its assumed irreducibility.
5. Differentiate f (X, b) = (X − a) f1(X) and evaluate at (a, b) to obtain

@ f
@X (a, b) = f1(a) + (a − a) f 0

1(a) = f1(a).
6. Multiply the equation g(X, b) = (X−a)g1(X)by f1(X) and substitute to obtain

g(X, b) f1(X) = f (X, b)g1(X). Then the function g(X, · ) f1(X) − f (X, · )g1(X)

is 0 at b and is of the form g(X,Y ) f1(X) − f (X,Y )g1(X) = (Y − b)h1(X,Y ),
where h1(X,Y ) for each X is a polynomial in Y . Since (Y −b)h1(X,Y ) is equal to a
polynomial in (X,Y ), h1(X,Y ) is a polynomial in (X,Y ). To complete the problem,
evaluate both sides at (x, y), and use the facts that f (x, y) = 0 and that f1(x) 6= 0.
7. Since F = k(x, y) is a function field in one variable, it is enough to see that y is

transcendental over k. Arguing by contradiction, suppose that there is some nonzero
polynomial c(Y ) in k[Y ] having y as a root. As a polynomial in k[X,Y ], c(Y ) maps
to c(y) = 0 when we pass to the quotient in k[X,Y ]/( f (X,Y )), and therefore c(Y )

is the product of f (X,Y ) by a polynomial. On the other hand, @ f
@X is not 0, and

thus f (X,Y ) depends nontrivially on X . Hence the product of f (X,Y ) and any
nonzero polynomial in (X,Y ) depends nontrivially on X , contradiction. The result
now follows from the observation at the end of Section 1.
8. Substituting a for x in the formula for g(x, y) gives

g(a, y) = (y − b)khk(a, y)/ f1(a)k .

In this formula, hk(a, y) is a polynomial expression in y, hence also in y − b. Thus
v1 is ∏ 0 on it. The expression f1(a)k is a nonzero member of k, on which v1 takes
the value 0. Therefore

v1(g(a, y)) = kv1(y − b) + v1(hk(a, y)) ∏ kv1(y − b).
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The left side is independent of k, and the right side is unbounded in k. Therefore
there is some upper bound to the values of k for which g(x, y) has an expansion of
the kind in question.
9. For (a), we cannot have hk(a, b) = 0 in Problem8 for arbitrarily large k because

of the bound found in Problem 8. If k = n is the smallest k for which hk(a, b) 6= 0,
then the displayed formula holds with h = hn . For uniqueness we substitute a for x
and see that g(a, y) = pn(y)(y−b)n for a polynomial pn with pn(b) 6= 0. We cannot
have two such expressions involving distinct powers n because y is transcendental
over k.
For (b), we see from (a) that every nonzero member of R is of the required form

with n ∏ 0. Since F is the field of fractions of R, the same thing is true for F as long
as we allow n to be arbitrary in Z.
For (c), if we have two such expressions, we set them equal, clear fractions, and

write the result as (y−b)k p(x, y) = q(x, y) for some k ∏ 0 and for somepolynomials
p and q with p(a, b) 6= 0 and q(a, b) 6= 0. Substituting (a, b) for (x, y), we obtain 0
from (y − b)k p(x, y) unless k = 0, and we obtain something nonzero from q(x, y).
Therefore k = 0, and the required uniqueness follows.
10. From the definition we immediately have v(g) = +∞ if and only if g = 0,

as well as v(gg0) = v(g) + v(g0) for all g and g0. We are to show that v(g + g0) ∏
min(v(g), v(g0)). Thus write g(x, y) = (y − b)nh1(x, y)/h2(x, y) and g0(x, y) =
(y − b)mh0

1(x, y)/h
0
2(x, y) with n ≤ m. Then min(v(g), v(g0)) = min(n,m) = n.

Also,
g + g0 = (y − b)n h1h0

2+(y−b)m−nh2h0
1

h2h0
2

.

The numerator of the displayed fraction is a polynomial and can be written in the
form of Problem 9a. Say that (y − b)k is the power of (y − b) that appears in it,
k being ∏ 0. Then v(g + g0) = n + k, and this is ∏ n = min(v(g), v(g0)). The
assertions about the valuation ring and the valuation ideal are clear.
11. Let v0 be a second valuation having the stated properties. If g(x, y) is given

in F×, decompose g as in Problem 9b, and apply v0. Then we obtain v0(g(x, y)) =
nv0(y − b) + v0(h1(x, y)) − v0(h2(x, y)). The assumptions on v0 show that
v0(h1(x, y)) = v0(h2(x, y)) = 0. Therefore

v0(g(x, y)) = nv0(y − b) = v0(y − b)v(g(x, y)),

and v0 = v0(y − b)v. By assumption, v0(y − b) is positive. Since v0 has to be onto
Z ∪ {∞}, we must have v0(y − b) = 1.
12. For (a), the argument is the same as with Problem 7 except that the roles of

x and y are reversed. The partial derivative @(y2− f (x))
@y = 2y is not the 0 element

because the characteristic is not 2, and hence that earlier argument applies. Part (b)
is elementary field theory, and (d) is a routine verification.
For (c), let k0 be the subfield of elements of F algebraic over k. Problem 1 shows

that [k0 : k] ≤ [k0(x) : k(x)] ≤ [F : k] = 2. Arguing by contradiction, suppose
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that {1, t} is a basis of k0 over k. let X2 + uX + v be the minimal polynomial of
t over k; t satisfies t2 + ut + v = 0. Problem 1a shows that t = a(x) + yb(x)
with b(x) 6= 0, and then t satisfies t2 − 2a(x)t + (a(x)2 − f (x)b(x)2) = 0. Hence
ut + v = −2a(x)t + (a(x)2 − f (x)b(x)2). If u 6= −2a(x), then we can solve
for t and obtain the contradiction that t is in k(x). Thus u = −2a(x), and also
v = a(x)2− f (x)b(x)2. Since x is transcendental over k, the first of these shows that
a(x) does not involve x , i.e., a(x) lies in k. Then the second shows that f (x)b(x)2
lies in k, and unique factorization leads to the conclusion that f (x) and b(x) do not
depend on x . This contradicts the assumption that f (X) is nonconstant.
13. Let z = a(x) + yb(x) be in the integral closure. Then so is the image of z

under the nontrivial Galois group element σ , and so are z + σ (z) and zσ (z). The
latter elements are 2a(x) and a(x)2 − f (x)b(x)2. Thus a(x) is in the intersection of
the integral closure with k(x), which is k[x] because k[x] is a principal ideal domain
and is integrally closed. Then f (x)b(x)2 is in k[x] by the same argument. Since
f (x) is square free, it follows that b(x) is in k[x].
14. Part (a) is immediate from Corollary 6.6. Discrete valuations of F that are not

in DF play no role because of the inclusion k ⊆ R: any discrete valuation that is∏ 0
on R has to be 0 on k×, since the image of k× under the valuation is a subgroup of Z.
For (b), the condition for z 6= 0 to be in p(x)∞ is that v(z) ∏ −p ordv(x)∞ for

all v ∈ DF. If a particular v has v(x) ∏ 0, then v does not contribute to (x)∞, and
this condition says that v(z) ∏ 0. By (a), z is in R.
15. For (a), let c(x) = cnxn + · · · + c0 = xn(cn + cn−1x−1 + · · · + c0x−n) with

cn 6= 0. Then v(cn) = 0, and v(cj x j−n) > 0 for j < n. Hence

v
°
xn(cn + cn−1x−1 + · · · + c0x−n)

¢
= nv(x) + v(cn + cn−1x−1 + · · · + c0x−n)

= nv(x) + v(cn) = nv(x).

For (b), 2v(y) = v(y2) = v( f (x)) = (deg f )v(x), the latter equality holding by (a).
In (c), we have

v(a(x) + yb(x)) ∏ min
°
v(a(x)), v(yb(x))

¢

= min
°
v(a(x)), v(y) + v(b(x))

¢

= min
°
(deg a)v(x), ( 12 deg f + deg b)v(x)

¢

= v(x)max
°
deg a, 12 deg f + deg b

¢
∏ pv(x).

16. Any v ∈ DF with v(x) ∏ 0 has v(z) ∏ 0 = − ordv(x)∞ on all elements
z = a(x) + yb(x) with a(x) and b(x) in k[x], by Problems 13 and 14a. Suppose
that v(x) < 0. Then Problem 15c and the assumptions on the degrees of a(x) and
b(x) shows that v(z) ∏ pv(x) = −p ordv(x)∞. Hence (z) ∏ −p(x)∞, and z lies in
L(p(x)∞).
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18. For (a), let σ be the nontrivial element of the Galois group. Problem 17c
shows that if z = a(x) + yb(x) is in L(p(x)∞), then so is σ (z) = a(x) − yb(x).
Hence any v ∈ DF with v(x) < 0 has v(a(x) + yb(x)) ∏ −p ordv(x)∞ = pv(x)
and v(a(x) − yb(x)) ∏ −p ordv(x)∞ = pv(x). Consequently

v(a(x)) = v(2a(x)) ∏ min
°
v(a(x) + yb(x)), v(a(x) − yb(x))

¢

∏ min
°
pv(x), pv(x)

¢
= pv(x)

and

v
°
a(x)2 − f (x)b(x)2

¢
= v(a(x) + yb(x)) + v(a(x) − yb(x)) ∏ pv(x) + pv(x).

Using Problem 15a and the fact that v(x) < 0, we see from these two inequalities
that deg a ≤ p and deg(a2 − f b2) ≤ 2p.
For (b), Problem 14b shows that L(p(x)∞) ⊆ R, and Problem 13 shows that

R consists of all a(x) + yb(x) with a(x) and b(x) in k[x]. Part (a) thus shows that
deg a ≤ p and deg(a2− f b2) ≤ 2p. Since deg a ≤ p, the second of these inequalities
shows that deg f b2 ≤ 2p. Thus deg b + 1

2 deg f ≤ p. In the reverse direction, if
a(x) and b(x) are polynomials satisfying the degree relations, then Problem 16 shows
that a(x) + yb(x) is in L(p(x)∞).
19. The polynomials a(x) and b(x) are limited only by the restrictions on their

degrees. Fromdeg a ≤ p, we get a space of dimension p+1. Fromdeg b+ 1
2 deg f ≤

p, we have deg b ≤
£
p− 1

2 deg f
§
, and we get a space of dimension

£
p− 1

2 deg f
§
+1

if
£
p − 1

2 deg f
§

∏ 0. Thus

`(p(x)∞) = (p + 1) +
£
p − 1

2 deg f
§
+ 1

= 2p + 2+
£
− 1

2 deg f
§

= 2p + 2−
£ 1
2 (1+ deg f )

§

if p ∏ −
£
− 1

2 deg f
§

= +
£ 1
2 (1+ deg f

§
.

20. Part (a) is immediate from Theorem 9.3, since [F : k(x)] = 2. For (b), Theo-
rem 9.9 and Problem 19, in combination with the result of (a), show for sufficiently
large positive p that

1− g = `
°
p(x)∞

¢
− p deg(x)∞ = 2p + 2−

£ 1
2 (1+ deg f

§
− 2p.

Hence g =
£ 1
2 (1+ deg f

§
− 1.

21. Let 8 : k(X)[Y ] → k(X)[Z ] be the substitution homomorphism that fixes
k(X) and has 8(Y ) = g(X)Z , and follow it with the quotient homomorphism to
k(X)[Z ]/(Z2 − h(X)). Then

8(Y 2 − f (X)) = g(X)2Z2 − f (X) = g(X)2(Z2 − h(X)),

which goes to 0 in the quotient. Thus the composition of8 followed by the quotient
map descends to a field map ϕ : k(X)[Y ]/(Y 2 − f (X)) → k(X)[Z ]/(Z2 − h(X)).
The inverse is constructed in the same way, starting from the formula 9(Z) =
g(X)−1Y .



706 Hints for Solutions of Problems

22. For (a), the conclusion genus 1 when there are no repeated roots is immediate
from Problem 20b with deg f = 3. If there are repeated roots, then we can write
f (X) = g(X)2h(X) with deg g = deg h = 1. Applying Problem 21, we see that the
genus is the same as for Problem 20b with deg f = 1, i.e., the genus is 0.
For (b), a singularity occurs only at points (x, y) of the zero locus in k2alg at which

both first partials are 0. Then 2Y = 0, which says that y = 0 because the characteristic
is not 2, and f 0(X) = 0, which says that x is a root in kalg of both f (X) and f 0(X).
This means that x is at least a double root in kalg of f (X).

23. The residue class degree fv is 1, sincek is algebraically closed. Thus deg nv =
n. Corollary 9.4 gives `(0v) = 1, Corollaries 9.22 and 9.23 together give `(1v) = 1
if g ∏ 1, and Corollary 9.19 gives `((2g − 1)v) = deg((2g − 1)v) + (1 − g) =
(2g − 1) + (1− g) = g and `(2gv) = deg(2gv) + (1− g) = g + 1. The inequality
`(nv) ≤ `((n + 1)v) ≤ `(nv) + 1 follows by combining Theorem 9.6, the fact that
A ≤ B implies L(A) ⊆ L(B), and the fact that fv = 1.

24. For each n ∏ 0,

L(nv) = {0} ∪ {x ∈ F× | −(x)∞ ∏ −nv} = {0} ∪ {x ∈ F× | (x)∞ ≤ nv}.

Thus n ∏ 1 is a gap if and only if `(nv) = `((n − 1)v), and otherwise `(nv) =
`((n − 1)v) + 1 by the last fact in Problem 23.
Suppose that there are m gaps in passing from `(0v) to `(2gv). In the process we

take 2g steps from (n−1)v to nv, of whichm are gaps and 2g−m are nongaps. (The
gaps are certain of these integersn, 1 ≤ n ≤ 2g.) Since `(0v) = 1 and `(2gv) = g+1
by Problem 23, the total number of nongaps is (g+ 1)− 1 = g. Solving 2g−m = g
gives m = g. The formulas `((2g− 1)v) = g and `(2gv) = g+ 1 from Problem 23
show that 2g is not a gap.

25. For (a), if the gap sequence is (1, 2, . . . , g), then 1 = `(0v) = `(1v) =
`(2v) = · · · = `(gv). Conversely if the gap sequence is something else, let n with
1 ≤ n ≤ g be thefirst nongap; then 1 = `(0v) = · · · = `((n−1)v) < `(nv) ≤ `(gv).
For (b), Problem 23 gives `(0v) = `(1v) = 1 if g ∏ 1, and thus 1 is a gap.
For (c), there are no integers strictly between 0 and 2g if g = 1, and the only such

integer for g = 1 is 1. Part (b) shows that the gap sequence is indeed (1) if g = 1,
and thus the gap sequence is always the standard one.
For (d), we have some x and y in F× with (x)∞ = rv and (y)∞ = sv. Thus

(x) = (x)0 − rv and (y) = (y)0 − sv, and (xy) = (x)0 + (y0) − (r + s)v. Since v

does not contribute to (x)0 and (y)0, (xy)∞ = (r + s)v, and thus r + s is a nongap.
For (e), if 2 is a nongap, then iteration of (d) shows that 2, 4, 6, . . . , 2g − 2 are

nongaps. The only possible gaps are the remaining integers from 1 to 2g−1, namely
1, 3, 5, . . . , 2g − 1. There are g of these, and so all of them must be gaps.
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1. If F is in I (P), expand F as a sum of homogeneous terms F =
P∞

d=0 Fd .
Then 0 = F(t x0, . . . , t xn) =

P∞
d=0 Fd(t x0, . . . , t xn) =

P∞
d=0 Fd(x0, . . . , xn)td for

all t ∈ k×. Since k is infinite, every coefficient of this polynomial in t is 0. Thus
each Fd is in I (P), and I (P) is generated by homogeneous elements.
2. In each part we argue by contradiction. For (a), if {Xα} is a system of nonempty

closed subsets of X with the finite intersection property such that
T

α Xα = ∅, then
we can inductively define a strictly decreasing sequence of finite intersections of the
Xα’s, in contradiction to the Noetherian property. In (b), if E is a closed irreducible
subset that is not connected, then E = U ∪ V withU and V nonempty, disjoint, and
relatively open. Then E = Uc ∪ V c contradicts the irreducibility of E .
3. For (a), the continuous image of a connected set is connected. Continuity is

by Proposition 10.32, and connectedness is by Problem 2b applied to the Noetherian
topological space V . For (b), if f is any polynomial function on An , then f ◦ ϕ is
in O(V ) because ϕ is a morphism, and f ◦ ϕ is constant by Corollary 10.31. Then
ϕ cannot have two distinct points in its image, since any two points in An can be
distinguished by some polynomial.
4. Certainly O(U) ⊇ k[X,Y ]. Also, the function field k(U) consists of all

quotients of polynomials a/b with a and b in k[X,Y ] and b 6= 0. Thus suppose that
f = a/b lies in O(U). By unique factorization in k[X,Y ], we may assume that a
and b are relatively prime. In the expression f = a/b, regularity at P implies that
b(P) 6= 0 because an equality a/b = c/d of two such expressions implies that a = kc
and b = kd for some nonzero scalar k. Since f is regular everywhere in A2 except
possibly at the origin, b(X,Y ) is nonvanishing away from the origin. However, if
b is nonconstant, then V (b) is a curve and has dimension 1, whereas the origin has
dimension 0. We conclude that b is constant, and f = a/b is in k[X,Y ].
5. Arguing by contradiction, let ϕ : W → U be an isomorphism from an affine

variety ontoU . Then themapeϕ : O(U) → O(W ) = A(W ) given byeϕ( f ) = f ◦ϕ is
an isomorphism. Let ∂ : U → A2 be the inclusion. The correspondingmap on regular
functions ise∂ : A(A2) → O(U) given bye∂(h)(x, y) = h(x, y) for (x, y) 6= (0, 0),
and it is an isomorphism by Problem 4. Then (ϕ ◦ ∂)e = e∂ ◦ eϕ is an isomorphism
of A(A2) onto A(W ). Its inverse has to be of the form e√ with e√(g) = g ◦ √ for
some isomorphism√ : A2 → W , according to Theorem 10.38. Since e√ ◦eϕ ◦e∂ is the
identity map on A(A2), ∂ ◦ ϕ ◦ √ is the identity map on A2. Using the definition of ∂
shows that ϕ ◦√(x, y) = (x, y) for (x, y) 6= (0, 0). Thus ϕ ◦√ is an isomorphism of
A2 ontoU that is the identity onU . This is a contradiction, since there is no possible
image for (0, 0) under ϕ ◦ √ that makes ϕ ◦ √ one-one.
6. Let ϕ be the rational map of the irreducible curve C into the irreducible curve

C 0, and let (E,ϕE ) be a morphism in the class ϕ. If ϕ is not dominant, then ϕE (E)

is a proper closed subset of C 0 and must be finite. Hence ϕE (E) is finite. The set E
is connected by Problem 2b, and morphisms are continuous by definition. Therefore



708 Hints for Solutions of Problems

ϕE (E) is connected. Being connected and finite, it is a singleton set {y}. If ϕC is
defined as everywhere equal to y on C , then (C,ϕC ) is in the equivalence class ϕ. So
ϕ is constant.

7. Suppose that f is a member of Oϕ(P)(V ) with ϕ∗
P( f ) = 0. Since the set on

which f ∈ k(V ) is regular is open, there exists an open neighborhood E of ϕ(P) on
which f is defined. The morphism ϕ is continuous, and thus ϕ−1(E) is open in U .
Since ϕ is a morphism and f is regular on E , f ◦ϕ is regular on ϕ−1(E). According
to the proof of Proposition 10.42, ϕ∗

P( f ) is defined to be the unique member of k(V )

that agrees with f ◦ ϕ on ϕ−1(E). We are assuming ϕ∗
P( f ) to be 0, and thus f ◦ ϕ

equals 0 on ϕ−1(E). By dominance of ϕ, ϕ(ϕ−1(E)) is a dense subset of E . Thus
the continuous function f is 0 on a dense subset of its domain E and is 0.

8. The inclusion (WX − Y Z) ⊆ (X, Z) yields a homomorphism ϕ of A(V ) onto
k[W, X,Y, Z ]/(X, Z) ∼= k[W,Y ]. Let b0 = ϕ(b̄). Then b0(w, y) = b̄(w, 0, y, 0)
is a polynomial in (w, y) nonzero in the complement of the origin. The solution
of Problem 4 shows that b0(0, 0) 6= 0. Thus b̄(0, 0, 0, 0) 6= 0, and f is defined at
(0, 0, 0, 0). In view of the discussion of this example in Section 4, f is everywhere
defined. Therefore it is in O(V ), which equals A(V ) because V is an affine variety.
Thus there is a polynomial g in k[W, X,Y, Z ] whose image ḡ in A(V ) equals X/Y .
Then Y ḡ = X , and Yg = X+(WX−Y Z)h for some polynomial h. So Y (g+hZ) =
X (1 + Wh). This implies that Y divides 1 + Wh, which we see is impossible by
evaluating at the origin.

9. The equivalence of continuity of ϕ and continuity of all ϕα will be taken as
known. Suppose that ϕ : U → V is a morphism. Let an index α, an open set E ⊆ Vα ,
and a member f of O(E) be given. We are to show that f ◦ ϕα is in O(ϕ−1

α (E)).
Since ϕ is a morphism and E is open in V , we know that f ◦ ϕ is inO(ϕ−1(E)). By
restriction, f ◦ ϕα is in O(Uα ∩ ϕ−1(E)) = O(ϕ−1

α (E)). Thus ϕα is a morphism.
In the reverse direction suppose that all ϕα : Uα → Vα are morphisms. Let E

be open in V , and let f be in O(E). We are to show that f ◦ ϕ is in O(ϕ−1(E)).
Since ϕ−1(E) =

S
α (Uα ∩ϕ−1(E)), it is enough to prove regularity of f ◦ϕ on each

Uα ∩ ϕ−1(E). On this open set, f ◦ ϕ equals f ◦ ϕα , which is regular because ϕα is
a morphism. Thus ϕ is a morphism.

10. For (a), we use the equivalence of regularity with the condition in Proposition
10.28. Thus regularity at P in U means that there is a subneighborhood U0 of U
within V about P such that f equals a quotient ā/b̄ onU0 with ā and b̄ in A(V ) and
with b̄ nowhere vanishing onU0. Choose polynomials a and b in k[X1, . . . , Xn] that
restrict to ā and b̄ on V . Let U 0

0 be an open subset of An whose intersection with V
is U0. Since b is nowhere 0 on U0 and is continuous on U 0

0, the subset eU0 of U1 on
which b is nonvanishing is open and containsU0. Then Proposition 10.28 shows that
F = a/b is a member of O(eU0) whose restriction to U0 equals f .
For (b), the result of (a) is local. Thus we can immediately allow V to be quasi-

affine. UsingProposition10.37,we can extend (a) to the case thatV is quasiprojective.
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11. Continuity is no problem. For the condition involving regularity, we use
Problem 10. Let E be a relatively open set in V , and let f be in O(E). We are to
show that f ◦ ϕ is in O(ϕ−1(E)). Thus let P be in ϕ−1(E) ⊆ U ; then ϕ(P) is in
E ⊆ V . Since f is inO(E), Problem 10 produces a relatively open neighborhood E0
of ϕ(P), an open subset eE0 of Y with eE0 ∩ V = E0, and a function F inO(eE0) such
that F

Ø
Ø
E0

= f
Ø
Ø
E0
. Since ϕ : X → Y is a morphism, F ◦ ϕ is in O(ϕ−1(eE0)). Since

ϕ(ϕ−1(eE0) ∩U) ⊆ eE0 ∩ V = E0, F ◦ ϕ agrees with f ◦ ϕ on ϕ−1(eE0) ∩U . Thus
f ◦ ϕ has an extension F ◦ ϕ from ϕ−1(eE0) ∩ U to ϕ−1(eE0) that is in O(eE0). The
quotients that exhibit F ◦ϕ as defined at points of ϕ−1(eE0)∩U exhibit f ◦ϕ as defined
there. The inclusion ϕ−1(E0) = ϕ−1(eE0∩V ) = ϕ−1(eE0)∩ϕ−1(V ) ⊆ ϕ−1(eE0)∩U
shows that f ◦ ϕ is in O(ϕ−1(E0)). This being true for all P in ϕ−1(E), f ◦ ϕ is in
O(ϕ−1(E)).
12. Part (a) follows by applying instances of Problem 11 to ϕ and ϕ−1. Then

(b) follows by another application of Problem 11. Part (c) follows by inductive
application of (b).
13. Let di be the degree of homogeneity of Fi . Then the i th row of the right-hand

matrix is ∏di−1 times the i th row of the left-hand matrix. Hence the dimension of the
span of the rows is the same for the two matrices, and this number is the rank.
14. This comesdown to the fact that differentiatingwith respect to Xj for j > 0 and

then setting X0 equal to 1 is the same as setting X0 equal to 1 and then differentiating
with respect to Xj .
15. For any of the functions Fi , the right side of the formula in Euler’s Theorem is 0

at (x0, . . . , xn) by assumption. Hence Euler’s Theorem gives x0 @Fi
@X0 (x0, . . . , xn) =

−
Pn

j=1 xj
@Fi
@Xj

(x0, . . . , xn). This says that

x0×0th column of J (F)(x0, . . . , xn) = −
nP

j=1
xj × j th column of J (F)(x0, . . . , xn).

Since x0 6= 0, this is a relation of the required type.
16. Problem 13 shows that the left side equals rank J (F)(1, x1/x0, . . . , xn/x0),

which Problem 15 shows to be equal to the rank of the matrix formed from the last n
columns, which Problem14 shows to be equal to the rank of J ( f )(x1/x0, . . . , xn/x0).
18. Regard the elements wi j as the entries of a matrix. The given condition is

that every 2-by-2 subdeterminant of this matrix equals 0. The matrix is not 0, and
consequently its rank is 1. Everymatrix over k of rank 1 is of the form xyt for column
vectors x and y, and then [{wi j }] is exhibited as σ

°
[{xi }], [{yj }]

¢
.

19. For (a), one suitable monomial ordering is the lexicographic ordering that
takes the elements Wi j in the order W00,W01, . . . ,Wmn with W00 largest. Given a
monomial M 0 of total degree d, choose among all monomials of total degree d the
smallest one in the ordering that is congruent to M 0 modulo a. Write M =

Q
i, j W

ai j
i j .
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If ai j > 0 and if there exists (k, l)with l > j , k > i , and akl > 0, thenWi jWkl divides
M . Write M0 = M/Wi jWkl . Put M 00 = M0WilWkj . Since Wi jWkl − WilWkj is in
a, M 00 is congruent to M modulo a. In the monomial ordering, all of the elements
Wkl ,Wil ,Wkj are smaller than Wi j . Therefore M 00 < M , in contradiction to the
minimality of M .
In (b), let the largestWi j whose exponents in M and M 0 are unequal beWi0 j0 . Let

the products of the powers of the strictly larger monomials be N and N 0, respectively.
It is enough to prove that ϕ(M/N ) 6= ϕ(M 0/N 0). Then we have

M/N =
Q

Wi j≤Wi0 j0

Wai j
i j = Wai0 j0

i0 j0
Q

(i, j) with
i0<i or

(i0=i and j0< j)

Wai j
i j

and a similar expression for M 0/N 0. The minimality condition says that ai j = 0 if
i0 < i and j0 < j . Thus

M/N =
° Q

i0<i, j0∏ j
Wai j
i j

¢° Q

i0=i, j0≤ j
Wai j
i j

¢
=

°Q
k>i0

Q
l≤ j0 W

akl
kl

¢°Q
l∏ j0 W

ai0l
i0l

¢
,

and ϕ(M/N ) =
°Q

k>i0
Q

l≤ j0 X
akl
k Y akll

¢°Q
l∏ j0 X

ai0l
i0 Yai0ll

¢
.

On the right side each pair of indices (k, l) occurs at most once. Thus an equality
ϕ(M/N ) = ϕ(M 0/N 0) would imply that akl = bkl for every (k, l). This proves (b).
In (c), we know that a ⊆ kerϕ. If equality fails, then there is a linear combinationP
r cr Mr of monomials in kerϕ that is not in a. Applying (a), we may assume that

each Mr is reduced. Then
P

r crϕ(Mr ) = 0. Each ϕ(Mr ) is a monomial, and (b)
shows that the various monomials ϕ(Mr ) are distinct. Since the set of monomials is
linearly independent, each cr is 0. Therefore

P
r cr Mr = 0, contradiction.

20. For (a), compute the kernel of the natural substitution homomorphism of
k[X0, . . . , Xm,Y0, . . . ,Yn] into R[Y0, . . . ,Yn]. For (b), let P = [y0, y1, . . . , yn],
p = I (U) ⊆ k[X0, . . . , Xm], and q = I ({P} ⊆ k[Y0, . . . ,Yn]. The inside
homomorphism has kernel a by Problem 19. The outside homomorphism takes
X0, . . . , Xm into R and takes each Yj to yj Z , where Z is an indeterminate; its kernel
is isomorphic to pq. The kernel of the composition is I (σ (U × {P})), which is prime
because R[Z ] is an integral domain.
21. See Fulton’s book, page 145.
22. See Fulton’s book, page 146.
23. For (a), Proposition 10.9 shows that I (V (I )) = (h(X,Y )) for an irreducible

polynomial h if dim V (I ) = 1. The containment I ⊆ I (V (I )) shows that each f j
has to be of the form f j = ajh for some aj in k[X,Y ]. Since f j and h are irreducible,
aj has to be a scalar. Thus I = (h(X,Y )), and I is prime. For (b), one can take
I = (Y + X2,Y − X2), which has V (I ) = {(0, 0)} and which is not prime because
it contains X2 but not X .
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24. Let {g1, . . . , gs} be a minimal Gröbner basis, and suppose that gj = ab is a
nontrivial factorization of gj in k[X1, . . . , Xn]. Since I is prime, wemay assume that
a lies in I . Then LM(gj ) = LM(a) LM(b), and LM(a) lies in LT(I ). Since {g1, . . . , gs}
is a Gröbner basis, LM(a) lies in the monomial ideal (LM(g1), . . . , LM(gs)). By
Lemma 8.17, LM(gi ) divides LM(a) for some i . It follows that LM(gi ) divides LM(gj ).
Since the Gröbner basis is minimal, i = j . That is, LM(gi ) = LM(a) = LM(gj ).
Thus LM(b) = 1, in contradiction to the assumption that the factorization of gj is
nontrivial.
25. Identify a11X2 + 2a12XY + a22Y 2 + 2a13XZ + 2a23Y Z + a33Z2 with the

symmetric matrix

A =

µ a11 a12 a13
a12 a22 a23
a13 a23 a33

∂
.

By the Principal Axis Theorem choose an invertible matrixM such that A0 = Mt AM

is diagonal. Put
µ X 0

Y 0

Z 0

∂
= M−1

µ X
Y
Z

∂
and substitute. Then the given quadratic

polynomial equals αX 0 2 + βY 0 2 + ∞ Z 0 2, where α,β, ∞ are the diagonal entries of
A0. If αβ∞ = 0, this is reducible; it is readily checked to be irreducible if αβ∞ 6= 0.
Since αβ∞ = det A0 = (detM)2 det A, the reducible polynomials correspond to the
affine hypersurface on which det A = 0.
26. The first conclusion is a special case of Corollary 9.19. Then take x to be a

nonconstant member of L(2vO), and take y to be a member of L(3vO) not in the
linear span of {1, x}. Corollary 9.22 shows that (x)∞ = 2, and then the equality
(y)∞ = 3 follows from the definitions.
27. These are special cases of Theorem 9.3.
28. Since 2 = [k(E) : k(x)] = [k(E) : k(x, y)] [k(x, y) : k(x)], the integer

[k(E) : k(x, y)] divides 2. The corresponding equality with 3 and k(y) shows that
[k(E) : k(x, y)] divides 3. Therefore [k(E) : k(x, y)] = 1.
29. The values of vO on the seven listed members of k(E) are 0, 2, 3, 4, 5, 6, 6,

respectively. The members are all in L(6vO), which has dimension 6 by Problem 28,
and thus the listed members are linearly dependent. If y2 or x3 does not contribute
to this dependence, then vO takes distinct values on the remaining six members of
L(6vO), and Problem 19a at the end of Chapter VI gives a contradiction. Hence the
coefficients b and c of y2 and x3, respectively, are nonzero. If x and y are replaced by
−bcx and bc2y and if the linear combination of terms is then divided by b3c4, then
the linear dependence takes the form (y2+a1xy+a3x)−(x3+a2x2+a4x+a6) = 0,
as required. Hence ϕ carries E − {0} into C ∩ A2.
30. Certainly f (X,Y ) is not divisible by any nonconstant polynomial in X . Thus

the only possible reducibility is of the form f (X,Y ) = (Y + p(X))(Y + q(X)).
Expanding out the right side shows that

p(X) + q(X) = a1X + a3,

p(X)q(X) = −(X3 + a2X2 + a4X + a6).
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The second equation shows that at least one of p(X) and q(X) has degree > 1, and
then the first equation shows that deg p(X) = deg q(X). But this equality would
mean that deg p(X)q(X) is even, contradiction. Hence f (X,Y ) is irreducible.
31. The function ϕ is a morphism of E − {O} into C ∩ A2 by Lemma 10.39, and

the composition with β0 is a morphism into P2. Then ϕ is a morphism of E − {O}
into C by Problem 11. The class of (E − {O},ϕ) is therefore a rational map of E
into C , and Corollary 10.54 shows that ϕ extends to a morphism8 : E → C .
32. Let e8 : k(C) → k(E) be the field mapping that corresponds to 8 under

Theorem 10.45. The field k(C) is generated by the functions x0 and y0 that pick
out the coordinates of points of C ∩ A2, and Theorem 10.45 shows that e8(x0) =
(class of x0 ◦ ϕ). For P in E − {O}, this has e8(x0)(P) = x0(ϕ(P)) = x(P), i.e.,
e8(x0) = x . Similarly e8(y0) = y. Therefore e8(k(C)) = k(x, y). By Problem 28,
e8 is onto k(E). By Corollary 10.46, 8 is birational.
33. The homogeneous polynomial of degree 3 from which f (X,Y ) arises is

F(X,Y,W ) = (Y 2W + a1XYW + a3YW 2) − (X3 + a2X2W + a4XW 2 + a6W 3).

The points of C on the line at infinity arise by setting W = 0 and F(X,Y,W ) =
0 simultaneously, and the only such point is [0, 1, 0]. Computation shows that
@F
@W (0, 1, 0) = 1. Consequently [0, 1, 0] is a nonsingular point of C .
34. A point (x0, y0) in A2 is a singular point of C if and only if f (x0, y0) =

@ f
@X (x0, y0) = @ f

@Y (x0, y0) = 0. At (x0, y0), computation shows that

@2 f
@X2 = −6X − 2a2, @2 f

@X@Y = a1, @2 f
@Y 2 = 2, @3

@X3 = −6.

All higher-order derivatives are 0. Application of Taylor’s formula about (x0, y0)
therefore gives

f (X,Y ) = (−3x0 − a2)(X − x0)2 + a1(X − x0)(Y − y0) + (Y − y0)2 − (X − x0)3.

We put X = x and Y = y, taking into account that f (x, y) = 0. After division by
(x − x0)2, the result is that

((y − y0)(x − x0)−1)2 + a1(y − y0)(x − x0)−1 = (3x0 + a2) + (x − x0).

That is, z2 + a1z = (3x0 + a2) + (x − x0). Suppose that P is in E − {O} and that
vP(z) < 0. Then we have vP(z + a1) < 0 and

0 ≤ vP
°
(3x0 + a2) + (x − x0)

¢
= vP(z2 + a1z) = vP(z) + vP(z + a1) < 0,

contradiction. Therefore vP(z) ∏ 0. Meanwhile, vO(x − x0) = vO(x) = −2 and
vO(y − y0) = v0(y) = −3. Hence vO(z) = (−3) − (−2) = −1.
35. Corollary 9.22 shows that no member of k(E) has the properties of z found

in Problem 34. Thus C is nonsingular at every (x0, y0). In combination with Prob-
lem 33, this shows that C is everywhere nonsingular. By Corollary 10.55, 8 is an
isomorphism.


