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CHAPTER IV

Topics in Functional Analysis

Abstract. This chapter pursues three lines of investigation in the subject of functional analysis—one
involving smooth functions and distributions, one involving fixed-point theorems, and one involving
spectral theory.
Section 1 introduces topological vector spaces. These are real or complex vector spaces with a

Hausdorff topology in which addition and scalar multiplication are continuous. Examples include
normed linear spaces, spaces given by a separating family of countably many seminorms, and weak
and weak-star topologies in the context of Banach spaces. Various general properties of topological
vector spaces are proved, and it is proved that the quotient of a topological vector space by a closed
vector subspace is Hausdorff and is therefore a topological vector space.
Section 2 introduces a topology on the space C∞(U) of smooth functions on an open subset of

RN . The support of a continuous linear functional on C∞(U) is defined and shown to be a compact
subset of U . Accordingly, the continuous linear functionals are called distributions of compact
support.
Section 3 studies weak and weak-star topologies in more detail. The main result is Alaoglu’s

Theorem, which says that the closed unit ball in theweak-star topology on the dual of a normed linear
space is compact. In an earlier chapter a preliminary form of this theorem was used to construct
elements in a dual space as limits of weak-star convergent subsequences.
Section 4 follows Alaoglu’s Theorem along a particular path, giving what amounts to a first

example of the Gelfand theory of Banach algebras. The relevant theorem, known as the Stone
Representation Theorem, says that conjugate-closed uniformly closed subalgebras containing the
constants in B(S) are isomorphic via a norm-preserving algebra isomorphism to the space of all
continuous functions on some compact Hausdorff space. The compact space in question is the space
of multiplicative linear functionals on the subalgebra, and the proof of compactness uses Alaoglu’s
Theorem.
Sections 5–6 return to the lines of study toward distributions and fixed-point theorems. Section 5

studies the relationship between convexity and the existence of separating linear functionals. The
main theorem makes use of the Hahn–Banach Theorem. Section 6 introduces locally convex
topological vector spaces. Application of the basic separation theorem from the previous section
shows the existence of many continuous linear functionals on such a space.
Section 7 specializes to the line of study via smooth functions and distributions. The topic is

the introduction of a certain locally convex topology on the space C∞
com(U) of smooth functions of

compact support onU . This is best characterized by a universal mapping property introduced in the
section.
Sections 8–9 pursue locally convex spaces along the other line of study that split off in Section 5.

Section 8 gives the Krein–Milman Theorem, which asserts the existence of a supply of extreme
points for any nonempty compact convex set in a locally convex topological vector space. Section 9
relates compact convex sets to the subject of fixed-point theorems.
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106 IV. Topics in Functional Analysis

Section 10 takes up the abstract theory of Banach algebras, with particular attention to com-
mutative C∗ algebras with identity. Three examples are the algebras characterized by the Stone
Representation Theorem, any L∞ space, and any adjoint-closed commutative Banach algebra
consisting of bounded linear operators on a Hilbert space and containing the identity.
Section 11 continues the investigation of the last of the examples in the previous section and

derives the Spectral Theorem for bounded self-adjoint operators and certain related families of
operators. Powerful applications follow from a functional calculus implied by the Spectral Theorem.
The sectionconcludeswith remarksabout theSpectralTheoremforunboundedself-adjointoperators.

1. Topological Vector Spaces

In this section we shall work with vector spaces over R or C, and the distinction
between the two fields will not be very important. We write F for this field of
scalars. A topological vector space or linear topological space is a vector space
X overFwith aHausdorff topology such that addition, as amapping X×X → X ,
and scalar multiplication, as a mapping F × X → X , are continuous. The
mappings that we study between topological vector spaces are the continuous
linear functions, which may be referred to as “continuous linear operators.” An
isomorphism of topological vector spaces over F is a continuous linear operator
with a continuous inverse.
The simplest examples of topological vector spaces are the spaces FN of

column vectors with the usual metric topology. Since the topologies of FN ,
FN × FN , and F × FN are given by metrics, continuity of functions defined on
any of these spaces may be tested by sequences. In particular, continuity of the
vector-space operations on FN reduces to the familiar results about limits of sums
of vectors and limits of scalars times vectors. Moreover, if L : FN → Y is
any linear function from FN into a topological vector space over F, then L is
continuous. To see this, let {e1, . . . , eN } be the standard basis of column vectors,
and let ( · , · ) be the standard inner product on FN , namely the dot product if
F = R and the usual Hermitian inner product if F = C. Write yj = L(ej ). For
any x in FN , we have

L(x) =
NX

j=1
(x, ej )L(ej ) =

NX

j=1
(x, ej )yj .

If {xn} is a sequence converging to x inFN , then the continuity of the inner product
forces (xn, ej ) → (x, ej ) for each j . Then L(xn) tends to L(x) in Y since the
vector space operations are continuous in Y . Hence L is continuous.



1. Topological Vector Spaces 107

A second class of examples is the class of normed linear spaces. These were
defined in Basic, and the continuity of the operations was established there.1
The spaces FN of column vectors are examples. Further examples include the
space B(S) of all bounded scalar-valued functions on a nonempty set S with the
supremumnorm, the vector subspaceC(S) of continuousmembers of B(S)when
S is a topological space, the vector subspaces Ccom(S) and C0(S) of continuous
functions of compact support and of continuous functions vanishing at infinity
when S is locally compact Hausdorff, the space L p(X, µ) for 1 ≤ p ≤ ∞ when
(X, µ) is a measure space, and the space M(S) of finite regular Borel complex
measures on a locally compact Hausdorff space with the total variation norm.
Awider class of examples, which includes the normed linear spaces, is the class

of topological vector spaces defined by seminorms. Seminorms were defined in
Section III.1. If we have a family {k · ks} of seminorms on a vector space X over
F, with indexing given by s in some nonempty set S, the corresponding topology
on X is defined as the weak topology determined by all functions x 7→ kx − yks
for s ∈ S and y ∈ X . A base for the open sets of X is obtained as follows: For
each triple (y, s, r), with y in X , with s one of the seminorm indices, and with
r > 0, the set

©
x

Ø
Ø kx − yks < r

™
is to be in the base, and the base consists of all

finite intersections of these sets as (y, s, r) varies.
In order to obtain a topological vector space from a system of seminorms, we

must ensure the Hausdorff property, and we do so by insisting that the only f
in X with k f ks = 0 for all s is f = 0. In this case the family of seminorms is
called a separating family. Let us go through the argument that a space defined
by a separating family of seminorms is a topological vector space.

Proposition 4.1. Let X be a vector space over F endowed with a separating
family {k · ks} of seminorms. Then theweak topology determinedby all functions
x 7→ kx − yks makes X into a topological vector space.

PROOF. To see that X is Hausdorff, let x0 and y0 be distinct points of X . By
assumption, there exists some s such that kx0 − y0ks is a positive number r . The
sets

©
x

Ø
Ø kx − x0ks < r/2

™
and

©
y
Ø
Ø ky − y0ks < r/2

™
are disjoint and open, and

they contain x0 and y0, respectively. Hence X is Hausdorff.
To see that addition is continuous, we are to show that if a net {(xα, yα)} is con-

vergent in X× X to (x0, y0), then {xα + yα} converges to x0+ y0. This means that
if kxα −x0ks+kyα − y0ks tends to 0 for each s, then k(xα + yα)−(x0+ y0)ks tends
to 0 for each s. This is immediate from the triangle inequality for the seminorm
k · ks , and hence addition is continuous. The proof that scalar multiplication is
continuous is similar. §

1The definition appears in Section V.9 of Basic, and the continuity of the operations is proved in
Proposition 5.55.
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We have encountered two distinctly different kinds of examples of topological
vector spaces defined by families of seminorms. In the first kind a countable
family of seminorms suffices to define the topology. Normed linear spaces are
examples. So is the Schwartz spaceS(RN ), consisting of all smooth scalar-valued
functions onRN such that the product of any polynomial with any iterated partial
derivative of the function is bounded. The defining seminorms for the Schwartz
space are

k f kP,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|,

where P and Q are arbitrary polynomials. We saw in Section III.1 that the same
topology arises if we use only the countably many seminorms for which P is
some monomial xα and Q is some monomial xβ . This family of seminorms is a
separating family because if k f k1,1 = 0, then f = 0.
Another example of a topological vector space whose topology can be defined

by countablymany seminorms is the spaceC∞(U) of smooth scalar-valued func-
tions on a nonempty open setU ofRN with the topology of uniform convergence
on compact sets of all derivatives. The family of seminorms is indexed by pairs
(K , P)with K a compact subset ofU andwith P a polynomial, the corresponding
seminorm being k f kK ,P = supx∈K |(P(D) f )(x)|. The Hausdorff condition is
satisfied because if k f kK ,1 = 0 for all K , then f = 0. We shall see in the
next section that the topology can be defined by a countable subfamily of these
seminorms.
Still a third space of smooth scalar-valued functions, besides S(RN ) and

C∞(U), will be of interest to us. This is the spaceC∞
com(U) of smooth functions on

a nonempty open U with compact support contained in U . The useful topology
on this space is more complicated than the topologies considered so far. In
particular, it cannot be given by countably many seminorms. Describing the
topology requires some preparation, and we come back to the details in Section 7.
The examples we have encountered of topological vector spaces defined by

an uncountable family of seminorms, but not definable by a countable family,
are qualitatively different from the examples above. Indeed, they lead along a
different theoretical path, as we shall see—one that takes us in the direction of
spectral theory rather than distribution theory.
The first class of such examples is the class of normed linear spaces X with

the “weak topology,” as contrasted with the norm topology. Let X∗ be the set
of linear functionals of X that are continuous in the norm topology. The weak
topology on X was defined in Chapter X of Basic as the weakest topology that
makes all members of X∗ continuous. Of course, any set that is open in the weak
topology on X is open in the norm topology. A base for the open sets in the weak
topology on X is obtained as follows: For each triple (x0, x∗, r), with x0 in X , x∗

in X∗, and r > 0, the set
©
x

Ø
Ø |x∗(x − x0)| < r

™
is to be in the base, and the base
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consists of all finite intersections of these sets as (x0, x∗, r) varies. The weak
topology is given by the family of seminorms k · kx∗ = |x∗( · )|. The proof that
the weak topology is Hausdorff requires the fact, for each x 6= 0 in X , that there
is some member x∗ with x∗(x) 6= 0; this fact is one of the standard corollaries of
the Hahn–Banach Theorem. Examples of weak topologies will be discussed in
Section 3.
Similarly the weak-star topology on X∗, when X is a normed linear space,

was defined in Basic as the weakest topology on X∗ that makes all members of
X continuous. This is given by the family of seminorms k · kx = | · (x)|. Here
the relevant fact for seeing that the topology is Hausdorff is that for each x∗ 6= 0
in X∗, there is some x in X with x∗(x) 6= 0. This is just a matter of the definition
of x∗ 6= 0 and depends on no theorem. Examples of weak-star topologies will be
discussed in Section 3.
The above classes of examples by no means exhaust the possibilities for topo-

logical vector spaces. Let us mention briefly one example that is not even close
to being definable by seminorms. It is the space L p([0, 1])with 0 < p < 1. This
is the vector space of all real-valued Borel functions on [0, 1] with

R
[0,1] | f |

p dx
finite, except thatwe identify two functions if theydiffer onlyon a set ofmeasure0.
Let us see that d( f, g) =

R
[0,1] | f − g|p dx is a metric. We need only verify the

triangle inequality in the form
R
[0,1] | f + g|p dx ≤

R
[0,1] | f |

p dx +
R
[0,1] |g|

p dx .
To check this, we observe for nonnegative r that (1+ r)p − (1+ r p) is 0 at r = 0
and has negative derivative p((1+ r)p−1 − r p−1) since p − 1 is negative. Thus
(1+r)p ≤ 1+r p for r ∏ 0, and consequently |a+b|p ≤ (|a|+|b|)p ≤ |a|p+|b|p
for all real a and b. Taking a = f (x) and b = g(x) and integrating, we obtain the
desired triangle inequality. One readily shows that L p([0, 1])with this metric is a
topological vector space. On the other hand, this topological vector space is rather
pathological, as is shown in Problem 8 at the end of the chapter. For example it
has no nonzero continuous linear functionals, whereas nonzero topological vector
spaces whose topologies are given by seminorms always have enough continuous
linear functionals to separate points.2
Nowwe turn our attention to a few results valid for arbitrary topological vector

spaces.

Proposition 4.2. In any topological vector space, the closure of any vector
subspace is a vector subspace.

PROOF. Let V be a vector subspace of the topological vector space X . If x and
y are in V cl, then (x, y) is in V cl × V cl = (V × V )cl. Any continuous function

2More precisely it will be observed in Section 6 that topological vector spaces whose topologies
are given by seminorms are “locally convex,” and it will be proved in that same section that locally
convex spaces always have enough continuous linear functionals to separate points.
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f has the property for any set S that f (Scl) ⊆ f (S)cl. Applying this fact to the
addition function, we see that x+ y is in V cl since V is the image of V ×V under
addition. Thus V cl is closed under addition. Similarly V cl is closed under scalar
multiplication. §

Lemma 4.3. If X is a real or complex vector space in which addition and
scalar multiplication are continuous and if {0} is a closed subset of X , then X is
Hausdorff and hence is a topological vector space.
PROOF. Since translations are homeomorphisms, it is enough to separate 0 and

an arbitrary x 6= 0 by disjoint open neighborhoods. Since X − {0} is open, so
is V = X − {x}. By continuity of subtraction, choose an open neighborhood U
of 0 such that the set of differences satisfies U − U ⊆ V . Then U and x + U
are open neighborhoods of 0 and x . If y is in their intersection, then y is in U ,
and y is of the form x + u for some u in U . Hence x = y − u exhibits x as in
U − U ⊆ V = X − {x}, contradiction. Thus we can take U and x + U as the
required disjoint open neighborhoods of 0 and x . §

Proposition 4.4. If X is a topological vector space, if Y is a closed vector
subspace, and if the quotient vector space X/Y is given the quotient topology,3
then X/Y is a topological vector space, and the quotient map q : X → X/Y
carries open sets to open sets.
PROOF. If U is open in X , then q−1(q(U)) =

S
y∈Y (y + U) exhibits

q−1(q(U)) as the union of open sets and hence as an open set. By definition
of the topology on X/Y , q(U) is open in X/Y . Hence q carries open sets in X
to open sets in X/Y .
To see that addition is continuous in X/Y , let x1 and x2 be in X , and let E be

an open neighborhood of the member x1 + x2 + Y of X/Y . Then q−1(E) is an
open neighborhood of x1 + x2 in X . By continuity of addition in X , there exist
open neighborhoods U1 of x1 and U2 of x2 such that U1 + U2 ⊆ q−1(E). The
map q is open and linear, and hence q(U1) and q(U2) are open subsets of X/Y
with q(U1) + q(U2) ⊆ q(q−1(E)) = E . Thus addition is continuous in X/Y .
To see that scalar multiplication is continuous in X/Y , let c be a scalar, let x be

in X , and let E be an open neighborhood of cx in X/Y . Then q−1(E) is an open
neighborhood of cx in X . By continuity of scalar multiplication in X , there exist
open neighborhoods A of c in the scalars andU of x in X such that AU ⊆ q−1(E).
Then q(U) is an open subset of X/Y such that Aq(U) ⊆ q(q−1(E)) = E . Hence
scalar multiplication is continuous in X/Y .
Applying Lemma 4.3, we see that X/Y is Hausdorff. Therefore X/Y is a

topological vector space. §
3If q : X → X/Y is the quotient mapping, the open sets E of X/Y are defined as all subsets

such that q−1(E) is open in X .
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Proposition 4.5. If Y is an n-dimensional topological vector space over F,
then Y is isomorphic to Fn .

PROOF. Let y1, . . . , yn be a vector-space basis of Y , and let ( · , · ) and | · |
be the usual inner product and norm on Fn . If e1, . . . , en is the standard basis of
Fn , define L

°Pn
j=1 cj ej

¢
=

Pn
j=1 cj yj . Then L is one-one and hence is onto Y .

We saw earlier in this section that L is continuous. We shall prove that L−1 is
continuous, and it is enough to do so at 0 in Y .
Assuming on the contrary that L−1 is not continuous at 0, we can find some

≤ > 0 such that no open neighborhood U of 0 in Y maps under L−1 into the
open neighborhood {|x | < ≤} of 0 in Fn . For each such U , find yU in U with
|L−1(yU )| ∏ ≤. Define zU = |L−1(yU )|−1yU . The net {yU } tends to 0 in Y by
construction, and the numbers |L−1(yU )|−1 are bounded by ≤−1. By continuity
of scalar multiplication in Y , zU has limit 0 in Y . On the other hand, the members
of Fn defined by xU = L−1(zU ) = |L−1(yU )|−1L−1(yU ) have |xU | = 1 for all
U . The unit sphere in Fn is compact, and it follows that {xU } has a convergent
subnet, say {xUµ

}, with some limit x0 such that |x0| = 1. We have L(xU ) = zU ,
and passage to the limit gives L(x0) = limµ L(xUµ

) = limµ zUµ
= 0. On the

other hand, L is one-one, and hence the equality L(x0) = 0 for some x0 with
|x0| = 1 is a contradiction. We conclude that L−1 is continuous. §

Corollary 4.6. Every finite-dimensional vector subspace of a topological
vector space is closed.

PROOF. Let V be an n-dimensional subspace of a topological vector space X ,
and suppose that V cl properly contains V . Choose x0 in V cl − V , and form the
vector subspace W = V + Fx0. Then the closure of V in W , being a vector
subspace (Proposition 4.2), is W . The vector subspace W has dimension n + 1,
and Proposition 4.5 shows thatW is isomorphic to Fn+1. All vector subspaces of
Fn+1 are closed in Fn+1, and hence V is closed in W , contradiction. §

Lemma 4.7. If X is a topological vector space, K is a compact subset of X ,
and V is an open neighborhood of 0, then there exists ≤ > 0 such that δK ⊆ V
whenever |δ| ≤ ≤.

PROOF. For each k ∈ K , choose ≤k > 0 and an open neighborhood Uk of k
such that δUk ⊆ V whenever |δ| ≤ ≤k ; this is possible since scalar multiplication
is continuous at the point where the scalar is 0 and the vector is k. The open sets
Uk cover K , and the compactness of K implies that there is a finite subcover:
K ⊆ Uk1 ∪ · · · ∪Ukm . Then δK ⊆ V whenever |δ| ≤ min1≤ j≤m ≤kj . §

Proposition 4.8. Every locally compact topological vector space is finite
dimensional.
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PROOF. Let X be a locally compact topological vector space, let K be a
compact neighborhood of 0, and let U be its interior. Suppose that we have a
sequence {ym} in X with the property that for any δ > 0, there is an integer M
such that m ∏ M implies ym lies in δK . Then the result of Lemma 4.7 implies
that {ym} tends to 0.
The sets {k+ 1

2U | k ∈ K } form an open cover of K . If {k1+ 1
2U, . . . , kn+ 1

2U}
is a finite subcover, we prove that {k1, . . . , kn} spans X . It is enough to prove that
S = {k1, . . . , kn} spans U . If x is in U , then x is in one of the sets of the finite
subcover, say kj1 + 1

2U . Write x = kj1 + 1
2u1 accordingly. The finite subcover

covers K and hence its interior U , and thus 12U is covered by 1
2 (k1 + 1

2U), . . . ,
1
2 (kn + 1

2U). Applying this observation to the element 12u1 of
1
2U , we see that x

is in kj1 + 1
2 (kj2 + 1

2U) for some kj2 . Write x = kj1 + 1
2kj2 + 1

4u2 accordingly.
Continuing in this way, we see that

x is in kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr + 1
2r U for each r.

Put xr = kj1 + 1
2 kj2 + · · · + 1

2r−1 kjr . This is an element of the finite-dimensional
subspace spanned by S, which is closed by Corollary 4.6; thus if {xr } converges,
it must converge to a member x0 of this subspace. Using the result of the previous
paragraph, we shall show that x − xr converges to 0. Then we can conclude that
xr converges to x , hence that x is in the span of S. To see that x − xr converges
to 0, choose l such that |δ0| ≤ 2−l implies δ0K ⊆ U . Applying the criterion of the
previous paragraph, let δ > 0 be given. ChooseM such that 2−Mδ−1 ≤ 2−l . Then
m ∏ M implies that 2−mδ−1 ≤ 2−Mδ−1 ≤ 2−l . Thus 2−mδ−1 is an allowable
choice of δ0, and we therefore obtain 2−mδ−1K ⊆ U and 2−mK ⊆ δU . For
m ∏ M , the element x − xm lies in 2−mU ⊆ 2−mK , and we have just proved that
2−mK ⊆ δU . Thus x− xm lies in δU , and the criterion of the previous paragraph
applies. Hence x − xm tends to 0. This completes the proof. §

2. C∞(U), Distributions, and Support

As was mentioned in Section III.1, distributions are continuous linear func-
tionals on vector spaces of smooth functions. Their properties are deceptively
simple-looking and enormously helpful in working with linear partial differential
equations. We considered tempered distributions in Section III.1; these are the
continuous linear functionals on the space S(RN ) of Schwartz functions on RN .
In this section we study the topology on the space C∞(U) of arbitrary scalar-
valued smooth functions on an open subsetU ofRN , together with the associated
space of distributions.
To topologizeC∞(U), weuse the familyof seminorms indexedbypairs (K , P)

with K a compact subset of U and with P a polynomial, the (K , P)th seminorm
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being k f kK ,P = supx∈K |(P(D) f )(x)|. The resulting topology is Hausdorff,
and C∞(U) becomes a topological vector space.
Let us see that this topology is given by a countable subfamily of these semi-

norms and is therefore implemented by a metric. It is certainly sufficient to
consider only the monomials Dα instead of all polynomials P(D), and thus the
P index of (K , P) can be assumed to run through a countable set. We make use
of a notion already used in Section III.2. An exhausting sequence of compact
subsets of U is an increasing sequence of compact sets with union U such that
each set is contained in the interior of the next set. An exhausting sequence
exists in any locally compact separable metric space. If {Kn} is an exhausting
sequence for U and if K is a compact subset of U , then the interiors Ko

n of
the Kn’s form an open cover of K , and there is a a finite subcover; since the
members of the open cover are nested, K is contained in some single Ko

n and
hence in Kn . Therefore k f kK ,P ≤ k f kKn,P for every P , and we can discard
all the seminorms except the ones from some Kn . In short, the countably many
seminorms k f kKn,xα = supx∈Kn

|(Dα f )(x)| suffice to determine the topology of
C∞(U). In particular, the topology is independent of the choice of exhausting
sequence.
After the statement of Theorem 3.9, we constructed a smooth partition of unity

{√n}n∏1 associated to an exhausting sequence {Kn}n∏1 of an open subset U of
RN . Such a partition of unity is sometimes useful, and Problem 9 at the end of
the chapter illustrates this fact. The functions √n are in C∞(U) and have the
properties that

P∞
n=1 √n(x) = 1 on U , √1(x) > 0 on K3, √1(x) = 0 on (Ko

4 )
c,

and for n ∏ 2,

√n(x)

(
> 0 for x ∈ Kn+2 − Ko

n+1,

= 0 for x ∈ (Ko
n+3)

c ∪ Kn.

Since C∞(U) is a metric space, its topology may be characterized in terms of
convergence of sequences: a sequence of functions converges in C∞(U) if and
only if the functions converge uniformly on each compact subset of U and so do
each of their iterated partial derivatives
If a particular metric for C∞(U) is specified as constructed in Section III.1

from an enumeration of some determining countable family of seminorms, then
it is apparent that a sequence of functions is Cauchy in C∞(U) if and only if the
functions and all their iterated partial derivatives are uniformly Cauchy on each
compact subset ofU . As a consequence we can see that C∞(U) is complete as a
metric space: in fact, let us extract limits fromeach uniformlyCauchy sequence of
derivatives and use the standard theorem on derivatives of convergent sequences
whose derivatives converge uniformly; the result is that we obtain a member of
C∞(U) to which the Cauchy sequence converges.
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It is unimportant which particular metric is used for this completeness argu-
ment. The relevant consequence is that theBaireCategoryTheorem4 is applicable
to C∞(U), and the statement of the Baire Category Theoremmakes no reference
to a particular metric.
In similar fashion one checks that S(RN ), whose topology is likewise given

by countably many seminorms, is complete as a metric space.
The vector space of continuous linear functionals on C∞(U), i.e., its continu-

ous dual, is called the space of all distributions of compact support onU and is
traditionally5 denoted by E 0(U). The words “of compact support” require some
explanation and justification, which we come back to after giving an example.

EXAMPLE. Take finitely many complex Borel measures ρα of compact support
on U , the indexing being by the set of n-tuples α of nonnegative integers with
|α| ≤ m, and define

T (ϕ) =
X

|α|≤m

Z

U
Dαϕ(x) dρα(x).

It is easy to check that T is a distribution of compact support on U . A theorem
in Chapter V will provide a converse, saying essentially that every continuous
linear functional on C∞(U) is of this form.

Let us observe that the vector subspaceC∞
com(U) is dense inC∞(U). In fact, let

{Kj } be an exhausting sequence of compact sets inU , and choose√j ∈ C∞
com(Rn)

by Proposition 3.5f to be 1 on Kj and 0 off Kj+1. If f is in C∞(U), then √j f is
in C∞

com(U) and tends to f in every seminorm on C∞(U).
To obtain a useful notion of “support” for a distribution, we need the following

lemma.

Lemma 4.9. If U1 and U2 are nonempty open sets in RN and if ϕ is in
C∞
com(U1 ∪ U2), then there exist ϕ1 ∈ C∞

com(U1) and ϕ2 ∈ C∞
com(U2) such that

ϕ = ϕ1 + ϕ2.

PROOF. Let L be the compact support of ϕ, and choose a compact set K such
that L ⊆ Ko ⊆ K ⊆ U1 ∪ U2. Then {U1,U2} is a finite open cover of K ,
and Lemma 3.15b of Basic produces an open cover {V1, V2} of K such that V cl1
is a compact subset of U1 and V cl2 is a compact subset of U2. Proposition 3.5f
produces functions g1 ∈ C∞

com(U1) and g2 ∈ C∞
com(U2) with values in [0, 1] such

that g1 is 1 on V cl1 and g2 is 1 on V cl2 . Then g = g1 + g2 is in C∞
com(U1 ∪U2) and

4Theorem 2.53 of Basic.
5The tradition dates back to Laurent Schwartz’s work, inwhich E(U)was the notation forC∞(U)

and E 0(U) was the space of continuous linear functionals.
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is 1 on K . If W is the open set where g 6= 0, then Proposition 3.5f produces a
function h in C∞

com(W ) with values in [0, 1] such that h is 1 on K . The function
1 − h is smooth, has values in [0, 1], is 1 where g 6= 0, and is 0 on K . Hence
g+ (1− h) is a smooth function that is everywhere positive on RN and equals g
on K . Therefore the functions g1/(g + 1 − h) and g2/(g + 1 − h) are smooth
functions onRN compactly supported inU1 andU2, respectively, with sum equal
to 1 on K . If we define ϕ1 = g1ϕ and ϕ2 = g2ϕ, then ϕ1 and ϕ2 have the required
properties. §

Proposition 4.10. If T is an arbitrary linear functional on C∞
com(U) and if U 0

is the union of all open subsetsU∞ of U such that T vanishes on C∞
com(U∞ ), then

T vanishes on C∞
com(U 0).

PROOF. Let ϕ be in C∞
com(U 0), and let K be the support of ϕ. The open sets

U∞ form an open cover of K , and some finite subcollection must have K ⊆
U∞1 ∪ · · · ∪ U∞p . Lemma 4.9 applied inductively shows that ϕ is the sum of
functions in C∞

com(Uj ), 1 ≤ j ≤ p. Since T is 0 on each of these, it is 0 on the
sum. §

If T is inE 0(U), the supportof T is the complement of the setU 0 in Proposition
4.10, i.e., the complement of the union of all open setsU∞ such that T vanishes on
C∞
com(U∞ ). If T has empty support, then T = 0 because T vanishes on C∞

com(U)
and C∞

com(U) is dense in C∞(U).

Proposition 4.11. Every member T of E 0(U) has compact support.

REMARKS. For the moment this proposition justifies using the name “distri-
butions of compact support” for the continuous linear functionals on C∞(U).
After we define general distributions in Section V.1, we shall have to return to
this matter.

PROOF. Let {Kn} be an exhausting sequence of compact sets in U . If T is not
supported in any Kn , then there is some fn in C∞

com(U − Kn) with T ( fn) 6= 0.
Put gn = fn/T ( fn), so that T (gn) = 1. If K is any compact subset of U , then
K ⊆ Kn for large n, and gn

Ø
Ø
K = 0 for such n. Thus gn tends to 0 in C∞(U)

while T (gn) tends to 1 6= 0 = T (0), in contradiction to continuity of T . §

Similarly we can use Proposition 4.10 to define the support of a tempered
distribution T in S 0(RN ) as the complement of the union of all open setsU∞ such
that T vanishes on C∞

com(U∞ ). Tempered distributions need not have compact
support; for example, the function1 defines a tempereddistributionwhose support
is RN .
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In the case of tempered distributions, a little argument is required to show that
the only tempered distribution with empty support is the 0 distribution. What is
needed is the following fact.

Proposition 4.12. C∞
com(RN ) is dense in S(RN ).

REMARKS. If T in S 0(RN ) has empty support, then T vanishes on C∞
com(RN ).

Proposition 4.12 and the continuity of T imply that T = 0 on S(RN ). Thus the
only tempered distribution with empty support is the 0 distribution.

PROOF. Fix h in C∞
com(RN ) with values in [0, 1] such that h(x) is 1 for |x | ≤ 1

and is 0 for |x | ∏ 2. Define hR(x) = h(R−1x). If ϕ is in S(RN ), we shall
show that limR→∞ hRϕ = ϕ in the metric space S(RN ), and then the proposition
will follow. Thus we want limR→∞ supx∈RN |x∞ Dα(ϕ − hRϕ)(x)| = 0. By
the Leibniz rule, Dα(hRϕ) = hRDαϕ +

P
β<α cβ(Dα−βhR)(Dβϕ). Hence it is

enough to prove that
lim
R→∞

sup
x∈RN

|x∞ (1− hR)Dαϕ| = 0

lim
R→∞

sup
x∈RN

|x∞ (Dα−βhR)(Dβϕ)| = 0 for β < α.and

The first of these limit formulas is a consequence of the fact that x∞ Dαϕ van-
ishes at infinity, which in turn follows from the fact that x∞ (1 + |x |2)Dαϕ is
bounded, i.e., that kϕkx∞ (1+|x |2),xα is finite. For the second of these limit formu-
las, we observe from the chain rule that Dα−βhR(x) = R−|α−β|Dα−βh(R−1x).
For β < α, this function is dominated in absolute value by cαR−1. Hence
supx∈RN |x∞ (Dα−βhR)(Dβϕ)| ≤ cαR−1P

β<α kϕkx∞ ,xβ , and the limit on R is 0.
§

3. Weak and Weak-Star Topologies, Alaoglu’s Theorem

Let X be a normed linear space, and let X∗ be its dual, which we know to be
a Banach space. We have defined the weak topology on X to be the weakest
topology on X making all members of X∗ continuous, i.e., making x 7→ x∗(x)
continuous for each x∗ in X∗. This topology is given by the family of seminorms
kxkx∗ = |x∗(x)| indexed by X∗. The weak-star topology on X∗ relative to X
is the weakest topology on X∗ making all members of ∂(X) continuous,6 i.e.,
making x∗ 7→ x∗(x) continuous for each x in X . This topology is given by
the family of seminorms kx∗kx = |x∗(x)| indexed by X . In this section we

6The symbol ∂ denotes the canonical map X → X∗∗ given by ∂(x)(x∗) = x∗(x).
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study these topologies7 in more detail, proving an important theorem about the
weak-star topology.
We shall discuss some examples in amoment. The space X∗ is a normed linear

space in its own right, and therefore it has a well-defined weak topology. The
definitions make the weak topology on X∗ the same as the weak-star topology on
X∗ relative to X if X is reflexive, but we cannot draw this conclusion in general.
The weak topology on X is of less importance to real analysis than the weak-

star topology on X∗, and thus the main interest in the weak topology on X will
be in the case that X is reflexive. It is also true that exact conditions that interpret
the weak or weak-star topology in a particular example tend not to be useful.
Nevertheless, it may still be helpful to consider examples in order to get a better
sense of what these topologies do.
We shall discuss the examples in terms of convergence. However, the conver-

gence will involve only convergence of sequences, not convergence of general
nets. A difficulty with nets is that one cannot draw familiar conclusions from
convergence of nets even in the case of nets in the real numbers; for example, a
convergent net of real numbers need not be bounded, just eventually bounded.
In order to have it available in the discussion, we prove one fact about con-

vergence of sequences in weak and weak-star topologies before coming to the
examples.

Proposition 4.13. Let X be a normed linear space, and let X∗ be its dual space.
(a) If {xn} is a sequence in X converging to x0 in the weak topology on X , then

{kxnk} is a bounded sequence in R and kx0k ≤ lim infn kxnk.
(b) If X is a Banach space and if {x∗

n } is a sequence in X∗ converging to x∗
0 in

the weak-star topology on X∗ relative to X , then {kx∗
nk} is a bounded sequence

in R and kx∗
0k ≤ lim infn kx∗

nk.
PROOF. For the first half of (a), let ∂ : X → X∗∗ be the canonical map. Since

the sequence {∂(xn)(x∗)} converges to x∗(x0) for each x∗ in X∗, {∂(xn)} is a set
of bounded linear functionals on the Banach space X∗ with {∂(xn)(x∗)} bounded
for each x∗ in X∗. By the Uniform Boundedness Theorem the norms k∂(xn)k
are bounded. Since ∂ preserves norms as a consequence of the Hahn–Banach
Theorem, the norms kxnk are bounded. For the second half of (a), let x∗ be
arbitrary in X∗ with kx∗k ≤ 1. Then

|x∗(x0)| = lim |x∗(xn)| ≤ lim inf kx∗kkxnk ≤ lim inf kxnk.

Taking the supremum over x∗ with kx∗k ≤ 1 and applying the formula kx0k =
supkx∗k≤1 |x∗(x0)|, which is known from the Hahn–Banach Theorem, we obtain
kx0k ≤ lim inf kxnk.

7The weak topology on X is also called the X∗ topology of X , and the weak-star topology on
X∗ is also called the X topology of X∗.
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For the first half of (b), {x∗
n } is a set of bounded linear functionals on theBanach

space X with {x∗
n (x)} bounded for each x in X . Then the Uniform Boundedness

Theorem shows that the norms kx∗
nk are bounded. For the second half of (b), let

x be arbitrary in X with kxk ≤ 1. Then

|x∗
0 (x)| = lim |x∗

n (x)| ≤ lim inf kx∗
nkkxk ≤ lim inf kx∗

nk.

Taking the supremum over x and applying the definition of kx∗
0k, we obtain

kx∗
0k ≤ lim inf kx∗

nk. §

EXAMPLES OF CONVERGENCE IN WEAK TOPOLOGIES.
(1) X = L p(S, µ) when 1 < p < ∞. Then X∗ ∼= L p0

(X, µ), where p0 is
the dual index8 of p. The assertion is that a sequence { fn} tends weakly to f
in L p if and only if {k fnkp} is bounded and lim

R
E fn dµ =

R
E f dµ for every

measurable subset E of S of finite measure. The necessity is immediate from
Proposition 4.13a and from taking the member of X∗ to be the indicator function
of E . Let us prove the sufficiency. From lim

R
E fn dµ =

R
E f dµ, we see that

lim
R
S fnt dµ =

R
S f t dµ for t simple if t is 0 off a set of finite measure. Let g

be given in L p0
(S, µ), and choose a sequence {tm} of simple functions equal to 0

off sets of finite measure such that limm tm = g in the norm topology of L p0 . For
all m and n, we have

Ø
Ø R

S fng dµ −
R
S f g dµ

Ø
Ø

≤
Ø
Ø R

S fn(g − tm) dµ
Ø
Ø +

Ø
Ø R

S fntm dµ −
R
S f tm dµ

Ø
Ø

+
Ø
Ø R

S f (tm − g) dµ
Ø
Ø

≤ k fnkpkg−tmkp0 +
Ø
Ø R

S fntm dµ−
R
S f tm dµ

Ø
Ø + k f kpkg−tmkp0 .

The first and third terms on the right tend to 0 as m tends to infinity, uniformly in
n. If ≤ > 0 is given, choose m such that those two terms are < ≤, and then, with
m fixed, choose n large enough to make the middle term < ≤.
(2) X = C(S) with S compact Hausdorff, C(S) being the space of continuous

scalar-valued functions on S. Then X∗ may be identified with the space M(S) of
(signed or) complex regular Borel measures on S, with the total-variation norm.9
The assertion is that a sequence { fn} tends weakly to f in C(S) if and only if
{k fnk} is bounded and lim fn = f pointwise. The necessity is immediate from
Proposition4.13a and from taking thememberof X∗ to be anypointmass at a point

8The index p0 is defined by 1
p + 1

p0 = 1. This duality was proved in Theorem 9.19 of Basic
when µ is σ -finite, but it holds without this restrictive assumption on µ.

9This identificationwas obtained inBasic in Theorem11.24 for real scalars and in Theorem11.26
for complex scalars. The starting point for the identification is the Riesz Representation Theorem.
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of S. For the sufficiency we simply observe that any member of M(S) is a finite
linear combination of regular Borel measuresµ on S and lim

R
S fn dµ =

R
S f dµ

for any Borel measure µ by dominated convergence.
(3) X = C0(S)with S locally compact separablemetric,C0(S) being the space

of continuous scalar-valued functions vanishing at infinity. Again the dual X∗

may be identified with the space M(S) of complex regular Borel measures on
S, with the total-variation norm. This example can be handled by applying the
previous example to the one-point compactification of S. All signed or complex
Borel measures are automatically regular in this case. A sequence { fn} tends
weakly to f in C0(S) if and only if {k fnk} is bounded and lim fn = f pointwise.

EXAMPLES OF CONVERGENCE IN WEAK-STAR TOPOLOGIES.
(1) X = L p(S, µ) and X∗ ∼= L p0

(S, µ) when 1 < p < ∞, p0 being the
dual index of p. This X is reflexive. Therefore the first example of convergence
in weak topologies shows that { fn} converges weak-star in L p0

(S, µ) relative to
L p(S, µ) if and only if {k fnkp0} is bounded and lim

R
E fn dµ =

R
E f dµ for

every measurable subset E of S of finite measure.
(2) X = L1(S, µ) and X∗ ∼= L∞(S, µ) when µ is σ -finite. This X is usually

not reflexive. However, the condition for weak-star convergence is the same
as in the previous example: { fn} converges weak-star in L∞(S, µ) relative to
L1(S, µ) if and only if {k fnk∞} is bounded and lim

R
E fn dµ =

R
E f dµ for

every measurable subset E of S of finite measure. The argument in the first
example of convergence in weak topologies can easily be modified to prove this.
(3) X = C(S) with S compact Hausdorff, and X = C0(S) with S locally

compact separable metric. Weak-star convergence of complex regular Borel
measures does not have a useful necessary and sufficient condition beyond the
definition. The notion of weak-star convergence in this situation is, nevertheless,
quite helpful as a device for producing new complex measures out of old ones.10

A theoremabout theweak topology, due toBanach, is that the vector subspaces
that are closed in the weak topology are the same as the vector subspaces that are
closed in the norm topology. More generally the closed convex sets coincide in
the weak and norm topologies. We shall not have occasion to use this theorem or
mention any of its applications, and we therefore omit the proof.
The weak-star topology has results of more immediate interest, and we turn

our attention to those. Theorem 5.58 of Basic established for any separable
normed linear space X that any bounded sequence in the dual X∗ has a weak-
star convergent subsequence; this was called a “preliminary form of Alaoglu’s
Theorem.”

10Warning. Many probabilists and some other people use the unfortunate term “weak conver-
gence” for this instance of weak-star convergence.
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Theorem 4.14 Let X be a normed linear space with dual X∗.
(a) (Alaoglu’s Theorem) The closed unit ball of X∗ is compact in the weak-

star topology relative to X .
(b) If X is separable, then the closed unit ball of X∗ is a separable metric space

in the weak-star topology.

REMARKS. By (a), any net {x∗
α} in X∗ with kx∗

αk bounded has a subnet {x∗
αµ

}
and an element x∗

0 in X∗ such that x∗
αµ

(x) → x∗
0 (x) for every x in X . By (b),

this conclusion about nets can be replaced by a conclusion about sequences if
X is separable. Thus we recover the “preliminary form” of Alaoglu’s Theorem.
The results of Section III.4 give an example of the utility of the two parts of this
theorem; together they lead to a proof that harmonic functions inHp(RN+1

+ ) are
automatically Poisson integrals of functions if p > 1 or of complex measures if
p = 1.

PROOF. Let B be the closed unit ball in X∗, let D(r) be the closed disk in C
with radius r and center 0, and let C = ×x∈X D(kxk). Define F : B → C by
F(x∗) = ×x∈X x

∗(x). The function F is well defined since |x∗(x))| ≤ kxk for
all x∗ in B and all x in X . It is continuous as a map into the product space since
x∗ 7→ x∗(x) is continuous for each x , it is one-one since x∗ is determined by
its values on each x , and it is a homeomorphism with its image by definition of
weak topology. Since C is compact by the Tychonoff Product Theorem, (a) will
follow if it is shown that F(B) is closed in C . Let px denote the projection of
C to its x th coordinate. If x and x 0 are in X and if { fα} is a net in C convergent
to f0 in C , then an equality px+x 0( fα) = px( fα) + px 0( fα) for all α implies that
px+x 0( f0) = px( f0) + px 0( f0) by continuity of px+x 0 , px , and px 0 . Thus the set

S(x, x 0) = { f ∈ C | px+x 0( f ) = px( f ) + px 0( f )}

is closed, and similarly the set

T (x, c) = { f ∈ C | cpx( f ) = px(c f )}

is closed. The intersection of all S(x, x 0)’s and all T (x, c)’s is the set of linear
members of C , hence is exactly F(B). Thus F(B) is closed.
For (b), we continue with B and D(r) as above, but we change C and F

slightly. Let {xn} be a countable dense set in the norm topology of X , let C =
×xn D(kxnk), and define F : B → C by F(x∗) = ×xn x

∗(xn). As in the
proof of (a), F is continuous. It is one-one since any x∗, being continuous, is
determined by its values on the dense set {xn}. The domain is compact by (a). The
range space C is a separable metric space and is in particular Hausdorff. Hence
B is exhibited as homeomorphic to F(B), which is a subspace of the separable
metric space C and is therefore separable. §
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4. Stone Representation Theorem

In this section we begin to follow Alaoglu’s Theorem along paths different from
its use for creating limit functions andmeasures out of sequences that are bounded
in a weak-star topology. We shall work in this section with what amounts to an
example—oneof themotivating examples behind a stunning idea of I.M.Gelfand
around 1940 that brings algebra, real analysis, and complex analysis together in
a profound way. The example gives a view of subalgebras of the algebra B(S)
of all bounded functions on a set S in terms of compactness. The stunning idea
that came out, on which we shall elaborate shortly, is that the mechanism in the
proof is the same mechanism that lies behind the Fourier transform on RN , that
this mechanism can be cast in abstract form as a theory of commutative Banach
algebras, and that the theory gives a new perspective about spectra. In particular,
it leads directly to the full Spectral Theorem for bounded and unbounded self-
adjoint operators, extending the theorem for compact self-adjoint operators that
was proved as Theorem 2.3. In turn, the Spectral Theorem has many applications
to the study of particular operators.
Let us first state the theorem about B(S), then discuss Gelfand’s stunning idea

about the mechanism, and finally give the proof of the theorem. We shall pursue
the Gelfand idea in Sections 10–11 later in this chapter.
We have discussed B(S) as the Banach space of bounded complex-valued

functions on a nonempty set S, the norm being the supremum norm. In this
Banach space pointwise multiplication makes B(S) into a complex associative
algebra11 with identity (namely the function 1), there is an operation of complex
conjugation, and there is a notion of positivity (namely pointwise positivity of a
function). The theorem concerns subalgebras of B(S) containing 1, closed under
conjugation, and closed under uniform limits.

Theorem 4.15 (Stone Representation Theorem). Let S be a nonempty set,
and let A be a uniformly closed subalgebra of B(S) with the properties that A
is stable under complex conjugation and contains 1. Then there exist a compact
Hausdorff space S1, a function p : S → S1 with dense image, and a norm-
preserving algebra isomorphism U of A onto C(S1) preserving conjugation and
positivity, mapping 1 to 1, and having the property that U( f )(p(s)) = f (s) for
all s in S. If S is a Hausdorff topological space and A consists of continuous
functions, then p is continuous.

11An associative algebraA over C is a vector space with a C bilinear associative multiplication,
i.e., with an operationA×A → A satisfying (ab)c = a(bc), a(b+c) = ab+ac, (a+b)c = ac+bc,
and a(∏c) = (∏a)c = ∏(ac) if ∏ is in C and a, b, c are in A. This definition does not assume the
existence of an identity element.
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The ideaof theproof is to consider theBanach-spacedualA∗ and focuson those
members ofA∗ that are nonzero and respect multiplication—the nonzero contin-
uous multiplicative linear functionals on A. The ones that come immediately to
mind are the evaluations at each point: for a point s of S, the evaluation at s is given
by es( f ) = f (s), and it is a multiplicative linear functional, certainly of norm 1.
The set S1 in the theorem will be the set of all such continuous multiplicative
linear functionals, the function p will be given by p(s) = es for s ∈ S, and
the mapping U will be given by U( f )(`) = `( f ) for each multiplicative linear
functional `.
The Banach spaceA ⊆ B(S), with its multiplication, is a Banach algebra in

the sense that it is an associative algebra over C, with or without identity, such
that k f gk ≤ k f kkgk for all f and g in A. Another well-known Banach algebra
is L1(RN ). The norm in this case is the usual L1 norm, and the multiplication is
convolution, which satisfies k f ∗ gk1 ≤ k f k1kgk1 for all f and g in L1(RN ).
The stunning idea of Gelfand’s is that the formula that defines U in the Stone

theoremis the same formula that gives theFourier transformin the caseof L1(RN ).
Specifically the nonzero multiplicative linear functionals in the case of L1(RN )
are the evaluations at points of the Fourier transform, i.e., the mappings
f 7→ bf (y) =

R
RN f (x)e−2π i x ·y dx . These linear functionals are multiplicative

because convolution goes into pointwise product under the Fourier transform.
What A ⊆ B(S) and L1(RN ) have in common is, in the first place, that

they are commutative Banach algebras. In addition, each has a conjugate-linear
mapping f 7→ f ∗ that respects multiplication: complex conjugation in the case
of A and the map f 7→ f ∗ with f ∗(x) = f (−x) in the case of L1(RN ). These
conjugate-linear mappings interact well with the norm. The subalgebra A of
B(S) satisfies

(i) k f f ∗k = k f kk f ∗k for all f ,
(ii) k f ∗k = k f k for all f ,

while L1(RN ) satisfies just (ii). The theory that Gelfand developed applies best
when both (i) and (ii) are satisfied, as is the case with A and also any L∞ space,
and it works somewhat when just (ii) holds, as with L1(RN ).
Another example of a Banach algebra is the algebra B(H, H) of bounded

linear operators from a Hilbert space H to itself, with the operator norm. The
conjugate-linear mapping on B(H, H) is passage to the adjoint, and (i) and (ii)
both hold. The thing that is missing is commutativity for B(H, H). However,
if we take a single operator A and its adjoint A∗, assume that A commutes with
A∗, and take the Banach algebra generated by A and A∗, then we have another
example to which the Gelfand theory applies well. The Spectral Theorem for
bounded self-adjoint operators is the eventual consequence.
The idea of considering the Banach subalgebra generated by A is a natural

one because of one’s experience in the subject of modern algebra: the study of
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all complex polynomials in a square matrix A is a useful tool in understanding a
single linear transformation, including obtaining canonical forms for it like the
Jordan form. Thus the use of an analogy with a topic in algebra leads one to a
better understanding of a topic in analysis.
In this case ideas flowed in the reverse direction as well. The multiplicative

linear functionals correspond, by passage to their kernels, to those ideals in the
algebra that are maximal.12 In effect the Banach algebra was being studied
through its space of maximal ideals. About 1960, no doubt partly because of the
success of the idea of considering the maximal ideals of a Banach algebra, the
considerationof the totality of prime ideals of a commutative ring as a space began
to play an important role in algebraic number theory and algebraic geometry.

PROOF OF THEOREM 4.15. Let S1 be the set of all nonzero continuous multi-
plicative linear functionals ` on A with `( f̄ ) = `( f ). Let us see that each such
has norm 1. In fact, choose f with `( f ) 6= 0. Then `( f ) = `( f 1) = `( f )`(1)
shows that `(1) = 1, and hence k`k ∏ 1. For any f with k f ksup ≤ 1, if we had
|`( f )| > 1, then |`( f )|n = |`( f n)| ≤ k`k for all n would give a contradiction as
soon as n is sufficiently large. We conclude that k`k ≤ 1.
Therefore S1 is a subset of the unit ball of the Banach-space dualA∗. We give

S1 the relative topology from the weak-star topology on A∗. Let us define the
function p : S → S1, and in the process we shall have proved that S1 is not empty.
Every s in S defines an evaluation linear functional es in S1 by es( f ) = f (s), and
the function p is defined by p(s) = es for s in S. To see that S1 is a closed subset
of the unit ball ofA∗ in the weak-star topology, let {`α} be a net in S1 converging
to some ` ∈ A∗, the convergence being in the weak-star topology. Then we have
`α( f g) = `α( f )`α(g) and `α( f̄ ) = `α( f ) for all f and g in A. Passing to the
limit, we obtain `( f g) = `( f )`(g) and `( f̄ ) = `( f ). Hence S1 is closed. By
Alaoglu’s Theorem (Theorem 4.14a), S1 is compact. It is Hausdorff since A∗ is
Hausdorff in the weak-star topology.
Certainly we have sups∈S |es( f )| = k f ksup. Since any ` in S1 has k`k ≤ 1,

we obtain
sup
`∈S1

|`( f )| = k f ksup. (∗)

ThedefinitionofU : A → C(S1) isU( f )(`) = `( f ), and thismakesU( f )(p(s))
= U( f )(es) = es( f ) = f (s). The function U( f ) on S1 is continuous by
definition of the weak-star topology. Because of the definition of S1, U is an
algebra homomorphism respecting complex conjugation and mapping 1 to 1.

12Checking that there are no other maximal ideals than the kernels of multiplicative linear
functionals requires proving that every complex “Banach field” is 1-dimensional, an early result in
the subject of Banach algebras and one that uses complex analysis in its proof. Details appear in
Section 10.
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Also, (∗) shows that U is an isometry. SinceA is Cauchy complete, so is U(A).
ThereforeU(A) is a uniformly closed subalgebra of C(S1) stable under complex
conjugationandcontaining the constants. It separatespoints of S1 by thedefinition
of equality of linear functionals. By the Stone–Weierstrass Theorem, U(A) =
C(S1). SinceU is an isometry,U is one-one. ThusU is an algebra isomorphism
of A onto C(S1).
If p(S) were not dense in S1, then Urysohn’s Lemma would allow us to find

a nonzero continuous function F on C(S1) with values in [0, 1] such that F is 0
everywhere on p(S). Since U is onto C(S1), choose f ∈ A with U( f ) = F . If
s is in S, then 0 = F(p(s)) = U( f )(p(s)) = f (s). Hence k f ksup = 0. By (∗),
`( f ) = 0 for all ` ∈ S1. Then every ` ∈ S1 has 0 = `( f ) = U( f )(`) = F(`),
and F = 0, contradiction. We conclude that p(S) is dense.
To see that U carries functions ∏ 0 to functions ∏ 0, we observe first that

the identity `( f̄ ) = `( f ) for ` ∈ S1 and the equality f̄ = f for f real together
imply that `( f ) = `( f̄ ) = `( f ) for f real. Hence f real implies `( f ) real.
If f ∏ 0, then

∞
∞k f ksup − f

∞
∞
sup ≤ k f ksup. Since k`k ≤ 1, we therefore have

`(k f ksup − f ) ≤
∞
∞k f ksup − f

∞
∞
sup ≤ k f ksup. Since `(1) = 1, this says that

`( f ) ∏ 0. This inequality for all ` implies that U( f ) ∏ 0.
Finally suppose that S is a Hausdorff topological space and that A ⊆ C(S).

We are to show that p : S → S1 is continuous. If sα → s0 for a net in S, we
want p(sα) → p(s0), i.e., esα → es0 . According to the definition of the weak-star
topology, we are thus to show that f (sα) → f (s0) for every f in A. But this is
immediate from the continuity of f on S. §

We give three examples. A fourth example, concerning “almost periodic
functions,” will be considered in the problems at the end of Chapter VI. For
this fourth example the compact Hausdorff space of Theorem 4.15 admits the
structure of a compact group, and the representation theory of Chapter VI is
applicable to describe the structure of the space of almost periodic functions.
Problems 21–25 at the end of the chapter develop the theory of Theorem 4.15

further.
EXAMPLES.
(1) A = C(S) with S compact Hausdorff. Then p is a homeomorphism of

S onto S1. In fact, p(S) is always dense in S1. Here p is continuous and S is
compact. Thus p(S) is closed and must equal S1. The map p is one-one because
Urysohn’sLemmaproduces functions takingdifferent values at twodistinct points
s and s 0 of S and thus exhibiting es0 and es as distinct linear functionals. Since p
is continuous and one-one from a compact space onto a Hausdorff space, it is a
homeomorphism.
(2) One-point compactification. Let S be a locally compact Hausdorff space,

and letA be the subalgebra ofC(S) consisting of all continuous functions having
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limits at infinity. For a function f , this conditionmeans that there is some number
c such that for each ≤ > 0, some compact subset K of S has the property that
| f (s) − c| ≤ ≤ for all s not in K . Then S1 may be identified with the one-point
compactification of S.
(3) Stone–Čech compactification. Let S be a topological space, and let A =

C(S). The resulting compact Hausdorff space S1 is called the Stone–Čech
compactification of S. This space tends to be huge. For example, if S =
[0,+∞), the corresponding S1 has cardinality greater than the cardinality of R.

5. Linear Functionals and Convex Sets

For this section and the next we discuss aspects of functional analysis that lead
toward the theory of distributions and toward the use of fixed-point theorems.
The topic is the role of convex sets in real and complex vector spaces—first
without any topology and thenwith an overlay of topology consistentwith convex
sets. Sections 7–9 will then explore the consequences of this development, first
in connection with smooth functions and then in connection with fixed-point
theorems.
Let X be a real or complex vector space. A subset E of X is convex if for each

x and y in E , all points (1− t)x + t y are in E for 0 ≤ t ≤ 1.

Proposition 4.16. Convex sets in a real or complex vector space have the
following elementary properties:

(a) the arbitrary intersection of convex sets is convex,
(b) if E is convex and x1, . . . , xn are in E and t1, . . . , tn are nonnegative reals

with t1 + · · · + tn = 1, then t1x1 + · · · + tnxn is in E ,
(c) if E1 and E2 are convex, then so are E1 + E2, E1 − E2, and cE for any

scalar c,
(d) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of X , then L(E) is convex in Y ,
(e) if L : X → Y is linear between two vector spaces with the same scalars

and if E is a convex subset of Y , then L−1(E) is convex in X .

PROOF. Conclusions (a), (c), (d), and (e) are completely straightforward. For
(b), we induct on n, the case n = 2 being the definition of “convex.” Suppose that
the result is known for n and that members x1, . . . , xn+1 of X and nonnegative
reals t1, . . . , tn+1 with sum 1 are given. We may assume that t1 6= 1. Put
s = t2 + · · · + tn+1 and y = (1− t1)−1(t2x2 + · · · + an+1xn+1). Since the reals
(1 − t1)−1t2, . . . , (1 − t1)−1tn+1 are nonnegative and have sum 1, the inductive
hypothesis shows that y is in E . Since t1 and s are nonnegative and have sum 1,
t1x1 + sy = t1x1 + · · · + tn+1xn+1 is in E . This completes the induction. §
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Let E be a subset of our vector space X . We say that a point p in E is an
internal point of E if for each x in X , there is an ≤ > 0 such that p + δx is in
E for all scalars13 δ with |δ| ≤ ≤. If p in X is neither an internal point of E nor
an internal point of Ec, we say that p is a bounding point of E . These notions
make no use of any topology on X .
Let K be a convex subset of X , and suppose that 0 is an internal point of K .

For each x in X , let

ρ(x) = inf{a > 0 | a−1x ∈ K }.

The function ρ(x) is called the support function of K . For an example let X be
a normed linear space, and let K be the unit ball; then ρ(x) = kxk.
We are going to see that ρ(x) has some bearing on controlling the linear

functionals on X , as a consequenceof theHahn–BanachTheorem. By the “Hahn–
BanachTheorem”here, wemeannot the usual theorem for normed linear spaces14
but the more primitive statement15 from which that is derived:

HAHN–BANACH THEOREM. Let X be a real vector space, and let p be a real-
valued function on X with

p(x + x 0) ≤ p(x) + p(x 0) and p(t x) = tp(x)

for all x and x 0 in X and all real t ∏ 0. If f is a linear functional on a vector
subspace Y of X with f (y) ≤ p(y) for all y in Y , then there exists a linear
functional F on X with F(y) = f (y) for all y ∈ Y and F(x) ≤ p(x) for all
x ∈ X .

Before discussing linear functionals in our present context, let us observe
some properties of the support function ρ(x). Properties (b), (c), and (e) in the
next lemma are the properties of the dominating function p in the Hahn–Banach
Theorem as stated above.

Lemma 4.17. Let K be a convex subset of a vector space X , and suppose
that 0 is an internal point. Then the support function ρ(x) of K satisfies

(a) ρ(x) ∏ 0,
(b) ρ(x) < ∞,
(c) ρ(ax) = aρ(x) for a ∏ 0,
(d) ρ(x) ≤ 1 for all x in K ,
(e) ρ(x + y) ≤ ρ(x) + ρ(y),
(f) ρ(x) < 1 if and only if x is an internal point of K ,
(g) ρ(x) = 1 characterizes the bounding points of K .

13The scalars are complex numbers if X is complex, real numbers if X is real.
14As in Theorem 12.13 of Basic.
15As in Lemma 12.14 of Basic.
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PROOF. Conclusions (a), (c), and (d) are immediate, and (b) follows since 0 is
an internal point of K .
For (e), let c be arbitrary with c > ρ(x) + ρ(y). We show that c−1(x + y)

is in K . Since c is arbitrary, it follows that the infimum of all numbers d with
d−1(x + y) in K is ≤ ρ(x) + ρ(y); consequently ρ(x + y) will have to be
≤ ρ(x) + ρ(y), and (e) will be proved. Thus write c = a+ b with a > ρ(x) and
b > ρ(y). Since K is convex,

c−1(x + y) = (a + b)−1(x + y) = a
a+b a

−1x + b
a+b b

−1y

is in K , as required.
For (f), let x be an internal point of K . Then x + ≤x = (1 + ≤)x is in K for

some ≤ > 0, and hence ρ(x) ≤ (1+ ≤)−1 < 1.
Conversely suppose that ρ(x) < 1, and put ≤ = 1 − ρ(x). Fix y. Since 0 is

an internal point of K , we can find µ > 0 such that δy is in K for |δ| ≤ µ. If c is
any scalar of absolute value 1, then cµy is in K , and hence ρ(cy) ≤ µ−1. If δ is
a scalar with |δ| < ≤µ, write δ = c0|δ| with |c0| = 1. Then ρ(δy) = |δ|ρ(c0y) ≤
|δ|µ−1 < ≤. Applying (e) gives

ρ(x + δy) ≤ ρ(x) + ρ(δy) = (1− ≤) + ρ(δy) < (1− ≤) + ≤ = 1.

By definition of ρ, 1−1(x + δy) is in K , i.e., x + δy is in K . Thus x is an internal
point of K .
For (g), we can argue in the same way as with (f) to see that ρ(x) > 1

characterizes the internal points of Kc. Therefore ρ(x) = 1 characterizes the
bounding points of K . §

We shall now apply the Hahn–Banach Theorem to prove the basic separation
theorem.

Theorem 4.18. Let M and N be disjoint nonempty convex subsets of a real
or complex vector space X , and suppose that M has an internal point. Then there
exists a nonzero linear functional F on X such that for some real c, Re F ≤ c
on M and Re F ∏ c on N .

PROOF. First suppose that X is real. If m is an internal point of M , then 0 is
an internal point of M −m, and we can replace M and N by M −m and N −m.
Changing notation, we may assume from the outset that 0 is an internal point of
M .
If x0 is in N , then −x0 is an internal point of M − N , and 0 is an internal

point of K = M − N + x0. Since M and N are assumed disjoint, M − N
does not contain 0; thus K does not contain x0. Let ρ be the support function
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of K ; this function satisfies the properties of the function p in the Hahn–Banach
Theorem, according to Lemma 4.17. Moreover, ρ(x0) ∏ 1 by Lemma 4.17f.
Define f (ax0) = aρ(x0) for all (real) scalars a. Then f is a nonzero linear
functional on the 1-dimensional space of real multiples of x0, and it satisfies

a ∏ 0 implies f (ax0) = aρ(x0) = ρ(ax0),
a < 0 implies f (ax0) = a f (x0) < 0 ≤ ρ(ax0).

The Hahn–Banach Theorem shows that f extends to a linear functional F on
X with F(x) ≤ ρ(x) for all x . Then F(x0) ∏ 1, and Lemma 4.17 shows that
ρ(K ) ≤ 1. Hence

F(x0) ∏ 1 and F(M − N + x0) ≤ 1.

Thus we have F(M − N + x0) ≤ F(x0), F(M − N ) ≤ 0, F(m − n) ≤ 0 for all
m in M and n in N , and F(m) ≤ F(n) for all m and n. Taking the supremum
over m in M and the infimum over n in N gives the conclusion of the theorem
for X real.
Now suppose that the vector space X is complex. We can initially regard X

as a real vector space by forgetting about complex scalars, and then the previous
case allows us to construct a real-linear F such that F(M) ≤ c ≤ F(N ). Put
G(x) = F(x)− i F(i x). SinceG(i x) = F(i x)− i F(i2x) = F(i x)− i F(−x) =
F(i x)+ i F(x) = i(F(x)− i F(i x)) = iG(x), G is complex linear. The real part
of G equals F , and therefore G satisfies the conclusion of the theorem. §

6. Locally Convex Spaces

In this section we shall apply the discussion of convex sets and linear functionals
in the context of topological vector spaces. A topological vector space X is said
to be locally convex if there is a base for its topology that consists of convex sets.
Let us see that any topological vector space X whose topology is given by a

family of seminorms k · ks is locally convex. A base for the open sets consists
of all finite intersections of sets U(y, s, r) =

©
x

Ø
Ø kx − yks < r

™
with y in X , s

equal to one of the seminorm indices, and r > 0. If x and x 0 are in U(y, s, r)
and if 0 ≤ t ≤ 1, then

k((1− t)x + t x 0) − yks = k(1− t)(x − y) + t (x 0 − y)ks
≤ k(1− t)(x − y)ks + kt (x 0 − y)ks
= (1− t)kx − yks + tkx 0 − yks
< (1− t)r + tr = r.
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Hence ((1−t)x+t x 0 is inU(y, s, r), andU(y, s, r) is convex. Since the arbitrary
intersection of convex sets is convex by Proposition 4.16a, every member of the
base for the topology is convex. Thus X is locally convex.
We are going to show that every locally convex topological vector space has

many continuous linear functionals, enough to distinguish any two disjoint closed
convex sets when one of them is compact. This result will in particular be
applicable to the spaces S(RN ) and C∞(U) since their topologies are given by
seminorms.
We begin with two lemmas that do not need an assumption of local convexity

on the topological vector space.

Lemma 4.19. In any topological vector space if K1 and K2 are closed sets
with K1 compact, then the set K1 − K2 of differences is closed.

PROOF. It is simplest to use nets. Thus let x be a limit point of K1 − K2, and
let {xn} be any net in K1 − K2 converging to x . Since each xn is in K1 − K2,
we can write it as xn = k(1)

n − k(2)
n with k(1)

n in K1 and k(2)
n in K2. Since K1

is compact, {k(1)
n } has a convergent subnet, say {k(1)

nj }. Let k(1) be the limit of
{k(1)
nj } in K1. Both {xnj } and {k(1)

nj } are convergent, and {k(2)
nj } must be convergent

because k(2)
nj = k(1)

nj − xnj and subtraction is continuous. Let k2 be its limit. This
limit has to be in K2 since K2 is closed, and then the equation x = k(1) − k(2)

exhibits x as in K1 − K2. Hence K1 − K2 is closed. §

Lemma 4.20. Let X be any topological vector space, let K1 and K2 be
disjoint convex sets, and suppose that K1 has nonempty interior. Then there
exists a nonzero continuous linear functional F on X with Re F(K1) ≤ c and
c ≤ Re F(K2) for some real number c.

PROOF. The key observation is that any interior point of a subset E of X is
internal. In fact, if p is in Eo and x is in X , then p + δx is in Eo for δ = 0. By
continuity of the vector-space operations and openness of Eo, p+ δx is in Eo for
|δ| sufficiently small. Therefore p is an internal point.
Since K1 consequently has an internal point, Theorem4.18 produces a nonzero

linear functional F such that

Re F(K1) ≤ c and c ≤ Re F(K2) (∗)

for some real number c. We complete the proof of the lemma by showing that F
is continuous. Let f and g be the real and imaginary parts of F . Then g(x) =
−i f (i x), and it is enough to show that f is continuous. Fix an interior point p
of K1, and choose an open neighborhood U of 0 such that p + U ⊆ K1. Then
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f (U) ⊆ f (K1)− f (p) since f is real linear, and (∗) shows that f (U) ≤ c− f (p).
So f (U) ≤ a for some a > 0. If V = U ∩ (−U), then

f (V ) = f (U ∩ (−U)) ⊆ f (U) ∩ f (−U) = f (U) ∩ (− f (U)) ⊆ [−a, a],

and therefore f (≤a−1V ) ⊆ [−≤, ≤]. In other words, f is continuous at 0. Then
f (x + ≤a−1V ) ⊆ f (x) + [−≤, ≤], and f is continuous everywhere. §

Theorem 4.21. Let X be a locally convex topological vector space, let K1 and
K2 be disjoint closed convex subsets of X , and suppose that K1 is compact. Then
there exist ≤ > 0, a real constant c, and a continuous linear functional F on X
such that

Re F(K2) ≤ c − ≤ and c ≤ Re F(K1).

PROOF. Lemma 4.19 shows that K1 − K2 is closed, and K1 − K2 does not
contain 0 because K1 and K2 are disjoint. Since X is locally convex, we can
choose a convex open neighborhoodU of 0 disjoint from K1 − K2. Proposition
4.16c shows that K1 − K2 is convex, and Lemma 4.20 therefore applies to the
sets U and K1 − K2 and yields a nonzero continuous linear functional F such
that

Re F(U) ≤ d and d ≤ Re F(K1 − K2)

for some real d. Since F is not zero, we can find x0 in X with F(x0) = 1. Choose
≤ > 0 such that |a| < ≤ implies ax0 is in U . Then

d ∏ Re F(U) ⊇ Re F({ax0
Ø
Ø |a| < ≤} = (−≤, ≤),

and hence d ∏ ≤. Therefore all k1 in K1 and k2 in K2 have

Re F(k1) − Re F(k2) = Re F(k1 − k2) ∏ d ∏ ≤,

so that Re F(k1) ∏ ≤ + Re F(k2). Taking c = infk1∈K1 Re F(k1) now yields the
conclusion of the theorem. §

Corollary 4.22. Let X be a locally convex topological vector space, let K be
a closed convex subset of X , and let p be a point of X not in K . Then there exists
a continuous linear functional F on X such that

sup
k∈K

Re F(k) < Re F(p).

PROOF. This is the special case of Theorem 4.21 in which the given compact
set is a singleton set. §
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Corollary 4.23. If X is a locally convex topological vector space and if p and
q are distinct points of X , then there exists a continuous linear functional F on
X such that F(p) 6= F(q).

PROOF. This is the special case of Corollary 4.22 in which the given closed
convex set is a singleton set. §

We conclude this section with a simple result about locally convex topological
vector spaces that we shall need in the next section.

Proposition 4.24. If X is a locally convex topological vector space and Y is a
closed vector subspace, then the topological vector space X/Y is locally convex.

REMARK. X/Y is a topological vector space by Proposition 4.4.

PROOF. Let E be an open neighborhood of a given point of X/Y . Without loss
of generality, we may take the given point to be the 0 coset. If q : X → X/Y is
the quotient map, q−1(E) is an open neighborhood of 0 in X . Since X is locally
convex, there is a convex open neighborhoodU of 0 in X withU ⊆ q−1(E). The
map q carries open sets to open sets by Proposition 4.4 and carries convex sets to
convex sets by Proposition 4.16d, and thus q(U) is an open convex neighborhood
of the 0 coset in X/Y contained in E . §

7. Topology on C∞
com(U)

In this sectionwe carry the discussion of local convexity in Sections 5–6 along the
path toward applications to smooth functions. Our objective will be to topologize
the space C∞

com(U) of smooth functions of compact support on the open set U
of RN . The members of C∞

com(U) extend to functions in C∞
com(RN ) by defining

them to be 0 outside U , and we often make this identification without special
comment.
The important thing about the topology will be what it accomplishes, rather

than what the open sets are, and we shall therefore work toward a characterization
of the topology, together with an existence proof. The characterization will be
in terms of a universal mapping property, and local convexity will be part of that
property. Ultimately it is possible to give an explicit description of the open
sets, but we leave such a description for Problem 9 at the end of the chapter.
The explicit description will show in particular that the topology is given by an
uncountable family of seminorms that cannot be reduced to a countable family
except when U is empty.
Let us state the universal mapping property informally now, so that the ingre-

dients become clear. Let K be any compact subset of the given open setU ofRN ,
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and define C∞
K to be the vector space of all smooth functions of compact support

on RN with support contained in K . The space C∞
K becomes a locally convex

topological vector space when we impose the countable family of seminorms
k f kα = supx∈K |Dα f (x)|, with α running over all differentiation multi-indices.
Set-theoretically, C∞

com(U) is the union of all C∞
K as K runs through the compact

subsets of U . The topology on C∞
com(U) will be arranged so that

(i) every inclusion C∞
K ⊆ C∞

com(U) is continuous,
(ii) whenever a linear mapping C∞

com(U) → X is given into a locally convex
linear topological space X and the composition C∞

K → C∞
com(U) → X

is continuous for every K , then the given mapping C∞
com(U) → X is

continuous.

It will automatically have the additional property

(iii) every inclusion C∞
K ⊆ C∞

com(U) is a homeomorphism with its image.

We shall proceed somewhat abstractly, so as to be able to construct the topology
of a locally convex topological vector space out of simpler data. If (X, T ) is a
topological space and p is in X , we define a local neighborhood base for T at
p to be a collectionNp of neighborhoods of p, not necessarily open, such that if
V is any open set containing p, then there exists N inNp with N ⊆ V . If X is a
topological vector space with topology T and ifN0 is a local neighborhood base
at 0, then {p+N | N ∈ N0} is a local neighborhood base at p because translation
by x is a homeomorphism. A set is open if and only if it is a neighborhood of
each of its points. Consequently we can recover T from a local neighborhood
base N0 at 0 by this description: a subset V of X is open if and only if for each
p in V , there exists Np in N0 such that p + Np ⊆ V .
Let us observe two properties of a local neighborhood base N0 at 0 for a

topological vector space X . The first follows from the fact that X is Hausdorff,
more particularly that each one-point subset of X is closed. The property is that
for each x 6= 0 in X , there is some Mx in N0 with x not in Mx .
The second follows from the fact that 0 is an interior point of each member N

of N0. The property is that 0 is an internal point of N in the sense of Section 5.
The fact that interior implies internal was proved in the first paragraph of the
proof of Lemma 4.20.
We shall show in Lemma 4.25 that we can arrange in the locally convex case

for each member N of a local neighborhood base N0 at 0 to have the additional
property of being circled in the sense that zN ⊆ N for all scalars z with |z| ≤ 1.
Then we shall see in Proposition 4.26 that we can formulate a tidy necessary

and sufficient condition for a system of sets containing 0 in a real or complex
vector space X to be a local neighborhood base for a topology on X that makes
X into a locally convex topological vector space.
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Lemma 4.25. Any locally convex topological vector space has a local neigh-
borhood base at 0 consisting of convex circled sets.

PROOF. It is enough to show that if V is an open neighborhood of 0, then
there is an open subneighborhood U of 0 that is convex and circled. Since the
underlying topological vector space is locally convex, we may assume that V
is convex. Replacing V by V ∩ (−V ), we may assume by parts (a) and (c) of
Proposition 4.16 that V is stable under multiplication by−1. Since V is convex,
it follows that cV ⊆ V for any real c with |c| ≤ 1. If the field of scalars is R,
then the proof of the lemma is complete at this point.
Thus suppose that the field of scalars isC. If V is a convex open neighborhood

of 0, put
W = {u ∈ V | zu ∈ V for all z ∈ C with |z| ≤ 1}.

Then W is convex by Proposition 4.16a, and it is circled. Let us show that
W ⊇ 1

2V ∩ 1
2 iV . Thus let u be an element of 1

2V ∩ 1
2 iV , and write it as

u = 1
2v1 = 1

2 iv2 with v1 and v2 in V . Let z ∈ C be given with |z| ≤ 1, and let
x and y be the real and imaginary parts of z. The vectors ±v1 and 0 are in V ,
and V is convex; since |x | ≤ 1, xv1 is in V . Similarly −yv2 is in V . We can
write zu = 1

2 (x + iy)v1 = 1
2 (xv1)+ 1

2 (−yv2), and this is in V since V is convex.
Therefore zu is in V , and u is in U . Hence W ⊇ 1

2V ∩ 1
2 iV , as asserted.

Let U be the interior Wo of W . Then U is an open neighborhood of 0, and
we show that it is convex and circled; this will complete the proof. Let u and v
be in U . Since U is open, we can find an open neighborhood N of 0 such that
u + N ⊆ U and v + N ⊆ U . If n is in N and if t satisfies 0 ≤ t ≤ 1, then
(1− t)u + tv + n = (1− t)(u + n) + t (v + n) exhibits (1− t)u + tv + n as a
convex combination of a member of u + N ⊆ W and a member of v + N ⊆ W ,
hence as a member of W . Therefore every member of (1− t)u + tv + N lies in
W , and U is convex.
To see that U is circled, let u and N be as in the previous paragraph with

u + N ⊆ U . If |z| ≤ 1, then u + N ⊆ W implies z(u + N ) ⊆ W since
W is circled. Hence zu + zN ⊆ W . Since zN is open, zu + zN is an open
neighborhood of zu contained in W , and we must have zu + zN ⊆ Wo = U .
Therefore U is circled. §

Proposition 4.26. Let X be a real or complex vector space. If X has a
topology making it into a locally convex topological vector space, then X has a
local neighborhood baseN0 at 0 for that topology such that

(a) each N in N0 is convex and circled with 0 as an internal point,
(b) whenever M and N are in N0, there is some P in N0 with P ⊆ M ∩ N ,
(c) whenever N is in N0 and a is a nonzero scalar, then aN is in N0,
(d) each x 6= 0 in X has some associated Mx inN0 such that x is not in Mx .
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Conversely ifN0 is any family of subsets of the vector space X such that (a), (b),
(c), and (d) hold, then there exists one and only one topology on X making X
into a locally convex topological vector space in such a way that N0 is a local
neighborhood base at 0.
PROOF. For the direct part of the proof, Lemma 4.25 shows that there is some

local neighborhood base at 0 consisting of convex circled sets. To such a local
neighborhood base we are free to add any additional neighborhoods of 0. Thus
we may take N0 to consist of all convex circled neighborhoods of 0. Then (b)
and (c) hold, and (d) holds since the topology is Hausdorff. Since 0 is an internal
point of any neighborhood of 0, (a) holds. This proves existence.
For the converse there is only one possibility for the topology T : V is open

if for each x in V , there is some Nx in N0 with x + Nx ⊆ V . This proves the
uniqueness of T, and we are to prove existence. For existence we define open sets
in this way and define T to be the collection of all open sets. The definitionmakes
∅ open and the arbitrary union of open sets open, and (b) makes the intersection
of two open sets open.
We shall show that the complement of any {x0} is open. Then it follows by

taking unions that X is open, so that T is a topology; also we will have proved
that every one-point set is closed. If x1 6= x0, we use (d) to choose Mx0−x1 inN0
with x0 − x1 not in Mx0−x1 . Then x1 + Mx0−x1 ⊆ X − {x0}. Since x1 is arbitrary,
X − {x0} is open.
With T established as a topology, let us see that every member of N0 is a

neighborhood of 0. This step involves considering the family of sets aN for
fixed N in N0 and for arbitrary positive a. If 0 < t < 1 and if n1 and n2
are in N , then (1 − t)n1 + tn2 is in N since (a) says that N is convex. Hence
(1− t)N + t N ⊆ N . If a > 0 and b > 0, then we can take t = b(a + b)−1 and
obtain a(a + b)−1N + b(a + b)−1N ⊆ N . Multiplying by a + b gives

aN + bN ⊆ (a + b)N for all positive a and b. (∗)

In particular the sets aN are nested for a > 0, i.e., 0 < a < a0 implies aN ⊆ a0N .
From these facts we can show that each N inN0 is a neighborhood of 0. Given

N , define U =
S
0<a<1 aN . This is a subset of N by the nesting property, and

we shall prove that it is open. If x is in U , then x is in aN for some a with
0 < a < 1, and (∗) shows that x + 1

2 (1− a)N ⊆ U . By (c), 12 (1− a)N is inN0,
and therefore 12 (1−a)N can serve as a member Nx ofN0 such that x + Nx ⊆ U .
We conclude that U is open. Therefore N is a neighborhood of 0.
Next let us see that translations are homeomorphisms. If V is open and if x0

is given, we know that each x in V has an associated Nx such that x + Nx ⊆ V .
If y is in x0 + V , then x = y − x0 is in V and we see that (y − x0) + Ny−x0 ⊆ V
and y + Ny−x0 ⊆ x0 + V . Hence x0 + V is open, and every translation is a
homeomorphism.
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Let us see that addition is continuous at (0, 0), and then the fact that translations
are homeomorphisms implies that addition is continuous everywhere. If V is an
open neighborhood of 0, then the definition of open set says that there is some
N in N0 with 0 + N ⊆ V . By (c), 12N is in N0. It is enough to prove that
( 12N , 12N ) maps into V under addition. But this is immediate from (∗) since
1
2N + 1

2N ⊆ N ⊆ V .
Next we investigate continuity of the mapping x 7→ ax for a 6= 0. It is enough

to show that if V is open, then so is a−1V . Since V is open, every x in V has an
associated Nx in N0 such that x + Nx ⊆ V . The most general element of a−1V
is of the form a−1x with x in V , and we have a−1x + a−1Nx ⊆ a−1V . Since (c)
shows a−1Nx to be in N0, we conclude that a−1V is open.
Let us see that scalarmultiplication is continuous at (1, x), and then the fact that

x 7→ ax is continuous for a 6= 0 implies that scalar multiplication is continuous
everywhere except possibly at (0, x). Let V be an open neighborhood of x , and
choose N in N0 with x + N ⊆ V . Since N is in N0, (c) shows that 13N is in
N0. Then 0 is an internal point of 13N by (a), and there exists ≤ > 0 such that
−≤ ≤ c ≤ ≤ implies that cx is in 1

3N . There is no loss of generality in taking
≤ < 1. Since 1

3N is circled by (a), cx is in 1
3N for |c| ≤ ≤. Let A be the set of

scalars with |a−1| < ≤. We show that scalar multiplication carries A×(x+ 1
3N )

into V . In fact, if a is in A and 1
3n1 is in

1
3N , then |a| < 2, 13an1 is in

2
3N , and

(∗) gives

a(x + 1
3n1) = (ax − x) + (x + 1

3an1) ∈ 1
3N + (x + 2

3N ) ⊆ x + N ⊆ V .

To complete the proof of continuity of scalar multiplication, we show conti-
nuity at all points (0, x). Let V be an open neighborhood of 0 in X , and choose
N inN0 with 0+ N ⊆ V . Since 0 is an internal point of N , there is some ≤ > 0
such that cx is in N for real c with |c| ≤ ≤. For this ≤, 12≤x is in

1
2N . If |z| < 1

and y is in 1
2N , then (z, 12≤x + y) maps to 1

2 z≤x + zy, which lies in 1
2N + 1

2N
since N is circled. In turn, this is contained in N by (∗) and therefore is contained
in V . So ( 12≤z, x + 2≤−1y) maps into V if |z| < 1 and y is in 1

2N . Altering the
definitions of z and y, we conclude that (z, x + y)maps into V if |z| < 1

2≤ and y
is in ≤−1N . This proves the continuity.
Since {0} is a closed set, Lemma4.3 is applicableand shows that X isHausdorff,

hence is a topological vector space. Inside any open neighborhood V of 0 lies
some set N in U0, and

S
0<a<1 aN is a convex open subneighborhood of V .

Therefore the topology is locally convex. §

We are almost in a position to topologizeC∞
com(U). If iK denotes the inclusion

of C∞
K into C∞

com(U), we shall define a convex circled subset N in C∞
com(U)
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having 0 as an internal point to be in a local neighborhood base at 0 if i−1K (N ) is
a neighborhood of 0 in C∞

K for every compact subset K of U . Then conditions
(a), (b), and (c) in Proposition 4.26 will be met, and an examination of the
proof of that proposition shows that we obtain a topology for C∞

com(U) in which
additionand scalarmultiplicationare continuous. What is lacking is theHausdorff
property, which follows once (d) holds in Proposition 4.26. Verifying (d) requires
a construction, whose main step is given in the following lemma.

Lemma 4.27. Let X be a locally convex topological vector space, let Y be a
closed vector subspace, and let Y be given the relative topology, which is locally
convex. If N is a convex circled neighborhood of 0 in Y and x0 is a point in X
not in N , then there exists a convex circled neighborhood M of 0 in X such that
M ∩ Y = N and such that x0 is not in M .

M1

R1 M2 R2x0
Y

0 N

FIGURE 4.1. Extension of convex circled neighborhood of 0.
The lemma extends N to the set given in the figure

by M3 = R1 ∪ M2 ∪ R2.

PROOF. Since N is a neighborhood of 0 in Y and since Y has the relative
topology, there exists a neighborhood M1 of 0 in X such that M1 ∩ Y = U . We
shall adjust M1 to make it convex circled and to arrange that x0 is not in it. Since
X is locally convex, we can find a convex circled neighborhoodM2 of 0 contained
in M1. Taking a cue from Figure 4.1, define

M3 = {(1− t)n + tm2 | n ∈ N , m2 ∈ M2, 0 ≤ t ≤ 1}.

This is a neighborhood of 0 since it contains M2, and it is convex circled since N
and M2 are convex circled.
We shall prove that

M3 ∩ Y = N .

Certainly M3 ∩ Y ⊇ N . For the reverse inclusion let m3 be in M3 ∩ Y , and write
m3 = (1 − t)n + tm2 with n ∈ N , m2 ∈ M2, and 0 ≤ t ≤ 1. If t = 0, then
m3 = n is already in N . If t > 0, thenm2 = t−1(m3 − (1− t)n) exhibitsm2 as a
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linear combination of members of Y , hence as a member of Y . Since M2 ⊆ M1,
m2 is in M1 ∩ Y = N . Therefore m3 is a convex combination of the members n
and m2 of N and must lie in N since N is convex. Consequently M3 ∩ Y = N .
If x0 lies in Y , thenwe can takeM = M3 since x0 is by assumption not in N and

cannot therefore be in the larger set M3. If x0 is not in Y , then Proposition 4.24
says that X/Y is a locally convex topological vector space. Since x0 + Y is not
the 0 coset, we can find a convex circled neighborhood P of the 0 coset that does
not contain x0+Y . If q : X → X/Y is the quotient map, then q−1(P) by Propo-
sition 4.16e is a convex circled neighborhood of 0 in X that does not contain x0
and satisfies q−1(P) ∩ Y = Y . Therefore M = M3 ∩ q−1(P) is a convex circled
neighborhood of 0 in X that does not contain x0 and satisfies M ∩ Y = N . §

Proposition 4.28. Let X be a real or complex vector space, and suppose that X
is the increasing union X =

S∞
p=1 Xp of a sequence of locally convex topological

vector spaces such that for each p, Xp is a closed vector subspace of Xp+1 and
has the relative topology. Then there exists a unique topology on X making it
into a locally convex topological vector space in such a way that

(a) each inclusion ip : Xp → X is continuous,
(b) whenever L : X → Y is a linear function from X into a locally convex

topological vector space Y such that L ◦ ip : Xp → X is continuous for
all p, then L is continuous.

This unique topology has the property that
(c) each inclusion ip : Xp → X is a homeomorphism with its image.

PROOF. Let N0 be the family of all convex circled subsets N of X having 0
as an internal point such that i−1p (N ) is a neighborhood of 0 in Xp for all p. We
shall prove that N0 satisfies the four conditions (a) through (d) of Proposition
4.26, so that X has a unique topology making it into a locally convex topological
vector space in such a way that N0 is a local neighborhood base at 0. Condition
(a) holds by definition. Condition (b) holds because the intersection of two
convex circled subsets with 0 as an internal point is again a convex circled set
with 0 as an internal point and because the intersection of two neighborhoods is
a neighborhood. Condition (c) holds because multiplication by a nonzero scalar
sends convex circled sets with 0 as an internal point into convex circled sets
with 0 as an internal point and because multiplication by a nonzero scalar sends
neighborhoods of 0 to neighborhoods of 0.
We have to prove (d) in Proposition 4.26, namely that each x0 6= 0 in X has

some associated M inN0 such that x0 is not in M . Since X =
S∞

p=1 Xp, choose
p0 as small as possible so that x0 is in Xp0 . Since Xp0 satisfies (a) through (d) and
since x0 6= 0, we can find some convex circled neighborhoodMp0 of 0 in Xp0 that
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does not contain x0. Proceeding inductively by means of Lemma 4.27, we can
find, for each p > p0, a convex circled neighborhoodMp of 0 in Xp that does not
contain x0 such that Mp ∩ Xp−1 = Mp−1. Define M =

S
p∏p0 Mp. Then M is

convex circled since each Mp has this property. To see that 0 is an internal point
of M , we argue as follows: for each x in X , x lies in some Xp, the set Mp has 0
as an internal point since Mp is a neighborhood of 0, Mp contains all cx for c
real and small, and the larger set M contains all cx for c real and small. For each
p ∏ p0, the set i−1p (M) equals Mp, which was constructed as a neighborhood
of 0 in Xp. The intersection i−1k (M) = Mp ∩ Xk has to be a neighborhood of 0 in
Xk for k < p since Mp is a neighborhood of 0 in Xp, and the set M is therefore
in N0. Thus M meets the requirement of being a member of N0 that does not
contain x0, and (d) holds in Proposition 4.26.
We are left with proving (a) through (c) in the present proposition and with

proving that no other topology meets these conditions. For (a), since ip is linear,
it is enough to prove continuity at 0. Hence we are to see that if N is in N0,
then i−1p (N ) is a neighborhood of 0 in Xp. But this is just one of the defining
conditions for the set N to be in N0.
For (b), since L is linear, it is enough to prove continuity at 0. SinceY is locally

convex, the convex circled neighborhoods of 0 in Y form a local neighborhood
base. If E is such a neighborhood, we are to show that N = L−1(E) is a
neighborhood of 0 in X . The set E is convex and circled with 0 as an internal
point, and hence the same thing is true of N . Also, i−1p (N ) = i−1p L−1(E) =
(L◦ip)−1(E) is a neighborhoodof 0 in Xp since L◦ip is by assumptioncontinuous.
Therefore N = L−1(E) is inN0, and then L−1(E) is a neighborhood of 0 in the
topology imposed on X . Hence L is continuous at 0 and is continuous.
For (c), we again use Lemma 4.27, except that this time we do not need a

point x0. We are to show that if Np0 is a neighborhood of 0 in Xp0 , then i(Np0)
is a neighborhood of 0 in the relative topology that X defines on Xp0 . Since Xp0
is locally convex, there is no loss of generality in assuming that Np0 is convex
circled. Proceeding inductively for p > p0, we use the lemma to construct a
convex circled neighborhood Np of 0 in Xp such that Np ∩ Xp−1 = Np−1. Put
N =

S
p∏p0 Np. Arguing in the same way as earlier in the proof, we see that N

is in N0. Then i(Np0) = Xp0 ∩ N , and i(Np0) is exhibited as the intersection of
Xp0 with a neighborhood of 0 in X . This proves (c).
Finally suppose that the constructed topology on X is T and that T 0 is a second

topology making X into a locally convex topological vector space in such a way
that (a) and (b) hold. Let 1T be the identity map from (X, T ) to (X, T 0). By
(a) for T 0, the composition 1T ◦ ip : Xp → X is continuous. By (b) for T , 1T
is continuous from (X, T ) to (X, T 0). Reversing the roles of T and T 0, we see
that the identity map is continuous from (X, T 0) to (X, T ). Therefore 1T is a
homeomorphism. §
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In the terminology of abstract functional analysis, one says that X in Proposi-
tion 4.28 is a strict inductive limit16 of the spaces Xp. With extra hypotheses that
are satisfied in our case of interest, one says that X acquires the LF topology17
from the Xp’s.
Now let us apply the abstract theory to C∞

com(U). If {Kp} is any exhausting
sequence of compact subsets of U , then we apply Proposition 4.28 with X =
C∞
com(U) and Xp = C∞

Kp
. For the inclusion Xp ⊆ Xp+1, the restriction to C∞

Kp

of the seminorms on C∞
Kp+1

yields the seminorms for C∞
Kp
, and therefore Xp has

the relative topology as a vector subspace of Xp+1. The space Xp is a closed
subspace because C∞

Kp
is Cauchy complete and because complete subsets of a

metric space are closed. Thus the hypotheses are satisfied, and C∞
com(U) acquires

a unique topology as a locally convex topological vector space such that
(i) each inclusion C∞

Kp
⊆ C∞

com(U) is continuous,
(ii) whenever a linear mapping C∞

com(U) → X is given into a locally convex
linear topological space X and the composition C∞

Kp
→ C∞

com(U) → X
is continuous for every p, then the given mapping C∞

com(U) → X is
continuous.

Furthermore
(iii) each inclusion C∞

Kp
⊆ C∞

com(U) is a homeomorphism with its image.
To complete our construction, all we have to do is show that the resulting topology
on C∞

com(U) does not depend on the choice of exhausting sequence.

Proposition 4.29. The inductive limit topology on C∞
com(U) is independent of

the choice of exhausting sequence. Consequently
(a) each inclusion C∞

K ⊆ C∞
com(U) is a homeomorphism with its image,

(b) whenever a linear mapping C∞
com(U) → X is given into a locally convex

linear topological space X and the composition C∞
K → C∞

com(U) → X
is continuous for every compact subset K of U , then the given mapping
C∞
com(U) → X is continuous.

16Thewords “direct limit”mean the same thing as “inductive limit,” but “inductive” is more com-
mon in this situation. The term “strict” refers to the fact that the successive inclusions
ip+1,p : Xp → Xp+1 are one-one with ip+1,p(Xp) homeomorphic to Xp . The notion of “di-
rect limit” is a construction in category theory that is useful within several different categories.
Uniqueness of the direct limit up to canonical isomorphism is a formality built into the definition;
existence depends on the particular category. For this situation the construction is taking placewithin
the category of locally convex topological vector spaces (and continuous linear maps). A direct-limit
construction within a different category plays a role in Problems 26–30 at the end of the chapter,
and those problems are continued at the end of Chapter VI.

17“LF” refers to “Fréchet limit.” In the usual situation the spaces Xp are assumed to be locally
convex completemetric topological vector spaces, i.e., “Fréchet spaces.” The Xp’s have this property
in the application to C∞

com(U).
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PROOF. Write X forC∞
com(U)with its topologydefined relative to an exhausting

sequence {Kp} of compact subsets ofU , andwriteY forC∞
com(U)with its topology

defined relative to an exhausting sequence {K 0
p}. If Kk is amemberof the sequence

{Kp}, then Kk ⊆ K 0
p for p ∏ some index p0 depending on k since the interiors

of the sets K 0
p cover the compact set Kk . The inclusion Kk ⊆ K 0

p is continuous
for p ∏ p0, and therefore the composition Kk → K 0

p0 → Y is continuous. This
continuity for all k implies that the identity map from X into Y is continuous.
Reversing the roles of X and Y , we see that the identitymap is a homeomorphism.

§

8. Krein–Milman Theorem

In this sectionwe carry the discussion of local convexity in Sections 5–6 along the
path toward fixed-point theorems. Our objective will be to prove a fundamental
existence theorem about “extreme points.”
If K is a convex set in a real or complex vector space and if x0 is in K , we say

that x0 is an extreme point of K if x0 is not in the interior of any line segment
belonging to K , i.e., if

x0 = (1− t)x + t y with 0 < t < 1 and x, y ∈ K implies x0 = x = y.

Let X be a topological vector space, and let K be a closed convex subset of
X . A nonempty closed convex subset S of K is called a face if whenever ` is a
line segment belonging to K , in the above sense, and ` has an interior point in S,
then the whole line segment belongs to S. With this definition, x0 is an extreme
point of K if and only if the singleton set {x0} is a face.
If E is a subset of X , then the closed convex hull of E is defined to be the

intersection of all closed convex subsets of X that contain E . It may be described
explicitly as the closure of the set of all convex combinations of members of E .

Theorem 4.30 (Krein–Milman Theorem). If K is a compact convex set in a
locally convex topological vector space, then K is the closed convex hull of the
set of extreme points of K . In particular, if K is nonempty, then K has an extreme
point.

PROOF. Let X be the underlying topological vector space. We may assume,
without loss of generality, that K is nonempty. Let us see that if f is any
continuous linear functional on X , then the subset of K onwhich Re f assumes its
maximum value is a face. In fact, let S be the subset where g = Re f assumes its
maximum valuem. Then S is nonempty since K is compact and g is continuous,
and the continuity and real linearity of g imply that S is closed and convex. To



8. Krein–Milman Theorem 141

check that S is a face, let x0 be in S, and suppose that x0 = (1 − t)x + t y with
0 < t < 1 and x, y in K . Then

m = g(x0) = (1− t)g(x) + tg(y) ≤ m(1− t) + tm = m.

Equality must hold throughout, and therefore g(x) = m = g(y). Hence x and y
are in S, and S is a face.
Next let us see that any face of K contains an extreme point. In fact, order the

faces by inclusion downward. The intersection of a chain of faces is nonempty
by compactness and hence is a face that provides a lower bound for the chain. By
Zorn’s Lemma there exists a minimal face S1. Arguing by contradiction, suppose
that S1 contains at least two points. Then Corollary 4.23 and the local convexity
of X yield a continuous linear functional whose real part takes distinct values at
the two points. From the previous paragraph we find that S1 contains a proper
face S. A face of a face is a face. Thus S is a face of K strictly smaller than the
minimal face S1, and we arrive at a contradiction.
Now we can complete the proof. If E denotes the closed convex hull of the set

of extreme points of K , then certainly E ⊆ K . Arguing by contradiction, suppose
that equality fails: Let x0 be in K but not in E . Then Corollary 4.22 and the local
convexity of X produce a continuous linear functional whose real part has supre-
mum on E strictly less than the value at x0. The first paragraph of the proof shows
that the subset of K where the real part of this linear functional takes the value
at x0 is a face of K , and the second paragraph shows that this face has an extreme
point. This extreme point is not in E , and we arrive at a contradiction. §

Compact convex subsets of RN arise in practical maximum-minimum prob-
lems involving several variables, typically economicvariables. Often the compact
convex set is a polyhedron, and the function to be maximized is the sum of a
constant and a linear function. The Krein–Milman Theorem produces extreme
points, and the basic techniques of the subject of linear programming show that
the maximum is attained at an extreme point and show how to find this extreme
point.
A natural place where infinite-dimensional compact convex sets arise is in the

weak-star topology on the closed unit ball of the dual of a normed linear space.
Alaoglu’s Theorem says that this set is compact, and it is certainly convex. The
Hahn–Banach Theorem is what shows that this compact convex set contains a
nonzero element when the normed linear space is nonzero.
When the whole closed unit ball is the set of interest, let us see what the

extreme points are like in certain situations. If the underlying normed linear
space is a Hilbert space, then the real part of a continuous linear functional takes
its maximum value at a single point of the closed unit ball. The upshot of this
fact is that the proof of the Krein–Milman Theorem above degenerates; Zorn’s
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Lemma is not needed, for example, to produce an extreme point. The proof
degenerates in the same way, in fact, whenever one considers some L p space
with 1 < p < ∞.
The case of L∞ is more interesting. Let us work with real-valued functions

in the context of a σ -finite measure space, regarding L∞ as the dual of L1. The
extreme points of the closed unit ball are all the L∞ functions that take only the
values −1 and +1.
Similarlywe can consider the spaceC([0, 1]) of continuous functions on [0, 1].

Again let us work with real-valued functions. Suppose that this Banach space
is the dual of some normed linear space. Then the closed unit ball of C([0, 1])
forms a compact convex set in the weak-star topology. As with L∞, the extreme
points are the functions that take only the values−1 and+1. The functions have
to be continuous, however, and they are therefore constant. So we get only two
extreme points, the constant functions −1 and +1, and their closed convex hull
contains only constant functions. The conclusion is that C([0, 1]) is not the dual
of any normed linear space.
We can argue similarly with measures and L1 functions. Suppose that X is

a compact Hausdorff space. The Banach space M(X) of regular complex Borel
measures on X is the dual of C(X), and the set of nonnegative Borel measures
of total mass ≤ 1 is a closed compact subset of the unit ball in the weak-star
topology. This set has to be the closed convex hull of its extreme points. Indeed,
as is pointed out in Problem 17 at the end of the chapter, the extreme points of
this set are 0 and the point masses of mass 1 at the points of X ; the statement of
the theorem is reflected in the fact that any regular Borel measure on X with total
mass ≤ 1 is a weak-star limit of linear combinations of point masses.
We can consider similarly the space L1([0, 1]) of Borel functions on [0, 1]

integrable with respect to Lebesgue measure. Suppose that this Banach space is
the dual of some normed linear space. Then the closed unit ball of L1([0, 1])
forms a compact convex set in the weak-star topology. Problem 18 at the end of
the chapter shows that the extreme points are trying to be the functions whose
mass is concentrated at a single point, and there are none. The conclusion is that
L1([0, 1]) is not the dual of any normed linear space.
The Krein–Milman Theorem begins to show its power when applied to more

subtle closed convex subsets of a unit ball in the weak-star topology. Here is
an example that lies behind the foundations of the theory of locally compact
abelian groups.18 For concreteness we work with complex-valued functions on
the integers, i.e., doubly infinite sequences. Such a function f (n) is said to be
positive definite if

P
j,k c( j) f ( j − k)c(k) ∏ 0 for all functions c(n) on the

integers with finite support. Positive definite functions are easily checked to

18Such groups are defined in Chapter VI.
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have f (0) ∏ 0 and | f (n)| ≤ f (0). In particular, the set K of positive definite
functions f with f (0) = 1 may be regarded as a subset of the closed unit ball
of L∞ of the integers with the counting measure, a space sometimes called `∞.
Weak-star convergence for such functions is the same as pointwise convergence,
and it follows that K is closed, hence compact. Checking the definition, we see
that K is convex. TheKrein–MilmanTheorem tells us that K is the closed convex
hull of its extreme points. It is shown in Problem 20 at the end of the chapter that
the extreme points are the functions fθ (n) = einθ for real θ .
By way of introduction to the next section, let us consider one more example.

Let S be a compact Hausdorff space, and let F be any homeomorphism of S. Put
X = C(S). In the weak-star topology on M(S), the nonnegative regular Borel
measures µ with µ(S) = 1 form a compact convex subset K1 of M(S). The
Markov–Kakutani Theorem in the next section shows that there exist elements of
K1 invariant under F . The invariant such measures therefore form a nonempty
compact convex subset K of K1. According to the Krein–Milman Theorem, K is
the closed convex hull of its set of extreme points. As shown in Problem 19 at the
end of the chapter, the µ’s that are extreme points have the interesting property
that all Borel subsets that are carried onto themselves by the homeomorphism F
havemeasure 0 or 1; the usual name for this phenomenon is thatµ is ergodicwith
respect to F . Since the Krein–Milman Theorem is saying that extreme points
exist, we obtain the consequence that for each homeomorphism F of S, there is
some regular Borel measure µ with µ(S) = 1 that is ergodic with respect to F .

9. Fixed-Point Theorems

In this section we continue the discussion of convexity and local convexity. We
shall give two fixed-point theorems.

Theorem 4.31 (Markov–Kakutani Theorem). Let K be a compact convex set
in a topological vector space X , and let F be a commuting family of continuous
linear mappings carrying K into itself. Then there exists a point p in K such that
T (p) = p for all T in F.
PROOF. For each integer n ∏ 1 and member T of F, let

Tn = 1
n (I + T + T 2 + · · · + T n−1).

Let K be the family of all subsets of X that arise as Tn(K ) for some n ∏ 1 and
some T in F. Each such set is a compact convex subset of K , being the image
of a compact convex set under a continuous linear mapping that carries K into
itself. If {T (i)

ni }ri=1 is a finite subset of F and each ni is ∏ 1, then

T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆ T (1)
n1 T

(2)
n2 · · · T (r−1)

nr−1 (K ) ⊆ · · · ⊆ T (1)
n1 (K ).
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By symmetry and commutativity of the operators,

T (1)
n1 T

(2)
n2 · · · T (r)

nr (K ) ⊆
Tr

j=1 T
( j)
nj (K ).

Thus the members of K have the finite-intersection property. By compactness
their intersection is nonempty. Let p be in the intersection. We shall show that
T (p) = p for all T in F.
Arguing by contradiction, suppose that T is given inFwith T (p) 6= p. Choose

a neighborhoodU of 0 in X such that T (p) − p is not inU . The fact that p is in
the intersection of all the sets in K implies that p is in Tn(K ) for n ∏ 1 and thus

p = n−1(I + T + T 2 + · · · + T n−1)(qn)

for some qn in K . Applying T − I to this equality, we obtain

T (p) − p = n−1(T n − I )(qn).

Since the left side is not in U , the right side is not in U . Since T n(qn) and qn are
in K , it follows that 1n (K − K ) is not contained in U for any n. But K − K is a
compact set, being the image under the subtraction mapping of the compact set
K × K , and this conclusion contradicts Lemma 4.7. §

Let us return to the example at the end of the previous section. As in that
example, let S be a compact Hausdorff space, and let F be any homeomorphism
of S. Put X = C(S). In the weak-star topology onM(S), the nonnegative regular
Borel measures µ with µ(S) = 1 form a compact convex subset K1 of M(S).
The homeomorphism F acts on M(S) by the formula TF(ρ)(E) = ρ(F−1(E)).
The mapping TF is linear, and it follows from the definitions that TF satisfies
kTF(ρ)kM(S) = kρkM(S). Thus TF has norm 1 and is continuous. It maps K1
into itself. PuttingF = {TF} and applying Theorem 4.31, we obtain the existence
of a nonzero F invariant measure on S. The discussion in the previous section
went on to observe that the subset K of F invariant measures in K1, which we
now know to be nonempty, is compact convex in a locally convex topological
vector space. Thus K is a set to which we can apply the Krein–Milman Theorem,
and the extreme points turn out to be the ergodic invariant measures.

Theorem 4.32 (Schauder–Tychonoff Theorem). Let K be a compact convex
set in a locally convex topological vector space, and let F be a continuous function
from K into itself. Then there exists p in K with F(p) = p.
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The proof of Theorem 4.32 is long and will be omitted.19 The power in the
result comes from its applicability to nonlinear mappings. In the special case
in which K is the closed unit ball in RN , it reduces to the celebrated Brouwer
Fixed-Point Theorem.
This kind of theorem has applications to economics, where fixed-point theo-

rems prove the existence of equilibrium points for certain systems. The theorem
does not by itself address stability of such an equilibrium point, however.
Byway of illustration, let us return to a comparatively simple situation that was

studied in Chapter IV of Basic. The usual Picard–Lindelöf Existence Theorem20
for the initial-value problem with a system y0 = f (t, y) of ordinary differential
equations assumes continuity of f and also a Lipschitz condition for f in the
y variable. A variant, the Cauchy–Peano Existence Theorem, is the subject of
problems at the end of Chapter IV of Basic. It assumes only continuity for f and
obtains existence of solutions, with uniqueness being lost. The Cauchy–Peano
result is proved using Ascoli’s Theorem and a nonobvious construction.
Ascoli’s Theorem, as we know from Section X.9 of Basic, is intimately con-

nected with compactness. Let us see how to combine Ascoli’s Theorem and the
Schauder–Tychonoff Theorem to obtain a more transparent proof of the Cauchy–
Peano result thanwas suggested in the problems at the end of Chapter IV ofBasic.
To keep the notation simple, we stick with the case of a single equation, rather
than a system. We suppose that f (t, y) is continuous on an open subset D ofR2.
Let (t0, y0) be in D, and let R be a closed rectangle in D centered at (t0, y0) and
having the form

R =
©
(t, y)

Ø
Ø |t − t0| ≤ a and |y − y0| ≤ b

™
.

Suppose that | f (t, y)| ≤ M on R. Put a0 = min{a, b
M }. The theorem is that

there exists a continuously differentiable solution y(t) to the initial-value problem
y0 = f (t, y), y(t0) = y0, |t − t0| < a0.
For the proof let X be the Banach space C({t

Ø
Ø |t − t0| ≤ a0}), and let K be the

closure of the set

E =

(

y ∈ X

Ø
Ø
Ø
Ø
Ø

(i) y(t0) = y0,
(ii) y0 is continuous for |t − t0| ≤ a0,
(iii) |y0(t)| ≤ M for |t − t0| ≤ a0

)

in the Banach space X . Condition (iii) makes E an equicontinuous family, and
(i) and (iii) together make E pointwise bounded. Lemma 10.47 of Basic shows
that the closure K is equicontinuous and pointwise bounded. Ascoli’s Theorem

19A proof may be found in Dunford–Schwartz’s Linear Operators, Part I, pp. 453–456 and
467–469.

20Theorem 4.1 of Basic.
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therefore shows that K is compact. Define a function F carrying the space K of
functions to another space of functions by

F(y)(t) = y0 +
R t
t0 f (s, y(s)) ds.

For y in E , we have |y(s) − y0| ≤ M|s − t0| ≤ Ma0 ≤ b, and thus (s, y(s))
is in the rectangle R. Hence F(y) satisfies (i), (ii), and (iii) and is in E . So F
carries E to itself. The formula for F makes clear that F extends to a continuous
mapping on K in the supremum-norm topology. Since F(E) ⊆ E , we obtain
F(K ) ⊆ K . The set K is compact convex in a Banach space, which is locally
convex. The Schauder–Tychonoff Theorem applies to F , and the fixed point it
produces is the desired solution.

10. Gelfand Transform for Commutative C∗ Algebras

Alaoglu’s Theorem, obtained in Section 3, leads in several directions in functional
analysis, and we now return to its ramifications for spectral theory. The Stone
Representation Theorem in Section 4 gave a concrete example of what we shall
be investigating, showing that certain subalgebras of the algebra B(S) of all
complex-valued bounded functions on a set S can be realized as the algebra of
all complex-valued continuous functions on a suitable compact Hausdorff space.
The present section is devoted to a generalizationdue to I.M.Gelfand of this result
to certain algebras besides B(S); a different special case of this generalizationwill
yield in the next section the Spectral Theorem for bounded self-adjoint operators
on a Hilbert space.
Recall from Section 4 that a complex Banach algebra A is a complex as-

sociative algebra having a norm that makes it into a Banach space such that
kabk ≤ kakkbk for all a and b in A. We shall not consider A = 0 as a Banach
algebra. Nor shall we have any occasion to consider real Banach algebras. The
inequality concerning the norm under multiplication implies that multiplication
is continuous. If the Banach algebra has an identity, the same inequality implies
that k1k ∏ 1.

EXAMPLES.
(1) If S is a nonempty set, then the algebra B(S) of all bounded complex-valued

functions on S is a commutative Banach algebra. The function 1 is an identity.
If S has a topology, then the subalgebra C(S) of bounded continuous functions
gives another example of a commutative Banach algebra with identity.
(2) If (S, µ) is a σ -finite measure space, then pointwise multiplication and the

essential-supremum norm make L∞(S, µ) into a commutative Banach algebra
with identity.
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(3) In Euclidean space RN , the Banach space L1(RN ) with Lebesgue mea-
sure becomes a commutative Banach algebra with convolution as multiplication:
( f ∗g)(x) =

R
RN f (x− y)g(y) dy =

R
RN f (y)g(x− y) dy. This Banach algebra

does not have an identity. A variant of this Banach algebra may be defined using
functions on RN periodic in each variable with period 2π , the measure being
(2π)−N dx , and convolution being the multiplication. Still another variant uses
functions onZN integrable with respect to the countingmeasure, and convolution
is again the multiplication.
4) If H is a complex Hilbert space, then the algebra B(H, H) of all bounded

linear operators from H to itself is a Banach algebra with identity when the norm
is the operator norm and the multiplication is composition of operators.

The example of L1 is so important that one does not want automatically to
impose a condition on a Banach algebra that it contain an identity. Nevertheless,
it is always possible to adjoin an identity to a Banach algebra if one wants, as the
following proposition shows.

Proposition 4.33. Let A be a complex Banach algebra, and let

B = {(a, ∏) | a is in A and ∏ is in C} = A⊕ C

as a vector space. Define

(a, ∏)(b, µ) = (ab + ∏b + µa, ∏µ)

k(a, ∏)k = kak + |∏|.and

ThenB is a complex Banach algebra with identity (0, 1), and the map a 7→ (a, 0)
is a norm-preserving algebra homomorphism of A onto a closed ideal in B.

REMARKS. The formula for the multiplication is motivated by expansion of
the product (a + ∏)(b + µ), and the formula for the norm is motivated by the
norm of the element f dx + δ0 in M(RN ), where δ0 is a point mass of weight 1
at the origin. We omit the proof of the proposition, since we shall not pursue L1
very far from this point of view.

To proceed further, let us go back to our examples and see what can be said
about them. For B(S) in Example 1, the Stone Representation Theorem realized
certain subalgebras as C(X) for some compact Hausdorff space X . The space X
is the space of all nonzero continuous multiplicative linear functionals respecting
complex conjugation, regarded as a closed subset of the set of all continuous linear
functionals of norm ≤ 1 with the weak-star topology. Evaluations at points of S
provide examples of members of X , and X is just the closure of those evaluations.
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To what extent might multiplicative linear functionals help us understand
the other examples? For L∞ in Example 2, the notion of multiplicative linear
functional is meaningful, but it is not clear that any nonzero ones exist. At points
of the measure space of positive measure, evaluations are well defined and yield
multiplicative linear functionals. But if every one-point set of the measure space
has measure 0, then it is not clear how to proceed.
For L1 in Example 3, the answer is more decisive. The most general con-

tinuous linear functional is integration with an L∞ function, and the nonzero
continuous multiplicative linear functionals are the ones where the L∞ function
is an exponential x 7→ eix ·y for some y in RN . Let us sketch the argument. If a
multiplicative linear functional ` is given by the nonzero L∞ function ϕ, then the
condition `( f ∗ g) = `( f )`(g) translates into the condition

Z

RN×RN
f (x)g(y)ϕ(x + y) dx dy =

Z

RN×RN
f (x)g(y)ϕ(x)ϕ(y) dx dy.

Since f and g are arbitrary, ϕ(x + y) = ϕ(x)ϕ(y) a.e. [dx dy]. Letting p be in
Ccom(RN ) and integrating this equation with p(y) gives

Z

RN
p(y)ϕ(x + y) dy = ϕ(x)

Z

RN
p(y)ϕ(y) dy a.e. [dx].

The left side, upon the change of variables y 7→ −y, is the convolution of a
function in Ccom(RN ) and a function in L∞(RN ). It is therefore continuous
as a function of x . On the right side some p has

R
RN p(y)ϕ(y) dy 6= 0 since

ϕ is not the 0 function almost everywhere. Fixing such a p and dividing byR
RN p(y)ϕ(y) dy, we see that ϕ(x) is almost everywhere equal to a certain
continuous function. We may therefore adjust ϕ on a set of measure 0 to be
continuous. Once adjusted, ϕ satisfies ϕ(x + y) = ϕ(x)ϕ(y) everywhere. It is
then a simple matter to see that ϕ is an exponential, as asserted.
Example 4 is something like Example 2. Suppose that A is a bounded self-

adjoint operator on the Hilbert space H . We can form the smallest subalgebra
of B(H, H) containing A and the identity, and we can look for multiplicative
linear functionals. Theorem 2.3 addresses a situation in which we can identify
such functionals. If A is compact, then the theorem gives an orthonormal basis
of eigenvectors, and every member of this algebra acts as a scalar on each eigen-
vector. So each eigenvector yields, via the corresponding set of eigenvalues, a
multiplicative linear functional. If A is not compact, however, eigenvectors need
not exist, and then it is unclear where to look to find nonzero multiplicative linear
functionals.
A series of theoretical insights now comes into play. An associative algebra

with identity need not have nonzeromultiplicative linear functionals, but it always
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has maximal ideals. These come from Zorn’s Lemma, the proper ideals being
those ideals not containing the identity. Accordingly, we shall think in terms of
maximal ideals. These turn out to be closed, because as we shall see, there is a
neighborhood of the identity where every element is invertible with an inverse
given by the sum of a geometric series. The quotient of a commutative complex
Banach algebra with identity by a (closed) maximal ideal is then a complex
Banach algebra in which every nonzero element is invertible. The remarkable
fact is that such a quotient necessarily is 1-dimensional. Then it follows that
the maximal ideals all correspond to continuous multiplicative linear functionals
after all, and their existence has been established. Let us run through the steps.
Let A be a Banach algebra with identity, at first not necessarily commutative.

If a is inA, then a right inverse to a is an element b with ab = 1. If a has a right
inverse b and if a has a left inverse c, then the two are equal as a consequence
of the associativity of multiplication: c = c1 = c(ab) = (ca)b = 1b = b. So
a has a two-sided inverse, which we call simply an inverse, and we say that a is
invertible.

Proposition 4.34. Let A be a Banach algebra with identity. If kak < 1, then
1− a is invertible and k(1− a)−1k ≤ (1− kak)−1.

PROOF. Form
P∞

n=0 an . This series is Cauchy since kank ≤ kakn implies∞
∞PN

n=M an
∞
∞ ≤

PN
n=M kakn ≤ kakM(1−kak)−1. SinceA is complete, the series

P∞
n=0 an is convergent. Let b be its sum. Then we have (1 − a)

°PN
n=0 an

¢
=

°PN
n=0 an

¢
(1 − a) = 1 − aN+1, and hence (1 − a)b = b(1 − a) = 1. Also,

kbk ≤
P∞

n=0 kakn = (1− kak)−1. §

Corollary 4.35. In a Banach algebra with identity, the invertible elements
form an open set. More particularly if kak is invertible and kx − ak < ka−1k−1,
then x is invertible.

PROOF. LetU be the set of invertible elements, and let a be inU . If kx−ak <
ka−1k−1, then

ka−1x − 1k = ka−1(x − a)k ≤ ka−1kkx − ak < 1,

and Proposition 4.34 shows that 1 − (1 − a−1x) = a−1x is invertible. Hence x
is invertible. §

Proposition 4.36. IfA is a Banach algebra with identity andU is the open set
of invertible elements, then inversion is a continuous map of U into itself.
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PROOF. Let a be in U , and let kx − ak < ka−1k−1, so that x is in U by
Corollary 4.35. Then

kx−1 − a−1k = kx−1(x − a)a−1k ≤ ka−1kkx−1kkx − ak,

and continuity will follow if we show that kx−1k ≤ M < ∞ for x near a.
Computation and Proposition 4.34 give

kx−1k = k(a − (a − x))−1k = ka−1(1− (1− xa−1))−1k ≤
ka−1k

1− k1− xa−1k
,

and the desired boundedness follows from continuity of multiplication. §

Let A be a complex Banach algebra with identity. If a is in A, the spectrum
of a is the set

σ (a) = {∏ ∈ C | a − ∏ is not invertible}.

It will be proved in Corollary 4.39 below that σ (a) is always nonempty. The
resolvent set P(a) of a is the complement of σ (a) in C. The resolvent of a is
the function

R(∏) = (a − ∏)−1 from P(a) into A.

The spectral radius of a, denoted by r(a), is

r(a) = sup
©
|∏|

Ø
Ø ∏ is in σ (a)

™
.

Proposition 4.37. For a in a complex Banach algebra A with identity, σ (a)
is compact and r(a) is ≤ kak.

PROOF. The function ∏ 7→ a − ∏ is continuous, and the set U of invertible
elements is open, the latter by Corollary 4.35. Thus P(a) = {∏ | a − ∏ is in U}
is open. Hence the complement σ (a) is closed. Fix ∏ with ∏ > kak. Then
k∏−1ak < 1, and therefore ∏−1a − 1 is in U . Since ∏ 6= 0, a − ∏ is in U .
Thus ∏ is in P(a). It follows that σ (a) is contained in

©
∏

Ø
Ø |∏| ≤ kak

™
and that

r(a) ≤ kak. Since σ (a) is then bounded, as well as closed, σ (a) is compact. §

We say that a function ϕ from an open subset V ofC into the complex Banach
algebraA is weakly analytic on V if ` ◦ ϕ is an analytic function on V for every
` in the dual space A∗.

Theorem 4.38. If A is a complex Banach algebra with identity and if a is in
A, then R(∏) = (a−∏)−1 is weakly analytic on P(a)with lim∏→∞ kR(∏)k = 0.
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PROOF. Let ∏0 be in P(a), and let ` be in A∗. Writing

a − ∏ = (a − ∏0)
°
1− (a − ∏0)

−1(∏ − ∏0)
¢

and applying Proposition 4.34, we see that a − ∏ is invertible if the condition
k(a − ∏0)

−1(∏ − ∏0)k < 1 is satisfied. In this case,

(a − ∏)−1 = (a − ∏0)
−1P∞

n=0 (a − ∏0)
−n(∏ − ∏0)

n,

and the continuity of ` yields

`
°
(a − ∏)−1

¢
=

∞X

n=0
`
°
(a − ∏0)

−n−1¢(∏ − ∏0)
n,

with the series convergent. Therefore R(∏) is weakly analytic.
To establish that lim∏→∞ k(a − ∏)−1k = 0, we write

(a − ∏)−1 =
°
∏(∏−1a − 1)

¢−1
= ∏−1(∏−1a − 1)−1.

Proposition 4.34 gives

k(∏−1a − 1)−1k ≤ (1− |∏|−1kak)−1,

and the right side tends to 1 as∏ tends to infinity. Hence lim∏→∞ k(a−∏)−1k = 0.
§

Corollary 4.39. If A is a complex Banach algebra with identity, then σ (a) is
nonempty for each a in A.

PROOF. If σ (a) were to be empty, then every ` in A∗ would have ∏ 7→
`((a − ∏)−1) entire and vanishing at infinity, by Theorem 4.38. By Liouville’s
Theorem, we would have `((a−∏)−1) = 0 for every a and ∏. Since ` is arbitrary,
the Hahn–Banach Theorem would give (a − ∏)−1 = 0, contradiction. §

Corollary4.40 (Gelfand–MazurTheorem). The only complexBanach algebra
with identity in which every nonzero element is invertible is C itself.

PROOF. Suppose thatA is a complex Banach algebra with identity with every
nonzero element invertible. If a is given in A, σ (a) is not empty, according to
Corollary 4.39. Choose ∏ in σ (a). Then a − ∏ is not invertible. Since every
nonzero element of A is by assumption invertible, a − ∏ = 0. Hence a = ∏.
Thus A consists of the scalar multiples of the identity. §
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Corollary 4.41. If A is a commutative complex Banach algebra with iden-
tity, then the nonzero multiplicative linear functionals on A stand in one-one
correspondence with the maximal ideals of A, the correspondence being

` =
nmultiplicative
linear functional

o
−→ ker ` = maximal ideal

with inverse

I =

(maximal ideal,
necessarily with
A = I ⊕ C1

)

−→ ` defined by `(x, ∏) = ∏.

Every nonzero multiplicative linear functional is continuous with norm ≤ 1, and
every maximal ideal is closed. Every nonzero multiplicative linear functional
carries 1 into 1.

REMARKS. The proof will make use of Problem 4 in Chapter XII of Basic:
if X is a Banach space and Y is a closed subspace, then the vector space X/Y
becomes a normed linear space under the definition kx + Yk = infy∈Y kx + yk,
and the resulting metric on X/Y is complete. Problem 1 at the end of the present
chapter points out that the Banach space X/Y obtained this way has the same
topology as the quotient topological vector space X/Y defined in Section 1.

PROOF. We may assume A 6= 0. If ` is a nonzero multiplicative linear
functional, then its kernel is an ideal of codimension 1, hence is a maximal ideal.
Conversely if I is a maximal ideal, then no element of I can be invertible. Since
the set U of invertible elements is open, according to Corollary 4.35, the set I
is at positive distance from 1. Thus the closure I cl, which is an ideal, does not
contain 1. Since I is maximal, I cl = I . Thus I is closed. By the above remarks,
A/I is a complex Banach space. Its multiplication makes it into a complex
Banach algebra because if we take the infimum over y1 ∈ I and y2 ∈ I of the
right side of the inequality

ka1a2 + Ik ≤ ka1a2 + (y1a2 + a1y2 + y1y2)k
= k(a1 + y1)(a2 + y2)k
≤ ka1 + y1kka2 + y2k,

we obtain ka1a2+ Ik ≤ ka1+ Ikka2+ Ik. The quotientA/I is also a field, being
the quotient of a nonzero commutative ring with identity by a maximal ideal. By
Corollary 4.40,A/I ∼= C. Hence I has codimension 1, andA = I⊕C1 as vector
spaces. If we define a linear functional ` by `(x, ∏) = ∏, then we readily check
that ` is multiplicative and has kernel I . To see that ` is continuous, one way to
proceed is to use the Hahn–Banach Theorem: Since I is closed and 1 is not in I ,
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there exists a continuous linear functional `0 with `0(1) 6= 0 and `0(I ) = 0. Then
` = `0(1)−1`(1)`0, and therefore ` is continuous.
This establishes the correspondence. To check that it is one-one, it is enough

to see that any nonzero multiplicative linear functional carries 1 into 1. If ` is
a nonzero multiplicative linear functional, then `(a) = `(a)`(1) = `(a)`(1). If
we choose a with `(a) 6= 0, then we can divide and conclude that `(1) = 1.
Finally we check the norm of the nonzero multiplicative linear functional `.

If a in A has kak ≤ 1, then |`(a)|n = |`(an)| ≤ k`kkank ≤ k`kkakn ≤ k`k.
Since n ∏ 1 is arbitrary, we must have |`(a)| ≤ 1. Taking the supremum over a,
we obtain k`k ≤ 1. §

If A is a commutative complex Banach algebra with identity, we denote its
space of maximal ideals by A∗

m. For A 6= 0, this space is nonempty by an
application of Zorn’s Lemma to the set of all proper ideals of A. Using the
identification via Corollary 4.41 ofA∗

m as a set of linear functionals of norm≤ 1,
we can regard A∗

m as a subset of the unit ball of the dual A∗. We give A∗
m the

relative topology from the weak-star topology on A∗.

Proposition 4.42. If A is a commutative complex Banach algebra with
identity, then the weak-star topology makes the maximal ideal space A∗

m into
a compact Hausdorff space.

PROOF. Corollary 4.41 identifiesA∗
m with a subset of the unit ball ofA∗, which

is compact in the weak-star topology by Alaoglu’s Theorem (Theorem 4.14) and
is also Hausdorff. All we have to do is show thatA∗

m is a closed subset. For each
a and b in A, the set {` ∈ A∗ | `(ab) = `(a)`(b)} is closed since the functions
` 7→ `(ab) and ` 7→ `(a)`(b) are continuous from the weak-star topology into
C. Hence the intersection over all a and b is closed. The setA∗

m is the intersection
of this set with the closed set {` ∈ A∗ | `(1) = 1} and is therefore closed. §

For L1 or any other complex Banach algebraA not containing an identity, the
prescription for applying the above theory to A is to adjoin an identity and form
A⊕ C, apply the results toA⊕ C, and then see what happens when the identity
is removed. For Proposition 4.42, A is one of the maximal ideals in A ⊕ C.
Removing it from (A ⊕ C)∗m yields a locally compact Hausdorff space whose
one-point compactification is (A⊕ C)∗m.
It is now just a formality to obtain a mapping of any commutative com-

plex Banach algebra A with identity into C(A∗
m). The Gelfand transform

a 7→ ba is the mapping of A into C(A∗
m) given byba(`) = `(a) for each nonzero

multiplicative linear functional ` on A.
In the context of a suitable subalgebra of B(S), the Gelfand transform is just

the evaluation of all nonzero multiplicative linear functionals on the members of
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the subalgebra. Such linear functionals turn out automatically to respect complex
conjugation.21 The evaluations at the points of S are a dense subset of these.
The Stone Representation Theorem says that the Gelfand transform is a norm-
preserving algebra isomorphism.
In the context of L1(RN ), the Gelfand transform is just the Fourier trans-

form. The nonzero multiplicative linear functionals are the functions `y( f ) =R
RN f (x)e−2π i x ·y dx for y ∈ RN , i.e., `y( f ) = bf (y). The Gelfand transform is
the mapping of f to the resulting function of `y or of y. It is therefore exactly
the Fourier transform f 7→ bf if we parametrize L1(RN )∗m by the variable y.
The Gelfand transform makes sense for our other two examples as well, for

L∞ and for the complex Banach algebra generated by the identity and a single
self-adjoint bounded linear operator on a Hilbert space. But we do not so far
get much insight into what the Gelfand transform does for these cases. We can
summarize all the formalism as follows.

Proposition4.43. IfA is a commutative complexBanachalgebrawith identity,
then the Gelfand transform is an algebra homomorphism of norm ≤ 1 of A into
C(A∗

m) carrying 1 to 1, and its kernel is the intersection of all maximal ideals of
A. Moreover, for each a and b in A,

(a) σ (a) is the image of the functionba in C,
(b) r(a) = kbaksup,
(c) r(a + b) ≤ r(a) + r(b) and r(ab) ≤ r(a)r(b).

PROOF. The Gelfand transform is an algebra homomorphism because

cab (`) = `(ab) = `(a)`(b) = ba(`)bb(`)

for all` inA∗
m. Corollary4.41 shows that each` inA∗

m hasnorm≤ 1, and therefore
|ba(`)| = |`(a)| ≤ kak. Hencekbaksup ≤ kak, and theGelfand transformhas norm
≤ 1. Corollary 4.41 shows that every nonzero multiplicative linear functional
carries 1 into 1, and therefore the Gelfand transform carries 1 into 1.
The kernel of the Gelfand transform is the set of all a in A withba(`) = 0 for

all `, thus the set of all a with `(a) = 0 for all `, thus the intersection of the
kernels of all `’s.
For (a), we observe that a is invertible if and only if aA = A, if and only if a is

not in any maximal ideal, if and only ifba is nowhere vanishing. Thus a complex
number ∏ is in σ (a) if and only if a − ∏ is not invertible, if and only ifba − ∏ is
somewhere vanishing, if and only if ∏ is in the image ofba. This proves (a).

21The verification for an algebra as in Theorem 4.15 that the nonzero multiplicative linear
functionals automatically respect complex conjugation is embedded in the proof of Theorem 4.48
below. See the paragraph of the proof containing the display (†) and the two paragraphs that follow
it.
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Conclusion (b) is immediate from (a) and the definition of r(a), and (c) follows
from (b) and the inequalities satisfied by the supremum norm. This completes
the proof. §

Proposition 4.43 isolates the real problem, which is to say something quanti-
tative about the intersection of the kernels of all maximal ideals, about σ (a), and
about r(a). For our purposes it will be enough to have the spectral radius formula
that is proved in Corollary 4.46 below.

Theorem4.44 (SpectralMappingTheorem). IfA is a complexBanach algebra
with identity, if a is in A, and if Q is any polynomial in one variable, then
Q(σ (a)) = σ (Q(a)).
REMARKS. The left side Q(σ (a)) is understood to be the image under Q of the

set σ (a), while the right side σ (Q(a)) is the spectrum of Q(a), i.e., the spectrum
of the member of A obtained by substituting a for the variable in Q.
PROOF. First we show that Q(σ (a)) ⊆ σ (Q(a)). Let ∏0 be in σ (a), so that

a − ∏0 is not invertible. Arguing by contradiction, suppose that Q(a) − Q(∏0)
is invertible, say with b as two-sided inverse. Let S be the polynomial
defined by Q(∏) − Q(∏0) = (∏ − ∏0)S(∏). Since b is a two-sided inverse of
Q(a) − Q(∏0) = (a − ∏0)S(a), we have 1 = b(a − ∏0)S(a) = (bS(a))(a − ∏0)
and 1 = (a−∏0)(S(a)b). Thus a−∏0 has a left inverse bS(a) and a right inverse
S(a)b, and a − ∏0 must be invertible, contradiction.
For the reverse inclusion σ (Q(a)) ⊆ Q(σ (a)), suppose that ∏0 is in σ (Q(a)).

Let ∏1, . . . , ∏n be the roots of Q(∏)−∏0 repeated according to theirmultiplicities.
Then we have Q(∏) − ∏0 = c(∏ − ∏1) · · · (∏ − ∏n) for some nonzero constant c.
Substitution of a for ∏ gives

Q(a) − ∏0 = c(a − ∏1) · · · (a − ∏n).

Since Q(a) − ∏0 is by assumption not invertible, some a − ∏j is not invertible.
For this j , ∏j is in σ (a). Since ∏j is a root of Q(∏)−∏0, we have Q(∏j )−∏0 = 0,
i.e., Q(∏j ) = ∏0. Hence ∏0 is exhibited as Q of the member ∏j of σ (a). §

Corollary 4.45. If A is a complex Banach algebra with identity and if a is in
A, then r(an) = r(a)n for every integer n ∏ 1.
PROOF. This follows by taking Q(∏) = ∏n in Theorem 4.44 and then using

the definition of the function r . §

Corollary 4.46 (spectral radius formula). If A is a complex Banach algebra
with identity and if a is in A, then

r(a) = lim
n→∞

kank1/n,

the limit existing.
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PROOF. For every n, Corollary 4.45 andProposition4.37 give r(a)n = r(an) ≤
kank and thus r(a) ≤ kank1/n . Hence

r(a) ≤ lim inf
n

kank1/n. (∗)

If |∏| < kak−1 and ` is in the dual space A∗, then Proposition 4.34 yields

(1−∏a)−1 =
P∞

n=0 an∏n and therefore `((1−∏a)−1) =
P∞

n=0 `(an)∏n.

Theorem 4.38 shows that ∏ 7→ `((1 − ∏a)−1) is analytic for ∏−1 in P(a), and
Proposition 4.37 shows that this analyticity occurs for |∏|−1 > r(a), hence for
|∏| < r(a)−1. Therefore the power series

P∞
n=0 `(an)∏n is convergent for |∏| <

r(a)−1. Since the terms of a convergent series are bounded, each fixed ∏ within
the disk of convergence must have |`(an)||∏n| ≤ M` for some constant M`. That
is,

|`(∏nan)| ≤ M` (∗∗)

for all n. Each linear functional on A∗ given by ` 7→ `(∏nan) is bounded, and
therefore the systemof such linear functionalsasn varies,whichhasbeen shown in
(∗∗) to be pointwisebounded, satisfiesk∏nank ≤ M by theUniformBoundedness
Theorem. Consequently |∏|kank1/n ≤ M1/n . Taking the limsup of both sides
gives |∏| lim supn kank1/n ≤ 1, and hence lim supn kank1/n ≤ |∏|−1. Since∏ is an
arbitrary complex numberwith |∏|−1 > r(a), we obtain lim supn kank1/n ≤ r(a).
In combination with (∗), this inequality completes the proof. §

The spectral radius formula gives us the following quantitative conclusion
about the Gelfand transform.

Corollary 4.47. The Gelfand transform for a commutative complex Banach
algebra A with identity is norm preserving from A to C(A∗

m) if and only if
ka2k = kak2 for all a in A.

PROOF. If ka2k = kak2 for all a, then induction gives ka2nk = kak2n and
thus kak = ka2nk2−n . Hence kak = limn ka2nk2−n . This limit equals r(a) by the
spectral radius formula (Corollary 4.46), and r(a) equals kbaksup by Proposition
4.43b. Therefore kak = kbaksup.
Conversely if kbaksup = kak for all a, then r(a) = kak by Proposition 4.43b,

and ka2k = r(a2) = r(a)2 = kak2 by Corollary 4.45. §

This represents some progress. The condition ka2k = kak2 is satisfied in L∞,
and hence the Gelfand transform is a norm-preserving algebra homomorphism of
L∞ into C(A∗

m). In L1 after an identity is adjoined, the condition ka2k = kak2
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is not universally satisfied, and the corollary says that the Gelfand transform, i.e.,
the Fourier transform, is not norm preserving; this conclusion has content, but
it is not a surprise. In the case of the complex Banach algebra generated by the
identity and a bounded self-adjoint operator A, the condition ka2k = kak2 is
satisfied for a = A as a consequence of Proposition 2.2 with L = A∗A, but it is
less transparent what happens with other operators in the Banach algebra that are
not self adjoint.
The final step is to bring the operation ( · )∗ into play. An involution of a

complex Banach algebra A is a map a 7→ a∗ of A into itself with the properties
that the following hold for all a and b in A:

(i) a∗∗ = a,
(ii) (a + b)∗ = a∗ + b∗,
(iii) (∏a)∗ = ∏̄a∗ for all ∏ in C,
(iv) (ab)∗ = b∗a∗.

A complex Banach algebraA with involution ( · )∗ is called a C∗ algebra if
(v) ka∗ak = kak2 for all a in A.

Our examples—B(S) and certain subalgebras, L∞, L1, and B(H, H) are all
complex Banach algebras with involution. For B(S) and L∞, the involution is
complex conjugation. For L1, it is f 7→ g with g(x) = f (−x), and for B(H, H)
it is adjoint. Of these examples all but L1 are C∗ algebras.
Observe that (i) and (iv) imply that the element 1, if it is present, has to satisfy

1∗ = 1 because 1 = (1∗)∗ = (11∗)∗ = 1∗∗1∗ = 11∗ = 1∗. If (v) holds also, then
(v) with a = 1 shows that k1k = 1.

Theorem 4.48. If A is a commutative C∗ algebra with identity, then the
Gelfand transform is a norm-preserving algebra isomorphism ofA onto C(A∗

m),
and it carries ( · )∗ into complex conjugation.

PROOF. For any a in A, (v) gives kak2 = ka∗ak ≤ ka∗kkak. If a = 0, then
a∗ = 0; otherwise division by kak gives kak ≤ ka∗k. Applying this inequality
to a∗ and using (i), we obtain

ka∗k = kak. (∗)

Next suppose that b is an element of A with b∗ = b. Raising to powers gives
(b2n )∗ = (b2n )∗ for n ∏ 0. Then (v) gives kb2nk = k(b2n−1)∗b2n−1k = kb2n−1k2,
and induction shows that kb2nk = kbk2n . Hence kbk = kb2nk2−n . Taking the
limit and applying the spectral radius formula and Proposition 4.43b, we obtain

kbk = lim
n

kb2
n
k2

−n
= r(b) = kbbksup. (∗∗)
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The Gelfand transform is an algebra homomorphism by Proposition 4.43. If a
general a is given inA, then we can apply (∗) to a and (∗∗) to b = a∗a to obtain

ka∗kkak = kak2 = ka∗ak = kbk = kbbksup = kda∗aksup
= kba∗baksup ≤ kba∗ksupkbaksup ≤ ka∗kkak,

the last inequality holding since the Gelfand transform has norm≤ 1 according to
Proposition 4.43. The end expressions are equal, and equality must hold through-
out. Therefore kbaksup = kak, and the Gelfand transform is norm preserving.
Inworking towardproving that theGelfand transformcarries ( · )∗ into complex

conjugation, we first show that

b∗ = b implies i is not in σ (b). (†)

Assuming the contrary, we find that 1 is in σ (−ib). By the Spectral Mapping
Theorem (Theorem 4.44), ∏ + 1 is in σ (∏ − ib) for all real ∏. Hence

(∏ + 1)2 ≤ (r(∏ − ib))2 ≤ k∏ − ibk2 = k(∏ − ib)∗(∏ − ib)k

= k(∏ + ib)(∏ − ib)k = k∏2 + b2k ≤ ∏2k1k + kb2k = ∏2 + kb2k,

and 2∏ + 1 ≤ kbk2 for all real ∏. This is a contradiction, and (†) is proved.
Next let us deduce from (†) that

b∗ = b implies σ (b) ⊆ R. (††)

Suppose that ∏ = α + iβ has α and β real and β 6= 0. Then β−1(b − ∏) =
β−1(b− α) − i . The element β−1(b− ∏) has (β−1(b− α))∗ = β−1(b− α), and
(†) shows that i is not in its spectrum. Therefore β−1(b − ∏) = β−1(b − α) − i
is invertible. Since β 6= 0, b − ∏ is invertible. Therefore ∏ is not in σ (b). This
proves (††).
Now we shall show that the Gelfand transform carries ( · )∗ into complex

conjugation. Let a be inA, and write a = 1
2 (a+a∗)+ 1

2i ((ia)+ (ia)∗) = b+ ic
with b∗ = b and c∗ = c. Then a∗ = b− ic. From (††) we know thatbb andbc are
real-valued. Therefore ba∗(`) = bb(`)− ibc(`) = bb(`) + ibc(`) = ba(`), as asserted.
Since the Gelfand transform is norm preserving, respects products, and car-

ries 1 into 1, its image is a uniformly closed subalgebra of C(A∗
m). The fact

that ( · )∗ is carried into complex conjugation implies that the image is closed
under complex conjugation. The image separates points of A by definition of
equality of linear functionals. By the Stone–Weierstrass Theorem the image is
all of C(A∗

m). This completes the proof. §
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Among our examples, if A is a conjugate-closed Banach subalgebra of B(S)
with identity, then Theorem 4.48 reproduces the Stone Representation Theorem
(Theorem 4.15).
Second if A is L∞, Theorem 4.48 gives us something new, identifying L∞

with C((L∞)∗m). We do not get a total understanding of (L∞)∗m, but we do get
some understanding from the fact that every ideal is contained in a maximal ideal.
We can produce an ideal in L∞ merely by specifying a measurable subset; the
ideal consists of all essentially bounded functions, modulo null functions, that
vanish on that set. As the set gets smaller, we get closer to the situation of a
maximal ideal.
Third if A is L1, Theorem 4.48 gives us no information since L1 is not a C∗

algebra. The theory of complex Banach algebras can be pursued in a direction
that specializes to more information about L1, but we shall not follow such a
route.
Fourth if A is the complex Banach algebra generated by the identity and a

bounded self-adjoint operator A on a Hilbert space H , then Theorem 4.48 is
applicable and realizes the algebra as C(A∗

m). We shall see in the next section
thatA∗

m can be viewed as the spectrum σ (A). However, the Hilbert space H plays
no role in this realization, and we therefore cannot expect to learn much about our
original operator from C(A∗

m). For example we cannot distinguish between the
two operators onC3 given by diagonal matrices diag(1, 1, 2) and diag(1, 2, 2) on
the basis of the spectrum of each. The goal of the next section is to remedy this
defect.
Since we shall want to consider operators in B(H, H) as belonging to more

than one C∗ algebra, let us take another look at the definition of the spectrum of
an element. The spectrum of a, as a member of A, is the set of complex ∏ for
which (a − ∏)−1 fails to exist as a member of A. Certainly if we have A1 ⊆ A2
and a is in A1, then the failure of (a − ∏)−1 to exist in A2 implies the failure of
(a−∏)−1 to exist inA1. Hence the spectrum relative toA1 contains the spectrum
relative to A2. The spectrum is the smallest for A = B(H, H). The following
corollary implies that for operators A with AA∗ = A∗A, the smallest possible
spectrum is already achieved for the C∗ algebra generated by 1, A, and A∗.

Corollary 4.49. If A is a C∗ algebra with identity and if a is an invertible
element of A such that aa∗ = a∗a, then a is invertible already in the smallest
closed subalgebraA0 of A containing 1, a, and a∗.

PROOF. Since a−1a∗ = a−1(a∗a)a−1 = a−1(aa∗)a−1 = a∗a−1, the smallest
closed subalgebra A1 of A containing 1, a, a∗, a−1, and a−1∗ is commutative,
hence is a commutative C∗ algebra with identity. Form the Gelfand transform
b 7→ bb for A1. Thenba and da−1 are reciprocals, and the image ofba is therefore
bounded away from0. By the Stone–Weierstrass Theoremwe can find a sequence
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{pn(z, z̄)} of polynomial functions that converge uniformly on the compact image
ofba to 1/z. Since by Theorem 4.48, the Gelfand transform is isometric for A1,
we have a−1 = lim pn(a, a∗) in A1, and a−1 is therefore exhibited as a member
of A0. §

11. Spectral Theorem for Bounded Self-Adjoint Operators

The goal of this section is to expand upon Theorem 4.48 in the case of a commu-
tativeC∗ algebra of bounded linear operators on a Hilbert space in such a way that
the Hilbert space plays a decisive role. The result will be the Spectral Theorem,
and we shall see how the Spectral Theorem enables one to compute with the
operators in question. The theorem to be given here is limited to the case of a
separable Hilbert space, and the assumption of separability will be included in
all our results about general spaces B(H, H). The Spectral Theorem will enable
us to view the operators in question as multiplications by L∞ functions on an L2
space, and we therefore begin with that example.

EXAMPLE. Let (S, µ) be a finite measure space, and let H be the Hilbert space
H = L2(S, µ). For f in L∞(X, µ), define Mf : L2 → L2 by Mf (g) = f g.
The computation

kMf (g)k22 =
Z

X
| f g|2 dµ ≤ k f k2∞

Z

X
|g|2 dµ = k f k2∞kgk22

shows that Mf is a bounded operator on H with kMf k ≤ k f k∞. Shortly we
shall check that equality holds:

kMf k = k f k∞. (∗)

But first, let us observe that

Mfg = Mf Mg, Mα f+βg = αMf + βMg, M∗
f = M f̄ , M1 = I.

These facts, in combination with (∗), say that f 7→ Mf is a norm-preserving
C∗ algebra isomorphism of the commutative C∗ algebra L∞(S, µ) onto the
subalgebra

M(L2(S, µ)) = {Mf ∈ B(L2(S, µ), L2(S, µ)) | f ∈ L∞(S, µ)}

of the C∗ algebra B(L2(S, µ), L2(S, µ)). The algebraM(L2(S, µ)) is called
themultiplication algebra on L2(S, µ). Returning to the verification of (∗), let
≤ > 0 be given with ≤ ≤ k f k∞, and let

E =
©
x

Ø
Ø | f (x)| ∏ k f k∞ − ≤

™
.
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Then 0 < µ(E) < ∞, and we take g to be the function that is 1 on E and is 0 on
Ec. Then kgk2 = µ(E)1/2, and

k f gk22 =
Z

X
| f g|2 dµ =

Z

E
| f |2 dµ ∏ (k f k∞ − ≤)2µ(E).

Therefore

(k f k∞ − ≤)µ(E)1/2 ≤ kMf gk2 ≤ kMf kkgk2 = kMf kµ(E)1/2,

and k f k∞ − ≤ ≤ kMf k. Since we already know that kMf k ≤ k f k∞ and since
≤ is arbitrary, we conclude that (∗) holds.

Now let us consider an arbitrary bounded self-adjoint linear operator on a
separable Hilbert space. Wementioned at the end of Section 10 the two operators
onC3 given by diagonalmatrices diag(1, 1, 2) and diag(1, 2, 2). TheC∗ algebras
generated by these operators are isomorphic 2-dimensional algebras, and hence
there is no way to superimpose on the setting of Theorem 4.48 the action of the
operators on the Hilbert space C3 if we consider these operators by themselves.
The operators do get distinguished, however, if we enlarge the C∗ algebra under
consideration, working instead with the 3-dimensional commutative C∗ algebra
of all diagonal matrices. In the general situation, as long as we are going to
enlarge the algebra of operators under consideration, we may as well enlarge it
as much as possible while keeping it commutative.
If H is a Hilbert space, a maximal abelian self-adjoint subalgebra in

B(H, H) is a commutative C∗ subalgebra of B(H, H) that is not contained in
any larger commutative subalgebra of B(H, H) that is closed under ( · )∗. In the
example with H = C3 in the previous paragraph, the 3-dimensional algebra of
diagonal matrices is a maximal abelian self-adjoint subalgebra.
For general H , we shall obtain a simple criterion for a subalgebra to bemaximal

abelian self-adjoint, we shall show that the multiplication algebra for an L2 space
with respect to a finite measure meets this criterion, and then we shall see that
maximal abelian self-adjoint subalgebras have a special property that will allow
us to incorporate the Hilbert space into an application of Theorem 4.48.
If T is a subset of B(H, H), let

T 0 = {A ∈ B(H, H) | AB = BA for all B ∈ T }.

The set T 0 is a subalgebra of B(H, H) containing the identity and called the
commuting algebra of T. It has the following properties:

(i) T 0 is closed in the operator-norm topology,
(ii) T 0 ⊇ T if and only if T is commutative,
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(iii) if T is stable under ( · )∗, then T 0 is stable under ( · )∗ and hence is a C∗

subalgebra of B(H, H),
(iv) a subalgebraA of B(H, H) stable under ( · )∗ is a maximal abelian self-

adjoint subalgebra of B(H, H) if and only if A0 = A.
All of these properties are verified by inspection except possibly the assertion in
(iv) thatAmaximal implies thatA0 does not strictly containA. For this assertion
letA bemaximal, and suppose that B lies inA0 but notA. SinceA is stable under
( · )∗, B∗ lies in A0, and so does B + B∗. Then B + B∗ and A together generate
a C∗ subalgebra that is commutative and strictly contains A, in contradiction to
the maximality of A. This proves (iv).

Proposition 4.50. If (S, µ) is a finite measure space, then the multiplication
algebra on L2(S, µ) is a maximal abelian self-adjoint subalgebra of the algebra
B(L2(S, µ), L2(S, µ)).

PROOF. WriteM forM(L2(S, µ)). SinceM is commutative, (ii) shows that
M0 ⊇ M. SinceM is stable under ( · )∗, (iv) shows that it is enough to prove
thatM0 ⊆ M. Thus let T be inM0, and define an L2 function g by g = T (1).
If f is in L∞, then the fact that T is inM0 implies that

T f = T Mf (1) = Mf T (1) = Mf g = f g.

If the set where N ≤ |g(x)| ≤ N + 1 has positive measure, then an argument in
the example with L2(S, µ) shows that kTk ∏ N . Since T is assumed bounded,
we conclude that g is in L∞. Therefore T f = Mg f for all f in L∞. Since L∞

is dense in L2 for a finite measure space and since T and Mg are both bounded,
T = Mg. Therefore T is exhibited as inM, and the proof thatM0 ⊆ M is
complete. §

We come now to the special property of maximal abelian self-adjoint subalge-
bras that will allow us to bring theHilbert space into playwhen applying Theorem
4.48 to these subalgebras. IfA is any subalgebra of B(H, H), a vector x in H is
called a cyclic vector for A if the vector subspaceAx of H is dense in H .

Lemma4.51. Let H be a complexHilbert space, let K ⊆ H be a closed vector
subspace, and let E be the orthogonal projection of H on K . IfA is a subalgebra
of B(H, H) that is stable under ( · )∗ and has the property that A(K ) ⊆ K for all
A in A, then E is in A0.

PROOF. Since A(K ) ⊆ K , AE(x) is in K for all x in H . Therefore AE(x) =
E AE(x) for all x in H , and AE = E AE . Since E∗ = E and since A is
stable under ( · )∗, A∗E = E A∗E . Consequently E A = E∗A = (A∗E)∗ =
(E A∗E)∗ = E AE = AE , and E is in A0. §
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Proposition 4.52. If H is a complex separable Hilbert space and A is a
maximal self-adjoint subalgebra of B(H, H), then A has a cyclic vector.

REMARKS. The 2-dimensional subalgebras that we introduced in connection
withC3 have no cyclic vectors, as we see by a count of dimensions; however, the

full 3-dimensional diagonal subalgebra has
µ 1
1
1

∂
as a cyclic vector since

√ a 0 0
0 b 0
0 0 c

!√ 1
1
1

!

=

√ a
b
c

!

.

PROOF. For each x in H , form the closed vector subspace (Ax)cl. Since the
identity is in A, x is in Ax . Since Ax is stable under A and since the members
of A are bounded operators, (Ax)cl is stable under A. The vector subspace Ax
has the property that

y ⊥ Ax implies Ay ⊥ Ax (∗)

because (Ax, By) = (y, A∗Bx) = 0 if A and B are inA. Consider orthonormal
subsets {xα} in H such thatAxα ⊥ Axβ for α 6= β. Such sets exist, the empty set
being one. By Zorn’s Lemma let S = {xα} be a maximal such set. This maximal
S has the property that

H =
° P

xα∈S
Axα

¢cl
,

since otherwise we could obtain a contradiction by adjoining any unit vector in°°P
xα∈S Axα

¢cl¢⊥ to S and applying (∗). Since H is separable, S is countable.
Let us enumerate its members as x1, x2, . . . . Put z =

P∞
n=1 2−nxn . This series

converges in H since H is complete, and we shall prove that the sum z is a cyclic
vector for A.
Lemma 4.51 implies that the orthogonal projection En of H onto (Axn)cl is in

A0. Since A is a maximal abelian self-adjoint subalgebra of B(H, H), A0 = A.
Hence En is in A. Therefore Az ⊇ AEnz = A2−nxn = Axn for all n, and we
obtain (Az)cl ⊇

°P
n Axn

¢cl
= H . This completes the proof. §

If H1 and H2 are complex Hilbert spaces, a unitary operator U from H1 to
H2 is a linear operator from H1 onto H2 with kUxkH2 = kxkH1 for all x in H1.
Such an operator is invertible, and its inverse is unitary. Bymeans of polarization,
one sees that a unitary operator satisfies also the identity (Ux,Uy)H2 = (x, y)H1 ,
i.e., that the inner product is preserved. Therefore a unitary operator provides the
natural notion of isomorphism between two Hilbert spaces.
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Theorem 4.53. If H is a nonzero complex separable Hilbert space andA is a
maximal abelian self-adjoint subalgebra of B(H, H), then there exists a measure
space (S, µ) with µ(S) = 1 and a unitary operatorU : H → L2(S, µ) such that

UAU−1 = M(L2(S, µ)).

REMARK. In other words, under the assumption that H is separable, any maxi-
mal abelian self-adjoint subalgebraofB(H, H) is isomorphic to themultiplication
algebra for the L2 space relative to some finite measure.

PROOF. Applying Proposition 4.52, let z be a unit cyclic vector for A. Let
us see that the linear map of A into H given by A 7→ Az is one-one. In fact, if
Az = 0, then every B in A has A(Bz) = BAz = B0 = 0. Since Az is dense in
H and A is bounded, A is 0.
We saw before Proposition 4.50 that A is a commutative C∗ algebra with

identity. By Theorem 4.48 the Gelfand transform A 7→ bA is a norm-preserving
algebra isomorphism of A onto C(A∗

m) carrying ( · )∗ to complex conjugation.
Define a linear functional ` on C(A∗

m) by

`(bA) = (Az, z)H ,

the inner product being the inner product in H . Let us see that the linear functional
` is positive. In fact, any function∏ 0 in C(A∗

m) is the absolute value squared of
some element of C(A∗

m), hence is of the form |bA|2. Then

`(|bA|2) = `(bA bA) = `( dA∗A) = (A∗Az, z)H = (Az, Az)H ∏ 0.

By the Riesz Representation Theorem, there exists a unique regular Borel
measure µ on A∗

m such that

`(bA) =
R
A∗
m

bA dµ

for all bA in C(A∗
m). The measure µ has total mass equal to `(1) = `(bI ) =

(I z, z)H = kzk2H = 1.
We shall now construct the unitary operator U carrying H to L2(A∗

m, µ). On
the dense vector subspaceAz of H , define a linear mapping U0 by

U0Az = bA ∈ C(A∗
m) ⊆ L2(A∗

m, µ).

This is well defined since, as we have seen, Az = 0 implies A = 0. On the vector
subspaceAz, we have

kU0Azk2L2(A∗
m)

=
R
A∗
m
|bA|2 dµ=

R
A∗
m

dA∗A dµ = `(A∗A) = (A∗Az, z)H =kAzk2H .
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HenceU0 is an isometry from the dense subsetAz of H into L2(A∗
m). By uniform

continuity,U0 extends to an isometryU from H into L2(A∗
m). As the continuous

extension of the linear functionU0,U is linear. The image ofU containsC(A∗
m),

which is dense in L2(A∗
m, µ), and the image is complete, being isometric with H .

Therefore the image of U is closed. Consequently U carries H onto L2(A∗
m, µ)

and is unitary.
We still have to check that UAU−1 = M(L2(A∗

m, µ)). If A and B are in A,
then

U AU−1(bB) = U A(Bz) = U(ABz) = dAB = bA bB = M bA
bB.

Since U AU−1 and M bA are bounded and since the bB’s are dense in L2(A∗
m, µ),

U AU−1 = M bA. Therefore UAU−1 ⊆ M(L2(A∗
m, µ)). Next let T be in

M(L2(A∗
m, µ)). Then T commutes with every member ofM(L2(A∗

m, µ)) and
in particular with every U AU−1. Thus TU AU−1 = U AU−1T for all A in A,
andU−1TU A = AU−1TU . Since A is arbitrary inA,U−1TU is inA0. ButA is
assumed to be a maximal abelian self-adjoint subalgebra, and thereforeA0 = A.
Consequently U−1TU is in A. Say that U−1TU = A0. Then T = U A0U−1,
and T is in UAU−1. Therefore UAU−1 = M(L2(A∗

m, µ)). §

The Spectral Theorem for a single bounded self-adjoint operator will be an
immediate consequence of Theorem 4.53 and an application of Zorn’s Lemma.
But let us state the result (Theorem 4.54) so that it applies to a wider class of
operators—and to a commuting family of such operators rather than just one.
The first step is to define the kinds of bounded linear operators of interest. Let

H be a complex Hilbert space. A bounded linear operator A : H → H is said to
be

• normal if A∗A = AA∗,
• positive semidefinite if it is self adjoint22 and (Ax, x) ∏ 0 for all x ∈ H ,
• unitary if A is onto H and has kAxk = kxk for all x ∈ H .

Self-adjoint operators, having A∗ = A, are certainly normal. Every operator of
the form A∗A for some bounded linear A is positive semidefinite. The definition
of “unitary”merely specializes the definition before Theorem4.53 to the case that
H1 = H2. Unitary operators A in the present setting, according to Proposition
2.6, are characterized by the condition that A is invertible with A−1 = A∗, and
unitary operators are therefore normal.
In the case of multiplication operators Mf by L∞ functions on L2 of a finite

measure space, the adjoint of Mf is M f̄ . Then every Mf is normal, Mf is self
adjoint if and only if f is real-valued a.e., Mf is positive semidefinite if and only
if f is ∏ 0 a.e., and Mf is unitary if and only if | f | = 1 a.e.

22The condition “self adjoint” can be shown to be automatic in the presence of the inequality
(Ax, x) ∏ 0 for all x , but we shall not need to make use of this fact.
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Theorem4.54 (SpectralTheoremfor boundednormal operators). Let {Aα}α∈E
be a family of bounded normal operators on a complex separable Hilbert space
H , and suppose that AαAβ = Aβ Aα and AαA∗

β = A∗
β Aα for all α and β. Then

there exist a finite measure space (S, µ), a unitary operator U : H → L2(S, µ),
and a set { fα}α∈E of functions in L∞(S, µ) such that U AαU−1 = Mfα for all α
in E .
PROOF. LetA0 be the complex subalgebra of B(H, H) generated by I and all

Aα and A∗
α for α in E . This algebra is commutative and is stable under ( · )∗. Let

S be the set of all commutative subalgebras of B(H, H) containingA0 and stable
under ( · )∗, and partially order S by inclusion upward. The union of the members
of a chain in S is an upper bound for the chain, and Zorn’s Lemma therefore
produces a maximal element A in S. Since A is maximal, it is necessarily
closed in the operator-norm topology. Then A is a maximal abelian self-adjoint
subalgebra of B(H, H), and Theorem 4.53 is applicable. The theorem yields a
finite measure space (S, µ) and a unitary operator U : H → L2(S, µ) such that
UAU−1 = M(L2(S, µ)). For each α in E , we then have U AαU−1 = Mfα for
some fα in L∞(S, µ), as required. §

In a corollarywe shall characterize the spectra of operators that are self adjoint,
or positive definite, or unitary. Implicitly in the statement and proof, we make
use of Corollary 4.49 when referring to σ (A): the set σ (A) is independent of
the Banach subalgebra of B(H, H) from which it is computed as long as that
subalgebra contains I , A, and A∗. The corollary needs one further thing beyond
Theorem 4.54, and we give that in the lemma below.

Lemma 4.55. Let (S, µ) be a finite measure space, and form the Hilbert space
L2(S, µ). For f in L∞(S, µ), let Mf be the operation of multiplication by f .
Define the essential image of f to be

©
∏0 ∈ C

Ø
Ø µ

°
f −1({∏ ∈ C

Ø
Ø |∏ − ∏0| < ≤})

¢
> 0 for every ≤ > 0

™
.

Then
σ (Mf ) = essential image of f .

PROOF. To prove ⊆ in the asserted equality, let ∏0 be outside the essential
image, and choose ≤ > 0 such that f −1({|∏ − ∏0| < ≤}) has measure 0. Then
| f (x) − ∏0| ∏ ≤ a.e. Hence 1/( f − ∏0) is in L∞, and M1/( f−∏0) exhibits Mf−∏0

as invertible. Thus ∏0 is not in σ (Mf ).
For the inclusion⊇, suppose thatMf−∏0 is invertible, with inverse T . For every

g in L∞, we have Mf−∏0Mg = MgMf−∏0 . Multiplying this equality by T twice,
we obtain MgT = T Mg. By Proposition 4.50, T is of the form T = Mh for some
h in L∞. Then we must have ( f − ∏0)h = 1 a.e. Hence | f (x) − ∏0| ∏ khk−1

∞
a.e., and ∏0 is outside the essential image. This proves the lemma. §
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Corollary 4.56. Let H be a complex separableHilbert space, let A be a normal
operator in B(H, H), and let σ (A) be the spectrum of A. Then

(a) A is self adjoint if and only if σ (A) ⊆ R,
(b) A is positive semidefinite if and only if σ (A) ⊆ [0,+∞),
(c) A is unitary if and only if σ (A) ⊆

©
z ∈ C

Ø
Ø |z| = 1

™
.

PROOF. The corollary is immediate fromTheorem 4.54 as long as the corollary
is proved for any multiplication operator A = Mf by an L∞ function f on the
Hilbert space L2(S, µ). For this purpose we shall use Lemma 4.55.
In the case of (a), the operator Mf is self adjoint if and only if f is real-valued

a.e. If f is real-valued, then the definition of essential image shows that ∏0 is not
in the essential image if ∏0 is nonreal. Conversely if every nonreal ∏0 is outside
the essential image, then to each such ∏0 we can associate a number ≤∏0 > 0 for
which f −1({∏ ∈ C

Ø
Ø |∏ − ∏0| < ≤∏0}) has µ measure 0. Countably many of the

open sets {∏ ∈ C
Ø
Ø |∏ − ∏0| < ≤∏0} cover the complement of R in C, and their

inverse images under f have µ measure 0. Therefore the inverse image under f
of the union hasµmeasure 0, andµ( f −1(Rc)) = 0. That is, f is real-valued a.e.
This proves (a), and the arguments for (b) and (c) are completely analogous. §

The power of the Spectral Theorem comes through the functional calculus that
it implies for working with operators. We shall prove the relevant theorem and
then give five illustrations of how it is used.

Theorem 4.57 (functional calculus). Fix a bounded normal operator A on a
complex separable Hilbert space H . Then there exists one and only one way to
define a system of operators ϕ(A) for every bounded Borel function ϕ on σ (A)
such that

(a) z(A) = A for the function ϕ(z) = z, and 1(A) = I for the constant
function 1,

(b) ϕ 7→ ϕ(A) is an algebra homomorphism into B(H, H),
(c) ϕ(A)∗ = ϕ(A),
(d) limn ϕn(A)x = ϕ(A)x for all x ∈ H whenever ϕn → ϕ pointwise with

{ϕn} uniformly bounded.
The operators ϕ(A) have the additional properties that

(e) ϕ(A) is normal, and all the operators ϕ(A) commute,
(f) kϕ(A)k ≤ kϕksup,
(g) limn ϕn(A) = ϕ(A) in the operator-norm topology whenever ϕn → ϕ

uniformly,
(h) σ (ϕ(A)) ⊆ (ϕ(σ (A))cl,
(i) (spectral mapping property) σ (ϕ(A)) = ϕ(σ (A)) if ϕ is continuous.
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PROOF OF EXISTENCE. Apply Theorem 4.54 to the singleton set {A}, obtaining
a finite measure space (S, µ), a unitary operatorU : H → L2(S, µ), and an L∞

function f A on S such that U AU−1 = MfA . Examining the proofs of Theorems
4.53 and 4.54, we see that we can take S to be a certain compact Hausdorff space
A∗
m, µ to be a regular Borel measure on S, and the function f A to be the Gelfand

transform bA, therefore continuous. In the construction of Theorem 4.53, the
measure µ has the property that

R
S |bB|2 dµ = kBzkH for every B in A, where

z is a cyclic vector. Therefore B 6= 0 implies
R
S |bB|2 dµ > 0. Since |bB|2 is the

most general continuous function ∏ 0 on S, µ assigns positive measure to every
nonempty open set.
For any bounded Borel function ϕ on σ (A), the function ϕ ◦ f A is a well-

defined function on S since Proposition 4.43a shows that the image of bA = f A
is σ (A). The function ϕ ◦ f A is a bounded Borel function since ϕ−1 of an open
set in C is a Borel set of C and since f −1

A of a Borel set of C is a Borel set of S.
Thus it makes sense to define

ϕ(A) = U−1Mϕ◦ f AU.

Then we see that properties (a) through (i) are satisfied for any given normal
A on H if they are valid in the special case of any Mf on L2(S, µ) with f
continuous, S compact Hausdorff, µ a regular Borel measure assigning positive
measure to every nonempty open set, and ϕ(Mf ) defined for arbitrary bounded
Borel functions ϕ on the image of f by

ϕ(Mf ) = Mϕ◦ f .

Properties (a) through (c) for multiplication operators are immediate, (d) follows
by dominated convergence, (e) and (f) are immediate, and (g) follows directly
from (f). We are left with properties (h) and (i).
Lemma 4.55 identifies the spectrum of a multiplication operator by an L∞

function with the essential image of the function. Using this identification, we
see that (h) and (i) follow in our special case if it is proved for f continuous that

essential image of ϕ ◦ f ⊆ (ϕ(essential image of f ))cl, ϕ bounded Borel, (∗)

essential image of ϕ ◦ f = ϕ(essential image of f ), ϕ continuous. (∗∗)

Let us see that these follow if we prove that

essential image of √ ⊆ (image √)cl for √ : S → C bounded Borel, (†)
essential image of √ = image √ for √ : S → C continuous. (††)
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In fact, if (†) and (††) hold, then for (∗) we have

essential image(ϕ ◦ f ) ⊆ (image(ϕ ◦ f ))cl by (†) for ϕ ◦ f

= (ϕ(image f ))cl

= (ϕ(essential image f ))cl by (††) for f.

For (∗∗) we have

essential image(ϕ ◦ f ) = image(ϕ ◦ f ) by (††) for ϕ ◦ f
= ϕ(image f )
= ϕ(essential image f ) by (††) for f.

Thus it is enough to prove (†) and (††). For (†) let ∏0 be in the essential
image of √ . Then for each n ∏ 1, µ

°
√−1©∏

Ø
Ø |∏ − ∏0| < 1

n
™¢

> 0, and hence
√−1©∏

Ø
Ø |∏ − ∏0| < 1

n
™

6= ∅. Thus there exists ∏ = ∏n with ∏n in the image of
√ such that |∏ − ∏0| < 1

n , and ∏0 is exhibited as a member of (image √)cl.
For (††) we first show that the image of √ lies in the essential image of √ if

√ is continuous. Thus let ∏0 be in the image of √ . Then √−1©∏
Ø
Ø |∏ − ∏0| < ≤

™

is nonempty, and it is open since √ is continuous. Since nonempty open sets of
S have positive µ measure, we conclude that ∏0 is in the essential image of √ .
Then

image √ ⊆ essential image √ by what we have just proved

⊆ (image √)cl by (†)
= image √ since S is compact and √ is continuous,

and (††) follows. This completes the proof of existence and the list of properties
in Theorem 4.57. §

PROOF OF UNIQUENESS. Properties (a) through (c) determineϕ(A)whenever ϕ
is a polynomial function of z and z̄. By the Stone–Weierstrass Theorem any con-
tinuous ϕ on a compact set such as σ (A) is the uniform limit of such polynomials,
and hence (d) implies that ϕ(A) is determined whenever ϕ is continuous.
The indicator function of a compact subset of C is the decreasing pointwise

limit of a sequence of continuous functions of compact support, and hence (d)
implies that ϕ(A) is determinedwhenever ϕ is the indicator function of a compact
set. Applying (b) twice, we see that ϕ(A) is determined whenever ϕ is the
indicator function of any finite disjoint union of differences of compact sets.
Such sets form23 the smallest algebra of sets containing the compact subsets of

23By Lemma 11.2 of Basic.
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σ (A). Another application of (d), together with the Monotone Class Lemma,24
shows that ϕ(A) is determined whenever ϕ is the indicator function of any Borel
subset of σ (A). Any bounded Borel function on σ (A) is the uniform limit of
finite linear combinations of indicator functions of Borel sets, and hence onemore
application of (b) and (d) shows that ϕ(A) is determinedwhenever ϕ is a bounded
Borel function on σ (A). §

Corollary 4.58. If H is a complex separable Hilbert space, then every positive
semidefinite operator in B(H, H) has a unique positive semidefinite square root.

REMARKS. This is an important application of the Spectral Theorem and the
functional calculus. It is already important when applied to operators of the form
A∗A with A in B(H, H). For example the corollary allows us in the definition
of trace-class operator before Proposition 2.8 to drop the assumption that the
operator is compact; it is enough to assume that it is bounded.

PROOF. If A is positive semidefinite, then σ (A) ⊆ [0,∞) by Corollary 4.56b.
Theusual square root function

p
on [0,∞) is boundedonσ (A), andwe can formp

A by Theorem 4.57. Then (a) and (b) in Theorem 4.57 imply that (
p
A)2 = A,

and (i) implies that
p
A is positive semidefinite. This proves existence.

For uniqueness let B be positive semidefinite with B2 = A. Because of
the uniqueness assertion in Theorem 4.57, we have at our disposal the maximal
abelian self-adjoint subalgebra of B(H, H) that is recalled from Theorem 4.53
and used to define operators ϕ(A) in the proof of Theorem 4.57. Let A0 be the
smallest C∗ algebra in B(H, H) containing I , A, and B, and extend A0 to a
maximal abelian self-adjoint subalgebraA of B(H, H). We use this A to define
p
A. On the compact Hausdorff space, dpA and bB are both nonnegative square

roots of bA and must be equal. Since the Gelfand transform for A is one-one,
B =

p
A. §

Corollary 4.59. Let H be a complex separable Hilbert space, and let A and B
be bounded normal operators on H such that A commutes with B and B∗. Then
each ϕ(A), for ϕ a bounded Borel function on σ (A), commutes with B and B∗.

PROOF. As in the proof of the previous corollary, we have at our disposal
the maximal abelian self-adjoint subalgebraA of B(H, H) that is used to define
operators ϕ(A). We choose one containing I , A, and B. Then ϕ(A) is in A and
hence commutes with B and B∗. §

Corollary 4.60. Let A be a bounded normal operator on a complex
separable Hilbert space, let ϕ2 : σ (A) → C be a continuous function,

24Lemma 5.43 of Basic.
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and let ϕ1 : ϕ2(σ (A)) → C be a bounded Borel function. Then ϕ1(ϕ2(A)) =
(ϕ1 ◦ ϕ2)(A).

REMARK. If ϕ2(z) = z̄, this corollary recovers property (c) in Theorem 4.57.

PROOF. The uniqueness in Theorem 4.57 shows that the operators ϕ(ϕ2(A))
form the unique system defined for bounded Borel functions ϕ : σ (ϕ2(A)) → C
such that z(ϕ2(A)) = ϕ2(A), 1(ϕ2(A)) = 1, ϕ 7→ ϕ(ϕ2(A) is an algebra homo-
morphism, ϕ(ϕ2(A))∗ = ϕ(ϕ2(A)), and limϕn(ϕ2(A))x = ϕ(ϕ2(A))x for all x
whenever ϕn → ϕ pointwise and boundedly on σ (ϕ2(A)).
We now consider the system formed from √(A), specialize to functions √ =

ϕ ◦ ϕ2, and make use of the properties of √(A) as stated in the existence half
of the theorem. Theorem 4.57i shows that σ (ϕ2(A)) = ϕ2(σ (A)). We have
(z ◦ ϕ2)(A) = ϕ2(A) trivially and (1 ◦ ϕ2)(A) = 1(A) = 1 by (a) for the system
√(A). The map ϕ 7→ (ϕ ◦ ϕ2)(A) is an algebra homomorphism as a special case
of (b) for√(A). The formula (ϕ◦ϕ2)(A)∗ = ϕ ◦ ϕ2(A) = (ϕ◦ϕ2)(A) is a special
case of (c) for √(A). And the formula lim(ϕn ◦ ϕ2)(A)x = (ϕ ◦ ϕ2)(A)x is a
special case of (d) for√(A). Therefore the system (ϕ ◦ϕ2)(A) has the properties
that uniquely determine the system ϕ(ϕ2(A)), and we must have ϕ(ϕ2(A)) =
(ϕ ◦ ϕ2)(A) for every bounded Borel function ϕ on σ (ϕ2(A)). §

Corollary 4.61. If A is a bounded normal operator on a complex separable
Hilbert space, then there exists a sequence {Sn} of bounded linear operators of
the form Sn =

PNn
i=1 ci,n Ei,n converging to A in the operator-norm topology and

having the property that each Ei,n is an orthogonal projection of the form ϕ(A).

PROOF. Choose a sequence of simple Borel functions sn on σ (A) converging
uniformly to the function z, and let Sn = sn(A). Then apply Theorem 4.57. §

Corollary 4.62. If A is a bounded normal operator on a complex separable
Hilbert space H of dimension > 1, then there exists a nontrivial orthogonal
projection that commutes with every bounded normal operator that commutes
with A and A∗. Hence there is a nonzero proper closed vector subspace K of H
such that B(K ) ⊆ K for every bounded normal operator B commuting with A
and A∗.

PROOF. This is a special case of Corollary 4.61. §

This completes our list of illustrations of the functional calculus associated
with the Spectral Theorem. We now prove a result mentioned near the end of
Section 10, showing how the spectrum of an operator relates to spaces of maximal
ideals.
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Proposition 4.63. Let A be a bounded normal operator on a complex separable
Hilbert space H , and let A be the smallest C∗ algebra of B(H, H) containing I ,
A, and A∗. Then the maximal ideal space A∗

m is canonically homeomorphic to
the spectrum σ (A).

PROOF. Let B 7→ bB be the Gelfand transform for A, carrying A to C(A∗
m).

Proposition 4.43a shows that the image of bA in C is σ (A), and Corollary 4.49
shows that this version of σ (A) is the same as the one obtained from B(H, H).
Therefore we obtain a map C(σ (A)) → C(A∗

m) by the definition f 7→ f ◦ bA.
This map is an algebra homomorphism respecting conjugation, and it satisfies
k f ksup = k f ◦ bAksup since the function bA is onto σ (A). This equality of norms
implies that the map f 7→ f ◦ bA is one-one.
To see that f 7→ f ◦ bA is ontoC(A∗

m), we observe that the operators p(A, A∗),
for p a polynomial in z and z̄, are dense in A since I , A, and A∗ generate A.
Using that (b· ) is a norm-preserving isomorphism of A onto C(A∗

m), we see
that the members \p(A, A∗) of C(A∗

m) are dense in C(A∗
m). Since C(σ (A)) is

complete and f 7→ f ◦ bA is norm preserving, the image is closed. Therefore
f 7→ f ◦ bA carries C(σ (A)) onto C(A∗

m).
Hencewe have a canonical isomorphismof commutativeC∗ algebrasC(σ (A))

and C(A∗
m). The maximal ideal spaces must be canonically homeomorphic. The

maximal ideal space of C(σ (A)) contains σ (A) because of the point evaluations
but can be no larger than σ (A) since the StoneRepresentationTheorem (Theorem
4.15) shows that the necessarily closed image of σ (A) is dense in

°
C(σ (A))

¢
∗
m.
§

FURTHER REMARKS. A version of the Spectral Theorem is valid also for
unbounded self-adjoint operators on a complex separableHilbert space. Such op-
erators are of importance since they enable one to use functional analysis directly
with linear differential operators, which may be expected to be unbounded. The
operator L in the Sturm–Liouville theory of Chapter I is an example of the kind
of operator that one wants to handle directly. The subject has to address a large
number of technical details, particularly concerning domains of operators, and the
definitions have to bemade just right. The prototype of an unbounded self-adjoint
operator is the multiplication operator Mf on our usual L2(S, µ) corresponding
to an unbounded real-valued function f that is finite almost everywhere; the
domain of Mf is the dense vector subspace of members of L2 whose product
with f is in L2. Just as in this example, the domain of an unbounded self-adjoint
operator is forced by the definitions to be a dense but proper vector subspace of
the whole Hilbert space. Once one is finally able to state the Spectral Theorem
for unbounded self-adjoint operators precisely, the result is proved by reducing
it to Theorem 4.54. Specifically if T is an unbounded self-adjoint operator on
H , then one shows that (T + i)−1 is a globally defined bounded normal operator.
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Application of Theorem 4.54 to (T + i)−1 yields an L∞ function g such that the
unitary operator U : H → L2(S, µ) carries (T + i)−1 to g. One wants T to
be carried to f , and hence the definition should force 1/( f + i) = g. In other
words, f is defined by the equation f = 1/g − i . One checks that the unitary
operator U from H to L2 indeed carries T to Mf . For a discussion of the use of
the Spectral Theorem in connection with partial differential equations, the reader
can look at Parts 2 and 3 of Dunford–Schwartz’s Linear Operators.

BIBLIOGRAPHICAL REMARKS. The exposition in Section 3–6 and Section
8–9 is based on that in Part 1 of Dunford–Schwartz’s Linear Operators. The
exposition in Section 7 is based on that in Treves’s Topological Vector Spaces,
Distributions and Kernels.

12. Problems

1. Let X be a Banach space, and let Y be a closed vector subspace. Take as known
(from Problem 4 in Chapter XII of Basic) that X/Y becomes a normed linear
space under the definition kx+Yk = infy∈Y kx+ yk and that the resulting norm
is complete. Prove that the topology on X/Y obtained this way coincides with
the quotient topology on X/Y as the quotient of a topological vector space by a
closed vector subspace.

2. Let T : X → Y be a linear function between Banach spaces such that T (X) is
finite-dimensional and ker(T ) is closed. Prove that T is continuous.

3. Using the result of Problem 1, derive the Interior Mapping Theorem for Banach
spaces from the special case in which the mapping is one-one.

4. If X is a finite-dimensional normed linear space, why must the norm topology
coincide with the weak topology?

5. Let H be a separable infinite-dimensional Hilbert space. Give an example of a
sequence {xn} in H with kxnk = 1 for all n and with {xn} tending to 0 weakly.

6. In a σ -finite measure space (S, µ), suppose that the sequence { fn} tends weakly
to f in L2(S, µ) and that limn k fnk2 = k f k2. Prove that { fn} tends to f in the
norm topology of L2(S, µ).

7. Let X be a normed linear space, let {xn} be a sequence in X with {kxnk} bounded,
and let x0 be in X . Prove that if limn x∗(xn) = x∗(x0) for all x∗ in a dense subset
of X∗, then {xn} tends to x0 weakly.

8. Fix p with 0 < p < 1. It was shown in Section 1 that the set of Borel functions
f on [0, 1] with

R
[0,1] | f |

p dx < ∞, with two functions identified when they are
equal almost everywhere, forms a topological vector space L p([0, 1]) under the
metric d( f, g) =

R
[0,1] | f − g| dx . Put D( f ) =

R
[0,1] | f |

p dx .
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(a) Show for each positive integer n that any function f with D( f ) = 1 can be
written as f = 1

n ( f1 + · · · + fn) with D( f j ) = n−(1−p).
(b) Deduce from (a) that if f has D( f ) = 1, then an arbitrarily large multiple of

f can be written as a convex combination of functions f j with D( f j ) ≤ 1.
(c) Deduce from (b) for each ε > 0 that the smallest convex set containing all

f ’s with D( f ) ≤ ε is all of L p([0, 1]).
(d) Why must L p([0, 1]) fail to be locally convex?
(e) Prove that L p([0, 1]) has no nonzero continuous linear functionals.

9. LetU be a nonempty open set inRN , and let {Kp}p∏0 be an exhausting sequence
of compact subsets of U with K0 = ∅. Let M be the set of all monotone
increasing sequences of integers mp ∏ 0 tending to infinity, and let E be the set
of all monotone decreasing sequences of real numbers εp > 0 tending to 0. For
each pair (m, ε) =

°
{mp}, {εp}

¢
with m ∈ M and ε ∈ E , define a seminorm

k · km,ε on C∞
com(U) by

kϕkm,ε = sup
p∏0

ε−1
p

°
sup
x /∈Kp

sup
|α|≤mp

|(Dαϕ)(x)|
¢
.

Denote the inductive limit topology on C∞
com(U) by T and the topology defined

with the above uncountable family of seminorms by T 0.
(a) Verify for ϕ in C∞(U) that kϕkm,ε < ∞ for all pairs (m, ε) if and only if ϕ

is in C∞
com(U).

(b) Prove that the identity mapping (C∞
com(U), T ) → (C∞

com(U), T 0) is
continuous.

(c) For p ∏ 0, fix √p ∏ 0 in C∞
com(U) with

P
p √p = 1, √0 6= 0 on K2, and

√p(x)

(
6= 0 for x in Kp+2 − K 0p+1,

= 0 for x in (K 0p+3)
c and for x in Kp.

A basic open neighborhood N of 0 in (C∞
com(U), T ) is a convex circled set

with 0 as an internal point satisfying conditions of the following form: for
each p ∏ 0, there exist an integer np and a real δp > 0 such that a member ϕ
of C∞

Kp+3
is in N ∩C∞

Kp+3
if and only if supx∈Kp+3 sup|α|≤np |Dαϕ(x)| < δp.

Prove that there exists a pair (m, ε) such that kϕkm,ε < 1 implies that
2p+1√pϕ is in N ∩ C∞

Kp+3
for all p ∏ 0.

(d) With notation as in (c), show that the functionϕ =
P

p∏0 2−(p+1)(2p+1√pϕ)

is in N whenever kϕkm,ε < 1. Conclude that the identity mapping from
(C∞
com(U), T 0) to (C∞

com(U), T ) is continuous and thatT andT 0 are therefore
the same.

(e) Exhibit a sequence of closed nowhere dense subsets of C∞
com(U) with union

C∞
com(U), thereby showing that the hypotheses of the Baire Category Theo-
rem must not be satisfied in C∞

com(U).
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10. Prove or disprove: If H is an infinite-dimensional separable Hilbert space, then
B(H, H) is separable in the operator-norm topology.

11. Let S be a compact Hausdorff space, let µ be a regular Borel measure on S,
and regard A = {multiplications by C(S)} as a subalgebra of M(L2(S, µ)).
Prove that the commuting algebra A0 of A within B(L2(S, µ), L2(S, µ)) is
M(L2(S, µ)).

12. Prove that if A is a bounded normal operator on a separable complex Hilbert
space H , then kAk = supkxk≤1 |(Ax, x)H |.

13. Let H be a separable complex Hilbert space, let A be a commutative C∗ sub-
algebra of B(H, H) with identity, and suppose that A has a cyclic vector.
Prove that there exist a regular Borel measure µ on A∗

m and a unitary operator
U : H → L2(A∗

m, µ) such that

UAU−1 = {multiplications by C(A∗
m)} ⊆ M(L2(A∗

m, µ)).

14. Let A be a bounded normal operator on a separable complex Hilbert space H ,
and let A be the smallest C∗ subalgebra of B(H, H) containing I , A, and A∗.
Suppose that A has a cyclic vector. Prove that there exists a Borel measure on
the spectrum σ (A) and a unitary mapping U : H → L2(σ (A), µ) such that

UAU−1 = {multiplications by C(σ (A))} ⊆ M(L2(σ (A), µ))

and such that U AU−1 is the multiplication operator Mz .

15. Form the multiplication operator Mx on L2([0, 1]), and letA be the smallest C∗

subalgebra of B(L2([0, 1]), L2([0, 1])) containing I and Mx .
(a) Prove that the function 1 is a cyclic vector for A.
(b) Identify the spectrum σ (Mx ).
(c) Prove in the context of the functional calculus of the Spectral Theorem

that the operator ϕ(Mx ) is Mϕ for every bounded Borel function ϕ on the
spectrum σ (Mx ).

16. Let A and B be bounded normal operators on a separable complex Hilbert space
H such that A commutes with B and B∗. Let A be the smallest C∗ subalgebra
of B(H, H) containing I , A, A∗, B, and B∗.
(a) Prove that A∗

m is canonically homeomorphic to the subset σ (A, B) of
σ (A) × σ (B) ⊆ C2 given by σ (A, B) = {(bA(`), bB(`)}`∈A∗

m.
(b) Prove under the identification of (a) that bA is identified with the function z1

and bB is identified with z2.

Problems 17–20 concern the set of extreme points in particular closed subsets of
locally convex topological vector spaces.
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17. Let S be a compact Hausdorff space, and let K be the set of all regular Borel
measures on S with µ(S) ≤ 1. Give K the weak-star topology relative to C(S).
Prove that the extreme points of K are 0 and the point masses of total measure 1.

18. In L1([0, 1]), suppose that f has norm 1 and that E is a Borel subset such thatR
E | f | dx > 0 and

R
Ec | f | dx > 0. Let f1 be f on E and be 0 on Ec, and let f2

be f on Ec and be 0 on E .
(a) Prove that f is a nontrivial convex combination of k f1k−1

1 f1 and k f2k−1
1 f2.

(b) Conclude that the closed unit ball of L1([0, 1]) has no extreme points.
19. Let S be a compact Hausdorff space, and let K1 be the set of all regular Borel

measures on S with µ(S) = 1. Give K1 the weak-star topology relative to C(S).
Let F be a homeomorphism of S. Within K1, let K be the subset of members
µ of K1 that are F invariant in the sense that µ(E) = µ(F−1(E)) for all Borel
sets E .
(a) Prove that K is a compact convex subset of M(S) in the weak-star topology

relative to C(S).
(b) A member µ of K is said to be ergodic if every Borel set E such that

F(E) = E has the property that µ(E) = 0 or µ(E) = 1. Prove that every
extreme point of K is ergodic.

(c) Is every ergodic measure in K necessarily an extreme point?
20. Regard the set Z of integers as a measure space with the counting measure

imposed. As in Section 8, a complex-valued function f (n) on Z is said to be
positive definite if

P
j,k c( j) f ( j−k)c(k) ∏ 0 for all complex-valued functions

c(n) on the integers with finite support.
(a) Prove that every positive definite function f has f (0) ∏ 0, f (−n) = f (n),

and | f (n)| ≤ f (0).
(b) Prove that a bounded sequence in L∞(Z) converges weak-star relative to

L1(Z) if and only if it converges pointwise.
(c) In view of (a), the set K of positive definite functions f with f (1) = 1 is a

subset of the closed unit ball of L∞(Z). Prove that the set K is convex and
is compact in the weak-star topology relative to L1(Z).

(d) Prove that every function fθ (n) = einθ with θ real is an extreme point of K .
(e) Take for granted the fact that every positive definite function on Z is the

sequence of Fourier coefficients of some Borel measure on the circle. (The
corresponding fact for positive definite functions on RN is proved in Prob-
lems 8–12 of Chapter VIII of Basic.) Prove that the set K has no other
extreme points besides the ones in (d).

Problems 21–25 elaborate on the Stone Representation Theorem, Theorem 4.15. The
first of the problems gives a direct proof, without using the Gelfand–Mazur Theorem,
that every multiplicative linear functional is continuous in the context of Theorem
4.15.
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21. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)
containing the constants and stable under complex conjugation. Let C be a
complex number with |C| > 1, let f be a member of A with k f ksup ≤ 1, and
let ` be a multiplicative linear functional on A.
(a) Show that

P∞
n=0( f/C)n converges and that its sum x provides an inverse to

1− ( f/C) under multiplication.
(b) By applying ` to the identity (1 − ( f/C))x = 1, prove that `( f ) = C is

impossible.
(c) Conclude from (b) that k`k ≤ 1, hence that ` is automatically bounded.

22. Let S be a compactHausdorff space, and let ` be amultiplicative linear functional
on C(S) such that `( f̄ ) = `( f ) for all f in C(S). Prove that ` is the evaluation
es at some point s of S.

23. Let S and T be two compact Hausdorff spaces, and letU : C(S) → C(T ) be an
algebra homomorphism that carries 1 to 1 and respects complex conjugation.
(a) Prove that there exists a unique continuous map u : T → S such that

(U f )(t) = f (u(t)) for every t ∈ T and f ∈ C(S).
(b) Prove that if U is one-one, then u is onto.
(c) Prove that if U is an isomorphism, then u is a homeomorphism.

24. Let X be a compact Hausdorff space, and letA and B be uniformly closed subal-
gebras of B(X) containing the constants and stable under complex conjugation.
Suppose thatA ⊆ B. Suppose that S, p,U and T, q, V are data such that S and
T are compact Hausdorff spaces, p : X → S and q : X → T are functions with
dense image, andU : A → C(S) and V : B → C(T ) are algebra isomorphisms
carrying 1 to 1 and respecting complex conjugations such that for every x ∈ X ,
(U f )(p(x)) = x for all f ∈ A and (Vg)(q(x)) = x for all g ∈ B. Prove that
there exists a unique continuous map 8 : T → S such that p = 8 ◦ q. Prove
also that this map satisfies (U f )(8(t)) = (V f )(t) for all f in A.

25. Formulate and prove a uniqueness statement to complement the existence state-
ment in Theorem 4.15.

Problems 26–30 concern inductive limits. As mentioned in a footnote in the text,
“direct limit” is a construction in category theory that is useful within several different
settings. These problems concern the setting of topological spaces and continuous
maps between them. For this setting a direct limit is something attached to a directed
system of topological spaces and continuous maps. For the latter let (I,≤) be a
directed set, and suppose that Wi is a topological space for each i in I . Suppose that
a one-one continuous map √j i : Wi → Wj is defined whenever i ≤ j , and suppose
that these maps satisfy √i i = 1 and √ki = √k j ◦ √j i whenever i ≤ j ≤ k. A direct
limit of this directed system consists of a topological space W and continuous maps
qi : Wi → W for each i in I satisfying the following universal mapping property:
whenever continuous maps ϕi : Wi → Z are given for each i such that ϕj ◦ √j i = ϕi
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for i ≤ j , then there exists a unique continuousmap8 : W → Z such thatϕi = 8◦qi
for all i .
26. Suppose that a directed system of topological spaces and continuous maps is

given with notation as above. Let
`

i Wi denote the disjoint union of the spaces
Wi , topologized so that each Wi appears as an open subset of the disjoint union.
Define an equivalence relation ∼ on

`
Wi as follows: if xi is in Wi and xj is

in Wj , then xi ∼ xj means that there is some k with i ≤ k and j ≤ k such that
√ki (xi ) = √k j (xj ).
(a) Prove that ∼ is an equivalence relation.
(b) Prove that elements xi in Wi and xj in Wj have xi ∼ xj if and only if every

l with i ≤ l and j ≤ l has √li (xi ) = √l j (xj ).
27. Define W to be the quotient

`
i Wi

±
∼, and give W the quotient topology. Let

q :
`

i Wi → W be the quotient map. Prove that W and the system of maps
q
Ø
Ø
Wi
form a direct limit of the given directed system.

28. Prove that if (V, {pi }) and (W, {qi }) are two direct limits of the given system,
then there exists a unique homeomorphism F : V → W such that qi = F ◦ pi
for all i in I .

29. Suppose that eachmap√i : Wi → Wj is a homeomorphism onto an open subset.
(a) Prove that the quotient map q :

`
i Wi → W carries open sets to open sets.

(b) Prove that the direct limit W is Hausdorff if each given Wi is Hausdorff.
(c) Prove that the direct limit W is locally compact Hausdorff if each Wi is

locally compact Hausdorff.
(d) Give an example in which eachWi is compact Hausdorff but the direct limit

W is not compact.
30. Let I be a nonempty index set, and let S0 be a finite subset. Suppose that a locally

compact Hausdorff space Xi is given for each i ∈ I and that a compact open
subset Ki is specified for each i /∈ S0. For each finite subset S of I containing
S0, define

X (S) =
°×i∈S Xi

¢
×

°×i /∈SKi
¢
,

giving it the product topology. If S1 and S2 are two finite subsets of I containing
S0 such that S1 ⊆ S2, then the inclusion √S2S1 : X (S1) → X (S2) is a homeo-
morphism onto an open set, and these homeomorphisms are compatible under
composition. The resulting direct limit X is called the restricted direct product
of the Xi ’s with respect to the Ki ’s. Prove that X is locally compact Hausdorff
and that elements of X may be regarded as tuples (xi ) for which xi is in Xi for
all i while xi is in Ki for all but finitely many i .




