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CHAPTER V

Three Theorems in Algebraic Number Theory

Abstract. This chapter establishes some essential foundational results in the subject of algebraic
number theory beyond what was already in Basic Algebra.
Section 1 puts matters in perspective by examining what was proved in Chapter I for quadratic

number fields and picking out questions that need to be addressed before one can hope to develop a
comparable theory for number fields of degree greater than 2.
Sections 2–4 concern the field discriminant of a number field. Section 2 contains the definition of

discriminant, as well as some formulas and examples. The main result of Section 3 is the Dedekind
Discriminant Theorem. This concerns how prime ideals (p) in Z split when extended to the ideal
(p)R in the ring of integers R of a number field. The theorem says that ramification, i.e, the
occurrence of some prime ideal factor in R to a power greater than 1, occurs if and only if p divides
the field discriminant. The theorem is proved only in a very useful special case, the general case
being deferred to Chapter VI. The useful special case is obtained as a consequence of Kummer’s
criterion, which relates the factorization modulo p of irreducible monic polynomials in Z[X] to the
question of the splitting of the ideal (p)R. Section 4 gives a number of examples of the theory for
number fields of degree 3.
Section 5 establishes the Dirichlet Unit Theorem, which describes the group of units in the ring

of algebraic integers in a number field. The torsion subgroup is the subgroup of roots of unity, and
it is finite. The quotient of the group of units by the torsion subgroup is a free abelian group of a
certain finite rank. The proof is an application of the Minkowski Lattice-Point Theorem.
Section 6 concerns class numbers of algebraic number fields. Two nonzero ideals I and J in the

ring of algebraic integers of a number field are equivalent if there are nonzero principal ideals (a)
and (b)with (a)I = (b)J . It is relatively easy to prove that the set of equivalence classes has a group
structure and that the order of this group, which is called the class number, is finite. The class number
is 1 if and only if the ring is a principal ideal domain. Onewants to be able to compute class numbers,
and this easy proof of finiteness of class numbers is not helpful toward this end. Instead, one applies
theMinkowski Lattice-Point Theorem a second time, obtaining a second proof of finiteness, one that
has a sharp estimate for a finite set of ideals that need to be tested for equivalence. Some examples
are provided. A by-product of the sharp estimate is Minkowski’s theorem that the field discriminant
of any number field other than Q is greater than 1. In combination with the Dedekind Discriminant
Theorem, this result shows that there always exist ramified primes over Q.

1. Setting

It is worth stepping back from the results of Chapter I to put matters into perspec-
tive. Chapter I studied three problems, all of which could be stated in terms of
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1. Setting 263

elementary number theory. These were the questions of solvability of quadratic
congruences, of representability of integers or rational numbers by primitive
binary quadratic forms, and of the infinitude of primes in arithmetic progressions.
We had started from the more general problem of studying Diophantine equa-

tions, beginning with the observation that solvability in integers implies solvabil-
ity modulo each prime.1 Linear congruences being no problem, we began with
quadratic congruences and were led to quadratic reciprocity. Then we sought
to apply quadratic reciprocity to address representability of integers or rational
numbers by binary quadratic forms. The reasons for studying the infinitude of
primes in arithmetic progressions were more subtle; what we saw was that at
various stages in dealing with binary quadratic forms, this question of infinitude
kept arising, along with techniques that might be helpful in addressing it.
Work on at least the first two of the problems was helped to some extent by the

use of algebraic integers, and we shall see momentarily that algebraic integers
illuminate work on the third problem as well. In any event, it is apparent where
to look for a natural generalization. We are to study higher-degree congruences,
perhaps in more than one variable, and we are to use algebraic extensions of the
rationals of degree greater than 2 to help in the study.
The situation studied in Section IX.17 of Basic Algebrawill be general enough

for now. Thus let F(X) be amonic irreducible polynomial inZ[X]. Section IX.17
began to look at the question of how F(X) reduces modulo each prime p. We
begin by reviewing the case of degree 2, the main results in this case having been
obtained in Chapter I in the present volume. For the polynomial F(X) = X2−m
with m ∈ Z, the assumed irreducibility means that m is not the square of an
integer. For fixedm and most primes p, either F(X) remains irreducible modulo
p or F(X) splits as the product of two distinct linear factors. The exceptional
primes have the property that F(X) modulo p is the square of a linear factor;
these are the prime divisors ofm and sometimes the prime 2. In short, they occur
among the prime divisors of the discriminant 4m of F(X). In terms of quadratic
residues, the irreducibility of F(X) modulo p means that m is not a quadratic
residue modulo p, and the splitting into two distinct linear factors means that it
is. The odd primes for which F(X) modulo p is the square of a linear factor are
the odd primes that divide m. Modulo 2, every integer is a square, and reduction
modulo 2 was not helpful.
The number theory of quadratic number fields sheds additional light on this

factorization. The relevant field is of courseQ(
p
m ); this is a nontrivial extension

of Q, since m is not square. In working with this field in Chapter I, we imposed
the additional condition that m be square free. Promising a general definition for

1Solvability modulo each prime power is also of interest but played a role in Chapter I only for
powers of 2.
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later, we defined the field discriminant of Q(
p
m ) in that chapter to be

D =

Ω 4m if m ≡ 2 mod 4 or m ≡ 3 mod 4,
m if m ≡ 1 mod 4.

Problems 20–24 in Chapter I implicitly related the splitting of F(X) modulo p
to the factorization of ideals. Let R be the ring of algebraic integers in Q(

p
m ).

If p is an odd prime, those problems observed that (p)R is a prime ideal in R if
D is a nonsquare modulo p, is the product of two distinct prime ideals if D is a
square modulo p but is not divisible by p, and is the square of a prime ideal if D
is divisible by p. The factorization of (2)R was more subtle and was addressed
in Problem 21.
In any event, the pattern of reducibility modulo p of X2 − m, at least when

the prime p is odd, mirrors the pattern of factorization of the ideal generated
by p in the ring of algebraic integers in the number field Q(

p
m ). The role

of quadratic reciprocity was to explain this pattern. Problem 1 at the end of
Chapter I showed that one qualitative consequence of quadratic reciprocity is that
the odd primes p for which X2 − m remains irreducible are the ones in certain
arithmetic progressions, and similarly for the odd primes not dividing p for which
a factorization into two linear factors occurs.
One objective of a generalization is to produce a corresponding theory for an

arbitrary monic irreducible polynomial F(X) in Z[X], say of degree n. LetK be
the extension ofQ generated by a root of F(X), and let R be the ring of algebraic
integers in K. Theorem 9.60 of Basic Algebra shows for each prime number p
that the decomposition of the ideal (p)R in R as a product of powers of distinct
prime ideals takes the form (p)R =

Qg
i=1 P

ei
i with fi = [R/Pi : Z/(p)] andPg

i=1 ei fi = n. Meanwhile, F(X) factors modulo p as a product of powers of
irreducible polynomials modulo p. Sections 2–3 will describe a theory begun
by Kummer and Dedekind for how the factorization of the ideal (p)R and the
factorizationof the polynomial F(X)modulo p are related. One introduces a field
discriminant for K that is closely related to the discriminant of the polynomial
F(X), and a key result, the Dedekind Discriminant Theorem, says that some ei
is > 1 if and only if p divides the field discriminant. The primes p for which
some ei is greater than 1 are said to ramify in the extension fieldK. These primes
are not as well behaved as the others, and one’s first inclination might be to try
to ignore them. However, Problems 25–40 at the end of Chapter I show that the
ramified primes encode a great deal of information; in particular, they explain the
theory of genera and the relationship between exact representability of rational
numbers and representability of integers modulo the field discriminant.
Generalizations of quadratic reciprocity lie much deeper and are central results

of the subject of class field theory, a subject that is beyond the scope of the present
book. Suffice it to say that class field theory in its established form seeks to
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parametrize all finite Galois extensions of any number field having abelian Galois
group; the parametrization is to refer only to data within the given number field.
The reciprocity theorem in this setting goes under the name “Artin reciprocity,”
which includes quadratic reciprocity as a very special case. Class field theory
for nonabelian finite Galois extensions is at present largely conjectural, and the
conjectural reciprocity statement goes under the name “Langlands reciprocity.”
Beginning in Section I.6, we translated some of the theory of binary quadratic

forms into facts about quadratic number fields. One tool we needed was a de-
scription of the units in the ring of algebraic integers within the quadratic number
field. It is to be expected that a similar description for an arbitrary number field
will play a foundational role in number theory beyond the quadratic case. The
description in question is captured in the Dirichlet Unit Theorem, which appears
as Theorem 5.13 in Section 5.
The translation of the notion of proper equivalence class of binary quadratic

forms into the language of quadratic field extensions led to a notion of strict
equivalence of ideals, as well as a notion of ordinary equivalence. Because there
are only finitely many proper equivalence classes of forms, there could be only
finitely many strict equivalence classes of ideals, and this set of classes of ideals
acquired the structure of a finite abelian group. Dirichlet studied the order of this
group, which figures into formulas for the value of certain Dirichlet L functions
L(s, χ) at s = 1. The ideal class group for ordinary equivalence is a quotient of
this group by a subgroup of order at most 2.
Although we shall not be concerned with representability of integers by forms

of degree greater than 2, the ideal class group and its order (the “class number”
of the field) are of interest for general number fields when defined in terms of
ordinary equivalence, not strict equivalence. Section 6 is devoted to proving that
the class number is finite for any number field and to developing some tools
for computing class numbers. Class number 1 is equivalent to having the ring
of algebraic integers in question be a principal ideal domain. Apart from the
appearance of class numbers in various limit formulas, here is one other indicator
of the importance of the ideal class group: It is possible to extend the above theory
of ramification in such away that it applies to any extensionK/F of number fields,
not just to finite extensions of Q. Hilbert proved that for any F, there is a finite
Galois extension K/F with abelian Galois group that is small enough for the
extension to be unramified at every prime ideal of F and that is large enough for
any unramified abelian extension of F to lie in K. Artin reciprocity can be used
to show that Gal(K/F) is isomorphic to the ideal class group2 of F and thus gives
some control over the nature of K. In particular, K = F if and only if every
ideal in the ring of integers of F is principal. When F is quadratic over Q, the

2The field K is called the Hilbert class field of F. The name “class field” is meant to be a
reminder of this isomorphism.
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field K can be used to give more definitive results than in Chapter I concerning
representability of integers by binary quadratic forms.

2. Discriminant

Let us recall some material about Dedekind domains from Chapters VIII and IX
of Basic Algebra. A Dedekind domain is a Noetherian integral domain that is
integrally closed and has the property that every nonzero prime ideal is maximal.
Any principal ideal domain is an example. Any Dedekind domain has unique
factorization for its ideals. Theorem 8.54 of the book gave a construction for
extending certain Dedekind domains to larger Dedekind domains: if D is a
Dedekind domain with field of fractions F and ifK is a finite separable extension
of F, then the integral closure of D in K is a Dedekind domain R. The hard
step in the proof, which was not carried out until Section IX.15, was to deduce
from the separability that R is finitely generated over D. The role of separability
was to force the bilinear form (a, b) 7→ TrK/F(ab) to be nondegenerate, and this
nondegeneracy in turn implied the desired result about finite generation.
In this section we introduce a tool that captures this last implication in quan-

titative fashion—that nondegeneracy of the trace form implies that the extended
domain is finitely generated over the given domain. In a full-fledged treatment of
algebraic number theory, one might well want to work in this full generality,3 but
we need less for our purposes: Throughout this section we assume that the given
Dedekind domain is the ring Z of integers, thatK is a number field, and that R is
the integral closure of Z in K, i.e., R is the ring of algebraic integers within K.
Let n = [K : Q] be the degree of the field extension. Since C is algebraically
closed, we can regard K as a subfield of C.
The separability of K/Q in combination with the fact that C is algebraically

closed implies that there exist exactly n distinct field maps σ1, . . . , σn of K into
C; one of them is the identity. Recall how σ1, . . . , σn can be constructed: if ξ is a
primitive element for K/Q, if F(X) is the minimal polynomial of ξ over Q, and
if ξ1 = ξ, ξ2, . . . , ξn are the n distinct roots of F(X) in C, then σj can be defined
by σj

°Pn−1
i=0 ciξ i

¢
=

Pn−1
i=0 ciξ

i
j on anyQ linear combination of powers of ξ . For

any η =
Pn−1

i=0 ciξ i in K, primitive or not, the n elements σi (η) of C are called
the conjugates of η relative toK. They are the roots of the field polynomial of η
over K, and each occurs with multiplicity [K : Q(η)].4

3For example this full level of generality would be appropriate if one planned ultimately to study
class field theory.

4The field polynomial of an element of K is the characteristic polynomial of left multiplication
on K by the element. This notion is discussed in Section IX.15 of Basic Algebra.
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Let 0 = (v1, . . . , vn) be an ordered basis of K over Q. The symmetric
bilinear form (u, v) 7→ TrK/Q(uv) determines an n-by-n symmetricmatrix Bi j =
TrK/Q(vivj ), and we can recover the form from the matrix B by the formula
TrK/Q(uv) = at Bb if a =

° u
0

¢
and b =

° v

0

¢
are the column vectors of u and v in

the ordered basis0, i.e., if u =
Pn

i=1 aivi and v =
Pn

j=1 bjvj . FromSectionVI.1
of Basic Algebra, we know that the bilinear form determines a canonicalQ linear
map L fromK to its vector space dual by the formula L(u)(v) = TrK/Q(uv) and
that the nondegeneracy of the form5 implies that this linear map is one-one onto.
Moreover, the matrix of L with respect to 0 and the dual basis of 0 is B. Thus
the nondegeneracy implies that the matrix B is nonsingular. The discriminant
D(0) of the ordered basis 0 is given by

D(0) = det B, where B is the matrix of (u, v) 7→ TrL/K (uv) in the basis 0.

Because of the nonsingularity of B, this is a nonzero member of Q.
Proposition 6.1 of Basic Algebra shows the effect on the matrix B of changing

the basis. Specifically let1 = (w1, . . . , wn) be a second ordered basis, and letC
be the matrix of the form in this basis, namely Ci j = TrK/Q(wiwj ). Let the two
bases be related bywj =

Pn
i=1 ai jvi , i.e., let [ai j ] =

≥
I

01

¥
. Then the proposition

gives
C =

≥
I

01

¥t
B

≥
I

01

¥
.

Taking determinants and using the fact that a matrix and its transpose have the
same determinant, we obtain

D(1) = D(0)
≥
det

≥
I

01

¥¥2
.

One consequence of this formula is that the sign of D(0) is independent of 0.
Another is that the value of D(0) does not depend on the ordering of the n
members of 0; it depends only on 0 as an unordered set.
Now suppose that the members of the ordered basis 0 are in the subring R

of algebraic integers within K. Bases of K over Q consisting of members of R
always exist, since we can always multiply the members of a basis ofK overQ by
a suitable integer to get them to be in R. In this case the entries Bi j = TrK/Q(vivj )
of thematrix of the bilinear formare inZ, and D(0) is therefore a nonzeromember
of Z.
The field discriminant, or absolute discriminant, of K, denoted by DK, is

the value of D(0) that minimizes |D(0)| for all bases ofK consisting ofmembers
5The nondegeneracy of the trace form for a number field is a transparent result, not requiring

anything deep from Section IX.15 of Basic Algebra, since any u 6= 0 in K has TrK/Q(uu−1) =
TrK/Q(1) = n 6= 0.
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of R. This is a nonzero integer. The sign of DK is well defined, since all values
of D(0) have the same sign.6
Fix an ordered basis 0 = (v1, . . . , vn) of K, and consider the abelian group

consisting of the Z span Z(0) of the members of 0. This is evidently a free
abelian group of rank n. If an ordered basis 1 = (w1, . . . , wn) has the property
that Z(1) ⊆ Z(0), then the theory in Section IV.9 of Basic Algebra that leads
to the Fundamental Theorem of Finitely Generated Abelian Groups shows that if
we write formally √ w1

...
wn

!

= C

√ v1
...
vn

!

,

then there exist n-by-n integer matrices M1 and M2 of determinant±1 such that
D = M1CM2 is diagonal, and moreover the order of Z(0)/Z(1) is | det D| =

| detC|. Examining the definition of C , we see that C =
≥

I
01

¥t
. Consequently

we obtain
|Z(0)/Z(1)| =

Ø
Ø det

≥
I

01

¥ Ø
Ø,

a formula we shall use repeatedly in this chapter without specific reference.

Proposition 5.1. If 0 is a basis of K over Q whose members all lie in R,
then |R

±
Z(0)|2 = D(0)/DK. In particular, 0 is a Z basis of R if and only if

D(0) = DK.
REMARKS. We already know from Basic Algebra that R is a free abelian

group of rank n. The second conclusion of this proposition, in combination with
the transparent observation that the trace form is nonsingular for a number field,
gives amore direct proof of this fact. Introductory treatments of algebraic number
theory sometimes give this more direct proof, whose details are spelled out in the
second paragraph below.
PROOF. Let 1 and ƒ be two bases of K over Q whose members all lie in R,

and suppose that Z(1) ⊆ Z(ƒ). Then the above discussion shows that

|D(1)| = |D(ƒ)|
≥
det

≥
I

ƒ1

¥¥2

and that
Ø
ØZ(ƒ)/Z(1)

Ø
Ø2 =

≥
det

≥
I

ƒ1

¥¥2
.

Since D(1) and D(ƒ) are nonzero and have the same sign, we obtain

D(1)/D(ƒ) =
Ø
ØZ(ƒ)/Z(1)

Ø
Ø2. (∗)

6As was observed above, any D(1) is the product of D(0) and the square of a rational number.
Hence D(1) and D(0) have the same sign.



2. Discriminant 269

To prove the proposition, we prove the “if” part of the second conclusion
first—without using the known fact that R is free abelian. Choose 1 such that
D(1) = DK and such that1 has all its members in R. Arguing by contradiction,
suppose that 1 fails to be a Z basis of R. Let r be an element of R not in Z(1).
Then the Z span of Z(1) ∪ {r} is a finitely generated additive subgroup ofK and
must be free abelian of rank ∏ n. Being a subgroup of the additive group of K,
it cannot have rank greater than n and hence has rank exactly n. Let ƒ be an
ordered Z basis of this subgroup. Since Z(1) $ Z(ƒ), the right side of (∗) is
> 1, and thus DK > D(ƒ). But this is a contradiction because the members of
ƒ lie in R, and hence1 is a Z basis of R. In particular, a Z basis of R exists.
To prove the rest of the proposition, take ƒ in (∗) to be a Z basis of R,

and let 1 = 0 be any given basis of K over Q that lies in R. Then (∗) gives
|R/Z(0)|2 = D(0)/D(ƒ). Since |R/Z(0)| cannot be less than 1, |D(0)| cannot
be less than |D(ƒ)|. Thus DK = D(ƒ), and |R/Z(0)|2 = D(0)/DK. This
proves the first conclusion of the proposition, and the “only if” part of the second
conclusion is immediate. §

EXAMPLE. Field discriminant of a quadratic number field. Let K = Q(
p
m ),

wherem is a square-free integer other than 1. From Section I.6 a Z ordered basis
0 of R is given by

0 =

Ω
{1,

p
m } if m ≡ 2 or 3 mod 4,

{1, 1
2 (

p
m − 1)} if m ≡ 1 mod 4.

Proposition5.1 allowsus to computeDK from this information. Thematrixwhose
determinant is DK in the two cases is

≥
2 0
0 2m

¥
and

≥
2 −1

−1 1
2 (m+1)

¥
, respectively, and

thus
DK =

Ω 4m if m ≡ 2 or 3 mod 4,
m if m ≡ 1 mod 4.

This is the formula that we took as a definition of field discriminant in Section
I.6.

For a general number fieldK of degree n overQ, there is no easy way to obtain
a Z basis of R. Instead, one tries to compute DK and find such a basis at the same
time by successive refinements.
The first step is to use the special kind of Q basis of K whose existence is

guaranteed by the Theorem of the Primitive Element. Specifically one can write
K = Q(ξ) for some ξ in K, since K/Q is a separable extension. Possibly after
multiplying ξ by a suitably large integer, we may assume that ξ is in R. Then
0(ξ) = {1, ξ, ξ 2, . . . , ξ n−1} is a Q basis of K lying in R. We normally write
D(ξ) instead of D(0(ξ)) for the discriminant of 0(ξ). Write ξi = σi (ξ) for the
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i th conjugate of ξ . Let B = [Bi j ] be the matrix whose determinant is D(ξ). Since
the trace of an element is the sum of its conjugates, Bi j is given by

Bi j = TrK/Q(ξ i−1ξ j−1) =
nP

k=1
σk(ξ

i−1ξ j−1) =
nP

k=1
ξ i−1k ξ

j−1
k ,

and this is of the form
Pn

k=1 VikV
t
jk , where Vik = ξ i−1k is an entry of a Vander-

monde matrix. Therefore

D(ξ) = det B = (det V )2 =
° Q

i< j
(ξj − ξi )

¢2
=

Q

i< j
(ξj − ξi )

2,

which coincides with the discriminant of the field polynomial of ξ over Q.

EXAMPLES OF D(ξ).
(1) K = Q(ξ), where ξ 5 − ξ − 1 = 0. This field was studied in Example 1 of

Section IX.17 of Basic Algebra. The discriminant of the polynomial X5− X − 1
is 2869 = 19 · 151, and thus D(ξ) = 2869. Proposition 5.1 shows that D(ξ) =
DKk2 for some nonzero integer k. Since 2869 is square free, we conclude that
DK = 2869.
(2)K = Q(

3p2 ). The minimal polynomial of ξ = 3p2 is X3− 2, and its roots
are ξ , ξω, and ξω2, where ω = e2π i/3. Then

D(ξ) = (ξ − ξω)2(ξ − ξω2)2(ξω − ξω2)2 = ξ 6(1− ω)2(1− ω2)2(ω − ω2)2,

and this simplifies to D(ξ) = −2233. This quantity is the product of DK by the
square of an integer. Thus DK is one of −3, −12, −27, and −108.

What happens with Example 2 is typical: a second step is needed to decide
among finitely many possibilities for DK. In the general case an induction is
involved, and Proposition 5.2 below says what is to be done at each step. At the
end of this section, we shall return to Example 2 and use the proposition to see
that DK = −108 is the correct choice.
Before stating Proposition 5.2, let us interpolate a generalization of the compu-

tation of D(ξ) that preceded the above examples. Suppose that0 = (α1, . . . , αn)
is any ordered Q basis of K lying in R. Let B = [Bi j ] be the matrix whose
determinant is the discriminant of 0. Then we have

Bi j = TrK/Q(αiαj ) =
nP

k=1
σk(αiαj ) =

nP

k=1
σk(αi )σk(αj ) =

nP

k=1
Aik(At)k j ,

where A = [Ai j ] is the matrix with Ai j = σj (αi ), and it follows that

D(0) =
°
det[σj (αi )]

¢2
.

This formula can be useful for computing D(0) when the conjugates of the αi
are readily available.
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Proposition 5.2. Let 0 = (v1, . . . , vn) be an ordered Q basis of K lying in
R. If the Z span Z(0) of 0 is a proper subgroup of R, then there exists a prime
number p such that p2 divides D(0) and such that some member

v0
k = p−1(c1v1 + c2v2 + · · · + ck−1vk−1 + vk)

of K lies in R with 1 ≤ k ≤ n and 0 ≤ cj ≤ p − 1 for j ≤ k − 1. If such
an element v0

k is found, then 1 = (v1, . . . , vk−1, v
0
k, vk+1, . . . , vn) has Z(1)

properly containing Z(0) with D(1) = p−2D(0).

REMARKS. A finite computation is involved in finding p and k. On the one
hand, for given p, at most 1+ p+ p2+· · ·+ pn−1 elements have to be checked for
integrality. On the other hand, we in principle have to find the field polynomial
of a certain element of K in each case and decide whether the coefficients are
integers, and this computation may be lengthy. See Problem 2 at the end of the
chapter for an easy example, Problem 16 for a harder example, and Problem 4b
for a related computation.

PROOF. Let Z(0) be a proper subgroup of R, and put m = |R/Z(0)|. Choose
a Z basis (w1, . . . , wn) of R, and write vi =

Pn
j=1 ci jwj with all ci j ∈ Z. We

know that | det[ci j ]| = m, and we let p be any prime divisor of m. Reducing the
ci j modulo p, we see that the matrix [ci j ] is singular modulo p, and thus there
exist integers a1, . . . , an not all divisible by p such that

nP

i=1
aici j ≡ 0 mod p for 1 ≤ j ≤ n.

Find k with 1 ≤ k ≤ n for which p divides all of ak+1, . . . , an but not ak , and
write

Pn
i=1 aici j = plj for integers lj . Then

kP

i=1
aivi =

nP

j=1

kP

i=1
aici jwj =

nP

j=1

°
plj −

nP

i=k+1
aici j

¢
wj ,

and the integer in parentheses on the right side is a multiple of p. Therefore
r =

Pk
i=1 aivi is exhibited as ps for some s ∈ R. Choose a0 and dk in Z with

a0ak − dk p = 1, and choose ci and di in Z for each i with i ≤ k − 1 such that
0 ≤ ci ≤ p − 1 and a0ai − pdi = ci . Then the computation

pa0s=a0r=
kP

i=1
a0aivi =

k−1P

i=1
(ci+ pdi )vi+(1+ pdk)vk =

k−1P

i=1
civi+vk+ p

kP

i=1
divi

shows that p−1°Pk−1
i=1 civi + vk

¢
= a0s −

Pk
i=1 divi lies in R. §
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Proposition 5.1 shows that any primitive element ξ of K that lies in R has
the property that D(ξ)/DK is the square of a nonzero integer, and we write this
quotient as J (ξ)2 with J (ξ) > 0. One might hope that although some particular
choice of ξ fails to have J (ξ) = 1, some other choice may be found for which
equality holds. We shall see in Section 4 that for a class of integers m, Q( 3

p
m )

has such an element ξ if and only if a certain nontrivial Diophantine equation in
two variables has a solution. Both cases arise: for m = 2, such a ξ exists, while
for m = 175, no such ξ exists.
But matters can be worse than this for a general K. The quotient J (ξ)2 =

D(ξ)/DK for a primitive element ξ of K lying in R is sometimes called the
index of ξ . One might hope at least that each prime not dividing DK fails to
divide the index J (ξ)2 for some ξ . However, Dedekind showed that there exist
number fieldsK and primes p that are common index divisors7 in the sense that
p divides J (ξ) for every primitive element ξ of K lying in R. Specifically he
showed that p = 2 is such a prime when K is obtained by adjoining to Q a root
of X3 + X2 − 2X + 8; here DK = −503. We shall study this example further in
Section 4.
Let us now specialize our considerations from general additive subgroups of

the form Z(0) to those that are ideals in R.

Proposition 5.3. If I is a nonzero ideal in R, then
(a) I contains a positive k in Z and
(b) I additively is of the form I = Z(0) for some Q basis 0 of K whose

members lie in R.
Consequently R/I is a finite ring and satisfies |R/I |2 = D(0)/DK.

PROOF. Let r be a nonzeromemberof I , and let P(X)be thefieldpolynomialof
r . Then P(X) is of the form P(X) = Xn+an−1Xn−1+· · ·+a1X+(−1)nNK/Q(r),
has integers for coefficients, and has r as one of its roots. Consequently the
formula

(−1)n+1NK/Q(r) = r(rn−1 + an−1rn−2 + · · · + a1)

shows that the nonzero integer NK/Q(r) is the product of r by a member of R and
hence lies in I . This proves (a) with k = |NK/Q(r)|.
The ideal I additively is a subgroup of R and is thus free abelian of rank at

most n. By (a), the integer k = |NK/Q(r)| has the property that kR ⊆ I ⊆ R.
Since R/kR has kn elements, R/I is finite. Therefore I has rank n as an additive
group and must be of the asserted form Z(0). This proves (b). The formula
|R/I |2 = D(0)/DK is immediate from Proposition 5.1. §

7Terminology varies for this notion. Such primes p are more usually called common inessential
discriminant divisors or essential discriminant divisors. The very fact that these two more usual
names appear to contradict each other is sufficient reason to avoid using either name.
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The absolute norm N (I ) of a nonzero ideal I of R is defined to be N (I ) =
|R/I |. This is necessarily a positive integer by Proposition 5.3. To be able to
work with this notion, we shall make use of the unique factorization of ideals of
R as given in Theorem 8.55 of Basic Algebra. That theorem says that such an
ideal I has a factorization of the form

Ql
j=1 P

ej
j , where the Pj are distinct prime

ideals of R, and that this factorization is unique except for the order of the factors.

Proposition 5.4. The absolute norms of nonzero ideals of R have the following
properties:

(a) N (R) = 1.
(b) If I ⊆ J are nonzero ideals in R, then N (J ) divides N (I ), and I = J if

and only if N (J ) = N (I ).
(c) If I and J are nonzero ideals in R, then N (I J ) = N (I )N (J ).
(d) If (α) is a nonzero principal ideal in R, then N ((α)) = |NK/Q(α)|.

PROOF. Conclusion (a) is immediate, and so is most of (b). If I ⊆ J and
N (J ) = N (I ), then the First Isomorphism Theorem for abelian groups yields
(R/I )

±
(J/I ) ∼= R/J , and it follows that N (I )

±
|J/I | = N (J ). Since N (I ) and

N (J ) are finite, N (I ) = N (J ) if and only if |J/I | = 1, i.e., if and only if I = J .
For (c), we begin with the special case that I and J are powers of a nonzero

prime ideal P . Inductively it is enough to show that N (Pk) = N (P)N (Pk−1)
for k ∏ 1. Since (R/Pk)

±
(Pk−1/Pk) ∼= R/Pk−1 as abelian groups, it is enough

to show that
|Pk−1/Pk | = |R/P|. (∗)

The ring R operates on the ideal Pk−1, carrying Pk into itself, and P carries Pk−1
into Pk . Thus Pk−1/Pk is a unital module for the ring R/P , which is a field
because P is maximal. Hence Pk−1/Pk is a vector space over R/P . Corollary
8.60 of Basic Algebra shows that this vector space is 1-dimensional, and then (∗)
is immediate.
For the general case in (c), Corollary 8.63 of Basic Algebra shows that if

I =
Ql

j=1 P
ej
j is the unique factorization of the nonzero ideal I as the product

of positive powers of distinct prime ideals Pj , then R/I ∼=
Ql

j=1 R/Pejj . Hence
N (I ) =

Ql
j=1 N (Pejj ). Becauseof the special case that is alreadyproved, N (I ) =

Ql
j=1 N (Pj )ej . Then (c) follows in the general case.
For (d), if 0 = (u1, . . . , un) is an ordered Z basis of R, then the tuple

α0 = (αu1, . . . , αun) is an ordered Z basis of (α), and we know that N ((α)) =

|R/(α)| = |Z(0)/Z(α0)| =
Ø
Ø
Ø det

≥
I

0,α0

¥ Ø
Ø
Ø. But

≥
I

0,α0

¥
is just the matrix of the

Q linear map left-by-α in the Q basis 0, and the determinant of this linear map
is NK/Q(α) by definition of the norm of an element. §
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EXAMPLE 2 OF D(ξ), CONTINUED. For K = Q(
3p2 ), we have seen that

the discriminant of the K basis 0(
3p2 ) is D(

3p2 ) = −3322. We are going
to show that (1, 3p2, 3p4 ) is a Z basis of R, and then it follows that the field
discriminant of K is DK = −3322. We apply Proposition 5.2. The only primes
that need testing in that proposition are the ones dividing D(

3p2 ), and thus
we consider p = 2 and p = 3. We want to see that no expression p−1(1)
or p−1(c1 + 3p2 ) or p−1(c1 + c2 3p2 + 3p4 ) is an algebraic integer for some
coefficients c0 and c1 between 0 and p − 1. We can discard p−1(1) because the
only rational numbers that are algebraic integers are the members of Z. If the
field polynomial over Q of some ξ in K is X3 + a2X2 + a1X + a0, then the
field polynomial of p−1ξ is X3 + p−1a2X2 + p−2a1X + p−3a0. So the question
of integrality is one of divisibility of the coefficients of the field polynomials of
certain algebraic integers ξ by suitable powers of p. These coefficients, up to sign,
are the values of the elementary symmetric polynomials on the three conjugates
of ξ .
In the case at hand, only the coefficient a0 is needed. That is, it is enough to

see that the norm of ξ is never divisible by 8 or 27 for ξ equal to c1 + 3p2 or
c1 + c2 3p2+ 3p4 as above. Let us write ξ = c1 + c2θ + c3θ2 with θ = 3p2 and
with c1, c2, c3 in Z. Then a0 = −NK/Q(ξ), and the norm is the product of the
three conjugates of ξ . If ω = e2π i/3, we compute that

NK/Q(ξ) = (c1 + c2θ + c3θ2)(c1 + c2θω + c3θ2ω2)(c1 + c2θω2 + c3θ2ω)

= (c31 + 2c32 + 4c33) + 2c1c2c3(2ω + 3ω2 + ω4)

= (c31 + 2c32 + 4c33) − 6c1c2c3.

For p = 2, we consider this expression when c1, c2, c3 are chosen from {0, 1}.
To get divisibility by 8, we check this expression modulo 8. Each c3i is ci for
ci ∈ {0, 1}. Looking at the expression modulo 2, we see that c1 must be even,
i.e., c1 = 0. Then 8 must divide 2c32 + 4c33, and we obtain c2 = c3 = 0, in
contradiction to the formulas for the ξ ’s under consideration.
For p = 3, it is enough to consider this expression when c1, c2, c3 are chosen

from {−1, 0,+1}. Since each ci has |ci | ≤ 1, we see that |NK/Q(ξ)| ≤ 13,
and divisibility by 27 can occur only if NK/Q(ξ) = 0, which we know entails
ξ = 0. Thus no ξ meets the test of Proposition 5.2, and the conclusion is that
(1, 2p3, 3p4 ) is a Z basis of R in Q(

3p2 ).

3. Dedekind Discriminant Theorem

The field discriminant plays a role in determining how a prime ideal (p) in Z,
p being a prime number, splits when one extends (p) to an ideal (p)R in the
ring R of algebraic integers in a number field K of degree n over Q. In this
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situation, recall from Theorem 9.60 of Basic Algebra that the prime factorization
of the ideal (p)R in R is of the form (p)R =

Qg
i=1 P

ei
i with

Pg
i=1 ei fi = n; here

n = [K : Q], the Pi are distinct, and fi = dimFp(R/Pi ). The integers ei are
called ramification indices, and the integers fi are called residue class degrees.
The extension K/Q is said to be ramified at p, and the prime p of Z is said to
ramify in K, if some ei is > 1 in this decomposition.8

Theorem 5.5 (Dedekind Discriminant Theorem). The prime p of Z ramifies
in a number field K if and only if p divides the field discriminant DK of K.

In this chapter we shall prove this theoremonly in a useful special case, namely
in the case that p is not a common index divisor. Only finitely many primes can
divide the index J (ξ) = (D(ξ)/DK)1/2 for a single primitive element ξ ofK lying
in R, and thus there are only finitelymany common index divisors.9 Consequently
the special case that we are proving implies that only finitely many primes of Z
ramify in K.
The difficulty in provingTheorem5.5 in full generality is thatwe lack sufficient

tools for addressing questions by localization. At the end of this section, we shall
make some comments about how one can proceed with further tools.
As we shall see later in this section, Theorem 5.5 for primes that are not

common index divisors is an easy consequence of the following theorem.

Theorem 5.6 (Kummer’s criterion). Let K be a number field, and let R be its
ring of algebraic integers. Suppose that F(X) is a monic irreducible polynomial
in Z[X], that ξ is a root of F(X) in C, and that p is a prime number that does
not divide the integer J (ξ) such that J (ξ)2 = D(ξ)/DK. Write F(X) for the
reduction of F(X) modulo p, let

F(X) = F1(X)e1 · · · Fg(X)eg

be the unique factorization of F(X) in Fp[X] into a product of powers of distinct
irreducible monic polynomials, and let fi = deg(Fi ). For each i with 1 ≤ i ≤ g,
select a monic polynomial Fi (X) in Z[X] whose reduction modulo p is Fi (X),
and let Pi be the ideal in R defined by

Pi = pR + Fi (ξ)R.

Then the Pi ’s are distinct prime ideals of R with dimFp(R/Pi ) = fi , and the
unique factorization of (p)R into prime ideals is

(p)R = Pe11 · · · Pegg .

8More generally “relative discriminants,” which we have not defined, play a role in the splitting
of prime ideals in passing from a general number field to a finite extension. The cited Theorem 9.60
applies in this more general situation as well. This more general topic will be discussed further in
Problems 5–9 at the end of this chapter and very briefly in Chapter VI.

9In fact, it can be shown that every common index divisor is less than [K : Q].
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REMARKS. The additive group Z(0(ξ)) generated by the powers of ξ through
ξ n−1 is a ring, since ξ n is an integral combination of the lower powers of ξ , and
this ring has index J (ξ) as a subring of R. We divide the proof into two parts. The
first part will give a complete proof in the special case that the subringZ(0(ξ)) is
all of R, but we shall retain notation that distinguishes the subring from the whole
ring in order to see how much of the proof works for the general case. After the
first part we pause for a lemma that will be used to tie results for the subring to
results for all of R, and then we return to apply the lemma and complete the proof
of Theorem 5.6.
FIRST PART OF PROOF. Let P 0

i be the ideal pZ[X]+ Fi (X)Z[X] in Z[X]. The
passage from Z[X] to the quotient Z[X]/P 0

i can be achieved in two steps, first
using the substitution homomorphism carrying Z to Fp and X to itself and then
taking the quotient by the principal ideal (Fi (X)). Since Fi (X) is irreducible in
Fp[X], the quotient is a field and P 0

i has to be prime. The number of elements in
Z[X]/P 0

i is p fi because deg(Fi (X)) = fi . The ideals P 0
i are distinct because the

polynomials Fi (X) are distinct.
Meanwhile, the substitution homomorphism of Z[X] leaving Z fixed and

carrying X to ξ is a ring homomorphism of Z[X] onto Z(0(ξ)). Let P 00
i be the

image of P 0
i under this homomorphism, i.e., let P 00

i = pZ(0(ξ))+Fi (ξ)Z(0(ξ)).
This is an ideal. The composite ring homomorphism of Z[X] onto Z(0(ξ))/P 00

i
factors through to a ring homomorphismofZ[X]/P 0

i ontoZ(0(ξ))/P 00
i . Since the

domain is a field and the identity maps to the identity, the homomorphism is one-
one and the image is a field. Thus P 00

i is a prime ideal, the order of Z(0(ξ))/P 00
i

is p fi , and and P 0
i is the complete inverse image of P 00

i . Since the ideals P 0
i can

be recovered from the P 00
i and since the P 0

i are distinct, the P 00
i are distinct.

The next step is to compare the ideals
Qg

i=1 P
ei
i and (p)R. We shall use the

fact that the polynomial
Qg

i=1 Fi (X)ei − F(X) in Z[X] has coefficients divisible
by p and therefore lies in pZ[X]. The computation
gQ

i=1
Peii =

gQ

i=1
(pR + Fi (ξ)R)ei

⊆ pR +
gQ

i=1
Fi (ξ)ei R

⊆ pR +
° gQ

i=1
Fei
i − F

¢
(ξ) since F(ξ) = 0

⊆ pR + pZ(0(ξ)) since
Qg

i=1 Fi (X)ei − F(X) lies in pZ[X]
= pR

shows that
Qg

i=1 P
ei
i ⊆ (p)R. If we can show that N

°Qg
i=1 P

ei
i

¢
= N ((p)R),

then Proposition 5.4b will allow us to conclude that
Qg

i=1 P
ei
i = (p)R.
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At this point let us specialize to the case that Z(0(ξ)) = R and see how to
complete the proof. Under this assumption the definitions of Pi and P 00

i exactly
match. What we have shown about the P 00

i thus says that the Pi are distinct prime
ideals in R with |R/Pi | = p fi , hencewith dimFp(R/Pi ) = fi . Use of Proposition
5.4 and the fact that |Z(0(ξ))/P 00

i | = p fi gives N
°Qg

i=1 P
ei
i

¢
=

Qg
i=1 N (Pi )ei =

Qg
i=1 pei fi = p

P g
i=1 ei fi = pn , the last equality holding because deg F(X) =Pg

i=1 ei deg Fi (X). Since pn equals N ((p)R), the desired equality of norms has
been proved. This completes the proof of the theorem when Z(0(ξ)) = R. §

We interrupt the general proof for the promised lemma. When we apply
the lemma to finish the proof of Theorem 5.6, we shall take A = Z(0(ξ)),
J = J (ξ), and m = p. The hypotheses of Theorem 5.6 show that the condition
GCD(p, J (ξ)) = 1 is satisfied.

Lemma 5.7. Suppose that A is an additive subgroup of finite index J in R and
that m ∏ 1 is an integer relatively prime to J . Then for each r ∈ R, there exists
a ∈ A with r − a in mR.

PROOF. Let {u1, . . . , un} be a Z basis of R, and let {v1, . . . , vn} be a Z basis of
A. We can write vj =

Pn
i=1 ci j ui for an integer matrix [ci j ] with | det[ci j ]| = J .

Let r =
Pn

i=1 biui be given, and let the unknown a ∈ A be expanded as a =Pn
i=1 ajvj . Then a =

P
i, j aj ci j ui , and we are to arrange that the element

r − a =
nP

i=1

°
bi −

nP

j=1
ci jaj

¢
ui

is in mR. Thus we are to arrange that each coefficient of a ui is divisible by m.
Since | det[ci j ]| = J is relatively prime to m, the system of linear equations

nP

j=1
ci jaj ≡ bi mod m

with unknowns a1, . . . , an has a nonsingular coefficient matrix modulo m and
therefore has a solution. §

SECONDPARTOF PROOFOFTHEOREM5.6. The ringhomomorphismofZ(0(ξ))
into R/(pR+ Fi (ξ)R) given by the composition of the inclusion followed by the
quotient map descends to a ring homomorphism

Z(0(ξ))
±
(pZ(0(ξ)) + Fi (ξ)Z(0(ξ))) −→ R/(pR + Fi (ξ)R). (∗)

To see that (∗) is onto, let r ∈ R be given. Take A = pR in Lemma 5.7. Choose
z ∈ Z(0(ξ)) by the lemma in such a way that z− r is in pR. Under the mapping
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(∗), the coset of z goes to r+ (z−r)+ pR+ Fi (ξ)R = r+ pR+ Fi (ξ)R, which
is the coset of r . Hence (∗) is onto.
To see that (∗) is one-one, suppose that z maps to the 0 coset in the image.

Then z = pr1 + Fi (ξ)r2 with r1 and r2 in R. Lemma 5.7 produces z2 in Z(0(ξ))
with r2− z2 in pR. Hence the decomposition z = pr1+Fi (ξ)(r2− z2)+Fi (ξ)z2
exhibits z as in pR + Fi (ξ)Z(0(ξ)). The product Fi (ξ)Z(0(ξ)) is in Z(0(ξ)),
since Z(0(ξ)) is a ring, and (∗)will be one-one if we show that pR∩Z(0(ξ)) ⊆
pZ(0(ξ)). Let {ui } be a Z basis of R, let {vj } be a Z basis of Z(0(ξ)), and
write vj =

P
i ci j ui for integers ci j . If z0 is in pR ∩ Z(0(ξ)), let us write

z0 =
P

j ajvj . Substitution gives z0 =
P

i
°P

j aj ci j
¢
ui . Since z0 is in pR, we

see that
P

j ci j aj ≡ 0 mod p for all i . The determinant of [ci j ] is the index J (ξ),
up to sign, and this by assumption is not divisible by p. Therefore aj ≡ 0 mod p
for all j , and it follows that z0 is in pZ(0(ξ)). Hence (∗) is one-one.
We have thus proved that (∗) is a ring isomorphism, i.e., that Z(0(ξ))/P 00

i
∼=

R/Pi for all i . The left side is a field, and hence Pi is a prime ideal. From
the isomorphism we obtain N (Pi ) = |Z(0(ξ))/P 00

i | = p fi . The computation
N

°Qg
i=1 P

ei
i

¢
=

Qg
i=1 N (Pi )ei =

Qg
i=1 pei fi = p

P g
i=1 ei fi = pn in the last

paragraph of the first part of the proof is now fully justified, and we can therefore
conclude as in the special case that

Qg
i=1 P

ei
i = (p)R.

Finally we have to prove that the ideals Pi are distinct. If indices i 6= j are
given, we know that P 00

i 6= P 00
j . Choose z in P 00

i but not P 00
j . Then z is in Pi

because P 00
i ⊆ Pi , and z is not in Pj because the proof above that (∗) is one-one

showed that Z(0(ξ)) ∩ Pj ⊆ P 00
j . This completes the proof of Theorem 5.6. §

PROOF OF THEOREM 5.5 WHEN p IS NOT A COMMON INDEX DIVISOR. If p is not
a common index divisor, we can choose a primitive ξ for K/Q such that ξ is in
R and p does not divide J (ξ) = |R/Z(0(ξ))|. Let F(X) be the field polynomial
of ξ over Q. Since D(ξ) = J (ξ)2DK, p divides DK if and only if p divides
D(ξ). Thus p divides DK if and only if p divides the discriminant of F(X).
This happens if and only if the discriminant of F(X) is ≡ 0 mod p, if and only
if F(X) has a root of multiplicity> 1 in an algebraic closure of Fp, if and only if
the factorization over Fp of F(X) as a product of powers of distinct irreducible
monic polynomials has some factor with exponent > 1. Applying Theorem 5.6,
we see that this last condition is satisfied if and only if the unique factorization
of the ideal (p)R in R as

Qg
i=1 P

ei
i has some ei > 1. §

As was mentioned earlier in this section, the difficulty in proving Theorem 5.5
in complete generality is that we lack sufficient tools for addressing questions by
localization. The different prime numbers are interacting in some fashion, and the
above proofs were unable to separate them. The usual technique of localization
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in our situation10 suggests enlarging one or the other of the rings Z and R by
adjoining inverses for all elements not in some prime ideal of interest. Then we
piece together the results. If the localizing is done with respect to a prime ideal
(p) of Z, then Z gets replaced by the subring S−1Z of all members of Q with no
factors of p in the denominators, and R gets replaced by S−1R. One advantage
of this procedure is that S−1R is a principal ideal domain, whereas R is typically
not such a domain.
Localization in that formulation does not by itself reveal a clear path to a proof

of Theorem 5.5. Two additional ideas enter the argument to make a path seem
natural; Dedekind succeeded without the second of them, and historically it is
only with hindsight that one sees the benefit of the second idea. The first idea is
to use a more fundamental object than the discriminant of K, called the “relative
different” of K/Q; this makes it possible to aim for a more precise description
of the ramification indices when they are not equal to 1. The second idea is due
to K. Hensel and involves forming a kind of completion of the localized rings;
the ring Z gets replaced by the ring Zp of “p-adic integers,” and the field Q
gets replaced by the field Qp of “p-adic numbers.” We return to these ideas in
Chapter VI.

4. Cubic Number Fields as Examples

In treating examples of cubic fields, it will be convenient to have one further
tool available for computing discriminants. Let K be a number field, let ξ be
a primitive element of K/Q, and let F(X) be its field polynomial over Q. Let
ξi = σi (ξ) be the conjugates of ξ , and assume that ξ1 = ξ . The conjugates are
the roots of F(X) in C, and hence

F(X) =
nY

i=1
(X − ξi ).

The derivative is F 0(X) =
Pn

i=1
Q

j 6=i (X − ξj ), and therefore

F 0(ξ) =
nY

j=2
(ξ − ξj ).

Observe that the form of the left side shows that this element lies in K, and it
lies in R if ξ lies in R. The different D(ξ) of the element ξ is defined to be this
element of K, namely11

10Localization was introduced in Section VIII.10 of Basic Algebra.
11The different of an element is related to the notion of relative different mentioned at the end of

Section 3, but the nature of that relationship will not concern us at this time.
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D(ξ) = F 0(ξ) =
nY

j=2
(ξ − ξj ).

Since F 0(X) has coefficients in Q, the conjugates σi (F 0(ξ)) of F 0(ξ) are the
elements F 0(σi (ξ)) = F 0(ξi ) for 1 ≤ i ≤ n. The formula for F 0(X) shows that
F 0(ξi ) =

Q
j 6=i (ξi − ξj ). Therefore the norm of D(ξ) is

NK/Q(D(ξ)) = NK/Q(F 0(ξ)) =
nY

i=1
F 0(ξi ) =

nY

i=1

Y

j 6=i
(ξi − ξj )

= (−1)n(n−1)/2
Y

i< j
(ξi − ξj )

2 = (−1)n(n−1)/2D(ξ).

In otherwords, thenormof thedifferent of ξ is, up to sign, equal to thediscriminant
of 0(ξ), which in turn equals the discriminant of the field polynomial of the
primitive element ξ . ThedefinitionsofD(ξ) and D(ξ) and the formula connecting
them make sense if ξ is allowed to be any element of K, primitive or not. Both
D(ξ) and D(ξ) have the property of being nonzero if and only if ξ is primitive.

EXAMPLE. For the fieldK = Q(
3p2 ), the different of ξ = 3p2 is 3X2

Ø
Ø
X= 3p2 =

3 3p4, and the discriminant of X3−2, up to the sign (−1)3·2/2, is the norm of this,
i.e.,

D(
3p2 ) = −(3 3p4)(3 3p4ω)(3 3p4ω2), where ω = e2π i/3,

= −3322.

Alternatively, the norm can be computed from a field polynomial. Specifically
the norm of 3 3p4 is the determinant of left multiplication by this element when
considered as a Q linear mapping of K into itself.

We saw already in Example 2 of Section 2 that D(
3p2 ) = −3322, but the

earlier method of computation was longer. At the end of Section 2, we saw in
addition that {1, 3p2, 3p4 } is a Z basis of the ring of algebraic integers in the field
K = Q(

3p2 ). The use of differents does not simplify the proof of this latter fact.
In this section we consider further examples of cubic extensions of Q. The

first such fields that we study are the pure cubic extensionsK = Q( 3
p
m ), where

m is any cube-free positive integer> 1. Already with these fieldsK, we shall see
that DK is not necessarily equal to D(ξ) for some algebraic integer ξ . However,
all these fields have no common index divisors. Then we examine Dedekind’s
example of a cubic number field for which 2 is a common index divisor.
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The correspondence of cube-free integers m > 1 to fields Q( 3
p
m ) is many-

to-one: if m is given and p is a prime dividing m, let m0 = m/p if p2 divides m
and m0 = mp if p2 does not divide m; then Q( 3

p
m ) = Q(

3pm0 ). In analyzing
Q( 3

p
m ), it will be convenient to normalizematters so as to resolve this ambiguity.

We can write m uniquely as a product m = ab2 for positive square-free integers
a and b; these have GCD(a, b) = 1, b2 is the largest square dividing m, and a is
given by a = m/b2. Then m and m0 = a2b lead to the same field.

Proposition 5.8. For a cube-free integer m > 1, let K = Q( 3
p
m ), and let R

be the ring of algebraic integers in K. Write m = ab2 for positive square-free
integers a and b with GCD(a, b) = 1, and define two members of R to be the
real cube roots θ1 = 3pab2 and θ2 = 3pa2b. Then a Z basis of R consists of

(a) {1, θ1, θ2} if a 6≡ ±b mod 9, i.e., if m is of Type I,
(b) { 13 (1 ± θ1 ± θ2), θ1, θ2} for exactly one choice of the pair of signs if

a ≡ ±b mod 9, i.e., if m is of Type II.
In the respective cases the field discriminant is given by

DK =

Ω
−27a2b2 if m is of Type I,
−3a2b2 if m is of Type II.

REMARKS. More precisely in Type II, the congruence a ≡ ±b mod 9 implies
that a and b are prime to 3. Choose signs s = ±1 and t = ±1 such that
sa ≡ 1 mod 3 and tb ≡ 1 mod 3. Then the first member of the Z basis is to be
1
3 (1+ sθ1 + tθ2). The smallest m leading to Type I is m = 2, and this case was
examined in Example 2 in Section 2. The smallestm leading to Type II ism = 10,
and then the first member of the asserted Z basis of R is 13 (1+ 3p10+ 3p100 ).

PROOF. Let ω = e2π i/3. The conjugates of θ1 can be taken to be σ1(θ1) = θ1,
σ2(θ1) = ωθ1, and σ3(θ1) = ω2θ1. Since θ21 = bθ2, we have σi (θ2) = b−1σi (θ1)

2,
and therefore σ1(θ2) = θ2, σ2(θ2) = ω2θ2, and σ3(θ2) = ωθ2. In view of the
formula before Proposition 5.2, D((1, θ1, θ2)) is the square of

det

√ 1 1 1
θ1 ωθ1 ω2θ1
θ2 ω2θ2 ωθ2

!

,

and we calculate that D((1, θ1, θ2)) = −27a2b2.
Let us apply Proposition 5.2 to the triple {1, θ1, θ2} of members of R. For each

prime p dividing 27a2b2, we are to check whether certain elements are integral.
First suppose that p divides a but p 6= 3. It is enough to check the elements
p−1(a0 + θ1) or p−1(a0 + a1θ1 + θ2) for integrality when a0 and a1 are integers
from 0 to p − 1. Form the extension L = K( 3

pp ) = Q( 3
p
m, 3

pp ) of K, and
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let T be its ring of algebraic integers. The degree [L : Q] equals 9 if L 6= K and
equals 3 if L = K. If p−1(a0 + θ1) is integral, then a0 + p1/3((a/p)b2)1/3 = pr
with r ∈ R, and hence a0 = p1/3c with c ∈ T . Applying NL/Q to both sides, we
obtain a90 = p3NL/Q(c) if L 6= K, and we obtain a30 = pNK/Q(c) if L = K. In
either case, p divides a0, and a0 = 0. So p−1θ1 is integral, in contradiction to
the facts that the field polynomial for K of p−1θ1 is X3 − p−3ab2 and that ab2
contains p as a factor only once. We conclude that p−1(a0 + θ1) is not integral.
Similarly if the element p−1(a0 + a1θ1 + θ2) is integral, then we see that

a0 + a1 p1/3((a/p)b2)1/3 + p2/3((a/p)2b)1/3 = pr with r ∈ R. So a0 = p1/3c
with c ∈ T , and the same argument as above shows that a0 = 0. Hence
a1((a/p)b2)1/3 + p1/3((a/p)2b)1/3 = p2/3r , and a1((a/p)b2)1/3 = p1/3c0 with
c0 ∈ T . Taking the norm gives a91((a/p)b2)3 = p3NL/Q(c0) if L 6= K and
a31(a/p)b2 = pNK/Q(c0) ifL = K. Since a/p and b are prime to p, we conclude
that p divides a1 in both cases. Therefore a1 = 0, and p−1θ2 is integral. The
field polynomial for K of p−1θ2 is X3 − p−3a2b, and a2b contains p as a factor
only twice. We conclude that p−1(a0 + a1θ1 + θ2) is not integral.
This disposes of the prime divisors of a other than p = 3, and we handle

the prime divisors of b other than p = 3 in the same way, except that we start
from the ordered triple (1, θ2, θ1) and therefore need check only p−1(a0 + θ2)
and p−1(a0 + a1θ2 + θ1).
Now let us apply Proposition 5.2 to the ordered triple (1, θ1, θ2) for the prime

p = 3, except that we allow coefficients 0 and ±1 instead of 0, 1, 2. We check
integrality for the elements 13 (1± θ1), 13 (1± θ2), 13 (θ1 ± θ2), and 1

3 (1± θ1 ± θ2)
by checking whether the coefficients of their field polynomials are in Z. For the
first two, let ϕ be±θ1 or±θ2. The coefficient of the first-degree term in the field
polynomial of 13 (1+ ϕ) is 19 times

(1+ ϕ)(1+ ωϕ) + (1+ ϕ)(1+ ω2ϕ) + (1+ ωϕ)(1+ ω2ϕ)

= (1+ ϕ)(2+ ωϕ + ω2ϕ) + (1+ ωϕ)(1+ ω2ϕ)

= (1+ ϕ)(2− ϕ) + (1− ϕ + ϕ2) = 2+ ϕ − ϕ2 + 1− ϕ + ϕ2 = 3,

hence is 13 . This is not an integer, and thus
1
3 (1+ ϕ) is not in R. If ϕ = ±θ1 and

√ = ±θ2, then the corresponding computation for ϕ + √ is

(ϕ + √)(ωϕ + ω2√) + (ϕ + √)(ω2ϕ + ω√) + (ωϕ + ω2√)(ω2ϕ + ω√)

= −(ϕ + √)(ϕ + √) + (ϕ2 − ϕ√ + √2)

= −3ϕ√ = −3ab(sgnϕ)(sgn√), (∗)

and 1
9 of this is an integer only if 3 divides ab. In this case our hypotheses show
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that 9 does not divide ab. The constant term in the field polynomial of 13 (ϕ + √)

is − 1
27 times

(ϕ + √)(ωϕ + ω2√)(ω2ϕ + ω√) = ϕ3 + √3

= (sgnϕ)ab2 + (sgn√)a2b
= ab(b sgnϕ + a sgn√). (∗∗)

When 3 divides ab exactly once, 3 divides (∗∗) exactly once, and hence − 1
27 of

(∗∗) is not an integer. Thus 13 (ϕ + √) is not in R.
It remains to check 13 (1+ϕ +√)with ϕ = ±θ1 and√ = ±θ2. The coefficient

of the second-degree term in the field polynomial of 13 (1 + ϕ + √) is equal to
− 1
3 Tr(1+ ϕ + √) = −1 and is an integer; thus it imposes no restrictions. The

first-degree term of the field polynomial is 19 of

(1+ ϕ + √)(1+ ωϕ + ω2√) + (1+ ϕ + √)(1+ ω2ϕ + ω√)

+ (1+ ωϕ + ω2√)(1+ ω2ϕ + ω√)

= (1+ ϕ + √)(2− ϕ − √) + (1− ϕ − √ + ϕ2 − ϕ√ + √2)

= 3− 3ϕ√ = 3(1− ab(sgnϕ)(sgn√)), (†)

and 19 of (†) is an integer if and only if ab ≡ (sgnϕ)(sgn√) mod 3. In particular,
the proof is now complete unless ab ≡ (sgnϕ)(sgn√) mod 3. Thus we may
assume from now on that neither a nor b is divisible by 3.
The constant term of the field polynomial of 13 (1+ ϕ + √) is − 1

27 times

(1+ ϕ + √)(1+ ωϕ + ω2√)(1+ ω2ϕ + ω√)

= 1+ TrK/Q(ϕ + √) + (∗) + (∗∗)

= 1+ 0− 3ab(sgnϕ)(sgn√) + ab(b sgnϕ + a sgn√).

Put α = a sgnϕ and β = b sgn√ , so that 1− 3αβ +αβ(α +β) is to be divisible
by 27. Since neither β nor α is divisible by 3, we can define l mod 27 by the
congruence β = lα mod 27. Substituting shows that 1− 3lα2 + lα2(α + lα) ≡
0 mod 27, hence that l(l + 1)α3 ≡ 3lα2 − 1 mod 27, which we can rewrite as

α3l2 + (α3 − 3α2)l + 1 ≡ 0 mod 27.

Completing the square in l allows us to write this congruence as

(l + 1
2 (1− 3α−1))2 ≡ 1

4 (1− 3α−1)2 − α−3 mod 27.

Factoring the right side, we obtain

(l + 1
2 (1− 3α−1))2 ≡ 1

4α
−4[α(α − 1)2(α − 4)] mod 27. (††)
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Ifα ≡ 1 mod 3, the expression in square brackets on the right side is≡ 0 mod 27,
and 0 is the square of 0 and ±9. If α ≡ 2 mod 3, then the expression in square
brackets is a square if and only if α(α − 4) ≡ c2 mod 27. Considering the
congruence only modulo 3 gives 2(−2) ≡ c2 mod 3 and therefore c2 ≡ 2 mod 3,
which has no solutions. Thus α ≡ 2 mod 3 leads to no solutions of (††). We can
summarize by saying that the solutions of (††) are given by α ≡ 1 mod 3 and

l + 1
2 (1− 3α−1) ≡ 0 mod 9.

One checks that the values α ≡ 1, 4, 7 mod 9 all lead to l = 1.
Let us summarize. Let s and t be signs ±. Then 1

3 (1+ sθ1 + tθ2) is integral
if and only if both of the following conditions are satisfied:

(i) sa ≡ tb ≡ 1 mod 3,
(ii) sa ≡ tb mod 9.

When these conditions are satisfied, we are in Type II; otherwise we are in Type I.
This completes the proof. §

In the setting of Type I in Proposition 5.8, let us form the discriminants of
0(θ1) = (1, θ1, θ21 ) and 0(θ2) = (1, θ2, θ22 ). Using the method of computation
at the beginning of this section, we see that the differents in the two cases are
3θ21 and 3θ22 . Therefore the discriminant of 0(θ1) is D(θ1) = −NK/Q(3θ21 ) =
−33(θ21 )3 = −33(ab2)2 = −33a2b4, and the discriminant of 0(θ2) similarly is
D(θ2) = −33a4b2. The absolute value of the greatest common divisor of these
two expressions is 33a2b2 = |DK|, and therefore there are never any common
index divisors in Type I.
On the other hand, there exist situations in Type I inwhich no primitive element

ξ of Q( 3
p
m ) lying in R has 0(ξ) as a Z basis. To prove this fact, we make use

of the following proposition.

Proposition 5.9. For a pure cubic extension K = Q(
3pab2 ) of Type I, an

element ξ = x + yθ1 + zθ2 with Z coefficients has D(ξ) = DK if and only if
y3b − z3a = ±1.

PROOF. The matrix whose determinant is D(0(ξ)) is given by

M =

√ 3 Tr(ξ) Tr(ξ 2)
Tr(ξ) Tr(ξ 2) Tr(ξ 3)
Tr(ξ 2) Tr(ξ 3) Tr(ξ 4)

!

,

where Tr is short for TrK/Q. The element θ i1θ
j
2 has conjugates θ i1θ

j
2 , ωi+2 jθ i1θ

j
2 ,

and ω2i+ jθ i1θ
j
2 , where ω = e2π i/3. Thus

Tr(θ i1θ
j
2 ) = (1+ ωi+2 j + ω2i+ j )θ i1θ

j
2 = (1+ ωi+2 j + ω2(i+2 j))θ i1θ

j
2 .
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This is 0 if i + 2 j is not divisible by 3 and is 3θ i1θ
j
2 otherwise. We compute the

trace of each power of ξ by applying the formula

Tr(ξ l) =
nP

k=0

°l
k
¢
xl−k Tr((yθ1 + zθ2)k),

which comes from treating ξ as a binomial. The traces of the powers of yθ1+ zθ2
work out to be

1
3 Tr(yθ1 + zθ2) = 0,

1
3 Tr((yθ1 + zθ2)2) = 2yzθ1θ2 = ab(2yz),
1
3 Tr((yθ1 + zθ2)3) = ab(y3b + z3a),
1
3 Tr((yθ1 + zθ2)4) = (ab)26y2z2.

Substituting, we find the following formulas for the trace of each power of ξ :
1
3 Tr(ξ) = x,
1
3 Tr(ξ

2) = x2 + 2(ab)yz,
1
3 Tr(ξ

3) = x3 + 3x(ab)2yz + (ab)(y3b + z3a),
1
3 Tr(ξ

4) = x4 + 6x2(ab)2yz + 4x(ab)(y3b + z3a) + (ab)26y2z2.

The matrix M is therefore of the form

1
3M =

√ 1 x x2 + A
x x2 + A x3 + B

x2 + A x3 + B x4 + C

!

,

where

A = 2(ab)yz,

B = 3x(ab)2yz + (ab)(y3b + z3a),

C = 6x2(ab)2yz + 4x(ab)(y3b + z3a) + (ab)26y2z2.

Expansion of det 13M results in an expression that simplifies to

det 13M = AC + 2x AB − 3x2A2 − A3 − B2.

Thus we have only to substitute. The resulting expression simplifies greatly, and
we obtain det 13M = −(ab)2(y3b − z3a)2. Consequently

D(ξ) = −33(ab)2(y3b − z3a)2.

Since Proposition 5.8 has shown that DK = −33(ab)2, the result follows. §
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Thus in order to give an example of an m for which no ξ has D(ξ) = DK, we
have only to select a and b for which the Diophantine equation y3b − z3a = 1
in y, z has no solution. Choose a = 7 and b = 5, so that m = ab2 = 175. To
verify that the Diophantine equation has no solution, take the equation modulo
7 and then modulo 5, obtaining 5y3 ≡ 1 mod 7 and −7z3 ≡ 1 mod 5. These
congruences say that y3 ≡ 3 mod 7 and z3 ≡ 2 mod 5. The only cubes modulo
7 are ±1, and thus the congruence for y has no solution.
We turn to the question of the splitting of prime ideals in pure cubic extensions

K = Q( 3
p
m ). In the notation of Proposition 5.8, we again write m = ab2, and

we shall assume that the extension is of Type I. We saw in Proposition 5.8 and
the remarks afterward that DK equals the greatest common divisor of D(

3pab2 )

and D(
3pa2b ). Therefore the splitting of every prime ideal (p) in Z is described

by Theorem 5.6. We have only to sort out the details.

Proposition 5.10. Let K = Q( 3
p
m ) be a pure cubic extension of Type I, and

let R be its ring of algebraic integers. If p is a prime number, then the ideal (p)R
of R splits into prime ideals as follows:

(a) (p)R = P1P2 with N (P1) = p and N (P2) = p2 if p ≡ −1 mod 3 and
p does not divide DK,

(b) (p)R = P1P2P3 with P1, P2, P3 distinct of norm p if p ≡ 1 mod 3,
x3 ≡ m mod p is solvable in Fp, and p does not divide DK,

(c) (p)R is prime of norm p3 if p ≡ 1 mod 3, x3 ≡ m mod p is not solvable
in Fp, and p does not divide DK,

(d) (p)R = P3 with N (P) = p if p divides DK.
PROOF. The prime divisors of DK are 3 and the prime divisors of a and b.

For all other primes Theorem 5.6 shows that all ramification indices are 1. Let
p be a prime of the form 6k ± 1 not dividing DK. The multiplicative group F×

p
of Fp is cyclic of order p − 1 and hence has order divisible by 3 if and only if
p = 6k + 1. Thus there are three cube roots of 1 when p = 6k + 1 but only 1
when p = 6k − 1. In the latter case the cubing map is one-one onto from F×

p
to itself. Thus X3 − m factors modulo p as the product of a first-degree factor
and an irreducible second-degree factor if p = 6k − 1, and (a) follows for such
primes from Theorem 5.6. If p = 6k + 1, then X3 − m either factors modulo p
as the product of three first-degree factors or is irreducible, since 1 has three cube
roots. Thus (b) and (c) follow for such primes from Theorem 5.6.
For p = 2 ifm is odd, then X3−m ≡ X3−1 ≡ (X −1)(X2+ X +1) mod 2,

and we are in the situation of (a). This completes the discussion of primes that
do not divide DK. If p divides m, then X3 − m ≡ X3 mod p is the cube of a
first-degree factor, and (d) follows in these cases. For p = 3 whether or not p
divides m, we have X3 − m ≡ X3 − m3 ≡ (X − m)3 mod 3, and (d) follows in
this case. §
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We conclude this section by discussing Dedekind’s example of a common
index divisor. The field in question is again of degree 3 over Q but is not of the
form Q( 3

p
m ). Instead, the field is K = Q(ξ), where ξ is a root of F(X) =

X3+ X2− 2X + 8. The polynomial F(X) is irreducible overQ because Gauss’s
Lemma shows that its only possible linear factors are X − k with k dividing 8
and because routine computation rules out each such linear factor. As usual, let
R be the ring of algebraic integers in K.
The different of ξ isD(ξ) = F 0(ξ) = 3ξ 2+2ξ −2, and the discriminant D(ξ)

therefore is given by D(ξ) = −NK/Q(3ξ 2+2ξ−2). We calculate this norm as the
determinant of left multiplication by 3ξ 2 + 2ξ − 2 on K, using the ordered basis
(1, ξ, ξ 2). Since ξ 3 = −ξ 2+2ξ −8 and ξ 4 = −ξ 3+2ξ 2−8ξ = 3ξ 2−10ξ +8,
we have

(3ξ 2 + 2ξ − 2)(1) = −2+ 2ξ + 3ξ 2,

(3ξ 2 + 2ξ − 2)(ξ) = −2ξ + 2ξ 2 + 3ξ 3 = −24+ 4ξ − ξ 2,

(3ξ 2 + 2ξ − 2)(ξ 2) = −2ξ 2 + 2ξ 3 + 3ξ 4 = 8− 26ξ + 5ξ 2.

Thus

NK/Q(3ξ 2 + 2ξ − 2) = det

√−2 −24 8
2 4 −26
3 −1 5

!

= 22 · 503,

and D(ξ) = −22 · 503. Thus either the index J (ξ) of Z(0(ξ)) in R is 1 with
DK = −22 · 503, or J (ξ) = 2 with DK − 503.
Problems 24–25 at the end of the chapter show that 12 (ξ

2 + ξ) is in R and
that consequently the correct choice is J (ξ) = 2 with DK = −503 and with
{1, ξ, 12 (ξ

2 + ξ)} as a Z basis of R. In fact, 2 divides J (η) for every primitive
element of K lying in R, and therefore 2 is a common index divisor in the sense
of Section 2. One way to check this assertion would be to calculate D(η) for
every such η. The computation would be feasible because we can express η as a
Z linear combination of the members of {1, ξ, 12 (ξ

2 + ξ)} and calculate the field
polynomial of η in the same way that NK/Q(ξ) was calculated above.
However, there is an easier way. Problem 28 at the end of the chapter shows

that (2)R splits as the product of three distinct prime ideals of R. If there were
some η for which 2 did not divide J (η), then Theorem 5.6 would show that the
minimal polynomial of η when reduced modulo 2 splits as the product of three
distinct first-degree factors. But F2 has only 2 elements, hence only two possible
distinct linear factors to offer. Thus Theorem 5.6 must not be applicable to η and
the prime 2, and we conclude that 2 divides J (η). Going over this argument, we
see that we have established the following more general result.
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Proposition 5.11. Let K/Q be a field extension of degree n, and let R be the
ring of algebraic integers in K. If p is a prime number with 2 ≤ p ≤ n − 1 such
that (p)R splits as the product of n distinct prime ideals of R, then p is a common
index divisor for K.

5. Dirichlet Unit Theorem

Let K be a number field of degree n over Q, and let R be its ring of algebraic
integers. We regard K as a subfield of C. The units of K are understood to
be the members of the group R× of units of the ring R. As was observed in
Section 2, there exist exactly n field mappings of K into C, and we denote them
by σ1, . . . , σn; one of these is the inclusion of K into C. If x is in K, then the
images σ1(x), . . . , σn(x) are called the conjugates of x .
In Section I.6 we studied the group of units in the quadratic case n = 2,

and we found, particularly in the problems at the end of that chapter, that an
understanding of this group was essential to working successfully on the number-
theoretic problems studied in that chapter. When n = 2, we found that the
qualitative nature of the group R× depends on the sign of the field discriminant.
The group turned out to be the finite subgroup of roots of unity in K if DK < 0,
and it turned out to be isomorphic to the product of a copy ofZ and a cyclic group
of order 2 if DK > 0. The hard step in this analysis was constructing an element
in the subgroup Z in the latter case.
Because of the importance of R× in the quadratic case, we can expect that an

understandingof R× for our general numberfieldK is important for higher-degree
number-theoretic questions. In this section we shall obtain a structure theorem
for R× for general n analogous to the structure theorem for n = 2 mentioned in
the previous paragraph. Such a theorem may not answer all important questions
about R×, but it will be a good start.12 The main theorem is Theorem 5.13 below,
the Dirichlet Unit Theorem.
The units of R are the members ε of R with NK/Q(ε) = ±1. This simple fact

is verified for general K in the same way that it was verified for quadratic K in
Section I.6.
Any element ε of finite order in R× is a complex number with εk = 1 for

some k and hence lies on the unit circle of C. Since such an element ε is a root
of Xk − 1, all its conjugates σj (ε) lie on the unit circle of C. We shall prove the
following proposition about these elements.

12For example, when n = 2, we defined the fundamental unit ε1 for the case DK > 0 to be the
least unit > 1, and the sign of NK/Q(ε1) was a thorny question that we did not answer fully but that
affected results in the problems at the end of the chapter.
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Proposition 5.12. The subgroup of R× of elements of finite order consists of
all l th roots of unity in C, where l is an integer depending on K that is bounded
when the degree n = [K : Q] is bounded.
PROOF. We are to bound the integers k for which primitive kth roots of unity

occur in K. Let k have prime decomposition k = pm11 · · · pmr
r . From Section

IX.9 of Basic Algebra, we know that the cyclotomic polynomial 8k(X) is a
monic irreducible member of Z[X] whose roots in C are exactly all primitive kth
roots of unity; moreover, the degree of 8k(X) is given by the Euler ϕ function:

ϕ(k) = k
Q

p divides k

°
1− 1

p
¢
.

If primitive kth roots of unity occur in K, then ϕ(k) ≤ n because 8k(X) is
irreducible over Q, and hence (p1 − 1) · · · (pr − 1) ≤ n. Allowing p1 = 2
possibly, we see that each factor pj − 1 with j > 1 is at least 2, and thus
2r−1 ≤ n. So r is bounded as a function of n by log2 2n, and we obtain

ϕ(k) ∏ k
Q

first log2 2n
primes

°
1− 1

2
¢

= 2− log2 2nk = k
2n .

Consequently k ≤ 2nϕ(k) ≤ 2n2, as required. If R× contains one primitive kth
root of unity in C, then it contains them all, since the kth roots of unity form a
cyclic group and any primitive such root is a generator. The result follows. §

We shall use the field mappings σj : K → C for 1 ≤ j ≤ n to introduce useful
“absolute values” on K. The mappings σj are of two types:

(i) those carrying K into R,
(ii) those carrying K into C but not into R; these come in pairs σ and σ ,

where σ denotes the composition of σ followed by complex conjugation.
Suppose that there are r1 mappings σj of the first kind and that there are r2 pairs
of the second kind. Then r1 + 2r2 = n. Renumbering σ1, . . . , σn if necessary,
let us arrange that σ1, . . . , σr1 are of the first kind, that σr1+1, . . . , σn are of the
second kind, and that σr1+r2+i = σ r1+i for 1 ≤ i ≤ r2. We introduce r1 + r2
absolute values13 on K by the definition

kxks = |σs(x)| for 1 ≤ s ≤ r1 + r2,

where | · | denotes the usual absolute value function on C. Then the function
Log : K× → Rr1+r2 given by

Log(ε) = (log kεk1, . . . , log kεkr1+r2)

13These are called archimedean absolute values ofK in the general theory. Some authors refer
to them as archimedean valuations.
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is evidently a group homomorphism.
A lattice in a Euclidean spaceRl is an additive subgroupZu1⊕· · ·⊕Zul such

that {u1, . . . , ul} is linearly independent over R. Such a subgroup is discrete,14
and the quotient is compact, by the Heine–Borel Theorem.

Theorem 5.13 (Dirichlet Unit Theorem). LetK be a number field of degree n
with r1+ r2 absolute values, and let R be the ring of algebraic integers inK. The
kernel of the restriction to R× of the function Log is the finite subgroup of roots
of unity in K×, and the image of this restriction of Log is a lattice in the vector
subspace of elements (x1, . . . , xr1+r2) in Rr1+r2 satisfying

x1 + · · · + xr1 + 2xr1+1 + · · · + 2xr1+r2 = 0.

Consequently R× is a finitely generated abelian group of rank r1 + r2 − 1.

EXAMPLES.
(1) The theorem reduces when n = 2 to results known from Chapter I.

Specifically if K = Q(
p
m ), then m > 0 makes r1 = 2 and r2 = 0, while

m < 0 makes r1 = 0 and r2 = 1.
(2) For K = Q(

3p2 ), let ω = e2π i/3. The field mappings of K into C carry K
into R or Rω or Rω2. Thus r1 = 1 and r2 = 1.
(3) The polynomial F(X) = X5−5X+1 inQ[X] was studied as an example in

connectionwithGalois theory in Section IX.11 ofBasic Algebra. The polynomial
was shown to be irreducible over Q and to have three real roots and one pair of
complex conjugate roots. For K = Q[X]/(X5 − 5X + 1), we therefore have
r1 = 3 and r2 = 1. The primitive element ξ of K with ξ 5 − 5ξ + 1 = 0 lies in
R; it is a nontrivial example of a member of R× because ξ(ξ 4 − 5) = −1.

The proof of Theorem 5.13 will occupy the remainder of this section. We
begin by clarifying in Lemma 5.14 the relationship between discrete subgroups
and lattices in Euclidean space and by proving in Proposition 5.15 a weak version
of Theorem 5.13 that addresses everything except the existence questions.

Lemma 5.14. A discrete subgroup of Rl is a free abelian group of rank ≤ l
and is necessarily of the form Zu1 ⊕ · · · ⊕ Zum for some set {u1, . . . , um} that is
linearly independent over R. The discrete subgroup is a lattice if and only if the
rank is l.

14A discrete subset of Rl is a subset S such that every one-point subset of S is open when S is
given the relative topology. See Lemma 5.14 below for a converse assertion.
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PROOF. We begin by proving that any discrete subgroup of Rl is topologi-
cally closed. Let G be the subgroup, and choose by discreteness an open ball
V = {x ∈ Rl

Ø
Ø |x | < ≤} V about 0 with V ∩ G = {0}. The open ball U =

{x ∈ Rl
Ø
Ø |x | < ≤/2} has the property that U + U ⊆ V . If G is not closed, let

x0 be a limit point of G that is not in G. Then the open ball x0 − U about x0
must contain a member g of G, and g cannot equal x0. Write x0 − u = g with
u ∈ U . Then u = x0 − g is a limit point of G that is not in G, and we can find
g0 6= 1 in G such that g0 is in u +U . But u +U ⊆ U +U ⊆ V , and so g0 is in
G ∩ V = {0}, contradiction. We conclude that G contains all its limit points and
is therefore closed.
From the fact that any discrete subgroup G of Rl is closed, let us see that any

bounded subset of G is finite. It is enough to see that the intersection X of G with
any (finite-radius) closed ball is finite. The set X is closed because G is closed,
and it is therefore compact by the Heine–Borel Theorem. By discreteness, find
for each g ∈ G an open ballUx centered at x that contains no member of G other
than x . These open sets form an open cover of the compact set X , and a finite
subcollection of them covers X . Each such open set contains only one member
of X , and hence X is finite.
Returning to the statement of the lemma, we induct on the dimension of the

R linear span of the discrete subgroup, the base case being that the R linear span
is 0. Let G be the discrete subgroup, and let {v1, . . . , vm} in G be a maximal set
that is linearly independent over R. Let G0 = G ∩

°Pm−1
j=0 Rvj

¢
. By induction

we may assume that every u ∈ G0 is a Z linear combination of v1, . . . , vm−1. Let
S be the set of R linear combinations of {v1, . . . , vm} of the form

S =
n
v = c1v1 + · · · + cmvm ∈ G

Ø
Ø
Ø
0 ≤ ci < 1 for 1 ≤ i ≤ m − 1,
0 ≤ cm ≤ 1

o
.

The set S is bounded, and we saw in the previous paragraph that any bounded
subset of G is finite. So S is finite. Let v0 be a member of S with the smallest
positive coefficient for vm , say

v0 = a1v1 + · · · + amvm .

If v is any member of S and its coefficient cm is not a multiple of am , then v − jv0

for a suitable integer j hasmth coefficient positive but less than am ; by subtracting
from v − jv0 a suitable Z linear combination v00 of v1, . . . , vm−1, we can make
v − jv0 − v00 be in S, and then we have a contradiction to the minimality of
am . We conclude that cm is always a multiple of am . Then v − jv0 is in G0 for
some integer j , and it follows that the Z linear combinations of v1, . . . , vm−1, v

0

span G. This completes the induction and the proof of the first conclusion of the
lemma. The second conclusion is an immediate consequence of the first. §
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For the remainder of the section, we adopt the notation in the statement of
Theorem 5.13, and we shall not repeat it in the statement of every intermediate
result.

Proposition 5.15 (weak form of Dirichlet Unit Theorem). The kernel of the
restriction to R× of Log is the finite subgroup of roots of unity in K×, and the
image of this restriction of Log is a discrete additive subgroup in the vector
subspace of elements (x1, . . . , xr1+r2) in Rr1+r2 satisfying

x1 + · · · + xr1 + 2xr1+1 + · · · + 2xr1+r2 = 0.

Consequently R× is a finitely generated abelian group of rank ≤ r1 + r2 − 1.

PROOF. For α in R×, we calculate that

log kαk1 + · · · + log kαkr1 + 2 log kαkr1+1 + · · · + 2 log kαkr1+r2

= log
°
|σ1(α)| · · · |σr1(α)||σr1+1(α)|2 · · · |σr1+r2(α)|2

¢

= log
Ø
Ø

nQ

j=1
σj (α)

Ø
Ø

= log |NK/Q(α)| = log 1 = 0.

Hence the image lies in the vector subspace in the statement of the proposition.
Fix a (large) positive number M , and consider the set EM of all members α

of R× for which all coordinates of Log(α) are ≤ M in absolute value. Then the
field polynomials

det
°
X I − (left by α)

¢
=

nQ

j=1
(X − σj (α))

of such elements α have all coefficients bounded by some M 0 depending on M ,
since each |σj (α)| is of the form kαkj and is ≤ eM . Such a field polynomial is
equal to g(X)r , where g(X) is the minimal polynomial of α and r is given by
r deg(g(X)) = n. Since α is in R, the coefficients of g(X) are integers, and
hence so are the coefficients of the corresponding field polynomial. There are
only finitely many members ofZ[X] of degree n whose coefficients are in a given
bounded set, and hence there are only finitely many α’s in EM .
It follows that the image subgroup is discrete. Taking M = 0, we see also that

the kernel of the restriction of Log to R× is finite. Hence every element of this
kernel has finite order and is therefore a root of unity. §
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We come to the proof of Theorem 5.13. For quadratic extensions ofQ, which
were handled in Section I.6, the crucial question of existence was addressed by
means of an approximation result (Lemma 1.15) for irrational numbers. That
result did not immediately establish the existence of units of infinite order, but it
was applied infinitely many times in the course of proving Proposition 1.16, and
the total effect was to produce a unit of infinite order.
We do something similar in general. In place of the approximation result

in Lemma 1.15, we shall use a result known as the Minkowski Lattice-Point
Theorem, which asserts the existence of lattice points in certain compact convex
sets in Euclidean space. This result appears as Theorem 5.16 below. As was true
in the quadratic case, it is not just a single applicationof this theorem that produces
the desired units, but an infinite sequence of applications of it. The details will
be more complicated here than in the quadratic case. Before describing how the
argument is to proceed, let us establish the Minkowski theorem.
Let {v1, . . . , vm} be an R basis of Rm , and let L = Zv1 ⊕ · · · ⊕ Zvm be the

corresponding lattice. The fundamental parallelotope for L corresponding to
this basis is the set

©
c1v1 + · · · + cmvm

Ø
Ø 0 ≤ cj ≤ 1 for 1 ≤ j ≤ m

™
.

The volume of this fundamental parallelotope is independent of the choice of the
Z basis for L . In fact, any two suchZ bases are carried from one to the other by an
integer matrix of determinant±1, and any linear transformation fromRm to itself
of determinant ±1 is volume preserving. The one fundamental parallelotope is
mapped to the other when the one basis is carried to the other, and hence the two
fundamental parallelotopes have the same volume.

Theorem 5.16 (Minkowski Lattice-Point Theorem).15 Let L be a lattice in
Rm , and let V0 be the volume of a fundamental parallelotope. If E is any compact
convex set in Rm containing 0, closed under negatives, and having volume(E) ∏
2mV0, then E contains a nonzero point of L .

REMARK. The constant 2m in the statement is best possible, as is shown by
taking L to be the standard lattice and E to be a cube oriented consistently with
L , centered at 0, and having each side slightly less than 2. We need merely some
constant, not the best possible one, in the application to Theorem 5.13, and the
proof can be simplified a little for that purpose.16 But the present theoremwill be
applied again in the next section, and this time the best possible constant yields
the most useful information.

15The simple proof given here is due to H. Blichfeldt and is the standard one, so standard that
Blichfeldt’s name is sometimes attached to the theorem.

16In particular, the final paragraph of the proof can be omitted, and we can fix a value of M
proportional to s in making the argument.
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PROOF. Without loss of generality, L is the standard lattice of points with all
coordinates in Z, and V0 is 1. Fix an arbitrarily small positive constant ≤, and
first assume that the given set E has volume(E) ∏ (2 + ≤)mV0. Arguing by
contradiction, suppose that the only lattice point in E is 0. Since E is bounded,
we can choose a number s > 0 in such a way that E is contained in the cube
Cs centered at 0, oriented consistently with the lattice, and having side 2s. Let
us see that the sets l + 1

2E for l ∈ L are disjoint. In fact, in obvious notation if
l1 + 1

2e1 = l2 + 1
2e2 with l1 6= l2, then l1 − l2 = 1

2 (e2 − e1), and this is in E
because e2 and −e1 are in E and E is convex. Thus the sets l + 1

2E are indeed
disjoint.
Choose an integerM large enough to have s/M < ≤. Any lattice point l whose

coordinates are all ≤ M in absolute value has l + 1
2E ⊆ CM+ 1

2 s
. Since the sets

l + 1
2E for these l’s are disjoint,

(2(M + 1
2s))

m = volume(CM+ 1
2 s

) ∏
P

all l∈L with
all coordinates ≤M

volume(l + 1
2E)

∏ (2M)mvolume( 12E) = Mmvolume(E),

and therefore volume(E) ≤ (2+s/M)m , in contradiction to our extra assumption
that volume(E) ∏ (2+ ≤)m .
Now suppose that volume(E) = 2m . For each ≤ > 0, let E≤ be the dilate

(1+ 1
2≤)E . The sets E≤ satisfy the extra assumption made in the previous part of

the proof, and therefore E≤ contains a nonzero lattice point. Since E1 is bounded,
there are only finitely many possibilities for this nonzero lattice point for each
≤ ≤ 1. Thus we can find a sequence of ≤’s tending to 0 for which this lattice point
is the same. The convexity of the sets E≤ , in combination with the fact that the
sets contain 0, implies that the sets are nested, and therefore this lattice point lies
in E≤ for all ≤ > 0. Since E is compact, E =

T
≤>0 E≤ , and therefore this lattice

point lies in E . §

Let us describe the lattice to be used when the Minkowski Lattice-Point The-
orem is applied to obtain the Dirichlet Unit Theorem. Let ƒ be the real vector
space ƒ = Rr1 × Cr2 ∼= Rn , and let |ω|s be the magnitude of the sth component
of ω ∈ ƒ for 1 ≤ s ≤ r1 + r2. We introduce a homomorphism8 of the additive
group of K into the additive group of ƒ given by

8(x) =
°
σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)

¢

for x ∈ K. We shall be mostly interested in the restriction of 8 to R, but the
values on K will help a little with motivation when the Minkowski Lattice-Point
Theorem is applied once again in the next section. Observe that our definitions
make kxks = |σs(x)| = |8(x)|s for x ∈ K and 1 ≤ s ≤ r1 + r2.
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Lemma 5.17. The image 8(R) is a lattice in ƒ.

PROOF. The homomorphism8 is one-one on R because σ1, being a field map,
is one-one. Since R is a free abelian group of rank n and 8 is one-one, 8(R) is
free abelian of rank n. Lemma 5.14 therefore shows that it is sufficient to show
that 8(R) is discrete as an additive subgroup of ƒ. It is enough to show that a
bounded region of ƒ contains only finitely many points of 8(R).
The verification of this fact is similar to an argument in the proof of Proposition

5.15: A bound by some M on all |σj (α)| for certain elements α ∈ R implies that
each field polynomial

det
°
X I − (left by α)

¢
=

nQ

j=1
(X − σj (α))

has all its coefficients bounded by some M 0 depending on M . These coefficients
are integerswhenα is in R, and thus there are onlyfinitelymany suchpolynomials.
Each polynomial has at most n distinct roots, and consequently only finitelymany
α’s satisfy such a bound. §

We are now ready to prove Theorem 5.13, but we precede the proof by an
outline. The proof has three steps to it:
(1) We apply the Minkowski Lattice-Point Theorem to the set 8(R) ⊆ ƒ,

which we know is a lattice because of Lemma 5.17. For each s0 with 1 ≤ s0 ≤
r1 + r2, let Es0 be a set of ω’s in ƒ defined by the conditions that |ω|s is to be
small for s 6= s0 and |ω|s0 is allowed to be large—with the understanding that
Es0 is a bounded set and that Es0 has volume ∏ 2nV0, where V0 is the volume
of a fundamental parallelotope of 8(R). Using a nonzero lattice point in 8(R)
obtained from applying Theorem 5.16 to Es0 and squeezing Es0 even more, we
can obtain an infinite sequence of points α in R such that |NK/Q(α)| remains
bounded and such that the size of this norm is contributed to mostly by kαks0 .
(2) Applying the same argument that was used for quadratic extensions ofQ in

the proof of Proposition 1.16, we obtain infinite sequences of units whose norm
is contributed to mostly by k · ks0 . We can do this for 1 ≤ s0 ≤ r1 + r2.
(3)We pass to the Logmap, proving and applying the following result from lin-

ear algebra: a real square matrix [ai j ] with the property that |aii | >
P

j 6=i |ai j | for
all i is nonsingular. In the applicationof this result, we have log kεs0ks0 > 0 for the
s0th constructed unit, log kεs0ks < 0 for s 6= s0, and an equality that we can write
either as

Pn
s=1 log kεs0ks = 0 or as

Pr1
s=1 log kεs0ks + 2

Pr1+r2
s=r1+1 log kεs0ks = 0.

If we drop all terms corresponding to the (r1+r2)th unit, then we are in a situation
for which the result from linear algebra immediately implies the theorem.
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PROOF OF THEOREM 5.13. The proof is carried out in three steps.
Step 1. For fixed s0 with 1 ≤ s0 ≤ r1 + r2, we construct an infinite sequence

α
(s0)
j in R with

(i) |NK/Q(α
(s0)
j )| ≤ 2nV0,

(ii) kα(s0)
j ks tends to 0 for each s 6= s0 as j tends to infinity,

(iii) kα(s0)
j ks0 tends to infinity as j tends to infinity.

For the construction, form for each j > 0 the compact convex set in ƒ closed
under multiplication by −1 consisting of all ω such that

|ω|s ≤ j−1 for s 6= s0,

|ω|s0 ≤

Ω 2n jn−12−r1π−r2V0 if 1 ≤ s0 ≤ r1,
(2n jn−22−r1π−r2V0)1/2 if r1 + 1 ≤ s0 ≤ r1 + r2.

This set has volume
Ω

(2 j−1)r1−1 · 2(2n jn−12−r1π−r2V0)(π j−2)r2 = 2nV0 if s0 ≤ r1,
(2 j−1)r1(π j−2)r2−1π(2n jn−22−r1π−r2V0) = 2nV0 if s0 > r1.

Theorem 5.16 shows that the set contains a nonzero lattice point α
(s0)
j . Let us

check that this point satisfies (i), (ii), and (iii). For (i), we have

|NK/Q(α
(s0)
j )| =

° r1Q

j=1
kα(s0)

j ks
¢° r1+r2Q

s=r1+1
kα(s0)

j ks
¢2

≤

Ω
( j−1)r1−1(2n jn−12−r1π−r2V0) j−2r2 if s0 ≤ r1
( j−1)r1( j−2)r2−1(2n jn−22−r1π−r2V0) if s0 > r1

= 2nV02−r1π−r2

≤ 2nV0.

Property (ii) is immediate from the inequality kα(s0)
j ks ≤ j−1 for s 6= s0. For

(iii), we have

1 ≤ |NK/Q(α
(s0)
j )| =

° r1Q

j=1
kα(s0)

j ks
¢° r1+r2Q

s=r1+1
kα(s0)

j ks
¢2

;

thus (ii) implies (iii).
Step 2. For fixed s0 with 1 ≤ s0 ≤ r1 + r2, we construct an infinite sequence

of units ε
(s0)
j such that

(ii0) kε(s0)
j ks tends to 0 for each s 6= s0 as j tends to infinity,

(iii0) kε(s0)
j ks0 tends to infinity as j tends to infinity.
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For the construction, we pass to a subsequence from Step 1, still denoting it by
α

(s0)
j , such that NK/Q(α

(s0)
j ) is a constant integer, say M . Since R/(M) is finite,

we can pass to a further subsequence, still with no change in notation, such that
all α(s0)

j lie in the same residue class17 modulo the principal ideal (M) of R. Put

ε
(s0)
j = α

(s0)
j

±
α

(s0)
1 .

Then NK/Q(α
(s0)
j ) = NK/Q(α

(s0)
1 ), since NK/Q(α

(s0)
j ) is a constant integer, and

1
M (α

(s0)
j − α

(s0)
1 ) is in R, since all α(s0)

j lie in the same residue class modulo (M).
The computation

ε
(s0)
j = 1+

α
(s0)
j − α

(s0)
1

α
(s0)
1

= 1+
α

(s0)
j − α

(s0)
1

M
Q

σ 6=1
σ(α

(s0)
1 )

shows that ε(s0)
j is an algebraic integer. Hence it is in R. We certainly have

NK/Q(ε
(s0)
j ) =

NK/Q(α
(s0)
j )

NK/Q(α
(s0)
1 )

=
M
M

= 1.

Therefore ε
(s0)
j is a unit. Also, the computation

kε(s0)
j ks =

kα(s0)
j ks

kα(s0)
1 ks

shows that (ii) and (iii) in Step 1 imply (ii0) and (iii0) here.
Step 3. For each s0 with 1 ≤ s0 ≤ r1 + r2, choose j large enough for the unit

ε(s0) = ε
(s0)
j in Step 2 to satisfy

(ii00) kε(s0)ks < 1 if s 6= s0,
(iii00) kε(s0)ks0 > 1.

We assert that the vectors Log(ε(s0)) for 1 ≤ s0 ≤ r1 + r2 − 1 are linearly
independent over R. Hence Log(R×) has rank ∏ r1 + r2 − 1, and Proposition
5.15 therefore implies that Log(R×) has rank equal to r1 + r2 − 1.
To verify this assertion, form the square matrix [ai j ] of size r1 + r2 given by

ai j =

Ω log kε(i)kj if 1 ≤ j ≤ r1,
2 log kε(i)kj if r1 + 1 ≤ j ≤ r1 + r2.

17This conclusion uses a result known as the Dirichlet pigeonhole principle or the Dirichlet
box principle.
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Then aii > 0 for each i by (iii00), ai j < 0 for i 6= j by (ii00), and
P

j ai j = 0 for
each i because NK/Q(ε(i)) = 1. Let [bi j ] be the upper left block of [ai j ] of size
r1 + r2 − 1. For each i , we then have bii > 0 and

P
j with j 6=i |bi j | < bii . Let

us prove that the matrix [bi j ] is nonsingular. Assuming the contrary, let [cj ] be a
nonzero column vector with

P

j
bi j cj = 0 for all i. (∗)

If i0 is an index such that |ci0 | ∏ |cj | for all j , then setting i = i0 leads to the
strict inequality

|ci0bi0i0 | = |ci0 |bi0i0 > |ci0 |
P

j 6=i0
|bi0 j | ∏

P

j 6=i0
|bi0 j cj | ∏

Ø
Ø P

j 6=i0
bi0 j cj

Ø
Ø,

which contradicts (∗). Thus [bi j ] is nonsingular.
We conclude that [bi j ] has rank r1 + r2 − 1. Thus its rows are linearly

independent, and the first r1 + r2 − 1 rows of [ai j ] must be linearly independent.
Therefore the vectors

°
log kε(s0)k1, . . . , log kε(s0)kr1, 2 log kε(s0)kr1+1, . . . , 2 log kε(s0)kr1+r2

¢
,

indexed by s0 for 1 ≤ s0 ≤ r1+r2−1, are linearly independent inRr1+r2 . In other
words, the vectors Log(ε(s0)) are linearly independent for 1 ≤ s0 ≤ r1 + r2 − 1.

§

6. Finiteness of the Class Number

As in Section 5, let K be a number field of degree n over Q, and let R be its ring
of algebraic integers. Let σ1, . . . , σn be the distinct field maps of K into C, and
assume that the first r1 of them have image in R and the remaining ones come in
conjugate pairs with σr1+r2+k = σ r1+k for 1 ≤ k ≤ r2.
As in Section I.7, where we treated the case of quadratic extensions, we define

two nonzero ideals I and J of R to be equivalent if (r)I = (s)J for suitable
nonzero elements r and s of R. The same argument as given in that section
shows that the result is an equivalence relation. The principal ideals form a single
equivalence class.18

18Section I.7 worked also with a notion of strict equivalence of ideals, but we shall not attempt
to extend strict equivalence to the present setting.
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Proposition 5.18. Multiplication of nonzero ideals in R descends to a well-
defined multiplication of equivalence classes of ideals, and the resulting multi-
plication makes the set of equivalence classes into an abelian group. The identity
element of this group is the class of principal ideals.

REMARKS. The proofs of this result and of Theorem 5.19 below will use the
following fact proved in Problems 48–53 of Chapter VIII of Basic Algebra: if I
is any nonzero ideal in R and if I−1 is defined by I−1 = {x ∈ K | x I ⊆ R}, then
I−1 I = R and there exists r ∈ R with r I−1 equal to an ideal of R. This fact can
be made to look more beautiful by introducing the notion of “fractional ideal,”
but we shall not carry out that step at this time.19

PROOF. If I is a nonzero ideal, let [I ] denote its equivalence class, and define
[I ][J ] = [I J ]. Suppose that (r)I = (s)I 0 exhibits an equivalence. Then the
equality (s)I 0 J = (r)I J shows that [I 0 J ] = [I J ]. A similar argument applies
in the J variable, and therefore multiplication of classes is well defined. It is
immediate that multiplication of classes is associative and commutative and also
that the class of principal ideals is an identity. If a class [I ] is given, let I−1 be
as in the remarks above, and choose a nonzero r ∈ R such that r I−1 = J is an
ideal in R. Multiplying by J gives (r) = r(I−1 I ) = (r I−1)I = J I , and thus
[J ][I ] is the class of the principal ideals. So [I ] has an inverse. §

The group of equivalence classes of nonzero ideals as in Proposition 5.18 is
called the ideal class group of K. Its order is called the class number of K and
will be denoted by hK. The main theorem of this section is as follows.

Theorem 5.19. The class number hK of any number field is finite.

As we shall see in a moment, it is not too difficult at this stage to prove this
finiteness. However, hK is an important invariant of a numberfield that determines
whether R is a principal ideal domain, that occurs in various limit formulas in
the subject, and that occurs also in dimension formulas connected with “Hilbert
class fields.” It is therefore of considerable interest to be able to compute hK in
specific examples. For quadratic fields this computation can be carried out by
the techniques of Chapter I because of the close connection between ideal classes
and proper equivalence classes of binary quadratic forms. But no comparable
theory is available as an aid in computation for number fields of degree greater
than 2. As we shall see, the relatively easy proof of Theorem 5.19 that we give
in a moment does not offer any helpful clues about the value of hK. The main

19The result of the beautification is that the fractional ideals form a group generated by the ideals,
and the group of equivalence classes is a homomorphic image of the group of fractional ideals.
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task of this section will therefore be to provide a better proof of Theorem 5.19
that helps us find the value of hK in specific examples.
The two proofs have the following lemma in common. The lemma eliminates

the notion of equivalence of ideals from the investigation and shows that the
problem is really that of finding elements in each ideal of relatively small norm.

Lemma 5.20. For a particular number fieldK, if there exists a real constantC
with the property that each nonzero ideal J of R contains an element s 6= 0 with

|NK/Q(s)| ≤ C N (J ),

then each equivalence class of ideals contains a member L whose absolute norm
satisfies N (L) ≤ C . Consequently the class number hK is at most the number of
nonzero ideals I in R with N (I ) ≤ C . This is a finite number.

PROOF. Let a nonzero ideal I in R be given. By the remarks with Proposition
5.18, choose a nonzero element r in R and an ideal J such that r I−1 = J .
Multiplication by I and use of the remarks shows that (r) = J I . By hypothesis
for the lemma, choose a nonzero s ∈ J with |NK/Q(s)| ≤ C N (J ). Since s is in
J , (s) is contained in J , and therefore (s) = J L for some ideal L . Multiplying
both sides of (r) = J I by L gives (r)L = L J I = (s)I , and L is therefore
equivalent to I . Applying Proposition 5.4, we obtain N (J )N (L) = N (J L) =
N ((s)) = |NK/Q(s)| ≤ C N (J ). Therefore N (L) ≤ C as required.
Let us now count the ideals I with N (I ) ≤ C . In terms of the unique

factorization I =
Ql

i=1 P
ei
i of I , we have N (I ) ∏

Ql
i=1 p

ei
i , where pi is the

prime number such that Pi ∩ Z = (pi ). In each case, N (Pi ) ∏ pi . There are
only finitely many primes p with p ≤ C , each is associated with only finitely
many prime ideals P of R with P ∩ Z = (p), and Pe contributes at least 2e
toward N (I ). The inequality N (I ) ≤ C shows that these p’s and their associated
P’s are the only possible contributors to I and that each exponent is bounded by
log2 N (I ). Hence there are only finitely many possibilities for I . §

Here is the relatively easy proof of Theorem 5.19.

FIRST PROOF OF THEOREM 5.19. Let x1, . . . , xn be a Z basis of R, and express
members of R in terms of this basis as r =

Pn
i=1 ci xi with all ci ∈ Z. The

value of NK/Q(r) is the value of the determinant of left multiplication by r on
K, and this value, as a function of c1, . . . , cn , is a homogeneous polynomial of
degree n. Consequentlywe can find a constantC such that

Ø
ØNK/Q

°Pn
i=1 ci xi

¢ØØ ≤
C max1≤i≤n |ci |n .
It is enough to show that the condition of Lemma 5.20 is satisfied for this C .

Thus let an ideal J be given. As each ci runs through the integers from 0 to
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N (J )1/n , we obtain more than N (J ) members r =
Pn

i=1 ci xi of R. Since there
are only N (J ) cosets modulo J , at least two of these members of r , say r1 and
r2, must lie in the same coset.20 Then r1− r2 is a nonzero member of J , it has all
coefficients between−N (J )1/n and+N (J )1/n , and our construction of C forces
|NK/Q(r1 − r2)| ≤ C

°
N (J )1/n

¢n
= C N (J ). §

The second proof of Theorem 5.19 is to combine Lemma 5.20 with the deeper
and more quantitative estimate given in the following theorem.

Theorem5.21 (Minkowski). For any numberfieldK of degreen, each nonzero
ideal J of R contains an element s 6= 0 with

|NK/Q(s)| ≤

µ
4
π

∂r2 n!
nn

|DK|1/2N (J ).

Here r2 is half the number of nonreal embeddings of K in C, and DK is the field
discriminant. Therefore every equivalence class of ideals contains a member L
whose absolute norm satisfies

N (L) ≤

µ
4
π

∂r2 n!
nn

|DK|1/2.

We shall prove Theorem 5.21 shortly by applying Minkowski’s Lattice-Point
Theorem to the lattice8(J ) inƒ = Rr1 ×Cr2 , where8 is the mapping described
after the proof of Theorem 5.16. The particular compact convex set in the
application takes some time to describe, and we return to that matter shortly.
Meanwhile, let us see a little of the utility of Theorem 5.21. The techniques of

Chapter I are more useful for computing class numbers for n = 2 than Theorem
5.21 is, and we therefore consider only n ∏ 3. For n = 3, we must have
r2 ≤ 1. Theorem 5.21 shows that every equivalence class of ideals in R has a
representative L with

N (L) ≤
4
π

3!
33

|DK|1/2 =
8
9π

|DK|1/2 < (0.283) |DK|1/2.

Problems 1–2 at the end of the chapter give examples of cubic extensions ofQ
whose discriminants are−23,−31, and−44. Since these have (0.283)|DK|1/2 ≤
(0.283)7 < 2, the representative ideal in each case must have norm 1 and must
be R. Thus for all three of these cubic fields, R is a principal ideal domain.

20Again we are applying the Dirichlet pigeonhole principle.
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For the cubic fieldK = Q(
3p2 ), we know from Section 2 that the discriminant

is DK = −108. Consequently the estimate shows that every class of ideals has
a representative with norm ≤ 2. If an ideal J has N (J ) = 2, then 2 has to be a
member, and J divides (2)R. Proposition 5.10d shows that the factorization of
(2)R is as P3 for a certain unique prime ideal P . Thus R and P represent all
equivalence classes, and hK is 1 or 2. If there is some r ∈ R with NK/Q(r) = 2,
then P = (r), and the class number is 1; otherwise it is 2. The element 3p2 has
|NK/Q(

3p2 )| = 2, and thus P = (
3p2). Therefore R is a principal ideal domain

when K = Q(
3p2 ).

For Dedekind’s example, namely the cubic number field K built from
X3 + X2 − 2X + 8, we saw in Section 4 that the discriminant is DK = −503.
Then the constant in the estimate is< (0.283)

p
503 < 6.35. So the interest is in

ideals of norm≤ 6. In ruling out ideals that are principal, we need consider only
prime ideals with norm ≤ 6. Problems 24–32 at the end of the chapter identify
all the prime ideals of this form and show that they are all principal ideals! We
conclude that hK = 1, i.e., that the R in Dedekind’s example is a principal ideal
domain. Not every cubic number field has class number 1, however; Problem 4
gives an example.
Before turning to the proof of Theorem 5.21, let us observe the following

striking consequence.

Corollary 5.22 (Minkowski). For any number field K of degree n,

|DK|1/2 ∏
≥π

4

¥r2 nn

n!
.

Therefore DK > 1 if n ∏ 2, and there exists at least one prime number that
ramifies in K.
REMARKS. With a more general number field F than Q as base field, it can

happen that no prime ideal ramifies in a certain nontrivial extension field K/F.
See Problems 5–9 at the end of the chapter.

PROOF. Set J = R in Theorem 5.21, so that N (J ) = 1. The nonzero element
s must have |NK/Q(s)| ∏ 1. The theorem says that (4/π)r2(n!/nn)|DK|1/2 ∏ 1,
and this is the displayed inequality of the corollary. Since r2 ≤ 1

2n, (π/4)r2 ∏
(π/4)n/2, and thus |DK|1/2 ∏ 2−nπn/2nn/n!. Denote the right side of this
inequality by an . For n = 2, we have a2 = π/2 > 1. Also, an+1/an =
1
2π

1/2(1 + 1
n )

n ∏ π1/2, since (1 + 1
n )

n is monotone increasing21 with n and is
∏ 2 for n = 2. Hence an > 1 for all n ∏ 2. By Theorem 5.5 some prime number
ramifies in K. §

21To see this monotonicity, expand an+1 = (1+ 1
n+1 )

n+1 and an = (1+ 1
n )n by the Binomial

Theorem, and observe that the asserted inequality holds term by term.
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We turn to the proof of Theorem 5.21. We again make use of the map
8 : K → ƒ = Rr1 × Cr2 ∼= Rn of the previous section. Lemma 5.17 shows that
8(R) is a lattice inƒ, and our interest will be in the sublattice8(J ), J being the
nonzero ideal under study. The idea is to consider the set of ω ∈ ƒ for which the
function

N (ω) =
≥ r1Q

i=1
|ω|i

¥≥ r1+r2Q

i=r1+1
|ω|2i

¥

has N (ω) ≤ c, c being a positive number. Since N (8(x)) = |NK/Q(x)| for
x ∈ K, the question of finding a member s of J with |NK/Q(s)| ≤ c is the same
as the question of finding a nonzero lattice point in the set for which N (ω) ≤ c.
Once we sort out how large c has to be for the answer to be affirmative, then
the inequality of the theorem will result. The tool will again be the Minkowski
Lattice-Point Theorem (Theorem 5.16), but the difficulty is that the set for which
N (ω) ≤ c is not necessarily convex.
The nature of the set for which N (ω) ≤ c becomes clearer by considering the

case of K = Q(
p
m ) with m > 0. The map 8 carries x + y

p
m for x and y in

Q to the pair (x + y
p
m, x − y

p
m) in R2, and if we parametrize ω by the pair

(x, y), then the set for which N (ω) ≤ c is the part of the (x, y) plane containing
the origin and bounded by the two hyperbolas x2−my2 = c and x2−my2 = −c.
This set is not convex, and it is not even bounded.
Briefly, an individual coordinate of our ƒ = Rr1 × Cr2 , whether a factor of

type R or a factor of type C, contributes something compact convex to the set
for which N (ω) ≤ c as long as the other coordinates are fixed, but as soon as
we allow more than one coordinate to vary, then the product formula defining
N (ω) produces sets that are neither convex nor bounded. To use Theorem 5.16,
we want to inscribe a compact convex set within the set for which N (ω) ≤ c,
making the inscribed set contain the origin, be closed under negatives, and have
volume as large as possible.
If we were trying to inscribe such a compact convex set in a region cut out by

two hyperbolas as above, then the best possible set to use would be a rectangle
with sides parallel to the axes. However, the description above in terms of those
two hyperbolas used a noncanonical parametrization of elements of Q(

p
m ) as

all rational combinations x + y
p
m.

Let us proceed for the general case by using only the structure that is given to
us, without using any noncanonical parametrization. The things that are canonical
are the factorsR andC, the functionsk · ki definedon them, and functionsof these.
For the example above, the function N (ω) is given by N (ω) = |ω|1|ω|2. The
geometric set inR2 = {(ω1, ω2)} to consider is changed from above; it is still the
set toward the origin from two hyperbolas, but the hyperbolas are changed to be
ω1ω2 = ±c, having the axes as asymptotes. The inscribed convex set becomes the
set with |ω1| + |ω2| ≤ 2c1/2. The containment of the latter set in the set toward
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the origin from the two hyperbolas follows from the inequality |ω1ω2|1/2 ≤
1
2 (|ω1| + |ω2|), which is a consequence of the inequality 1

4 (|ω1| − |ω2|)2 ∏ 0.
In the general case the inscribed convex set is described in terms of the function

T (ω) =
r1P

i=1
|ω|i + 2

r1+r2P

i=r1+1
|ω|i .

The set of ω with T (ω) ≤ t , t being a positive constant, is evidently a compact
convex set containing 0 and closed under negatives, and the functions T (ω) and
N (ω) are connected by the arithmetic–geometric mean inequality, which says
that

N (ω)1/n ≤
1
n
T (ω).

Because of this inequality the set with T (ω) ≤ t is contained in the set with
N (ω) ≤ tn/nn .
Since the absolute value in each R or C coordinate is canonical, so is the

notion of volume, given on rectangular sets by taking products; as usual the
understanding is that the set in a factor of R on which the absolute value is
≤ k contributes a factor of 2k to the volume, and the comparable set in a factor
of C contributes a factor of πk2. If V0 denotes the volume of a fundamental
parallelotope for the lattice 8(J ) in the n-dimensional Euclidean space ƒ, then
the Minkowski Lattice-Point Theorem says that the set with T (ω) ≤ t , and
therefore also the set with N (ω) ≤ tn/nn , contains a nonzero lattice point as
soon as the volume of the set with T (ω) ≤ t is ∏ 2nV0. In other words, as soon
as the volume of the set with T (ω) ≤ t is∏ 2nV0, there exists an s 6= 0 in J with
|NK/Q(s)| ≤ tn/nn .
To prove Theorem 5.21, we therefore need to know two things—the volume V0

of a fundamental parallelotope for8(J ) and the volume of the set with T (ω) ≤ t .
Then we can find the smallest t for which the set with T (ω) ≤ t has volume
∏ 2nV0, and we can sort out the details.
Let us compute the volume V0. Let 0 = (α1, . . . , αn) be an ordered Z basis

of the ideal J . The easy case in which to compute V0 is that r1 = n, i.e., that all
the field embeddings of K into C are real. In this case the discriminant D(0) is
the determinant of the n-by-n matrix [Bi j ] with

Bi j = TrK/Q(αiαj ) =
nP

k=1
σk(αiαj ) =

nP

k=1
σk(αi )σk(αj ) =

nP

k=1
Aik Atjk,

where [Ai j ] is the matrix with Ai j = σj (αi ). We recognize | det[Ai j ]| as the
volume of a fundamental parallelotope for 8(J ), and therefore |D(0)| = V 20 .
By Proposition 5.1, D(0) = N (J )2DK, and therefore V0 = N (J )|DK|1/2.
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This answer for the value of V0 is not correct if some of the embeddings of K
into C are nonreal, since | det[σj (αi )]| no longer equals V0. To see how to adjust
matters, suppose that σ is a nonreal field mapping of K into C. Then the n-by-n

matrix [σj (αi )] contains one column z =

√ z1
...
zn

!

corresponding to σ and another

column z̄ =

√ z̄1
...
z̄n

!

corresponding to σ . The entries in the kth row tell how αk is

embedded in ƒ, namely at some point zk = xk + iyk for σ and at z̄k = xk − iyk .
To compute V0 properly, we should have xk in one column and yk in the other,
instead of zk and z̄k . We can transform from the matrix with columns containing
zk and z̄k to one containing xk and yk by first replacing the first column by the
sum of the two, which is 2xk = zk + z̄k , and by then replacing the second column
by the difference of the second column and half the new first column, which is
1
2 (z̄k − zk) = −iyk . These operations do not change the determinant. Repeating
these steps for each of the r2 pairs of nonreal field mappings, we obtain a matrix
for which the absolute value of the determinant, apart from factors of 2 in r2 of the
columns, is V0. Consequently V0 = 2−r2 | det[σj (αi )]|. Then V 20 = 2−2r2 |D(0)|,
and we obtain

V0 = 2−r2N (J )|DK|1/2.

Now let us compute the volume of the set ofω inƒ for which T (ω) ≤ t . Write
ω = (x1, . . . , xr1, zr1+1, . . . , zr1+r2). The volume is the integral of 1 over the set
on which |x1| + · · · + |xr1 | + 2|zr1+1| + 2|zr1+r2 | ≤ t . The set for the integration
is invariant under xi 7→ −xi and under rotation in any variable zi , and hence the
volume equals

2r1(2π)r2
Z

E
ρr1+1 · · · ρr1+r2 dx1 · · · dxr1 dρr1+1 · · · dρr1+r2,

where E is the set on which all variables are ∏ 0 and
r1P

i=1
xi + 2

r1+r2P

i=r1+1
ρi ≤ t.

For r1 + 1 ≤ i ≤ r1 + r2, introduce xi = 2ρi , and make the change of variables.
Then the volume becomes

2r1−r2πr2
Z

E 0
xr1+1 · · · xr1+r2 dx1 · · · dxr1+r2,

where E 0 is the set of (x1, . . . , xn) inRr1+r2 with all xi ∏ 0 andwith
Pr1+r2

i=1 xi ≤ t .
Finally we make a change of variables that replaces each xi by t yi , and the result
is that
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volume({T (ω) ≤ t}) = 2r1−r2πr2 tn
Z

S
yr1+1 · · · yr1+r2 dy1 · · · dyr1+r2,

where S is the standard simplex inRr1+r2 with all yi ∏ 0 and with
Pr1+r2

i=1 yi ≤ 1.
This definite integral is of a standard type that is evaluated by the following
lemma.

Lemma 5.23. In Rm , let S be the standard simplex with all xi ∏ 0 and withPm
i=1 xi ≤ 1. If a1, . . . , am are positive real numbers, then

Z

S
xa1−11 xa2−12 · · · xam−1

m dx1 · · · dxm =
0(a1)0(a2) · · ·0(am)

0(a1 + · · · + am + 1)
.

REMARKS. The expression0( · ) is understood to be the usual gamma function,
whose value at positive integers is given by 0(n + 1) = n!. We merely sketch
the proof; the details can be found in many books that treat changes of variables
for multiple integrals.22

SKETCH OF PROOF. Let I be the unit cube, given by 0 ≤ ui ≤ 1 for 1 ≤ i ≤ m.
We make the change of variables x = ϕ(u) that carries the points u of the cube
I one-one onto the points x of the simplex S and that is given by

x1 = u1,
x2 = (1− u1)u2,
...

xm = (1− u1) · · · (1− um−1)um .

The volume element transformsby the absolute value of the Jacobian determinant,
specifically by

dx = |ϕ0(u)| du = (1− u1)m−1(1− u2)m−2 · · · (1− um−1) du,

and the result of the change of variables is that the given integral equals
mY

i=1

Z 1

0
uai−1i (1− ui )

Pm
k=i+1 ak dui .

The factors here can be evaluated by means of Euler’s formula
Z 1

0
ua−1(1− u)b−1 =

0(a)0(b)
0(a + b)

,

and the lemma follows. §
22One such is the author’s Basic Real Analysis; the details appear in the problems at the end of

Chapter VI of that book. Another such book is Rudin’s Principles of Mathematical Analysis.
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For the integral of interest to us, we have m = r1 + r2, a1 = · · · = ar1 = 1,
and ar1+1 = · · · = ar1+r2 = 2. Thus a1+· · ·+am = r1+2r2 = n, and we obtain

volume({T (ω) ≤ t}) = 2r1−r2πr2 tn
0(1)r10(2)r1+r2

0(n + 1)
=
2r1−r2πr2 tn

n!
.

Finally we can put everything together. We are to solve for t such that this
expression is equal to 2nV0, and then there exists an element s 6= 0 in J with
|NK/Q(s)| ≤ tn/nn . Since V0 = 2−r2N (J )|DK|1/2, the equation to solve for t is

2r1−r2πr2 tn

n!
= 2n2−r2N (J )|DK|1/2.

Thus tn =
≥
4
π

¥r2
n!N (J )|DK|1/2, and the element s 6= 0 in J satisfies

|NK/Q(s)| ≤

µ
4
π

∂r2 n!
nn

|DK|1/2N (J ).

This completes the proof of Theorem 5.21.

7. Problems

1. Take as known that the discriminant of a cubic polynomial F(X) = X3+ pX+q
is −(4p3 + 27q2). In each of the following cases, let K = Q[X]/(F(X)) with
F(X) as indicated, and verify that the field discriminant DK is as indicated:
(a) F(X) = X3 − X − 1, DK = −23.
(b) F(X) = X3 + X + 1, DK = −31.

2. Let K = Q[X]/(F(X)), where F(X) = X3 − 2X2 + 2.
(a) Use the formula of the previous problem to show that the discriminant of

the polynomial F(X) is −44.
(b) Using Proposition 5.2, show that DK cannot be −11, and conclude that

DK = −44.
3. This problem computes the class number of K = Q(

3p3 ).
(a) Show that every equivalence class of nonzero ideals contains an ideal with

norm ≤ 4.
(b) Show that the prime ideals whose norm is a power of 2 are P1 = (2, 3p3−1),

whose norm is 2, and P2 = (2, 3p9+ 3p3+ 1), whose norm is 4.
(c) Show for P1 that 2 is a multiple of 3p3 − 1, and show for P2 that 2 is a

multiple of 3p9+ 3p3+ 1.
(d) Show that the only prime ideal whose norm is 3 is (

3p3 ).
(e) Deduce that the class number of K is 1.
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4. Let R be the ring of algebraic integers in the number field K = Q(
3p7 ), and let

I be the doubly generated ideal I = (2, 1+ 3p7) in R.
(a) Prove that N (I ) = 2.
(b) Prove that I is not a principal ideal.

Problems 5–9 give an example of a nontrivial finite extension L/K of number fields
in which no prime ideal for K ramifies in passing to L. By contrast, Corollary 5.22
says that there always exists a prime that ramifies in passing from Q to a nontrivial
finite extension. The example has L = Q(

p
−5,

p
−1 ) and K = Q(

p
−5 ). Let

K0 = Q(
p
5 ) and K00 = Q(

p
−1 ). Observe that L/Q is a Galois extension, and so

are all the various quadratic extensions of L over K, K0, andK00, as well as of K, K0,
andK00 overQ. The problems make use of the fact that ramification indices multiply
in passing to an extension in stages, and so do residue class degrees.

5. Show that the minimal polynomial of
p

−1+
p

−5 over Q is X4 + 12X2 + 16,
and deduce that the elements 12 (±

p
−1±

p
−5 ) are algebraic integers in L.

6. By making use the formula for D(ξ) in terms of D(ξ), where ξ is an element in
L, prove that |D( 12 (

p
−1+

p
−5))| = 2452. Consequently DL divides 2452.

7. Verify the following decompositions of the ideals (2) and (5) when extended
from Z to the rings R, R0, and R00 of algebraic integers in K, K0, and K00:
(a) (2)R = ℘2 with f = 1, and (5)R = ℘2 with f = 1.
(b) (2)R0 = ℘ with f = 2, and (5)R0 = ℘2 with f = 1.
(c) (2)R00 = ℘2 with f = 1, and (5)R00 = ℘1℘2 with f = 1.

8. Let T be the ring of algebraic integers in L. SinceL/Q is a Galois extension, the
only possible decompositions of (p)T , when p is a prime number, have (e, f, g)
equal to (4, 1, 1) or (2, 2, 1) or (2, 1, 2) or (1, 4, 1) or (1, 2, 2) or (1, 1, 4). Here
e is the ramification index, f is the residue class degree, and g is the number of
distinct prime factors. Using the product formulas for ramification degrees and
comparing what happens for the passage Q ⊆ K0 ⊆ L with what happens for
the passage Q ⊆ K00 ⊆ L, show that the only possibilities for (p)T with p = 2
and p = 5 are
(a) (e, f, g) = (2, 2, 1) for (2)T , i.e., (2)T = P2 with dimF2(T/P) = 2.
(b) (e, f, g) = (2, 1, 2) for (5)T , i.e., (5)T = P21 P

2
2 with dimF5(T/P1) =

dimF5(T/P2) = 1.

9. Return to the situation with Q ⊆ K ⊆ L, where K = Q(
p

−5 ). According to
Problem 7a, the prime decompositions of (2)R and (5)R are (2)R = ℘22 and
(5)R = ℘25 .
(a) Using the results of Problem 8, show that ℘2T = P and ℘5T = P1P2, i.e.,

℘2T is prime, and ℘5T is the product of two distinct prime ideals.



7. Problems 309

(b) Show how to conclude from these facts and from Theorem 5.6 that no prime
ideal in R ramifies in T . (Educational note: The field L is the “Hilbert class
field” ofK in the sense of Section 1; the order of the Galois group Gal(L/K)

matches the class number of K.)

Problems 10–16 concern the cyclotomic field K = Q(e2π i/p), where p > 2 is a
prime number. They show that the discriminant is given by DK = pp−2 and that a Z
basis of the ring R of algebraic integers in K consists of {1, ≥, ≥ 2, . . . , ≥ p−2}, where
≥ = e2π i/p.
10. Show thatK has no real-valued field mappings intoC, and deduce that NK/Q(x)

is positive for every x 6= 0 in K.
11. Let F(X) = X p−1 + X p−2 + · · · + 1 be the minimal polynomial of ≥ over Q,

and let G(X) = F(X + 1). Suppose that k is an integer with GCD(k, p) = 1.
(a) Prove that G(X) is the minimal polynomial of ≥ k − 1, and deduce that the

norm of ≥ k − 1 is given by F(1) = p.
(b) Why does it follow that NK/Q(1− ≥ k) = p?
(c) Prove that (1− ≥ k)/(1− ≥ ) is a unit of R.

12. With notation as in the previous problem, prove that the different D(≥ k) of ≥ k

has |D(≥ k)| = p
±
|≥ k − 1|.

13. Deduce from the previous problem that D(≥ ) = (−1)(p−1)(p−2)/2 pp−2.

14. Let ∏ = 1− ≥ . Problem 11b shows that NK/Q(∏) = p. Prove that
(a) theZ span of {1, ≥, ≥ 2, . . . , ≥ p−2} equals theZ span of {1, ∏, ∏2, . . . , ∏p−2}.
(b) an equality p =

Qp−1
k=1 (1− ≥ k) holds.

(c) there exists a unit ε of R such that p = ε(1− ≥ )p−1 = ε∏p−1.

15. Using Problem 14c, prove that the principal ideals (p)R and (∏) in R are related
by (p)R = (∏)p−1, and deduce from this fact that (∏) is a prime ideal.

16. Apply Proposition 5.2 to theQ basis {1, ∏, ∏2, . . . , ∏p−2} ofK lying in R to show
that no factor of p2 can be eliminated from D(∏) = D(≥ ); take into account the
highest powers of ∏ that divide each term. Conclude that DK = D(≥ ) and that
{1, ≥, ≥ 2, . . . , ≥ p−2} is a Z basis of R.

Problems 17–18 use the same notation as in the text of the chapter: K is a number
field of degree n overQ, R is its ring of algebraic integers, DK is its field discriminant,
the field mappings of K into C are denoted by σi for 1 ≤ i ≤ n, r1 of the σi ’s are
real-valued, and r2 complex-conjugate pairs of the σi ’s are nonreal.
17. Prove that the sign of DK is (−1)r2 .

18. (Stickelberger’s condition) Let 0 = (α1, . . . , αn) be an ordered n-tuple of
members of R linearly independent over Q, and suppose that K/Q is a Galois
extension. Write det[σj (αi )] = P − N , where P is the sum of all the terms of
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the determinant corresponding to even permutations and N is the sum corre-
sponding to even permutations. Using Galois theory, prove that P + N and PN
are inZ. Thenwrite D(0) = (det[σj (αi )])2 = (P+N )2−4PN , and deduce that
the integer D(0) is congruent to 1 or 0 modulo 4. (Educational note: A variant
of this argument proves the same conclusion about D(0)without the assumption
thatK/Q is a Galois extension. One makes use of the smallest normal extension
of Q containing K; this is the splitting field of the minimal polynomial of any
primitive element of K.)

Problems 19–23 continue with the notation of Problems 17–18. It is to be proved that
a suitable localization S−1R of R is a principal ideal domain for which the group of
units is finitely generated as an abelian group. Let h be the class number of K.
19. Let I1, . . . , Ih be ideals representing all the equivalence classes of ideals in R.

For each Ij , let uj be a nonzero element of Ij , and put u = u1 · · · uh . Define
S = {1, u, u2, . . . }. Prove that S−1R is a principal ideal domain.

20. (a) Prove that if a member a of R divides uk within R for some k ∏ 0, then a
is a unit in S−1R, i.e., a−1 is in S−1R.

(b) Prove conversely that if a member a of R has the property that au−m is a
unit in S−1R for some m ∏ 0, then a divides uk within R for some integer
k ∏ 0.

21. Let P1, . . . , Pl be the distinct prime ideals appearing in the unique factorization
of (u), and suppose that Phj = (bj ) for 1 ≤ j ≤ l. Let au−m and k be as in
Problem 20b, and write uk = ab with b ∈ R.
(a) Why must each bj necessarily be a unit in S−1R?
(b) Prove that there exist integers nj ∏ 0 for 1 ≤ j ≤ l such that the element

d =
Q

j b
nj
j has (a) = (d)Pt11 · · · Ptll for some integers tj with0 ≤ tj ≤ h−1.

(c) In this case, why must Pe11 · · · Pell be a principal ideal?

22. Suppose that there are N tuples (e1, . . . , el) with 0 ≤ ej ≤ h − 1 for all j such
that Pe11 · · · Pell is a principal ideal. For the i th such tuple, let the principal ideal
be denoted by (ci ), 1 ≤ i ≤ N . Prove that if k, a, and b are as in the previous
problem and if the principal ideal in (c) of that problem is (ci ), then a = bciε
for some ε in R×.

23. Conclude from the three previous problems that the group of units of S−1R is
finitely generated as an abelian group.

Problems 24–32 complete the discussion in Section 4 of Dedekind’s example of a
cubic extension of Q with a common index divisor. The field is K = Q(ξ), where
ξ is a root of F(X) = X3 + X2 − 2X + 8, and it was shown in Section 4 that
D(ξ) = −22 · 503. Let R be the ring of algebraic integers inK. It will be shown that
R is a principal ideal domain.
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24. Show that η = 4/ξ is a root of the polynomial G(X) = X3 − X2 + 2X + 8, and
conclude that η is in R.

25. (a) By rewriting F(ξ)/ξ in terms of ξ and η, show that ξ2 + ξ − 2+ 2η = 0.
(b) By rewriting G(η)/η in terms of ξ and η, show that 2ξ + 2− η + η2 = 0.

Conclude from this formula and (a) that products of ξ andηmaybe simplified
according to the table

ξ2 = −ξ + 2− 2η, η2 = −2ξ − 2+ η, ξη = 4.

(c) Using the first formula in (b), deduce the containment of abelian groups
given by Z({1, ξ, ξ2}) ⊆ Z({1, ξ, η}).

(d) Using the first formula in (b), deduce that η does not lie in Z({1, ξ, ξ2}).
(e) Conclude from the above facts that {1, ξ, η} and

©
1, ξ, 12 (ξ

2 + ξ)
™
are Z

bases of R.
26. Let P be a prime ideal in R containing (2)R, write F for the field R/P , let

ϕ : R → F be the quotient homomorphism, and let ξ = ϕ(ξ) and η = ϕ(η). By
applying ϕ to the table in Problem 25b and using the fact that the additive group
generated by {1, ξ, η} is all of R, prove that F has only two elements, i.e., that
the residue class degree is f = 1, and that the only possibilities for ϕ are the
following:

ϕ = ϕ0,0 with ϕ0,0(ξ) = 0, ϕ0,0(η) = 0,
ϕ = ϕ1,0 with ϕ1,0(ξ) = 1, ϕ1,0(η) = 0,
ϕ = ϕ0,1 with ϕ0,1(ξ) = 0, ϕ0,1(η) = 1.

27. Conversely show that the three functions ϕ0,0, ϕ1,0, ϕ0,1 defined on ξ and η in
the previous problem extend to well-defined ring homomorphisms of R onto F2.

28. Let P0,0, P1,0, and P0,1 be the kernels of the ring homomorphisms in the previous
problem. Prove that these ideals all have norm 2 and that (2)R = P0,0P1,0P0,1.

29. (a) Prove that P0,0 = (2, ξ, η), P1,0 = (2, ξ + 1, η), and P0,1 = (2, ξ, η + 1).
(b) Exhibit η as a member of the ideal (2, ξ + 1), and show therefore that

P1,0 = (2, ξ + 1).
(c) Similarly show that P0,1 = (2, η + 1) and that P0,0 = (2, ξ − η).

30. The previous problem exhibited P0,0, P1,0, and P0,1 explicitly as doubly gener-
ated. In fact, use of the normmap NK/Q will ultimately show them to be principal
ideals.
(a) Show that if H(X) is the field polynomial overQ of an element θ inK, then

NK/Q(θ) = −H(0) and NK/Q(θ − q) = −H(q) for every q ∈ Q.
(b) Prove that NK/Q(ξ) = NK/Q(η) = −8 = −23, that |NK/Q(ξ + 3)| = 22,

that |NK/Q(ξ − 1)| = |NK/Q(ξ + 2)| = 23, and that |NK/Q(ξ − 2)| = 24.
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(c) Prove that (ξ) = Pa0,0P
b
1,0P

c
0,1 for unique exponents ∏ 0 whose sum is 3,

and that (η) = Pα
0,0P

β
1,0P

∞
0,1 for unique exponents ∏ 0 whose sum is 3.

(d) Using the fact that ξη = 4, prove that a + α = b + β = c + ∞ = 2.
(e) Using the definitions of P0,0, P1,0, and P0,1 as kernels, prove that b = 0 and

∞ = 0.
(f) Conclude that (ξ) = P0,0P20,1 and that (η) = P0,0P21,0.

31. This problem uses the norm computations in Problem 30b.
(a) Using the defining homomorphisms, show that if l is an odd integer, then

P1,0 contains (ξ + l), but P0,0 and P0,1 do not.
(b) Show that (ξ + 3) = P21,0 and that (ξ − 1) = P31,0.
(c) Using the defining homomorphisms, show that if l is an even integer, then

P0,1 contains (ξ + l), but P1,0 does not.
(d) Show that (2, ξ) = P0,0P0,1.
(e) Show that if l is an even integer not divisible by 4, then P20,1 does not contain

(ξ + l).
(f) Show that (ξ + 2) = P20,0P0,1 and that (ξ − 2) = P30,0P0,1.

32. (a) From the identity (ξ + 2)P0,0 = (ξ − 2) that results from Problem 31f,
deduce that r0,0 = ξ−2

ξ+2 is in R and that P0,0 = (r0,0).
(b) Deduce similarly that P1,0 and P0,1 are principal ideals.
(c) Using Theorem 5.6, show that R contains no ideals of norm 3.
(d) Using Theorem 5.6, show that the only ideal in R of norm 5 is (5, 1+ ξ).
(e) Show that |NK/Q(1 + ξ)| = 10, and deduce that (1 + ξ) = (5, 1 + ξ)P ,

where P is one of the three ideals P0,0, P1,0, and P0,1.
(f) Why does it follow that (5, 1+ ξ) is a principal ideal?
(g) Prove that R is a principal ideal domain.


