
from

Advanced Real Analysis
Digital Second Edition 
Corrected version 2017

Anthony W. Knapp

Full Book DOI: 10.3792/euclid/9781429799911  

ISBN: 978-1-4297-9991-1

Distributed by Project Euclid.  

For copyright information, see the following page.

III. Topics in Euclidean Fourier Analysis, 54-104

DOI: 10.3792/euclid/9781429799911-3

https://doi.org/10.3792/euclid/9781429799911
https://doi.org/10.3792/euclid/9781429799911-3


Anthony W. Knapp
81 Upper Sheep Pasture Road
East Setauket, N.Y. 11733–1729, U.S.A.
Email to: aknapp@math.stonybrook.edu
Homepage: www.math.stonybrook.edu/∼aknapp

Title: Advanced Real Analysis
Cover: Normal distribution as a limit of Gosset’s t distribution; see page 421.

Mathematics Subject Classification (2010): 46–01, 42–01, 43–01, 35–01, 34–01, 47–01, 58–01, 
60A99, 60F05, 28C10, 42C40, 65T60.

First Edition, ISBN-13 978-0-8176-4382-9
c�2007 Anthony W. Knapp
Published by Birkhäuser Boston
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CHAPTER III

Topics in Euclidean Fourier Analysis

Abstract. This chapter takes up several independent topics in Euclidean Fourier analysis, all having
some bearing on the subject of partial differential equations.
Section 1 elaborates on the relationship between the Fourier transform and the Schwartz space,

the subspace of L1(RN ) consisting of smooth functions with the property that the product of any
iterated partial derivative of the function with any polynomial is bounded. It is possible to make
the Schwartz space into a metric space, and then one can consider the space of continuous linear
functionals; these continuous linear functionals are called “tempered distributions.” The Fourier
transform carries the space of tempered distributions in one-one fashion onto itself.
Section 2 concerns weak derivatives, and the main result is Sobolev’s Theorem, which tells how

to recover information about ordinary derivatives from information about weak derivatives. Weak
derivatives are easy to manipulate, and Sobolev’s Theorem is therefore a helpful tool for handling
derivatives without continually having to check the validity of interchanges of limits.
Sections 3–4 concern harmonic functions, those functions on open sets in Euclidean space that

are annihilated by the Laplacian. The main results of Section 3 are a characterization of harmonic
functions in terms of a mean-value property, a reflection principle that allows the extension to all of
Euclidean space of any harmonic function in a half space that vanishes at the boundary, and a result
of Liouville that the only bounded harmonic functions in all of Euclidean space are the constants.
The main result of Section 4 is a converse to properties of Poisson integrals for half spaces, showing
that harmonic functions in a half space are given as Poisson integrals of functions or of finite complex
measures if their L p norms over translates of the bounding Euclidean space are bounded.
Sections 5–6 concern the Calderón–Zygmund Theorem, a far-reaching generalization of the

theorem concerning the boundedness of the Hilbert transform. Section 5 gives the statement and
proof, and two applications are the subject of Section6. Oneof the applications is toRiesz transforms,
and the other is to the Beltrami equation, whose solutions are “quasiconformal mappings.”
Sections 7–8 concern multiple Fourier series for smooth periodic functions. The theory is

established in Section 7, and an application to traces of integral operators is given in Section 8.

1. Tempered Distributions

We fix normalizations for the Euclidean Fourier transform as in Basic: For f in
L1(RN ), the definition is

bf (y) = (F f )(y) =
Z

RN
f (x)e−2π i x ·y dx,

54



1. Tempered Distributions 55

with x · y referring to the dot product and with the 2π in the exponent. The
inversion formula is valid whenever bf is in L1; it says that f is recovered as

f (x) = (F−1 bf )(x) =
Z

RN

bf (y)e2π i x ·y dy

almost everywhere, including at all points of continuity of f . The operator F
carries L1 ∩ L2 into L2 and extends to a linear map F of L2 onto L2 such that
kF f k2 = k f k2. This is the Plancherel formula.
The Schwartz space S = S(RN ) is the vector space of all functions f in

C∞(RN ) such that the product of any polynomial by any iterated partial derivative
of f is bounded. This is a vector subspace of L1 ∩ L2, and it was shown in Basic
that F carries S one-one onto itself. It will be handy sometimes to use a notation
for partial derivatives and their iterates that is different from that in Chapter I.

Namely,1 let Dj =
@

@xj
. If α = (α1, . . . ,αN ) is an N -tuple of nonnegative

integers, wewrite |α| =
PN

j=1 αj , α! = α1! · · ·αN !, xα = xα1
1 · · · xαN

N , and Dα =
Dα1
1 · · · DαN

N . Addition of such tuples α is defined component by component, and
we say that α ≤ β if αj ≤ βj for 1 ≤ j ≤ N . We write |α| for the total
order α1 + · · · + αN , and we call α a multi-index. If Q(x) =

P
α aαxα is a

complex-valued polynomial on RN , define Q(D) to be the partial differential
operator

P
α aαDα with constant coefficients obtained by substituting, for each

j with 1 ≤ j ≤ N , the operator Dj = @
@xj for xj . The Schwartz functions are

then the smooth functions f on RN such that P(x)Q(D) f is bounded for each
pair of polynomials P and Q.
The Schwartz space is directly usable in connection with certain linear par-

tial differential equations with constant coefficients. A really simple example
concerns the Laplacian operator 1 = @2

@x21
+ · · · + @2

@x2N
, which we can write as

1 = |D|2 in the new notation for differential operators. Specifically the equation

(1− 1)u = f

has a unique solution u in S for each f in S. To see this, we take the Fourier
transformof both sides, obtainingFu−F(1u) = F f orFu−F(|D|2(u)) = F f .
Using the formulas relating the Fourier transform, multiplication by polynomials,
and differentiation,2 we can rewrite this equation as (1+ 4π2|y|2)F(u) = F( f ).
Problem1at the endof the chapter asks one to check that (1+4π2|y|2)−1g is inS if

1Some authors prefer to abbreviate @
@xj

as @j , reserving the notation Dj for the product of @j and
a certain imaginary scalar that depends on the definition of the Fourier transform.

2These, with hypotheses in place, appear as Proposition 8.1 of Basic.
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g is inS, and then existence of a solution inS to the differential equation is proved
by the formula u = F−1°(1+4π2|y|2)−1F( f )

¢
. For uniqueness let u1 and u2 be

two solutions in S corresponding to the same f . Then (1−1)(u1−u2) = 0, and
hence (1+ 4π2|y|2)F(u1 − u2)(y) = 0 for all y. Therefore F(u1 − u2)(y) = 0
everywhere. Since F is one-one on S, we conclude that u1 = u2.
A deeper use of the Schwartz space in connectionwith linear partial differential

equations comes about because of the relationship between the Schwartz space
and the theory of “distributions.” Distributions are continuous linear functionals
on vector spaces of smooth functions, i.e., continuous linear maps from such a
space to the scalars, and they will be considered more extensively in Chapter V.
For now, we shall be content with discussing “tempered distributions,” the dis-
tributions associated with the Schwartz space. In order to obtain a well-defined
notion of continuity, we shall describe how to make S(RN ) into a metric space.
For each pair of polynomials P and Q, we define

k f kP,Q = sup
x∈RN

|P(x)(Q(D) f )(x)|.

Each function k · kP,Q on S is a seminorm on S in the sense that3

(i) k f kP,Q ∏ 0 for all f in S,
(ii) kc f kP,Q = |c|k f kP,Q for all f in S and all scalars c,
(iii) k f + gkP,Q ≤ k f kP,Q + kgkP,Q for all f and g in S.

Collectively these seminorms have a property that goes in the converse direction
to (i), namely
(iv) k f kP,Q = 0 for all P and Q implies f = 0.

In fact, f will already be 0 if the seminorm for P = Q = 1 is 0 on f .
Each seminorm gives rise to a pseudometric dP,Q( f, g) = k f − gkP,Q in

the usual way, and the topology on S is the weakest topology making all the
functions dP,Q( · , g) continuous. That is, a base for the topology consists of all
sets Ug,P,Q,n = { f | k f − gkP,Q < 1/n}.
A feature of S is that only countably many of the seminorms are relevant for

obtaining the open sets, and a consequence is that the topology ofS is defined by a
metric. The important seminorms are the ones in which P and Q are monomials,
each with coefficient 1. In fact, if P(x) =

P
α aαxα and Q(x) =

P
β bβxβ , then

it is easy to check that dP,Q( f, g) ≤
P

α,β |aαbβ |dxα,xβ ( f, g). Hence any open
set that dP,Q defines is a union of finite intersections of the open sets defined by
the finitely many dxα,yβ ’s.

3The reader may notice that the definition of “seminorm” is the same as the definition of
“pseudonorm” in Basic. The only distinction is that the word “seminorm” is often used in the
context of a whole family of such objects, while the word “pseudonorm” is often used when there is
only one such object under consideration.
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Let us digress and consider the situation more abstractly because it will arise
again later. Suppose we have a real or complex vector space V on which are
defined countably many seminorms k · kn satisfying (i), (ii), and (iii) above.
Each seminorm k · kn gives rise to a pseudometric edn on V and then to open

sets defined relative to edn . For any pseudometric eρ, the function ρ = min{1, eρ}
is easily checked to be a pseudometric, and ρ defines the same open sets on V as
eρ does. We shall use the following abstract result about pseudometrics; this was
proved as Proposition 10.28 of Basic, and we therefore omit the proof here.

Proposition 3.1. Suppose that V is a nonempty set and {dn}n∏1 is a sequence
of pseudometrics on V such that dn(x, y) ≤ 1 for all n and for all x and y in V .
Then d(x, y) =

P∞
n=1 2−ndn(x, y) is a pseudometric. If the open balls relative

to dn are denoted by Bn(r; x) and the open balls relative to d are denoted by
B(r; x), then the Bn’s and B’s are related as follows:

(a) whenever some Bn(rn; x) is given with rn > 0, there exists some B(r; x)
with r > 0 such that B(r; x) ⊆ Bn(rn; x),

(b) whenever B(r; x) is given with r > 0, there exist finitely many rn > 0,
say for n ≤ K , such that

TK
n=1 Bn(rn; x) ⊆ B(r; x).

In the situation with countably many seminorms k · kn for the vector space V ,
we see that we can introduce a pseudometric d such that three conditions hold:

• d(x, y) = d(0, y − x) for all x and y,
• whenever some x in V is given and an index n and corresponding number
rn > 0 are given, then there is a number r > 0 such that d(x, y) < r
implies ky − xkn < rn ,

• whenever some x in V is given and some r > 0 is given, then there exist
finitely many rn > 0, say for n ≤ K , such that any y with ky− xkn < rn
for n ≤ K implies d(x, y) < r .

If the seminorms collectively have the property that kxkn = 0 for all n only for
x = 0, then d is a metric, and we say that the family of seminorms is a separating
family. The specific form of d is not important: in the case of S, the metric d
depended on the choice of the countable subfamily of pseudometrics and the order
in which they were enumerated, and these choices do not affect any results about
S. The important thing about this construction is that it shows that the topology
is given by some metric.
The three conditions marked with bullets enable us to detect continuity of

linear functions with domain V and range another such space W by using the
seminorms directly.

Proposition 3.2. Let L : V → W be a linear function between vector spaces
that are both real or both complex. Suppose that V is topologized by means of
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countablymany seminorms k · kV,m andW is topologized bymeans of countably
many seminorms k · kW,n . Then L is continuous if and only if for each n, there
is a finite set F = F(n) of m’s and there are corresponding positive numbers δm
such that kvkV,m ≤ δm for all m ∈ F implies kL(v)kW,n ≤ 1.
PROOF. Let dV and dW be the distance functions in V and W . When n is

given, the second item in the bulleted list shows that there is some r > 0 such
that dW (0, w) ≤ r implies kwkW,n ≤ 1. If L is continuous at 0, then there is a
δ > 0 such that dV (0, v) ≤ δ implies dW (0, L(v)) ≤ r . From the third item in
the bulleted list, we know that there is a finite set F of indices m and there are
corresponding numbers δm > 0 such that kvkV,m ≤ δm implies dV (0, v) ≤ δ.
Then kvkV,m ≤ δm for all m in F implies kL(v)kW,n ≤ 1.
Conversely suppose for each n that there is a finite set F and there are numbers

δm > 0 form in F such that the stated condition holds. To see that L is continuous
at 0, let ≤ > 0 be given. Choose K and numbers ≤n > 0 for n ≤ K such
that kwkW,n ≤ ≤n for n ≤ K implies dW (0, w) ≤ ≤. For each n ≤ K , the
given condition on L allows us to find a finite set Fn of indices m and numbers
δm > 0 such that kvkV,m ≤ δm implies kL(v)kW,n ≤ 1. If kvkV,m ≤ δm≤n
for all m in F =

S
n≤K Fn , then kL(v)kW,n ≤ ≤n for all n ≤ K and hence

dW (0, L(v)) ≤ ≤. We know that there is a number δ > 0 such that dV (0, v) ≤ δ
implies kvkV,m ≤ δm≤n for all m in F , and then dW (0, L(v)) ≤ ≤. Hence L is
continuous at 0.
Once L is continuousat 0, it is continuouseverywherebecauseof the translation

invariance of dV and dW : dV (v1, v2) = dV (0, v2 − v1) and dW (L(v1), L(v2)) =
dW (0, L(v2) − L(v1)) = dW (0, L(v2 − v1)). §

Now we return to the Schwartz space S to apply our construction and Propo-
sition 3.2. The bulleted items above make it clear that it does not matter which
countable set of generating seminorms we use nor what order we put them in; the
open sets and the criterion for continuityare still the same. The followingcorollary
is immediate from Proposition 3.2, the definition of S, and the behavior of the
Fourier transform under multiplication by polynomials and under differentiation.

Corollary 3.3. For the Schwartz space S on RN ,
(a) a linear functional ` is continuous if and only if there is a finite set

F of pairs (P, Q) of polynomials and there are corresponding numbers
δP,Q > 0 such thatk f kP,Q ≤ δP,Q for all (P, Q) in F implies |`( f )| ≤ 1.

(b) the Fourier transform mapping F : S → S is continuous, and so is its
inverse.

A continuous linear functional on the Schwartz space is called a tempered
distribution, and the space of all tempered distributions is denoted by S 0 =
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S 0(RN ). It will be convenient to write hT,ϕi for the value of the tempered
distribution T on the Schwartz function ϕ. The space of tempered distributions
is huge. A few examples will give an indication just how huge it is.

EXAMPLES.
(1) Any function f on RN with | f (x)| ≤ (1+ |x |2)n|g(x)| for some integer n

and some integrable function g defines a tempered distribution T by integration:
hT,ϕi =

R
RN f (x)ϕ(x) dx when ϕ is in S. In view of Corollary 3.3a, the

continuity follows from the chain of inequalities

|hT,ϕi| ≤
R

RN

°
| f (x)|(1+ |x |2)−n

¢°
(1+ |x |2)n|ϕ(x)|

¢
dx

≤
° R

RN |g(x)| dx
¢°
supx{(1+ |x |2)n|ϕ(x)|}

¢

= kgk1kϕkP,1 for P(x) = (1+ |x |2)n.

(2)Any function f with | f (x)| ≤ (1+|x |2)n|g(x)| for some integern and some
function g in L∞(RN ) defines a tempered distribution T by integration: hT,ϕi =R

RN f (x)ϕ(x) dx . In fact, | f (x)| ≤ (1 + |x |2)n+N
°
(1 + |x |2)−N |g(x)|

¢
, and

(1+|x |2)−N |g(x)| is integrable; hence this example is an instance of Example 1.
(3) Any function f with | f (x)| ≤ (1 + |x |2)n|g(x)| for some integer n and

some function g in L p(RN ), where 1 ≤ p ≤ ∞, defines a tempered distribution
T by integration because such a distribution is the sum of one as in Example 1
and one as in Example 2.
(4) Suppose that f is as in Example 3 and that Q(D) is a constant-coefficients

partial differential operator. Then the formula hT,ϕi =
R

RN f (x)(Q(D)ϕ)(x) dx
defines a tempered distribution.
(5) In the above examples, Lebesguemeasure dx may be replaced by anyBorel

measure dµ(x) on RN such that
R

RN (1 + |x |2)n0 dµ(x) < ∞ for some n0. A
particular case of interest is that dµ(x) is a point mass at a point x0; in this case,
the tempered distributions ϕ 7→ hT,ϕi that are obtained by combining the above
constructions are the linear combinations of iterated partial derivatives of ϕ at the
point x0.
(6) Any finite linear combination of tempered distributions as in Example 5 is

again a tempered distribution.

Two especially useful operations on tempered distributions are multiplication
by a Schwartz function and differentiation. Both of these definitions are arranged
to be extensions of the corresponding operations on Schwartz functions. The
definitions are h√T,ϕi = hT,√ϕi and hDαT,ϕi = (−1)|α|hT, Dαϕi; in the
latter case the factor (−1)|α| is included because integration by parts requires its
presence when T is given by a Schwartz function.
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Auseful feature of distributions in connectionwith differential equations, aswe
shall see in more detail in later chapters, is that we can first look for solutions of a
given differential equation that are distributions and then consider how close those
distributions are to being functions. The special feature of tempered distributions
is that the Fourier transform makes sense on them, as follows.
As with the operations of multiplication by a Schwartz function and differen-

tiation, the definition of Fourier transform of a tempered distribution is arranged
to be an extension of the definition of the Fourier transform of a member √ of
S when we identify the function √ with the distribution √(x) dx . If ϕ is in S,
then

R b√ϕ dx =
R

√bϕ dx by the multiplication formula,4 which we reinterpret
as hF(√ dx),ϕi = h√ dx,bϕ i. The definition is

hF(T ),ϕi = hT,bϕ i

for T ∈ S 0 and ϕ ∈ S. To see that F(T ) is in S 0, we have to check that
F(T ) is continuous. The definition is F(T ) = T ◦ F, and F is continuous on S
by Corollary 3.3b. Thus the Fourier transform carries tempered distributions to
tempered distributions.

Proposition 3.4. The Fourier transform F is one-one from S 0(RN ) onto
S 0(RN ).
PROOF. If T is in S 0 and F(T ) = 0, then hT,F(ϕ)i = 0 for all ϕ in S. Since

F carries S onto S, hT,√i = 0 for all √ in S, and thus T = 0. Therefore F is
one-one on S 0.
If T 0 is given in S 0, put T = T 0 ◦ F−1, where F−1 is the inverse Fourier

transform as a map of S to itself. Then T 0 = T ◦ F and F(T ) = T ◦ F = T 0.
Therefore F is onto S 0. §

2. Weak Derivatives and Sobolev Spaces

A careful study of a linear partial differential equation often requires attention
to the domain of the operator, and it is helpful to be able to work with partial
derivatives without investigating a problem of interchange of limits at each step.
Sobolev spaces are one kind of space of functions that are used for this purpose,
and their definition involves “weak derivatives.” At the end one wants to be
able to deduce results about ordinary partial derivatives from results about weak
derivatives, and Sobolev’s Theorem does exactly that.
We shall make extensive use in this book of techniques for regularizing func-

tions that have been developed in Basic. Let us assemble a number of these in
one place for convenient reference.

4Proposition 8.1e of Basic.
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Proposition 3.5.
(a) (Theorems 6.20 and 9.13) Let ϕ be in L1(RN , dx), define ϕε(x) =

ε−Nϕ(ε−1x) for ε > 0, and put c =
R

RN ϕ(x) dx .
(i) If f is in L p(RN , dx) with 1 ≤ p < ∞, then

lim
ε↓0

kϕε ∗ f − c f kp = 0.

(ii) If f is bounded onRN and is continuous at x , then limε↓0(ϕε∗ f )(x) =
c f (x), and the convergence is uniform for any set E of x’s such that
f is uniformly continuous at the points of E .

(b) (Proposition 9.9) If µ is a Borel measure on a nonempty open set U in
RN and if 1 ≤ p < ∞, then L p(U, µ) is separable, and Ccom(U) is dense in
L p(U, µ).
(c) (Corollary 6.19) Suppose that ϕ is a compactly supported function of

class Cn on RN and that f is in L p(RN , dx) with 1 ≤ p ≤ ∞. Then ϕ ∗ f is of
class Cn , and Dα(ϕ ∗ f ) = (Dαϕ) ∗ f for any iterated partial derivative Dα of
order ≤ n.
(d) (Lemma 8.11) If δ1 and δ2 are given positive numbers with δ1 < δ2, then

there exists √ in C∞
com(RN ) with values in [0, 1] such that √(x) = √0(|x |), √0 is

nonincreasing, √(x) = 1 for |x | ≤ δ1, and √(x) = 0 for |x | ∏ δ2.
(e) (Consequence of (d)) If δ > 0, then there exists ϕ ∏ 0 in C∞

com(RN )
such that ϕ(x) = ϕ0(|x |) with ϕ0 nonincreasing, ϕ(x) = 0 for |x | ∏ 1, andR

RN ϕ(x) dx = 1.
(f) (Proposition 8.12) If K and U are subsets of RN with K compact, U

open, and K ⊆ U , then there exists ϕ ∈ C∞
com(U) with values in [0, 1] such that

ϕ is identically 1 on K .

In this section we work with a nonempty open subset U of RN , an index p
satisfying 1 ≤ p < ∞, and the spaces L p(U) = L p(U, dx), the underlying
measure being understood to be Lebesgue measure. Let p0 = p/(p − 1) be the
dual index. For Sobolev’s Theorem,we shall impose two additional conditions on
U , namely boundedness forU and a certain regularity condition for theboundary
@U = U cl−U of the open setU , but we do not impose those additional conditions
yet.

Corollary 3.6. If U is a nonempty open subset of RN , then C∞
com(U) is

(a) uniformly dense in Ccom(U),
(b) dense in L p(U) for every p with 1 ≤ p < ∞.

In (a), any member of Ccom(U) is the uniform limit of members of C∞
com(U).
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PROOF. Let f in Ccom(U) be given. Choose by Proposition 3.5e a function
ϕ in C∞

com(RN ) that is ∏ 0, vanishes outside the unit ball about the origin, and
has total integral 1. For ε > 0, define ϕε(x) = ε−Nϕ(ε−1x). The function
ϕε ∗ f is of class C∞ by (c). If U = RN , let ε0 = 1; otherwise let ε0 be the
distance from the support of f to the complement of U . For ε < ε0, ϕε ∗ f has
compact support contained in U . As ε decreases to 0, Proposition 3.5a shows
that kϕε ∗ f − f ksup tends to 0 and so does kϕε ∗ f − f kp. This proves the first
conclusion of the corollary and proves also that C∞

com(U) is L p dense in Ccom(U)
if 1 ≤ p < ∞. Since Proposition 3.5b shows that Ccom(U) is dense in L p(U),
the second conclusion of the corollary follows. §

Suppose that f and g are two complex-valued functions that are locally
integrable on U in the sense of being integrable on each compact subset of
U . If α is a differentiation index, we say that Dα f = g in the sense of weak
derivatives if

Z

U
f (x)Dαϕ(x) dx = (−1)|α|

Z

U
g(x)ϕ(x) dx for all ϕ ∈ C∞

com(U).

The definition is arranged so that g gives the result that one would expect
for iterated partial differentiation of type α if the integrated or boundary term
gives 0 at each stage. More precisely if f is in C |α|(U), then the weak derivative
of order α exists and is the pointwise derivative. To prove this, it is enough to
handle a first-order partial derivative Djh for a function h inC1(U), showing thatR
U hDjϕ dx = −

R
U (Djh)ϕ dx for ϕ ∈ C∞

com(U), i.e., that
R
U Dj (hϕ) dx = 0.

Because ϕ is compactly supported in U , √ = hϕ makes sense as a compactly
supported C1 function on RN , and we are to prove that

R
RN Dj√ dx = 0. The

Fundamental Theorem of Calculus gives
R a
−a Dj√ dxj = [√]xj=axj=−a for a > 0,

and the compact support implies that this is 0 for a sufficiently large. ThusR
R Dj√ dxj = 0, and Fubini’s Theorem gives

R
RN Dj√ dx = 0.

The function g in the definition of weak derivative is unique up to sets of
measure 0 if it exists. In fact, if g1 and g2 are bothweak derivatives of orderα, thenR
U (g1 − g2)ϕ dx = 0 for all ϕ in C∞

com(U). Fix an open set V having com-
pact closure contained in U . If f is in Ccom(V ), then Corollary 3.6a pro-
duces a sequence of functions ϕn in C∞

com(V ) tending uniformly to f . Since
g1 − g2 is integrable on V , the equalities

R
V (g1 − g2)ϕn dx = 0 for all n implyR

V (g1 − g2) f dx = 0. By the uniqueness in the Riesz Representation Theorem,
g1 = g2 a.e. on V . Since V is arbitrary, g1 = g2 a.e. on U .

EXAMPLE. In the open set U = (−1, 1) ⊆ R1, the function ei/|x | is locally
integrable and is differentiable except at x = 0, but it does not have a weak
derivative. In fact, if it had g as a weak derivative, we could use ϕ’s vanishing in



2. Weak Derivatives and Sobolev Spaces 63

neighborhoods of the origin to see that g(x) has to be −i x−2(sgn x)ei/|x | almost
everywhere. But this function is not locally integrable on U .

If f has αth weak derivative Dα f and Dα f has β th weak derivative Dβ(Dα f ),
then f has (β +α)th weak derivative Dβ+α f and Dβ+α f = Dβ(Dα f ). In fact, if
ϕ is in C∞

com(U), then this conclusion follows from the computation

R
U f Dβ+αϕ dx =

R
U f Dα(Dβϕ) dx = (−1)|α|

R
U Dα f Dβϕ dx

= (−1)|α|+|β|
R
U Dβ(Dα f )ϕ dx .

If f has weak j th partial derivative Dj f and if √ is in C∞(U), then f√ has a
weak j th partial derivative, and it is given by (Dj f )√+ f (Dj√). In fact, this con-
clusion holds because

R
U f√(Djϕ) dx =

R
U f Dj (√ϕ) dx−

R
U f (Dj√)ϕ dx =

−
R
U (Dj f )√ϕ dx −

R
U f (Dj√)ϕ dx = −

R
U ( f (Dj√) + (Dj f )√)ϕ dx .

If f has β th weak derivative Dβ f for every β with β ≤ α and if√ is inC∞(U),
then f√ has an αth weak derivative. It is given by the Leibniz rule:

Dα( f√) =
X

β≤α

α!
β!(α − β)!

(Dβ f )(Dα−β√).

This formula follows by iterating the formula for Dj ( f√) in the previous para-
graph.
Now we can give the definition of Sobolev spaces. Let k ∏ 0 be an integer,

and let 1 ≤ p < ∞. Define

L p
k (U) =

©
f ∈ L p(U)

Ø
Ø all Dα f exist weakly for |α| ≤ k and are in L p(U)

™
.

Then L p
k (U) is a vector space, and we make it into a normed linear space by

defining

k f kL p
k

=
≥ X

|α|≤k

Z

U
|Dα f |p dx

¥1/p
.

The normed linear spaces L p
k (U) are the Sobolev spaces forU . All the remaining

results in this section concern these spaces.5

5The subject of partial differential equations makes use of a number of families that generalize
these spaces in various ways. Of particular importance is a family Hs such that Hs = L2k when s is
an integer k ∏ 0 but s is a continuous real parameter with −∞ < s < ∞. The spaces Hs(RN ) are
introduced in Problems 8–12 at the end of the chapter. For an open set U , the two spaces Hs

com(U)
and Hs

loc(U) are introduced in Chapter VIII. All of these spaces are called Sobolev spaces.
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Proposition 3.7. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then the normed
linear space L p

k (U) is complete.

PROOF. If { fm} is a Cauchy sequence in L p
k (U), then for each α with |α| ≤ k,

the sequence {Dα fm} is Cauchy in L p(U). Since L p(U) is complete, we can
define f (α) to be the L p(U) limit of Dα fm . For ϕ in C∞

com(U), we then have
R
U f (α)ϕ dx =

R
U (limm Dα fm)ϕ dx = limm

R
U (Dα fm)ϕ dx,

the second equality holding since ϕ is in the dual space L p0
(U). In turn, this

expression is equal to

(−1)|α| limm
R
U ( fm)(Dαϕ) dx = (−1)|α|

R
U ( f (0))(Dαϕ) dx,

the second equality holding since Dαϕ is in L p0
(U). Therefore f (α) = Dα f (0)

and fm tends to f (0) in L p
k (U). §

Proposition 3.8. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then a function f
is in L p

k (U) if f is in L p(U) and there exists a sequence { fm} in Ck(U) such that
(a) limm k f − fmkp = 0,
(b) for each α with |α| ≤ k, the iterated pointwise partial derivative Dα fm is

in L p(U) and converges in L p(U) as m tends to infinity.

PROOF. By (b), kDα( fl − fm)kpp for each fixed α tends to 0 as l and m tend to
infinity. Summing onα and taking the pth root, we see that k fl− fmkL p

k
tends to 0.

In other words, { fm} is Cauchy in L p
k (U). By Proposition 3.7, { fm} converges to

some g in L p
m(U). The limit function g has to have the property that k fm − gkp

tends to 0, and (a) shows that we must have g = f . Therefore f is in L p
k (U). §

The key theorem is the following converse to Proposition 3.8.

Theorem 3.9. If k ∏ 0 is an integer and if 1 ≤ p < ∞, then C∞(U)∩ L p
k (U)

is dense in L p
k (U).

On the other hand, despiteCorollary 3.6b, it will be a consequenceof Sobolev’s
Theorem that C∞

com(U) is not dense in L p
k (U) if k is sufficiently large. The proof

of the present theorem will be preceded by a lemma affirming that at least the
members of L p

k (U)with compact support inU can be approximated by members
of C∞

com(U).
In addition, the proof of the theoremwillmake use of an “exhausting sequence”

and a smooth partition of unity based on it. Since U is locally compact and
σ -compact, we can find a sequence {Kn}∞n=1 of compact subsets ofU with union
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U such that Kn ⊆ Ko
n+1 for all n. This sequence is called an exhausting sequence

forU . We construct the partition of unity {√n}n∏1 as follows. For n ∏ 1, we use
Proposition 3.5f to choose a C∞ function ϕn with values in [0, 1] such that

ϕ1(x) =

Ω 1 for x ∈ K3,
0 for x ∈ (Ko

4 )
c,

ϕn(x) =

Ω 1 for x ∈ Kn+2 − Ko
n+1,

0 for x ∈ (Ko
n+3)

c ∪ Kn.

and for n ∏ 2,

In the sum
P∞

n=1 ϕn(x), each x has a neighborhood in which only finitely many
terms are nonzero and some term is nonzero. Therefore ϕ =

P∞
n=1 ϕn is a

well-defined member of C∞(U). If we put √n = ϕn
±
ϕ, then √n is in C∞(U),P∞

n=1 √n = 1 on U , √1(x) is > 0 on K3 and is = 0 on (Ko
4 )
c, and for n ∏ 2,

√n(x)
Ω

> 0 for x ∈ Kn+2 − Ko
n+1,

= 0 for x ∈ (Ko
n+3)

c ∪ Kn.

Lemma 3.10. Let ϕ be a member of C∞
com(RN ) vanishing for |x | ∏ 1 and

having total integral 1, put ϕε(x) = ε−Nϕ(ε−1x) for ε > 0, and let f be a
function in L p

k (U) whose support is a compact subset of U . For ε sufficiently
small, ϕε ∗ f is in C∞

com(U), and

lim
ε↓0

kϕε ∗ f − f kL p
k

= 0.

PROOF. As in the proof of Corollary 3.6, ϕε ∗ f has compact support contained
in U if ε < ε0, where ε0 is 1 if U = RN and ε0 is the distance of the support
of f to the complement of U if U 6= RN . Moreover, the function ϕε ∗ f is in
C∞(RN ) with Dα(ϕε ∗ f ) = (Dαϕε) ∗ f for each α. Thus ϕε ∗ f is in C∞

com(U)
if ε < ε0. By the first remark after the definition of weak derivative, ϕε ∗ f
has weak derivatives of all orders for ε < ε0, and they are given by the ordinary
derivatives Dα(ϕε ∗ f ). For ε < ε0,

Dα(ϕε ∗ f )(x) =
R
U f (y)(Dαϕε)(x − y) dy

= (−1)|α|
R
U f (y)Dα(y 7→ ϕε(x − y)) dy.

Since f by assumption has weak derivatives through order k and since y 7→
ϕε(x − y) has compact support in U , the right side is equal to

R
U Dα f (y)ϕε(x − y) dy = (ϕε ∗ Dα f )(x)

for |α| ≤ k. Therefore, for ε < ε0 and |α| ≤ k, we have

kDα(ϕε ∗ f − f )kp = kϕε ∗ (Dα f ) − Dα f kp.

For these same α’s, Proposition 3.5a shows that the right side tends to 0 as ε tends
to 0. Therefore ϕε ∗ f − f tends to 0 in L p

k (U). §
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PROOF OF THEOREM 3.9. Let f be in L p
k (U). The idea is to break f into a

countable sum of functions of compact support, apply the lemma to each piece,
and add the results. The difficulty lies in arranging that each of the pieces of f
have controlled weak derivatives through order k. Thus instead of using indicator
functions to break up f , we shall use an exhausting sequence {Kn}n∏1 and an
associated partition of unity {√n}n∏1 of the kind described after the statement of
the theorem. The discussion above concerning the Leibniz rule shows that each
√n f has weak derivatives of all orders≤ k, and the construction shows that √n f
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ∏ 2.

Let ≤ > 0 be given, let ϕ be a member of C∞
com(RN ) vanishing for |x | ∏ 1 and

having total integral 1, and putϕε(x) = ε−Nϕ(ε−1x) for ε > 0. ApplyingLemma
3.10 to √n f , choose εn > 0 small enough so that the function un = ϕεn ∗ (√n f )
has support in Ko

5 for n = 1 and in Ko
n+4 − Kn−1 for n ∏ 2 and so that

kun − √n f kL p
k

< 2−n≤.

Put u =
P∞

n=1 un . Each x in U has a neighborhood on which only finitely many
of the functions un are not identically 0, and therefore u is in C∞(U). Also,

u =
∞X

n=1
(un − √n f ) + f since

∞X

n=1
√n = 1.

Since for each compact subset of U , only finitely many un − √n f are not
identically 0 on that set, the weak derivatives of order ≤ k satisfy Dαu =P∞

n=1 Dα(un − √n f ) + Dα f . Hence

Dα(u − f ) =
∞X

n=1
Dα(un − √n f ).

Minkowski’s inequality for integrals therefore gives

kDα(u − f )kp ≤
∞X

n=1
kDα(un − √n f )kp ≤

∞X

n=1
kun − √n f kL p

k
≤

∞X

n=1

≤

2n
= ≤.

Finally we raise both sides to the pth power, sum for α with |α| ≤ k, and extract
the pth root. If m(k) denotes the number of such α’s, we obtain

ku − f kL p
k

≤ m(k)1/p ≤,

and the proof is complete. §
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Now we come to Sobolev’s Theorem. For the remainder of the section, the
open setU will be assumed bounded, and we shall impose a regularity condition
on its boundary @U = U cl − U . When we isolate one of the coordinates of
points in RN , say the j th, let us write y0 for the other N − 1 coordinates, so that
y = (yj , y0). We say that U satisfies the cone condition if there exist positive
constants c and h such that for each x in U , there are a sign ± and an index j
with 1 ≤ j ≤ N for which the closed truncated cone

0x = x +
©
y = (yj , y0)

Ø
Ø ± yj ∏ c|y0| and |y| ≤ h

™

lies inU for one choice of the sign±. See Figure 3.1. Problem 4 at the end of the
chapter observes that if the bounded open set U has a C1 boundary in a certain
sense, then U satisfies the cone condition.

yj

0x

y0x

FIGURE 3.1. Cone condition for a bounded open set.

Theorem 3.11 (Sobolev’s Theorem). Let U be a nonempty bounded open set
in RN , and suppose that U satisfies the cone condition with constants c and h.
If 1 ≤ p < ∞ and k > N/p, then there exists a constant C = C(N , c, h, p, k)
such that

sup
x∈U

|u(x)| ≤ CkukL p
k

for all u in C∞(U) ∩ L p
k (U).

REMARK. Under the stated conditions on k and p, the theorem says that the
inclusion ofC∞(U)∩L p

k (U) into the Banach spaceC(U) of bounded continuous
functions onU is a bounded linear operator relative to the norm of L p

k (U). Since
C∞(U)∩ L p

k (U) is dense in L p
k (U) by Theorem 3.9 and sinceC(U) is complete,

the inclusion extends to a continuous map of L p
k (U) into C(U). In other words,

every member of L p
k (U) can be regarded as a bounded continuous function on

U .

PROOF. Fix g in C∞
com(R1) with g(t) equal to 1 for |t | ≤ 1

2 and equal to 0 for
|t | ∏ 3

4 . Fix x inU and its associated sign± and index j . We introduce spherical
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coordinates about x with the indices reordered so that j comes first, writing x+ y
for a point near x with

yj = ±r cosϕ,

y1 = r sinϕ cos θ1,
... (with yj omitted)

yN−1 = r sinϕ sin θ1 · · · sin θN−3 cos θN−2,

yN = r sinϕ sin θ1 · · · sin θN−3 sin θN−2,

when
0 ≤ ϕ ≤ π,

0 ≤ θi ≤ π for i < N−2,
0 ≤ θN−2 ≤ 2π.

All the points x + y with 0 ≤ ϕ ≤ 8(c), where 8(c) is some positive number
and 0 ≤ r ≤ h, lie in the cone 0x at x . For such ϕ’s and for 0 ≤ t ≤ 1, we define

F(t) = g
° t
h
¢
u
°
x + (±t cosϕ, t sinϕ cos θ1, . . . )

¢

and expand F in a Taylor series through order k − 1 with remainder about the
point t = h. Because of the behavior of g, F and all its derivatives vanish at
t = h. Therefore F(t) is given by the remainder term:

F(t) = 1
(k−1)!

R t
h (t − s)k−1F (k)(s) ds.

Putting t = 0, we obtain

u(x) = 1
(k−1)!

R 0
h (−r)k−1 @k

@rk
£
g
° r
h
¢
u
°
x + (· · · )

¢§
dr

= (−1)k
(k−1)!

R h
0 rk−N @k

@rk
£
g
° r
h
¢
u
°
x + (· · · )

¢§
r N−1 dr.

We regard the integral on the right side as taking place over the radial part of the
spherical coordinates that describe the set of y’s in 0x , and we want to extend
the integration over all of 0x . To do so, we have to integrate over all values
of θ1, . . . , θN−2 and for 0 ≤ ϕ ≤ 8(c). We multiply by the spherical part of
the Jacobian determinant for spherical coordinates and integrate both sides. The
integrand on the left side is constant, being independent of y, and gives a positive
multiple of u(x). Dividing by that multiple, we get

u(x) = c1
R
0x−x |y|k−N @k

@rk
£
g
° |y|
h

¢
u(x + y)

§
dy.
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Suppose temporarily that p > 1. With p0 still denoting the index dual to p,
application of Hölder’s inequality gives

|u(x)| ≤ c1
° R

0x−x |y|(k−N )p0 dy
¢1/p0° R

0x−x

Ø
Ø @k

@rk
£
g
° |y|
h

¢
u(x + y)

§ØØp dy
¢1/p

.

The first integral on the right side is the critical one. The radius extends from
0 to h, and the integral is finite if and only if (k − N )p0 > −N > 0, i.e.,
k > N − N/p0 = N/p. This is the condition in the theorem.
The differentiation @k

@rk in the second factor on the right can be expanded in
terms of derivatives in Cartesian coordinates, and then the integration can be
extended over all of U . The result is that the second factor is dominated by a
multiple of kukL p

k
. This completes the proof when p > 1.

Now suppose that p = 1. Then the above result from applying Hölder’s
inequality is replaced by the inequality

|u(x)| ≤ c1
∞
∞|y|k−N

∞
∞

∞,0x−x

R
0x−x

Ø
Ø @k

@rk
£
g
° |y|
h

¢
u(x + y)

§ØØ dy.

The first factor is finite if k ∏ N , and the second factor is handled as before. This
completes the proof if p = 1. §

Corollary 3.12. Suppose that U is a nonempty bounded open subset of RN

satisfying the cone condition, and suppose that 1 < p < ∞ and that m and k are
integers ∏ 0 such that k > m + N/p. If f is in L p

k (U), then f can be redefined
on a set of measure 0 so as to be in Cm(U).

PROOF. Choose by Theorem 3.9 a sequence { fi } in C∞(U)∩ L p
k (U) such that

lim fi = f in L p
k (U). For |α| ≤ m, we apply Theorem 3.11 to see that

sup
U

|Dα fi − Dα f j |

tends to 0 as i and j tend to infinity. Thus all the Dα fi converge uniformly. It
follows that the uniform-limit function ef = lim fi is in Cm(U). Since fi → f
in L p(U) and fi → ef uniformly, we conclude that ef = f almost everywhere.
Thus ef tells how to redefine f on a set of measure 0 so as to be in Cm(U). §

3. Harmonic Functions

LetU be an open set inRN . The discussionwill not be very interesting for N = 1,
and we exclude that case. A function u in C2(U) is harmonic in U if 1u = 0
identically in U . Harmonic functions were introduced already in Chapter I and
investigated in connection with certain boundary-value problems. In the present
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section we examine properties of harmonic functions more generally. Harmonic
functions in a half space, through their boundary values and the Poisson integral
formula, become a tool in analysis for working with functions on the Euclidean
boundary, and the behavior of harmonic functions on general open sets becomes
a prototype for the behavior of solutions of further “elliptic” second-order partial
differential equations.
Harmonic functions will be characterized shortly in terms of a certain mean-

value property. To get at this characterization and its ramifications, we need the
N -dimensional “Divergence Theorem” of Gauss for two special cases—a ball
and a half space. The result for a ball will be formulated as in Lemma 3.13
below; we give a proof since this theoremwas not treated in Basic. The argument
for a half space is quite simple, and we will incorporate what we need into the
proof of Proposition 3.15 below. For the case of a ball, recall6 that the change-
of-variables formula x = rω, with r ∏ 0 and |ω| = 1, for transforming integrals
in Cartesian coordinates for RN into spherical coordinates involves substituting
dx = r N−1 dr dω, where dω is a certain rotation-invariant measure on the unit
sphere SN−1 that can be expressed in terms of N − 1 angular variables. The
open ball of radius x0 and radius r is denoted by B(r; x0), and its boundary is
@B(r; x0).

Lemma 3.13. If F is aC1 function in an open set onRN containing the closed
ball B(r; 0)cl and if 1 ≤ j ≤ N , then

Z

x∈B(r;0)

@F
@xj

(x0 + x) dx =
Z

rω∈@B(r;0)
xj F(x0 + rω)r N−2 dω.

REMARKS. The lemma is a special case of the Divergence Theorem, whose
usual formula of is

R
U divF dx =

R
@U (F · n) dS, where U is a suitable bounded

open set, @U = U cl −U is its boundary, n is the outward-pointing unit normal,
F is a vector-valued C1 function, and dS is surface area. In Lemma 3.13, U
is specialized to the ball B(r; 0), dS is the (N − 1)-dimensional area measure
r N−1 dω on the surface @B(r; 0) of the ball, F is taken to be the product of F by
the j th standard basis vector ej , and ej · n is r−1xj .
PROOF. Without loss of generality, we may take j = 1 and x0 = 0. Write

x = (x1, x 0), where x 0 = (x2, . . . , xN ), and write ω = (ω1,ω
0) similarly. The

left side in the displayed formula is equal to
R
|x 0|≤r

R p
r2−|x 0|2

x1=−
p
r2−|x 0|2

@F
@x1 (x1, x

0) dx1 dx 0

=
R
|x 0|≤r

£
F(

p
r2 − |x 0|2, x 0) − F(−

p
r2 − |x 0|2, x 0)

§
dx 0.

6From Section VI.5 of Basic.
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Thus the lemma will follow if it is proved that
R

|x 0|≤r
F(

p
r2 − |x 0|2, x 0) dx 0 =

R

|ω|=1, ω1∏0
x1F(rω)r N−2 dω (∗)

and

−
R

|x 0|≤r
F(−

p
r2 − |x 0|2, x 0) dx 0 =

R

|ω|=1, ω1≤0
x1F(rω)r N−2 dω. (∗∗)

Let us use ordinary spherical coordinates for ω, with

√ rω1
...

rωN

!

=








r cos θ1
r sin θ1 cos θ2

...
r sin θ1··· sin θN−2 cos θN−1

r sin θ1··· sin θN−2 sin θN−1








and
dω = sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1.

The right side of (∗) is equal to
R

|ω|=1, ω1∏0
F(rω)ω1r N−2 dω

=
R

0≤θ1≤π/2,
0≤θj≤π for 1< j<N−1,

0≤θN−1≤2π

F(rω)r N−1 cos θ1 sinN−2 θ1 sinN−3 θ2 · · · sin θN−2 dθ1 · · · dθN−1,

and we show that it equals the left side of (∗) by carrying out for the left side of
(∗) the change of variables x 0 ↔ (θ1, . . . , θN−1) given with r constant by

x 0 =

√ x2
...
xN

!

=






r sin θ1 cos θ2
...

r sin θ1··· sin θN−2 cos θN−1

r sin θ1··· sin θN−2 sin θN−1




 .

The Jacobian matrix is the same as for the change to spherical coordinates
(r, θ2, . . . , θN−1) except that the first column has a factor r cos θ1 instead of 1
and the other columns have an extra factor of sin θ1. Consequently

dx 0 = r N−1°| cos θ1| sinN−2 θ1
¢°
sinN−3 θ2 · · · sin θN−2

¢
dθ1 · · · dθN−1.

Therefore themeasuresmatch in the two transformed sides, the sets of integration
for (θ1, . . . , θN−1) are the same, and the integrands are the same because cos θ1 =
| cos θ1|. This proves (∗). For (∗∗)wemake the same computation but the interval
of integration for θ1 is π/2 ≤ θ1 ≤ π . To get a match, the minus sign is necessary
because cos θ1 = −| cos θ1|. §
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Proposition 3.14 (Green’s formula7 for a ball). Let B be an open ball in RN ,
let @B be its surface, and let dσ be the surface-area measure of @B. If u and v
are C2 functions in an open set containing Bcl, then

Z

B
(u1v − v1u) dx =

Z

@B

≥
u

@v

@n
− v

@u
@n

¥
dσ,

where n : @S → RN is the outward-pointing unit normal vector.

PROOF. Apply Lemma 3.13 to F = u @v
@xj and then to F = v @u

@xj , and subtract
the results. Then sum on j . §

LetƒN−1 be the surface area
R
SN−1 dω of the unit sphere inRN . A continuous

function u on an open subset U of RN is said to have the mean-value property
inU if the value of u at each point x inU equals the average value of u over each
sphere centered at x and lying in U , i.e., if

u(x) =
1

ƒN−1

Z

ω∈SN−1
u(x + tω) dω

for every x in U and for every positive t less than the distance from x to Uc.
The mean-value property over spheres implies a corresponding average-value

property over balls. In fact, the volume |B(t0; 0)| of the ball B(t0; 0) is given byR t0
0

R
SN−1 t N−1 dω dt = N−1t N0

R
SN−1 dω = N−1t N0 ƒN−1. When the mean-value

property over spheres is satisfied and t0 is less than the distance from x toUc, we
can apply the operation Nt−N0

R t0
0 (—) dt to both sides of the mean-value formula

and obtain

u(x) =
Nt−N0
ƒN−1

Z t0

0

Z

ω∈SN−1
u(x+tω)t N−1 dω dt =

1
|B(t0; 0)|

Z

B(t0;0)
u(x+y) dy.

Proposition 3.15 (Green’s formula for a half space). Let H be the subset of
RN = {(x 0, xN ) | x 0 ∈ RN−1 and xN ∈ R} with xN > 0. Suppose that u and v

are C2 functions on an open subset of RN containing the closure H and that at
least one of u and v is compactly supported. Then

Z

x∈H
(u1v − v1u) dx =

Z

x 0∈RN−1

≥
v

@u
@xN

− u
@v

@xN

¥
dx 0.

PROOF. Suppose F is a C1 function compactly supported on an open subset of
RN containing H . If 1 ≤ j ≤ N − 1, then

R
H

@F
@xj dx = 0 since the integral with

7This formula is related to but distinct from the formula with the same name at the beginning of
Section I.3.
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respect to dxj is the difference between two values of F and since these are 0 by
the compactness of the support. For j = N , however, one of the boundary terms
may fail to be 0, and the result is that

R
H

@F
@xN dx = −

R
RN−1 F(x 0) dx 0.

Apply the j th of these formulas first to F = u @v
@xj and then to F = v @u

@xj , sum
the results on j , and subtract the two sums. The result is the formula of the
proposition. §

Theorem 3.16. Let U be an open set in RN , and let u be a continuous scalar-
valued function onU . If u is harmonic onU , then u has the mean-value property
on U . Conversely if u has the mean-value property on U , then u is in C∞(U)
and is harmonic on U .

PROOF. Suppose that u is harmonic onU . We prove that u has the mean-value
property. It is enough to treat x = 0. Green’s formula, as in Proposition 3.14,
directly extends from balls to the difference of two balls.8 Thus we have

R
E (u1v − v1u) dx =

R
@E

°
u @v

@n − v @u
@n

¢
dσ (∗)

whenever E is a closed ball Bt of radius t contained in U or is the difference
Bt − (B≤)

o of two concentric balls with ≤ < t . Taking E = Bt and v = 1 in (∗),
we obtain R

@Bt
@u
@n dσ = 0. (∗∗)

Routine computation shows that the function given by

v(x) =

Ω
|x |−(N−2) for N > 2,
log |x | for N = 2,

is harmonic for x 6= 0 and has @v
@r equal to a nonzeromultiple of |x |

−(N−1), r being
the spherical coordinate radius |x |. If we apply (∗) to this v and our harmonic u
when E = Bt − (B≤)

o, we obtain
R
@(Bt−(B≤)o)

°
u @v

@n − v @u
@n

¢
dσ = 0.

Since v depends only on |x |, (∗∗) shows that the second term of the integrand
yields 0. Thus this formula becomes

R
@(Bt−(B≤)o)

u @v
@n dσ = 0.

8For the extended result, suppose that the balls have radii r1 < r2. Then u and v are defined from
radius r1 − ε to r2 + ε for some ε > 0. We can adjust u and v by multiplying by a suitable smooth
function that is identically 1 for radius ∏ r1 − 1

3 ε and identically 0 for radius ≤ r1 − 2
3 ε, and then

u and v will extend as smooth functions for radius < r2 + ε. Consequently Proposition 3.14 will
apply on each ball to the adjusted functions, and subtraction of the results gives the desired version
of Green’s formula.
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The normal vector for the inner sphere points toward the center. Hence we can
rewrite our equality as

R
|x |=≤ u

@v
@r dσ =

R
|x |=t u

@v
@r dσ.

Since @v
@r = c|x |−(N−1) with c 6= 0, we obtain

≤−(N−1) R
|x |=≤ u dσ = t−(N−1) R

|x |=t u dσ.

On the left side, dσ = ≤N−1 dω, while on the right side, dσ = t N−1 dω.
Therefore R

|ω|=1 u(≤ω) dω =
R
|ω|=1 u(tω) dω

whenever 0 < ≤ < t and Bt is contained in U . Dividing by ƒN−1, letting ≤
decrease to 0, and using the continuity of u, we see that u(0) =

R
ω∈SN−1 u(tω) dω.

Thus u has the mean-value property.
For the converse direction suppose initially that u is in C2(U). Define

mt(u)(x) = ƒ−1
N−1

R
|ω|=1 u(x + tω) dω

whenever x is in U and t is a positive number less than the distance of x to Uc.
With x fixed, the function mt(u)(x) has two continuous derivatives. We shall
show that

d2

dt2
mt(u)(x)

Ø
Ø
t=0 = N−11u(x), (†)

the derivatives being understood to be one-sided derivatives as t decreases to 0.
If u is assumed to have the mean-value property, mt(u)(x) is constant in t , and
we can conclude from (†) that 1u(x) = 0. The computation of d2

dt2 mt(u)(x) is

mt(u)(x) = ƒ−1
N−1

R
|ω|=1 u(x1 + tω1, . . . , xN + tωN ) dω,

d
dt mt(u)(x) = ƒ−1

N−1
R
|ω|=1

PN
j=1 ωj Dju(x + tω) dω,

d2
dt2 mt(u)(x) = ƒ−1

N−1
R
|ω|=1

PN
j,k=1 ωjωk Dj Dku(x + tω) dω.

Letting t decrease to 0, we obtain

d2
dt2 mt(u)(x)

Ø
Ø
t=0 = ƒ−1

N−1
PN

j,k=1 Dj Dku(x)
R
|ω|=1 ωjωk dω.

If j 6= k, then
R
|ω|=1 ωjωk dω = 0 since the integrand is an odd function of

the j th variable taken over a set symmetric about 0. The integral
R
|ω|=1 ω2j dω is
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independent of j and has the property that N times it is equal to
R
|ω|=1 |ω|2 dω =

R
|ω|=1 dω = ƒN−1. Thus

R
|ω|=1 ω2j dω = N−1ƒN−1, and

d2
dt2 mt(u)(x)

Ø
Ø
t=0 = N−1PN

j=1 D2j u(x) = N−11u(x).

This proves (†) and completes the argument that a C2 function in U with the
mean-value property is harmonic.
Finally suppose that u has the mean-value property and is assumed to be

merely continuous. Proposition 3.5e allows us to choose a function ϕ ∏ 0 in
C∞
com(RN ) with ϕ(x) = ϕ0(|x |),

R
RN ϕ(x) dx = 1, and ϕ(x) = 0 for |x | ∏ 1. Put

ϕε(x) = ε−Nϕ(ε−1x), and define uε(x) =
R

RN u(x − y)ϕε(y) dy in the open set
Uε = {x ∈ U | D(x,Uc) > ε}. Proposition 3.5c shows that uε is in C∞(Uε),
and the mean-value property of u, in combination with the radial nature of ϕε as
expressed by the equality ϕε(tω) = ϕε(te1), forces uε(x) = u(x) for all x in Uε:

uε(x) =
R ε

t=0
R
|ω|=1 u(x − tω)ϕε(tω)t N−1 dω dt

=
R ε

t=0 ƒN−1u(x)ϕε(te1)t N−1 dt

= u(x)
R

RN ϕε(y) dy = u(x).

Since ε is arbitrary, u is in C∞(U). The function u has now been shown to be in
C2(U), and it is assumed to have themean-value property. Therefore the previous
case shows that it is harmonic. §

Corollary 3.17. If u is harmonic on an open subset U of RN , then u is in
C∞(U).

PROOF. This follows by using both directions of Theorem 3.16. §

A sequence of functions {un} on a locally compact Hausdorff space X is said
to converge uniformly on compact subsets of X if lim un = u pointwise on X
and if for each compact subset K of X , the convergence is uniform on K . For
example the sequence {xn} converges to the 0 function on (0, 1) uniformly on
compact subsets.

Corollary 3.18. If {un} is a sequence of harmonic functions on an open subset
U of RN and if {un} converges uniformly on compact subsets to u, then u is
harmonic on U .

PROOF. About any point of U is a compact neighborhood lying in U , and
the convergence is uniform on that neighborhood. Therefore u is continuous.
Each integration needed for the mean-value property occurs on a compact subset
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of U , and the uniform convergence allows us to interchange limit and integral.
Therefore the mean-value property for each un , valid because of one direction of
Theorem 3.16, implies the mean-value property for u. Hence u is harmonic by
the converse direction of Theorem 3.16. §

Suppose that U is open in RN and that u is harmonic on U . If B is an
open ball in U , then

R
U u1√ dx = 0 for all √ ∈ C∞

com(B) by Green’s formula
(Proposition 3.14), since √ and @√

@n are both identically 0 on the boundary of B.
We shall use a smooth partition of unity to show that

R
U u1√ dx is therefore 0

for all √ ∈ C∞
com(U). Corollary 3.19 below provides a converse; we shall use the

converse in a crucial way in Corollary 3.23 below.
The argument to construct the partition of unity goes as follows. To each point

of K = support(√), we can associate an open ball centered at that point whose
closure is contained in U . As the point varies, these open balls cover K , and
we extract a finite subcover {U1, . . . ,Uk}. Lemma 3.15b of Basic constructs an
open cover {W1, . . . ,Wk} of K such thatW cl

i is a compact subset ofUi for each i .
Now we argue as in the proof of Proposition 3.14 of Basic. A second application
of Lemma 3.15b of Basic gives an open cover {V1, . . . , Vk} of K such that V cli is
compact and V cli ⊆ Wi for each i . Proposition 3.5f constructs a smooth function
gi ∏ 0 that is 1 on V cli and is 0 off Wi . Then g =

Pk
i=1 gi is smooth and ∏ 0

on RN and is > 0 everywhere on K . A second application of Proposition 3.5f
produces a smooth function h ∏ 0 onRN that is 1 on the set where g is 0 and is 0
on K . Then g+h is everywhere positive onRN , and the functionsϕi = gi/(g+h)
form the smooth partition of unity that we shall use.
To apply the partition of unity, we write √ =

P
i ϕi√ . Then each term ϕi√

is smooth and compactly supported in an open ball whose closure is contained in
U . Consequently we have

R
U u1(ϕi√) dx = 0 for each i . Summing on i , we

obtain
R
U u1√ dx = 0, which was what was being asserted.

Corollary 3.19. Suppose thatU is open inRN , that u is continuous onU , and
that

R
U u1√ dx = 0 for all √ ∈ C∞

com(U). Then u is harmonic on U .
PROOF. Let B be an open ball of radius r with closure contained inU , fix ε > 0

so as to be< r , and let Bε be the open ball of radius r − ε with the same center as
B. Construct ϕε as in the proof of Theorem 3.16, and let uε = u ∗ ϕε. Suppose
that √ is in C∞

com(Bε). For t and x in RN with |t | ≤ ε, define √t(x) = √(t + x).
Since √ is supported in Bε, √t is supported in B, and therefore

R
B u(x − t)1√(x) dx =

R
B u(x)1√(x + t) dx =

R
B u1√t dx = 0,

the last equality holding by the hypothesis. Multiplying by ϕε(t), integrating for
|t | ≤ ε, and interchanging integrals, we obtain

0 =
R
B

R
RN u(x − t)ϕε(t)1√(x) dt dx =

R
B uε(x)1√(x) dx .
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Since √ vanishes identically near the boundary of B, this identity and Green’s
formula (Proposition 3.14) together yield

R
B √(x)1uε(x) dx = 0 for all √ in

C∞
com(Bε). Application of Corollary 3.6a allows us to extend this conclusion to
all √ in Ccom(Bε), and then the uniqueness in the Riesz Representation Theorem
shows that we must have 1uε(x) = 0 for all x in Bε. As ε decreases to 0, uε

tends to u uniformly on compact sets. By Corollary 3.18, u is harmonic in B.
Since the ball B is arbitrary in U , u is harmonic in U . §

Corollary 3.20. Let U be a connected open set in RN . If u is harmonic in U
and |u| attains a maximum somewhere in U , then u is constant in U .
PROOF. Suppose that |u| attains a maximum at x0. Multiplying u by a suitable

constant eiθ , we may assume that u(x0) = M > 0. The subset E of U where
u(x) equals M is closed and nonempty. It is enough to prove that E is open. Let
x1 be in E , and choose an open ball B centered at x1, say of some radius r > 0,
that lies in U . We show that B lies in E . For 0 < t < r , Theorem 3.16 says that
u has the mean-value property

ƒ−1
N−1

R
SN−1 u(x1 + tω) dω = u(x1) = M.

Arguing by contradiction, suppose that u(x1 + t0ω0) 6= u(x1) for some t0ω0 with
0 < t0 < r . Then Re u(x1 + t0ω0) < M − ≤ for some ≤ > 0, and continuity
produces a nonempty open set S in the sphere SN−1 such that Re u(x1 + t0ω) <
M − ≤ for ω in S. If σ is the name of the measure on SN−1, then we have

MƒN−1 = Re
° R

SN−1 u(x1 + tω) dω
¢

=
R
S Re u(x1 + tω) dω +

R
SN−1−S Re u(x1 + tω) dω

≤
R
S (M − ≤) dω +

R
SN−1−S M dω

= (M − ≤)σ (S) + Mσ (SN−1 − S)
= MƒN−1 − ≤σ (S),

and we have arrived at a contradiction since σ (S) > 0. §

Corollary 3.21. Let U be a bounded open subset of RN , and let @U be its
boundary. Ifu is harmonic inU and isu is continuousonU cl, then supx∈U |u(x)|=
maxx∈@U |u(x)|.
PROOF. Since u is continuous and U cl is compact, |u| assumes its maximum

M somewhere on U cl. If |u(x0)| = M for some x0 in U , then Corollary 3.20
shows that u is constant on the component ofU to which x0 belongs. The closure
of that component cannot equal that component sinceRN is connected. Thus the
closure of that component contains a point of @U , and |u| must equal M at that
point of @U . Consequently supx∈U |u(x)| ≤ maxx∈@U |u(x)|. Since every point
of @U is the limit of a sequence of points in U , the reverse inequality is valid as
well, and the corollary follows. §
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Corollary 3.22 (Liouville). Any bounded harmonic function on RN is
constant.

REMARKS. The best-known result of Liouville of this kind is one fromcomplex
analysis—that a bounded function analytic on all ofC is constant. This complex-
analysis result is actually a consequence of Corollary 3.22 because the real and
imaginary parts of a bounded analytic function on C are bounded harmonic
functions on R2.

PROOF. Suppose that u is harmonic on RN with |u(x)| ≤ M . Let x1 and x2
be distinct points of RN , and let R > 0. Since u has the mean-value property
over spheres by Theorem 3.16, u equals its average value over balls. Hence
u(x1) = |B(R; 0)|−1

R
B(R;x1) u(x) dx and u(x2) = |B(R; 0)|−1

R
B(R;x2) u(x) dx .

Subtraction gives

u(x1)−u(x2) = |B(R; 0)|−1
° R

B(R;x1) u(x) dx −
R
B(R;x2) u(x) dx

¢

= |B(R; 0)|−1
°R

B(R;x1)−B(R;x2)u(x) dx−
R
B(R;x2)−B(R;x1)u(x) dx

¢
.

Therefore

|u(x1) − u(x2)| ≤ |B(R; 0)|−1
R
B(R;x1)1B(R;x2) |u(x)| dx,

where B(R; x1)1B(R; x2) is the symmetric difference (B(R; x1) − B(R; x2)) ∪
(B(R; x2) − B(R; x1)). Hence

|u(x1)−u(x2)| ≤
M|B(R; x1)1B(R; x2)|

|B(R; 0)|
=

MRN |B(1; x1/R)1B(1; x2/R)|

RN |B(1; 0)|
.

The right side is |B(1; x1/R)1B(1; x2/R)|, apart from a constant factor, and the
sets B(1; x1/R)1B(1; x2/R) decrease and have empty intersection as R tends
to infinity. By complete additivity of Lebesgue measure, the measure of the
symmetric difference tends to 0. We conclude that u(x1) = u(x2). Therefore u
is constant. §

In the final two corollaries let RN+1
+ be the open half space of points (x, t) in

RN+1 such that x is in RN and t > 0.

Corollary 3.23 (Schwarz Reflection Principle). Suppose that u(x, t) is har-
monic in RN+1

+ , that u is continuous on (RN+1
+ )cl, and that u(x, 0) = 0 for all

x . Then the definition u(x,−t) = −u(x, t) for t > 0 extends u to a harmonic
function on all of RN+1.
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PROOF. Define

w(x, t) =

Ω u(x, t) for t ∏ 0,
−u(x,−t) for t ≤ 0.

The function w is continuous. We shall show that
R

RN w1√ dx = 0 for all
√ ∈ C∞

com(RN+1), and then Corollary 3.19 shows that w is harmonic. Write √
as the sum of functions even and odd in the variable t . Since w is odd in t , the
contribution to

R
RN w1√ dx from the even part of √ is 0. We may thus assume

that √ is odd in t .
For ε > 0, let Rε = {(x, t) | t > ε}. It is enough to show that

R
Rε
u1√ dx dt

has limit 0 as ε decreases to 0 since
R

RN+1 w1√ dx dt is twice this limit. We
apply Green’s formula for a half space (Proposition 3.15) with v = √ on the set
Rε ⊆ RN+1 except for one detail: to get the hypothesis of compact support to be
satisfied, we temporarily multiply√ by a smooth function that is identically 1 for
t ∏ ε and is identically 0 for t ≤ 1

2ε. Since u is harmonic in Rε, the result is that

−
R
Rε
u1√ dx dt =

R
Rε

(√1u − u1√) dx dt =
R
{(x,t) | t=ε}

°
u @√

@t − √ @u
@t

¢
dx .

On the right side, limε↓0
R
{(x,t) | t=ε} u

@√
@t dx = 0 since u( · , ε) tends uniformly

to 0 on the relevant compact set of x’s in RN .
Thus it is enough to prove that limε↓0

R
{(x,t) | t=ε} √

@u
@t dx = 0. Since √(x, t)

is of class C2, is odd in x , and is compactly supported, we have |√(x, t)| ≤ Ct
uniformly in x for small positive t . Thus it is enough to prove that

lim
t↓0

Ø
Ø
Ø t

@u
@t

(x, t)
Ø
Ø
Ø = 0 (∗)

uniformly on compact subsets of RN .
To prove (∗), let ϕ be a function as in Proposition 3.5e, and let ϕε(x, t) =

ε−(N+1)ϕ(ε−1(x, t)). Fix x0 in RN , and define X0 = (x0, t0) and X = (x0, t).
If |X − X0| < 1

3 t0, then the mean-value property of u in RN+1
+ gives u(X) =

(u ∗ ϕ 1
3 t0

)(X). Hence we have

@u
@t (X) = @

@t
R

RN+1 ϕ 1
3 t0

(X − Y )u(Y ) dY

=
R

RN+1
@
@t

£
( 13 t0)

−(N+1)ϕ
°
( 13 t0)

−1(X − Y )
¢§
u(Y ) dY.

In the computation of the partial derivative on the right side, the variable t appears
as the last coordinate of X . Therefore this expression is equal to

( 13 t0)
−1 R

RN+1 ( 13 t0)
−(N+1) @ϕ

@t
°
( 13 t0)

−1(X − Y )
¢
u(Y ) dY.
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Changing variables in the integration by a dilation in Y shows that this expression
is equal also to

( 13 t0)
−1 R

RN+1
@ϕ
@t

°
( 13 t0)

−1X − Y
¢
u( 13 t0Y ) dY.

If we write Y = (y, s) and take absolute values, we obtain

Ø
Ø @u

@t (x0, t)
Ø
Ø ≤ 3t−10

∞
∞ @ϕ

@t

∞
∞
1 sup

|s−t0|<2t0/3,
Y near X0

|u(Y )|.

The required behavior of t @u
@t follows from this estimate. §

Corollary 3.24. Suppose that u(x, t) is harmonic inRN+1
+ , that u is continuous

on (RN+1
+ )cl, and that u(x, 0) = 0 for all x . If u is bounded, then u is identically 0.

REMARK. Without the assumption of boundedness, the function u(x, t) = t is
a counterexample.

PROOF. Corollary 3.23 shows that u extends to a bounded harmonic function
on all of RN+1, and Corollary 3.22 shows that the extended function is constant,
hence identically 0. §

4. Hp Theory

As was said at the beginning of Section 3, harmonic functions in a half space,
through their boundary values and the Poisson integral formula, become a tool in
analysis for working with functions on the Euclidean boundary. The Poisson in-
tegral formula, which was introduced in Chapters VIII and IX of Basic, generates
harmonic functions from boundary values.
The details are as follows. Let RN+1

+ be the open half space of pairs (x, t) in
RN+1 with x ∈ RN andwith t > 0 inR1. Weview the boundary

©
(x, 0)

Ø
Ø x ∈ RN™

as RN . The function

P(x, t) = Pt(x) =
cN t

(t2 + |x |2) 12 (N+1)
,

for t > 0, with cN = π− 1
2 (N+1)0

° N+1
2

¢
, is called the Poisson kernel for RN+1

+ .
The Poisson integral formula for RN+1

+ is u(x, t) = (Pt ∗ f )(x), where f is
any given function in L p(RN ) and 1 ≤ p ≤ ∞, and the function u is called the
Poisson integral of f .
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If f is in L p, then u is harmonic on RN+1
+ , u( · , t) is in L p for each t > 0, and

ku( · , t)kp ≤ k f kp. For 1 ≤ p < ∞, limt↓0 u( · , t) = f in the norm topology of
L p, while for p = ∞, limt↓0 u( · , t) = f in theweak-star topology of L∞ against
L1. In both cases, limt↓0 ku( · , t)kp = k f kp, and limt↓0 u(x, t) = f (x) a.e.; this
latter result is known as Fatou’s Theorem. When p = ∞, the a.e. convergence
occurs at any point where f is continuous, and the pointwise convergence is
uniform on any subset of RN where f is uniformly continuous.
The L p theory for p = 1 extends from integrable functions to theBanach space

M(RN ) of finite complex Borel measures. Specifically if ∫ is a finite complex
Borel measure on RN , then the Poisson integral of ∫ is defined to be the function
u(x, t) = (Pt ∗ µ)(x) =

R
RN Pt(x − y) d∫(y). Then u is harmonic on RN+1

+ ,
ku( · , t)k1 ≤ k∫k for each t > 0, limt↓0 u( · , t) = ∫ in the weak-star topology of
M(RN ) against Ccom(RN ), and limt↓0 ku( · , t)k1 = kµk.
The new topic for this section is a converse to the above considerations. For

1 ≤ p ≤ ∞, we defineHp(RN+1
+ ) to be the vector space of functions u(x, t) on

RN+1
+ such that
(i) u(x, t) is harmonic on RN+1

+ ,
(ii) supt>0 ku( · , t)kp < ∞.

With kukHp defined as supt>0 ku( · , t)kp, the vector spaceHp(RN+1
+ ) is a normed

linear space. If f is in L p(RN ), then the facts about the Poisson integral formula
show that the Poisson integral of f is in Hp(RN+1

+ ) and its Hp(RN+1
+ ) norm

matches the L p(RN ) norm of f . For p = 1, we readily produce further examples.
Specifically if ∫ is any member of M(RN ), then the Poisson integral of ∫ is in
H1(RN+1

+ ), with the H1(RN+1
+ ) norm matching the M(RN ) norm. The theorem

of this section will say that there are no other examples.
The members of H∞(RN+1

+ ) are exactly the bounded harmonic functions in
the half space RN+1

+ , and the tool for obtaining an L∞ function on RN from
this harmonic function is the preliminary form of Alaoglu’s Theorem proved in
Basic:9 any norm-bounded sequence in the dual of a separable normed linear
space has a weak-star convergent subsequence.10 We shall use Corollary 3.24 to
see that the harmonic function has to be the Poisson integral of this L∞ function.

Theorem 3.25. If 1 < p ≤ ∞, then any harmonic function in Hp(RN+1
+ ) is

the Poisson integral of a function in L p(RN ). For p = 1, any harmonic function
inH1(RN+1

+ ) is the Poisson integral of a finite complex measure in M(RN ).

PROOF. We begin by proving that u(x, t) is bounded for t ∏ t0. For this step
we may assume that p < ∞. Theorem 3.16 shows that u has the mean-value

9Theorem 5.58 of Basic.
10The full-fledged version of Alaoglu’s Theorem will be stated and proved in Chapter IV.
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property. We know as a consequence that if B denotes the ball with center (x, t)
and radius 12 t0, then the value of u at (x, t) equals the average value over B:

u(x, t) = 1
|B|

R
B u(y, s) dy ds.

Since the measure |B|−1 dy ds on B has total mass 1, Hölder’s inequality gives
|u(x, t)|p ≤ 1

|B|

R
B |u(y, s)|p dy ds

≤ 1
|B|

R
|s−t |≤ 1

2 t0

R
y∈RN |u(y, s)|p dy ds

≤ [( 12 t0)
N+1ƒN ]−1(N + 1)t0kukpHp ,

and the boundedness is proved.
For each positive integer k, define fk(x) = u(x, 1/k) and w(x, t) =

(Pt ∗ fk)(x). Then the function wk(x, t) − u(x, t + 1/k) is
(i) harmonic in (x, t) for t > 0 sincewk and any translate of u are harmonic,
(ii) bounded as a function of (x, t) for t ∏ 0 since u(x, t + 1/k) is bounded

for t ∏ 0, according to the previous paragraph, and sincewk is the Poisson
integral of the bounded function fk ,

(iii) continuous in (x, t) for t ∏ 0 since u(x, t + 1/k) and wk(x, t) both have
this property, the latter because fk is continuous and bounded.

By Corollary 3.24, wk(x, t) − u(x, t + 1/k) = 0. That is,
u(x, t + 1/k) =

R
RN Pt(x − y) fk(y) dy.

Now suppose p > 1, so that L p is the dual space to L p0 if p−1 + p0−1 = 1.
Since u is in Hp, k fkkp ≤ M for the constant M = kukHp

. By the preliminary
form of Alaoglu’s Theorem, there exists a subsequence { fkj } of { fk} that is weak-
star convergent to some function f in L p. Since for each fixed t , Pt is in L1∩ L∞

and hence is in L p0 , each (x, t) has the property that
u(x, t + 1/kj ) =

R
RN Pt(x − y) fkj (y) dy →

R
RN Pt(x − y) f (y) dy.

But u(x, t + 1/kj ) → u(x, t) by continuity of u. We conclude that u(x, t) =R
RN Pt(x − y) f (y) dy.
This proves the theorem for p > 1. If p = 1, the above argument falls short

of constructing a function f in L1 since L1 is not the dual of L∞. Instead, we
treat fk as a complex measure fk(x) dx . The norm of fk(x) dx in M(RN ) equals
k fkk1, and thus the norms of the complex measures fk(x) dx are bounded. The
space M(RN ) is the dual of Ccom(RN ) and hence also of its uniform closure,
which is the Banach space C0(RN ) of continuous functions on RN vanishing at
infinity. Let { fkj (x) dx} be a weak-star convergent subsequence of { fk(x) dx},
with limit ∫ in M(RN ). Since each function y 7→ Pt(x − y) is in C0(RN ), we
have limk

R
RN Pt(x − y) fkj (y) dy =

R
RN Pt(x − y) d∫(y). This completes the

proof. §
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For N = 1, every analytic function in the upper half planeR2
+ is automatically

harmonic, and one can ask for a characterization of the subspace of analytic
members of Hp(R2+). Aspects of the corresponding theory are discussed in
Problems 13–20 at the end of the chapter.

5. Calderón–Zygmund Theorem

The Calderón–Zygmund Theorem asserts the boundedness of certain kinds of
important operators on L p(RN ) for 1 < p < ∞. It is an N -dimensional
generalization of the theorem giving the boundedness of the Hilbert transform,
which was proved in Chapters VIII and IX of Basic. We state and prove the
Calderón–Zygmund Theorem in this section, and we give some applications to
partial differential equations in the next section.

Theorem 3.26 (Calderón–Zygmund Theorem). Let K (x) be a C1 function on
RN − {0} homogeneous11 of degree 0 with mean value 0 over the unit sphere,
i.e., with Z

SN−1
K (ω) dω = 0.

For each ε > 0, define

Tε f (x) =
Z

|t |∏ε

K (t)
|t |N

f (x − t) dt

whenever 1 < p < ∞ and f is in L p(RN ). Then
(a) kTε f kp ≤ Apk f kp for a constant Ap independent of ε and f ,
(b) lim

ε↓0
Tε f = T f exists as an L p limit,

(c) kT f kp ≤ Apk f kp for a constant Ap independent of f .

REMARKS. If 1 ≤ p < ∞ and if p0 is the dual index to p, then the function
equal to K (t)/|t |N for |t | ∏ ε and equal to 0 for |t | < ε is in L p0 . Therefore, for
each such p, Tε f is the convolution of an L p0 function and an L p function and is
a well-defined bounded uniformly continuous function. In proving the theorem,
we shall use less about K (x) than the assumedC1 condition onRN −{0} but more
than continuity. The precise condition that we shall use is that |K (x) − K (y)| ≤
√(|x−y|) on SN−1 for a nondecreasing function√(δ) of one variable that satisfiesR 1
0

√(δ)
δ
dδ < ∞.

11A function F of several variables is homogeneous of degree m if F(r x) = rm F(x) for all
r > 0 and all x 6= 0.
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Themain steps in the proof are to show that the operator T1 equal to Tε for ε = 1
is bounded on L2 and is ofweak-type (1, 1) in the sense that

Ø
Ø©x

Ø
Ø |(T1 f )(x) > ξ

™ØØ
≤ Ck f k1/ξ . The remainder of the argument is qualitatively similar to the
argument with the Hilbert transform, not really involving any new ideas. We
handle matters in the following order: First we prove as Lemma 3.27 two facts
needed in the L2 analysis, second we give the proof of the boundedness of T1
on L2, third we establish in Lemmas 3.28 and 3.29 a weak-type (1, 1) result
for a wide class of operators, and fourth we show as a special case that T1 is of
weak-type (1, 1). Finally we tend to the remaining details of the proof.

Lemma 3.27. There is a constant C such that for all R ∏ 1, all ε with
0 < ε ≤ 1, and all nonzero real a and b,

(a)
Ø
Ø
Ø
Z R

ε

sin ar dr
r

Ø
Ø
Ø ≤ C ,

(b)
Ø
Ø
Ø
Z R

ε

(cos ar − cos br) dr
r

Ø
Ø
Ø ≤ C

°
1+

Ø
Ø log(|a/b|)

Ø
Ø¢.

PROOF. In (a) and (b), the signs of a and b make no difference, and we may
therefore assume that a > 0 and b > 0.
In (a), the change of variables s = ar converts the integral into

R aR
aε

sin s ds
s .

Since s−1 sin s is integrable near 0, it is enough to consider
R S
0
sin s ds

s . Integration
by parts shows that this integral equals

£ 1−cos s
s

§S
0 −

R S
0

(cos s−1) ds
s2 . The integrated

term tends to a finite limit as S tends to infinity, and the integral is absolutely
convergent. Hence (a) follows.
In (b), possibly by interchanging a and b, we may assume that c = b/a is≤ 1.

The changeof variables s = ar converts the integral into
R aR
aε

(cos s−cos cs) ds
s . Since

|1− cos s| ≤ 1
2s
2 for all s, we have |1− cos cs| ≤ 1

2c
2s2 ≤ 1

2s
2. So the integrand

is≤ s in absolute value everywhere and in particular is integrable for s near 0. It is
therefore enough to show that

Ø
Ø R S
1

(cos s−cos cs) ds
s

Ø
Ø ≤ C(1+ log(c−1)). Integration

by parts gives
R S
1
cos s ds

s =
£ sin s

s
§S
1 +

R S
1
sin s ds
s2 . The integrated term tends to a

finite limit, and the integral is absolutely convergent. Hence the term
R S
1
cos s ds

s
is bounded, and it is enough to handle

R S
1
cos cs ds

s . Putting t = cs changes this
integral to

R cS
c

cos t dt
t . If cS ∏ 1, the integral from 1 to cS contributes a bounded

amount, as is seen by integrating by parts, and the integral from c to 1 contributes
in absolute value at most

R 1
c

dt
t = log c−1. If cS ≤ 1, the integral from c to cS

contributes in absolute value at most
R 1
c

dt
t +

R 1
cS

dt
t = log c−1 + log(cS)−1 ≤

2 log c−1. §

PROOF FOR THEOREM 3.26 THAT T1 IS BOUNDED ON L2. Define k(x) to be
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K (x)/|x |N for |x | ∏ 1 and to be 0 for |x | < 1. Then k is an L2 function, and
T1 f = k ∗ f . We show that T1 is bounded on L2 by showing that the Fourier
transform F k of k is an L∞ function.
If In denotes the indicator function of {|x | ≤ n}, then the sequence {k In}

converges to k in L2. By the Plancherel formula, {F(k In)} converges to F k in
L2. Thus a subsequence converges almost everywhere. To simplify the notation,
let n run through the indices of the subsequence. We have just shown that

(F k)(x) = limn
R
|x |≤n k(x)e

−2π i x ·y dx,

the limit existing almost everywhere. Write x = rω and y = r 0ω0, where r = |x |
and r 0 = |y|. Then x · y = rr 0 cos ∞ , where ∞ = ω · ω0, and (F k)(x) is the limit
on n of
R
SN−1

R n
1

K (ω)
r N e−2π irr 0 cos ∞ r N−1 dr dω

=
R
SN−1

£ R n
1

e−2π irr 0 cos ∞ dr
r

§
K (ω) dω

=
R
SN−1

£ R n
1

(e−2π irr 0 cos ∞ −cos 2πrr 0) dr
r

§
K (ω) dω since K has

mean value 0

=
R
SN−1

£ R n
1

°
cos(2πrr 0 cos ∞ )−cos 2πrr 0

¢
dr

r
§
K (ω) dω

− i
R
SN−1

£ R n
1
sin(2πrr 0 cos ∞ ) dr

r
§
K (ω) dω.

Let us call the terms on the right side Term I and −i Term II. The inner integral
for Term II is bounded independently of r, r 0, ∞ , n by Lemma 3.27a. Since K is
bounded, Term II is bounded.
The inner integral for Term I is bounded by C

°
1+ log(| cos ∞ |−1)

¢
, according

to Lemma 3.27b. Since K is bounded, the contribution from C by itself yields a
bounded contribution to Term I and is harmless. We are left with a term that in
absolute value is

≤ C
R
SN−1 log(| cos ∞ |−1)|K (ω)| dω = C

R
SN−1 log(| cos(ω · ω0)|−1)|K (ω)| dω.

Since K is bounded, it is enough to estimate
R
SN−1 log(| cos(ω · ω0)|−1) dω. This

integral is independent of ω0. We introduce spherical coordinates

ω1 = cos θ1,
ω2 = sin θ1 cos θ2,

...
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and take ω0 = (1, 0, . . . , 0). The integral becomes
R

0≤θj≤π for j<N−1,
0≤θN−1≤2π

log(| cos θ1|−1) sinN−2 θ1 · · · sin θN−2 dθN−1 · · · dθ1,

which is a constant times
R π

0 log(| cos θ |−1) sinN−2 θ dθ . This integral in turn
is ≤

R π

0 log(| cos θ |−1) dθ , whose finiteness reduces to the local integrability of
log(|x |−1) on the line. Thus Term I is bounded, and the boundedness of F k
follows. §

Lemma 3.28 (Calderón–Zygmund decomposition). Let f be in L1(RN ), and
let ξ be a positive real number. Then there exists a finite or infinite disjoint
sequence {En}n∏1 of Borel subsets of RN such that

(a) for each En , there exists a ball Bn = B(rn; xn) such that the balls Bn and
B∗
n = B(5rn; xn) have Bn ⊆ En ⊆ B∗

n ,
(b)

P
n |En| ≤ 5Nk f k1

±
ξ ,

(c) | f (x)| ≤ ξ almost everywhere off
S

n En ,

(d)
1

|En|

Z

En
| f (y)| dy ≤ 5N ξ for each n.

FIGURE 3.2. Calderón–Zygmund decomposition of RN relative to a function at a
certain height. The set where the maximal function of f exceeds ξ lies in the
union of the gray balls. The gray balls have radii 5 times those of the black
balls, and the black balls are disjoint. The function | f | is ≤ ξ almost
everywhere off the union of the gray balls, and the sum of the volumes

of the gray balls is controlled.

REMARKS. In the 1-dimensional case, this result was embedded in the proof
of Theorem 8.25 of Basic. The sets En were open intervals. Extending that
argument too literally to the N -dimensional case is unnecessarily complicated
for current purposes. Instead, we settle for an nth set that contains a ball of some
radius about a point and is contained in a ball of 5 times that radius. Thus the nth
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set En consists of a black ball and part of the corresponding gray ball in Figure
3.2. The fact that En has not been precisely locatedmakes the proof of weak-type
(1, 1) in the present section more difficult than the proof of Theorem 8.25 of
Basic.
PROOF. Let f ∗ be the Hardy–Littlewood maximal function

f ∗(x) = sup0<r<∞ |B(r; x)|−1
R
B(r;x) | f (y)| dy,

and let E = {x | f ∗(x) > ξ}. If x is in E , then |B(r; x)|−1
R
B(r;x) | f (y)| dy > ξ

for some r > 0. On the other hand, limr→∞ |B(r; x)|−1
R
B(r;x) | f (y)| dy = 0

since f is integrable. Thus, for each x in E , there exists an r = rx depending on
x such that

|B(rx ; x)|−1
R
B(rx ;x) | f (y)| dy > ξ

|B(5rx ; x)|−1
R
B(5rx ;x) | f (y)| dy ≤ ξ.and

Since k f k1 ∏
R
B(rx ;x) | f (y)| dy > ξ |B(rx ; x)| = r Nx ξ |B(1; 0)|, the radii rx are

bounded. Applying theWienerCoveringLemma12 to the cover {B(rx ; x) | x ∈E}
of E , we obtain a finite or infinite sequence of points x1, x2, . . . such that the
balls B(rxn ; xn) are disjoint and

E ⊆
S

n B(5rxn ; xn). (∗)

Write rn for rxn . Put E1 = B(5r1; x1) −
S

j 6=1 B(rj ; xj ), and define inductively

En = B(5rn; xn) −
Sn−1

j=1 Ej −
S

j 6=n B(rj ; xj ).

By inspection
(i) the sets En are disjoint,
(ii) B(rn; xn) ⊆ En ⊆ B(5rn; xn) for each n,
(iii)

S
n En =

S
n B(5rn; xn).

Property (ii) immediately yields (a). The second inclusion of (ii) gives ξ |En| ≤
ξ |B(5rn; xn)| = 5N ξ |B(rn; xn)| ≤ 5N

R
B(rn;xn) | f (y)| dy. Summing on n and

taking into account the disjointness of the sets B(rn; xn), we obtain ξ
P

n |En| ≤
5N

R
S
n B(rn;xn) | f (y)| dy ≤ 5Nk f k1. This proves (b). The two inclusions

of (ii) together yield
R
En | f (y)| dy ≤

R
B(5rn;xn) | f (y)| dy ≤ ξ |B(5rn; xn)| =

5N ξ |B(rn; xn)| ≤ 5N ξ |En|, and this proves (d). Finally (∗) and (iii) together
show that E ⊆

S
n En . Therefore f ∗(x) ≤ ξ everywhere off

S
n En . Since

limr↓0 |B(r; x)|−1
R
B(r;x) | f (y)| dy = f (x)

almost everywhere onRN , we see that | f (x)| ≤ ξ almost everywhere off
S

n En .
This proves (c). §

12Lemma 6.41 of Basic.
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Lemma 3.29. Let k be in L2(RN ), and define T f = k ∗ f for f in L1 + L2.
If

(a) kT f k2 ≤ Ak f k2 and
(b) there exist constants B and α > 0 such that

Z

|x |∏α|y|
|k(x − y) − k(x)| dx ≤ B

independently of y,
then the operator T is of weak-type (1, 1) with a constant depending only on A,
B, α, and N .

PROOF. We are to estimate the measure of the set of x where |(T f )(x)| > ξ .
Fix f and ξ , and apply Lemma 3.28 to obtain disjoint Borel sets En and balls
Bn = B(rn; xn) and B∗

n = B(5rn; xn) with Bn ⊆ En ⊆ B∗
n and with the other

properties listed in the lemma. Now that the sets En have been determined, we
decompose f into the sum f = g+ b of a “good” function and a “bad” function
by

g(x) =

( 1
|En |

R
En f (y) dy for x ∈ En,

f (x) for x /∈
S

n En,

b(x) =

Ω f (x) − 1
|En |

R
En f (y) dy for x ∈ En,

0 for x /∈
S

n En.

Since
©
x

Ø
Ø |T f (x)| > ξ

™
⊆

©
x

Ø
Ø |Tg(x)| > ξ/2

™
∪

©
x

Ø
Ø |Tb(x)| > ξ/2

™
, it is

enough to prove
(i)

Ø
Ø©x

Ø
Ø |Tg(x)| > ξ/2

™ØØ ≤ Ck f k1
±
ξ and

(ii)
Ø
Ø©x

Ø
Ø |Tb(x)| > ξ/2

™ØØ ≤ Ck f k1
±
ξ

for some constant C independent of ξ and f .
The definition of g shows that

R
En |g(x)| dx ≤

R
En | f (x)| dx for all n and

that |g(x)| = | f (x)| for x /∈
S

n En; therefore
R

RN |g(x)| dx ≤
R

RN | f (x)| dx .
Also, properties (b) and (c) of the En’s show that |g(x)| ≤ 5N ξ a.e. These two
inequalities, together with the bound kTgk2 ≤ Akgk2, give

R
RN |Tg(x)|2 dx ≤ A2

R
RN |g(x)|2 dx

≤ 5N ξ A2
R

RN |g(x)| dx ≤ 5N ξ A2
R

RN | f (x)| dx .

Combining this result with Chebyshev’s inequality
Ø
Ø©x

Ø
Ø |F(x)| > β

™ØØ ≤ β−2 R
RN |F(x)|2 dx
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for the function F = Tg and the number β = ξ/2, we obtain
Ø
Ø©x

Ø
Ø |Tg(x)| > ξ/2

™ØØ ≤
4
ξ 2
5N ξ A2

Z

RN
| f (x)| dx =

4 · 5N A2k f k1
ξ

.

This proves (i).
For the function b, let bn be the product of b with the indicator function of

En . Then we have b =
P

n bn with the sum convergent in L1. Inspection of
the definition shows that kbnk1 ≤ 2

R
En | f (y)| dy, and therefore kbk1 ≤ 2k f k1.

Since T is convolution by the L2 function k and since b =
P

n bn in L1, Tb =P
n T bn with the sum convergent in L2. A subsequence of partial sums therefore

converges almost everywhere. Inserting absolute values consistently with the
subsequence and then inserting absolute values around each term, we see that

|Tb(x)| ≤
P

n |Tbn(x)| a.e.
Let α be the constant in hypothesis (b). The measure of

S
n B(5αrn; xn) is

Ø
ØS

n B(5αrn; xn)
Ø
Ø ≤

P
n |B(5αrn; xn)| =

P
n 5NαN |B(rn; xn)|

≤ 5NαN P
n |En| ≤ 52NαNk f k1

±
ξ.

Let X = RN −
S

n B(5αrn; xn). If we show that
R
X |Tb(x)| dx ≤ C 0k f k1, then

we will have
Ø
Ø©x

Ø
Ø |Tb(x)| > ξ/2

™ØØ ≤ (52NαN + 2C 0)k f k1
±
ξ, (∗)

and (ii) will be proved. Put τn(X) = {x − xn | x ∈ X}. Since
R
En b(y) dy = 0

for each n,
R
X |Tb(x)| dx ≤

P
n
R
X |Tbn(x)| dx

=
P

n
R
X

Ø
Ø R

En k(x − y)b(y) dy
Ø
Ø dx

=
P

n
R
X

Ø
Ø R

En [k(x − y) − k(x − xn)]b(y) dy
Ø
Ø dx

≤
P

n
R
X

R
En |k(x − y) − k(x − xn)||b(y)| dy dx

x−xn→x
=

P
n
R
En

£ R
τn(X) |k(x + xn − y) − k(x)| dx

§
|b(y)| dy

≤
P

n
R
En

£ R
B(5αrn;0)c |k(x + xn − y) − k(x)| dx

§
|b(y)| dy.

In the nth term on the right side, y is in En ⊆ B∗
n , and hence |xn − y| ≤ 5rn;

meanwhile, |x | ∏ 5αrn . Therefore |x | ∏ 5αrn ∏ α|xn − y|. The right side in the
display is not decreased by increasing the region of integration in the x variable,
and hence the right side is

≤
P

n
R
En

£ R
|x |∏α|xn−y| |k(x + xn − y) − k(x)| dx

§
|b(y)| dy

≤
P

n
R
En B|b(y)| dy = Bkbk1 ≤ 2Bk f k1.

Therefore (∗) is proved with C 0 = 2B, and the proof of (ii) is complete. §
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PROOF FOR THEOREM 3.26 THAT T1 IS OF WEAK-TYPE (1, 1). With k(x) taken
to be K (x)/|x |N for |x | ∏ 1 and to be 0 for |x | < 1, Lemma 3.29 shows that it
is enough to prove that

R
|x |∏2|y| |k(x − y) − k(x)| dx ≤ B (∗)

with B independent of y. The function k is bounded, and thus the contribution
to the integral in (∗) from the bounded set of x’s where |x | < 1 is bounded
independently of y. The set of x’s where |x − y| < 1 is a ball whose measure is
bounded as a function of y, and thus this set too contributes a bounded term to
the integral in (∗). It is therefore enough to prove that

Z

|x |∏2|y|,
|x−y|∏1, |x |∏1

Ø
Ø
Ø
K (x − y)
|x − y|N

−
K (x)
|x |N

Ø
Ø
Ø dx

is bounded as a function of y. IfM is an upper bound for |K |, then this expression
is

≤
R

|K (x − y)|
Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø dx +

R |K (x−y)−K (x)|
|x |N dx

≤ M
R

|x |∏2|y|,
|x |∏1

Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø dx +

R

|x |∏2|y|,
|x |∏1

|K (x−y)−K (x)|
|x |N dx . (∗∗)

We use the two estimates

|x − y| ≤ |x | + |y| ≤ |x | + 1
2 |x | = 3

2 |x |

|x − y| ∏ |x | − |y| = ( 12 |x | − |y|) + 1
2 |x | ∏ 1

2 |x |.and

The integrand in the first term of (∗∗) is equal to
Ø
Ø 1
|x−y|N − 1

|x |N
Ø
Ø =

Ø
Ø |x |N−|x−y|N

|x |N |x−y|N
Ø
Ø ≤ 2N

Ø
Ø |x |N−|x−y|N

|x |2N
Ø
Ø

≤ 2N | |x |−|x−y| |(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N

≤ 2N |y|(|x |N−1+|x |N−2|x−y|+···+|x−y|N−1)
|x |2N ≤ 2N ( 32 )

N |y|(|x |N−1+|x |N−1+···+|x |N−1)
|x |2N

= N3N |y|
|x |N+1 .

Thus the integral in the first term of (∗∗) is

≤ N3N
R
|x |∏max{1,2|y|}

|y|
|x |N+1 dx = N3NƒN−1

R ∞
max{1,2|y|}

|y|
r N+1 r N−1 dr

= N3NƒN−1
|y|

max{1,2|y|} ≤ 1
2N3

NƒN−1,
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and this is bounded independently of y.
For the second term of (∗∗), we start from the estimate

Ø
Ø z
|z| − w

|w|

Ø
Ø ≤ |z−w|

min{|z|,|w|} . (†)

To verify (†), we may assume that |z| ∏ |w|. Then |z|
|w| + 1 ∏ 2z·w

|z||w| because
the left side is ∏ 2 and the right side is ≤ 2. Multiplying by |z|

|w| − 1, we obtain
|z|2
|w|2 − 1 ∏ 2z·w

|w|2 − 2z·w
|z||w| . Hence 1 − 2z·w

|z||w| + 1 ≤ |z|2
|w|2 − 2z·w

|w|2 + 1, which is the
square of (†).
Using (†) and the definition and monotonicity of the function√ that is defined

in the remarks with the theorem and that captures the smoothness of K , we have

|K (x− y)−K (x)| =
Ø
ØK ( x−y

|x−y| )−K ( x
|x | )

Ø
Ø ≤ √

°ØØ x−y
|x−y| −

x
|x |

Ø
Ø¢ ≤ √

° |y|
min{|x−y|,|x |}

¢
.

Since |x− y| ∏ 1
2 |x |, min{|x− y|, |x |} ∏ 1

2 |x |. Thus√
° |y|
min{|x−y|,|x |}

¢
≤ √

° 2|y|
|x |

¢
,

and the computation
R

|x |∏2|y|,
|x |∏1

|K (x−y)−K (x)|
|x |N dx ≤

R

|x |∏2|y|,
|x |∏1

√(2|y|/|x |)
|x |N dx =

R

|z|∏1,
|z|∏1/2|y|

√(1/|z|)
|z|N dz

= ƒN−1
R ∞
max{1,1/2|y|} √(1/r)r−1 dr

= ƒN−1
R min{1,2|y|}
0 √(δ)δ−1 dδ

≤ ƒN−1
R 1
0 √(δ)δ−1 dδ

shows that the second term of (∗∗) is bounded independently of y. §

PROOF OF REMAINDER OF THEOREM 3.26. We can now argue in the same way
that the Hilbert transform was handled in Chapter IX of Basic. Since T1 has been
shown to be bounded on L2 and to be of weak-type (1, 1), the Marcinkiewicz
Interpolation Theorem given in Theorem 9.20 of Basic shows that kT1 f kp ≤
Apk f kp for 1 < p ≤ 2 with Ap independent of f . Lemma 9.22 of Basic extends
this conclusion to 1 < p < ∞. The argument that proves Theorem 9.23a in
Basic applies here and shows that kTε f kp ≤ Apk f kp for 1 < p < ∞ with Ap
independent of f and ε. This proves Theorem 3.26a.
The same argument as in Lemma 9.24 of Basic shows that if f is aC1 function

of compact support on RN , then

limε↓0
R
|y|∏ε

K (y) f (x−y) dy
|y|N

exists uniformly and in L p for every p > 1. This proves (b) of Theorem 3.26 for
the dense set of C1 functions f of compact support.
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To prove the norm convergence when we are given a general f in L p with
1 < p < ∞, we choose a sequence fn in the dense set with fn → f in L p. Then

kTε f − Tε0 f kp ≤ kTε( f − fn)kp + kTε fn − Tε0 fnkp + kTε0( fn − f )kp
≤ Apk fn − f kp + kTε fn − Tε0 fnkp + Apk fn − f kp.

Choose n to make the first and third terms small on the right, and then choose ε
and ε0 sufficiently close to 0 so that the second term on the right is small. The
result is that Tεn f is Cauchy in L p along any sequence {εn} tending to 0. This
proves Theorem 3.26b.
For any f in L p with 1 < p < ∞, we have just seen that Tε f → T f in L p.

Then (a) gives kT f kp = limε↓0 kTε f kp ≤ lim supε↓0 Apk f kp = Apk f kp. This
proves Theorem 3.26c. §

6. Applications of the Calderón–Zygmund Theorem

EXAMPLE 1. Riesz transforms. These are a more immediate N -dimensional
analog of the Hilbert transform than is the operator in the Calderón–Zygmund
Theorem. In R1, the Poisson kernel and conjugate Poisson kernel are given by

P(x, y) = Py(x) =
1
π

y
x2 + y2

and Q(x, y) = Qy(x) =
1
π

x
x2 + y2

.

The conjugate Poisson kernel Q may be obtained starting from the Poisson kernel
P by applying the Cauchy–Riemann equations in the form

@P
@x

=
@Q
@y

and
@Q
@x

= −
@P
@y

and by requiring that Q vanish at infinity. The differential equations lead to the
solution

Q(x, y) =
Z (x,y)

∞

@P
@x

dy.

TheHilbert transformkernelmaybeobtainedby letting y decrease to 0 inQ(x, y).
The resulting formal convolution formula

H f (x) =
1
π

Z ∞

−∞

f (x − t)
t

dt

is to be interpreted in such a way as to represent passage from the boundary values
of Py ∗ f to the boundary values of Qy ∗ f . We know that a valid way of arriving
at this interpretation is to take the integral for |t | ∏ ε and let ε decrease to 0.
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In N dimensions the Poisson kernel for RN+1
+ is

P(x, t) = Pt(x) =
cN t

(|x |2 + t2) 12 (N+1)
, x ∈ RN , t > 0,

with cN = π− 1
2 (N+1)0

° N+1
2

¢
. If wewrite xN+1 in place of t , the natural extension

of the Cauchy–Riemann equations is the system for the (N + 1)-component
function u = (u1, . . . , uN+1) given by

div u = 0 and curl u = 0,

N+1X

i=1

@ui
@xi

= 0 and
@ui
@xj

=
@uj
@xi

when i 6= j.i.e.,

A solution is (Q1, . . . , QN , P), where

Qj (x, t) =
cN xj

(|x |2 + t2) 12 (N+1)
, x ∈ RN , t > 0.

Imitating the procedure summarized above for the Hilbert transform, we let t
decrease to 0 here and arrive at the kernel

cN xj
|x |N+1 .

Accordingly, we define the j th Riesz transform for 1 ≤ j ≤ N by

Rj f (x) = cN lim
ε↓0

Z

|y|∏ε

yj
|y|N+1 f (x − y) dy.

The Calderón–Zygmund Theorem (Theorem 3.26) shows that Rj is a bounded
operator on L p(RN ) for 1 < p < ∞. The multiplier on the Fourier transform
side can be obtained routinely from the formula for the Fourier transform of
Pt(x), namely bPt(y) = e−2π t |y|, by using the differential equations and letting t
decrease to 0. The result is

dRj f (y) = −
i xj
|x |

bf (y).

A sample application of the Riesz transforms is to an inequality asserting
that the Laplacian controls all mixed second derivatives for smooth functions of
compact support:

∞
∞
∞

@

@xj
@

@xk
ϕ
∞
∞
∞
p

≤ Apk1ϕkp for 1 < p < ∞ and ϕ ∈ C∞
com(RN ).

The argument works as well for all Schwartz functions ϕ: the partial derivatives
satisfy the identity @

@xj
@

@xk ϕ = −Rj Rk1ϕ because the equality

−4π2yj yk bϕ(y) = −
≥

−
iyj
|y|

¥≥
−
iyk
|y|

¥
(−4π2|y|2)bϕ(y)

shows that the Fourier transforms are equal.
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EXAMPLE 2. Beltrami equation. This will be an application in which the L p

theory of the Calderón–Zygmund Theorem is essential for some p 6= 2. We deal
with functions on R2. Define

@

@z
=
1
2

≥ @

@x
− i

@

@y

¥
and

@

@ z̄
=
1
2

≥ @

@x
+ i

@

@y

¥
.

We shall use the abbreviations fz = @ f
@z and fz̄ = @ f

@ z̄ . The Cauchy–Riemann
equations, testing whether a complex-valued function on R2 is analytic, become
the single equation fz̄ = 0.
We shall use weak derivatives on R2 in the sense of Section 2. Let µ be in

L∞(R2) with kµk∞ = k < 1. In the sense of weak derivatives, the Beltrami
equation is

fz̄ = µ fz.

This equation is fundamental in dealing with Riemann surfaces, since solutions
to it provide “quasiconformal mappings” with certain properties. For simplicity
we assume that µ has compact support. We seek a solution f such that f (0) = 0
and fz − 1 is in some L p class.
The equation is solved by first putting it in another form. Let

Ph(≥ ) = −
1
π

Z

R2

≥ 1
z − ≥

−
1
z

¥
h(z) dx dy.

The factor in parentheses is in Lq(R2) for 1 ≤ q < 2, and Hölder’s inequality
shows that Ph is therefore well defined for h in L p(R2) if p > 2. In fact, one
can show that |Ph(≥1) − Ph(≥2)| ≤ Ckhkp|≥1 − ≥2|

1− 2
p , and therefore Ph is

continuous for such h. Observe that Ph(0) = 0 for all h. Also, one can show
that

(Ph)z̄ = h in the sense of weak derivatives. (∗)

However, the definition of P falls apart for p = 2. Now define

Th(≥ ) = lim
ε↓0

−
1
π

Z

|z−≥ |∏ε

h(z)
(z − ≥ )2

dx dy.

The operator T is bounded on L p(R2) for 1 < p < ∞ by the Calderón–Zygmund
Theorem, and we shall be interested in h as above, thus interested in p > 2. One
can show that

(Ph)z = Th in the sense of weak derivatives if h ∈ L p with p > 2. (∗∗)

Nowwecan transformtheBeltramiequation. Suppose that f is aweak solution
of the Beltrami equation with f (0) = 0 and fz − 1 in L p for some p with p > 2.
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Since µ is in L∞, µ fz − µ is in L p, and since µ has compact support, µ fz is in
L p. Then fz̄ = µ fz is in L p, and P( fz̄) is defined. The function f − P( fz̄) is
analytic because (∗) shows that @

@ z̄ ( f − P( fz̄)) = fz̄ − fz̄ = 0. One can easily
show that this analytic function has to be z, i.e., that

f = P( fz̄) + z.

Differentiating with respect to z and using (∗∗), we obtain fz = T ( fz̄) + 1 =
T (µ fz) + 1. The equation

fz = T (µ fz) + 1 (†)

is the transformed equation.
Assuming that f is a solution of the Beltrami equation and therefore of (†),

we shall manipulate (†) a little and arrive at a formula for f . Multiply (†) by µ
and apply T to get T (µ fz) = TµTµ fz + Tµ. Adding 1 and substituting from
(†) gives

fz = TµTµ fz + Tµ + 1.

Iteration of this procedure yields

fz = (Tµ)n fz + [1+ Tµ + · · · + (Tµ)n−1].

We want to arrange that the first term on the right side tends to 0 in the limit
on n. The operations of P and T have together made sense only on L p for
p > 2. The linear operator g 7→ µg on L p has norm kµk∞ = k < 1, and T
has norm Ap, say. It can be shown that T is unitary on L2, so that A2 = 1. The
Marcinkiewicz Interpolation Theorem does not reveal good limiting behavior for
the bounds of operators at the endpoints of an interval of p’s where it is applied,
but the Riesz Convexity Theorem13 does. Consequently we can conclude that
lim supp↓2 Ap = 1. Therefore the operator g 7→ Tµg, with norm ≤ kAp on L p

for p > 2, has norm< 1 if p is sufficiently close to 2 (but is greater than 2). Fix
such a p. Then we have

k(Tµ)n fzkp ≤ kTµkn−1kTµ fzkp −→ 0,

and
fz = lim

n
[1+ Tµ + · · · + (Tµ)n−1].

The function fz−1 = limn[Tµ+· · ·+(Tµ)n−1] is certainly in L p. As a solution
of the Beltrami equation, f has fz̄ = µ fz = µ + µ limn[Tµ + · · · + (Tµ)n−1].

13The Riesz Convexity Theorem uses complex analysis. It was stated in Chapter IX of Basic,
but the proof was omitted.
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We saw above that any solution f of the Beltrami equation with f (0) and with
fz − 1 in L p has to satisfy f = P( fz̄) + z. Thus our formula for f is

f = P
°
µ + µ lim

n
[Tµ + · · · + (Tµ)n−1]

¢
+ z.

Finally we can turn things around and check that this process actually gives a
solution. Define g = µ+µ limn[Tµ+· · ·+(Tµ)n−1] in L p, and put f = Pg+z.
Application of (∗) and (∗∗) gives fz̄ = g and fz = Tg + 1. Substitution of the
formula for g into these yields

fz̄ = µ + µ lim
n
[Tµ + · · · + (Tµ)n−1] = µ(1+ lim

n
[Tµ + · · · + (Tµ)n−1])

= µ(1+ T (lim
n

µ + µTµ + · · · + µ(Tµ)n−2])) = µ(1+ Tg) = µ fz,

as required. The equality fz = Tg + 1 shows that fz − 1 is in L p, and the fact
that Ph(0) = 0 for all h shows that f (0) = (Pg + z)(0) = 0.

7. Multiple Fourier Series

Fourier series in several variables are a handy tool for local problems with linear
differential equations. One isolates a problem in a bounded subset of RN and
then reproduces it periodically in each variable, using a large period. Multiple
Fourier series for potentially rough functions is a complicated subject, butwe have
no need for it. What is required is information about Fourier series of smooth
functions. The relevant theory is presented in this section, using 2π for the period
in each variable, and a relatively simple application is given in the next section.
A more decisive application appears in Chapter VII, where we establish local
solvability of linear partial differential equations with constant coefficients.
If f is a locally integrable function onRN that is periodic of period 2π in each

variable, itsmultiple Fourier series is given by

f (x) ∼
X

k
ckeik·x ,

the sum being over all integer N -tuples and the coefficients ck being given by

ck = (2π)−N
Z π

−π

· · ·
Z π

−π

f (x)e−ik·x dx .

Let us write ZN for the set of all integer N -tuples and [−π,π]N for the region of
integration. Such series have the following properties.
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Proposition 3.30. If f is a locally integrable function on RN that is periodic
of period 2π in each variable, then

(a) |ck | ≤ k f k1 relative to L1([−π,π]N , (2π)−N dx),
(b) |ck | ≤ CM |k|−M for every positive integer M if f is smooth,
(c)

P
k∈ZN ckeik·x is smooth and periodic if |ck | ≤ CM |k|−M for every

positive integer M ,
(d) {eik·x}k∈ZN is an orthonormal basis of L2([−π,π]N , (2π)−N dx),
(e) f (x) =

P
k∈ZN ckeik·x if f is smooth.

PROOF. Conclusion (a) is evident by inspection of the definition. For (b),
integration by parts shows that any C1 periodic function f has the property that

(ikj )
R
[−π,π]N f (x)e−ik·x dx =

R
[−π,π]N Dj f (x)e−ik·x dx .

Apart from the factor of (2π)−N , the right side is a Fourier coefficient, and its
size is controlled by (a). Iterating this formula, we see, in the case that f is
smooth, that the Fourier coefficients ck of f have the property that {P(k)ck}k∈ZN

is bounded for every polynomial P . Then (b) follows.
Conclusion (c) is immediate from the standard theorem about interchanging

sums and derivatives. The result (d) is known in the 1-dimensional case, and the
N -dimensional case then follows fromProposition 12.9 ofBasic. In (e), the series
converges to f in L2 as a consequence of (d), and hence a subsequence converges
almost everywhere to f . On the other hand, the series converges uniformly to
something smooth by (c). The smooth limit must be almost everywhere equal to
f , and it must equal f since f is smooth. §

8. Application to Traces of Integral Operators

We return to the topic of traces of linear operators on Hilbert spaces, which was
introduced in Section II.5. That section defined trace-class operators as a subset
of the compact operators, and the trace of such an operator L is then given byP

i (Lui , ui ), where {ui } is an orthonormal basis. The defining condition for
trace class was hard to check, but Proposition 2.9 gave a sufficient condition: if
L : V → V is bounded and if

P
i, j |(Lui , vj )| < ∞ for some orthonormal bases

{ui } and {vj }, then L is of trace class.
In this section we use multiple Fourier series to show how traces can be

computed for simple integral operators in a Euclidean setting. The setting for
realistic applications is to be a compact smooth manifold. Such manifolds are
introduced in Chapter VIII, and the present result is to be regarded as the main
step toward a theorem about traces of integral operators on smooth manifolds.14

14Traces of integral operators play a role in the representation theory of noncompact locally com-
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Proposition 3.31. Let K ( · , · ) be a complex-valued smooth function on
RN × RN that is periodic of period 2π in each of the 2N variables, and suppose
that the subset of [−π,π]N × [−π,π]N where K is nonzero is contained in
[−π

8 ,
π
8 ]

N × [−π
8 ,

π
8 ]

N . Define a bounded linear operator L on the Hilbert space
L2([−π,π]N , (2π)−N dx) by

L f (x) =
1

(2π)N

Z

[−π,π]N
K (x, y) f (y) dy.

Then L is of trace class, and its trace is given by

Tr L =
1

(2π)N

Z

[−π,π]N
K (x, x) dx .

PROOF. For each k in ZN , the effect of L on the function x 7→ eik·x is

L(eik·(·))(x) =
1

(2π)N

Z

[−π,π]N
K (x, y)eik·y dy.

Taking the inner product in L2([−π,π]N , (2π)−N dx) with x 7→ eil·x gives

(L(eik·(·)), eil·(·)) =
1

(2π)2N

ZZ

[−π,π]2N
K (x, y)eik·ye−il·x dy dx . (∗)

The right side is a multiple-Fourier-series coefficient of the function K , and it is
estimated by Proposition 3.30b. Proposition 3.30c shows that the corresponding
trigonometric series converges absolutely. The functions eik·x are an orthonormal
basis of L2([−π,π]N , (2π)−N dx) as a consequence of Proposition 3.30d, and
therefore the sufficient condition of Proposition 2.9 is met for L to be of trace
class.
To compute the trace, we start from (∗) with k = l. We change variables,

letting u = y − x and v = y + x , and the right side of (∗) becomes

1
(2π)2N

ZZ

[−π,π]2N
2−N K

° 1
2 (v − u), 12 (v + u)

¢
eik·u du dv

because of the small support of K . We sum on k in ZN , moving the sum
under the integration with respect to v and recognizing the sum inside as the
sum of the multiple-Fourier-series coefficients in the u variable, i.e., the sum

pact groups and in index theory. Both these topics are beyond the scope of this book. Consequently
Chapter VIII does not carry out the easy argument to extend the Euclidean result to compact smooth
manifolds.
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of the series at the origin. Since the functions eik·u are an orthonormal basis of
L2([−π,π]N , (2π)−N dx), the sum of the uniformly convergentmultiple Fourier
series has to be the function itself. Thus we find that

Tr L =
1

(4π)N

Z

[−π,π]N
K

° 1
2v, 12v

¢
dv.

Replacing 1
2v by v and again taking into account the small support of K , we

obtain the formula asserted. §

9. Problems

1. Check that (1 + 4π2|y|2)−1g is in the Schwartz space S if g is in S, so that
(1− 1)u = f is solvable in S if f is in S.

2. Show that the Schwartz space S is closed under pointwise product and convolu-
tion, and show that these operations are continuous from S× S into S.

3. If ƒ is the open disk in R2 with x2 + y2 < 1
2 , prove the following:

(a) The function (x, y) 7→ log
°
(x2 + y2)−1

¢
is in L p1 (ƒ) for 1 ≤ p < 2 but is

not in L21(ƒ).
(b) The unbounded function (x, y) 7→ log log

°
(x2 + y2)−1

¢
is in L21(ƒ).

4. Let ƒ be a nonempty bounded open set in Rn , and suppose that there exists a
real-valued C1 function h on Rn such that h is positive on ƒ, h is negative on
(ƒcl)c, and the first partial derivatives of h do not simultaneously vanish at any
point of the boundary ƒcl − ƒ. Prove that ƒ satisfies the cone condition of
Section 2.

Problems 5–7 compute explicitly the Fourier transforms of the members of a family
of tempered distributions.
5. Show that the function |x |−(N−α) onRN is a tempered distribution if 0 < α < N .

For what values of α is it the sum of an L1 function and an L2 function?

6. Verify the identity
R ∞
0 tβ−1e−π |x |2t dt=

R ∞
0 t−β−1e−π |x |2/t dt=0(β)(π |x |2)−β .

7. Let ϕ be in S(RN ). Taking the formula F(e−π t |x |2) = t−N/2e−π |x |2/t as known
and applying the multiplication formula, obtain the identity

R
RN e−π t |x |2bϕ(x) dx = t−N/2 R

RN e−π |x |2/tϕ(x) dx .

Multiply both sides by t
1
2 (N−α)−1 and integrate in t . Dropping dx from the

notation for tempered distributions that are given by functions, conclude from
the resulting formula that
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F(|x |−α) =
π− 1

2 N+α0( 12 (N − α))

0( 12α)
|x |−(N−α)

as tempered distributions if 0 < α < N .

Problems 8–12 introduce a family Hs = Hs(RN ) of Hilbert spaces for s real that
are known as spaces of Bessel potentials. Because of Problem 8 below, these spaces
are sometimes called “Sobolev spaces.” The space Hs consists of all tempered dis-
tributions T ∈ S 0(RN ) whose Fourier transforms F(T ) are locally square integrable
functions such that

R
RN |F(T )|2(1 + |ξ |2)s dξ is finite, the norm kTkHs being the

square root of this expression. The spaces Hs get larger as s decreases.
8. Let s ∏ 0 be an integer, and let T be a tempered distribution.

(a) Prove that if T is in Hs , then all distributions DαT with |α| ≤ s are L2

functions. In this situation, if T is the L2 function f , conclude that f is in
L2s (RN ).

(b) Prove conversely that if DαT is given by an L2 function whenever |α| ≤ s,
then T is in Hs .

(c) As a consequence of (a) and (b), Hs can be identified with L2s (RN ) if s ∏ 0
is an integer. Prove that the respective norms are bounded above and below
by constant multiples of each other.

9. (a) Prove for each s that the operator As(T ) = F−1°(1 + |ξ |2)s/2F(T )
¢
is a

linear isometry of Hs onto H0 ∼= L2, and conclude that the inner-product
space Hs is a Hilbert space.

(b) Prove that A−1
s carries the subspace S(RN ) of Schwartz functions, i.e.,

tempered distributions of the form Tϕ with ϕ ∈ S(RN ), onto itself.
(c) Prove that S(RN ) is dense in Hs for all s.

10. Suppose that T is in H−s and ϕ is in S(RN ) ⊆ Hs . Prove that |hT,ϕi| ≤
kTkH−skϕkHs .

11. Conversely suppose that s is real and that T is a tempered distribution such that
|hT,ϕi| ≤ CkϕkHs for all ϕ ∈ S(RN ). Show thatF(T ) defines a bounded linear
functional on the Hilbert space L2(RN , (1+ |ξ |2)s dξ), and deduce that T is in
H−s with kTk−s ≤ C .

12. Let s > N/2.
(a) Prove that if the tempered distribution T given by the function ϕ ∈ S(RN )

is regarded as a member Tϕ of Hs , then kϕksup ≤ kF(ϕ)k1 ≤ CkTϕkHs ,
where C is the constant

° R
RN (1+ |ξ |2)−s dξ

¢1/2 independent of ϕ.
(b) (Sobolev’s Theorem) Deduce from (a) that any member T of Hs with

s > N/2 is given by a bounded continuous function.
(c) Extend the above argument to show for each integerm ∏ 0 that any member

T of Hs with s > N/2+ m is given by a function of class Cm .
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Problems 13–20 concern the Hardy spaces H p(R2+) for the upper half plane R2+ =
{z ∈ C | Im z > 0}. These problems use complex analysis in one variable, and some
familiarity with the Poisson and conjugate Poisson kernels as in Chapters VIII and IX
of Basic will be helpful. The space H p(R2+) is defined to be the vector subspace of
analytic functions in the space Hp(R2+). Let f ∗ be the Hardy–Littlewood maximal
function of f on R1. Take as known the result from Basic that the Poisson integral
Py ∗ f satisfies |Py ∗ f (x)| ≤ C f ∗(x) with C independent of f and y.
13. Suppose that p satisfies 1 < p < ∞, and let H : L p(R1) → L p(R1) be the

Hilbert transform.
(a) Prove that if u0(x) is in L p(R1), then the Poisson integral of the function

u0(x) + i(Hu0)(x) is in H p(R1).
(b) Conversely suppose that f (x + iy) is in H p(R1+). Applying Theorem 3.25,

let f (x + iy) be the Poisson integral of the member f0(x) of L p(R1+). If
Re f0 = u0, prove that Im f0 = Hu0.

14. Prove that the functions f in L2(R1)whose Poisson integrals are in the subspace
H2(R2+) of H2(R2+) are exactly the functions for which F f (x) = 0 a.e. for
x < 0.

15. Let F = ( f1, . . . , fn) be an n-tuple of analytic functions on an open subset of
C, and let ( · , · ) be the usual inner product on Cn . For a function on an open set
in C, define fz = 1

2 ( fx − i fy) and fz̄ = 1
2 ( fx + i fy), so that the condition for

analyticity is fz̄ = 0 and so that1 f = 4 fzz̄ . Suppose that F is nowhere 0 on an
open set. Prove for all q > 0 that

1(|F |q) = q2|F |q−4|(F, F 0)|2 + 2q|F |q−4° − |(F, F 0)|2 + |F |2|F 0|2
¢

∏ q2|F |q−4|(F, F 0)|2 ∏ 0.

16. Suppose that u is a smooth real-valued function on an open set in RN containing
the ball B(r; x0)cl such that 1u ∏ 0 on B(r; x0) and u ≤ 0 on @B(r; x0). By
considering u+c(|x− x0|2−r2) for a suitable c, prove that u ≤ 0 on B(r; x0)cl.

17. Let f be in H1(R2+), and define Fε : {Im z ∏ 0} → C2 for ε > 0 by Fε(z) =
( f (z + iε), ε(z + i)−2). Define gε(x) = |Fε(x)|1/2 for x ∈ R.
(a) Prove that kgεk22 ≤ k f kH1 + εk(x + i)−2k1.
(b) Let gε(z) be the Poisson integral of gε(x). Show that |Fε(z)|1/2 and gε(z)

both tend to 0 as |x | or y tends to infinity in R2+.
(c) By applying the previous two problems to |Fε(z)|1/2 − gε(z) on large disks

in R2+, prove that |Fε(z)|1/2 ≤ gε(z) on R2+.
18. By Alaoglu’s Theorem let g(x) be a weak-star limit in L2(R1) of a sequence

gεn (x) with εn ↓ 0, and let g(z) be the Poisson integral of g(x).
(a) Prove that | f (z)|1/2 ≤ g(z) ≤ Cg∗(x), with g∗(x) being the Hardy–

Littlewood maximal function of g(x).
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(b) Conclude that | f (x + iy)| is dominated by the fixed integrable function
g∗(x)2 as y ↓ 0.

19. Let X be a locally compact separable metric space, let µ be a finite Borel
measure on X , and suppose that {gn} is a sequence of Borel functions on X
with |gn| ≤ 1 such that the sequence {gn(x) dµ(x)} of complex Borel measures
converges weak-star against Ccom(X) to a complex Borel measure ∫. Prove that
∫ is absolutely continuous with respect to µ.

20. (F. and M. Riesz Theorem) Deduce from the above facts that each member
of H1(R2+) is the Poisson integral of an L1 function on R1.

Problems 21–24 show that the limit T f = limε↓0 Tε f defining a Calderón–Zygmund
operator T exists almost everywhere for f ∈ L p and 1 < p < ∞, as well as in
L p. Let notation be as in the statement of Theorem 3.26 and Lemma 3.29: K (x)
is a C1 function on RN − {0} homogeneous of degree 0 with mean value 0 over the
unit sphere, k(x) is K (x)/|x |N for |x | ∏ 1 and is 0 for |x | < 1. For any function
ϕ on RN , define ϕε(x) = ε−Nϕ(ε−1x). The operator Tε f is kε ∗ f . Let f ∗ be the
Hardy–Littlewood maximal function of f . Take as known from Basic that if 9 ∏ 0
is an integrable function on RN of the form 9(x) = 90(|x |) with 90 nonincreasing
and finite at 0, then supε>0(9ε ∗ f )(x) ≤ C9 f ∗(x) for some finite constant C9 . Let
f be in L p with 1 < p < ∞.
21. Let ϕ be as in Proposition 3.5e. Define 8 = T (ϕ) − k.

(a) Taking into account the fact that ϕ is in C∞
com(RN ), prove that T (ϕ) is in

C∞(RN ), and conclude that 8 is locally bounded.
(b) By taking into account the compact support of ϕ, prove that |8(x)| is

bounded by a multiple of |x |−N−1 for large |x |.
(c) Deduce that |8(x)| is dominated for all x by an integrable function9(x) on

RN of the form 9(x) = 90(|x |) with 90 nonincreasing and finite at 0.
22. Let ϕ and 8 be as in the previous problem.

(a) Prove that (Tϕ)ε = Tϕε.
(b) Prove the associativity formula Tϕε ∗ f = ϕε ∗ (T f ).
(c) Deduce that ϕε ∗ (T f ) − kε ∗ f = 8ε ∗ f .

23. Conclude from the previous problem that there are constantsC1 andC2 indepen-
dent of f such that supε>0 |Tε f (x)| ≤ C1 f ∗(x) + C2(T f )∗(x).

24. Why does it follow that limε↓0 Tε f (x) exists almost everywhere?

Problems 25–34 introduce Sobolev spaces in the context ofmultiple Fourier series. In
this set of problems, periodic functions are understood to be defined on RN and to be
periodic of period 2π in each variable. Write T for the circleR/2πZ, and letC∞(T N )

be the complex vector space of all smooth periodic functions. Let L2(T N ) be the
space of all periodic functions (modulo functions that are 0 almost everywhere) that
are in L2([−π,π]N ). If α = (α1, . . . ,αN ) is a multi-index, a member f of L2(T N )
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is said to have a weak αth derivative in L2(T N ) if there exists a function Dα f in
L2(T N ) with

R
[−π,π]N (Dα f )ϕ dx = (−1)|α|

R
[−π,π] f D

αϕ dx

for all ϕ in C∞(T N ). Define the Sobolev space L2k(T N ) for each integer k ∏ 0 to
consist of all members of L2(T N ) having αth derivative in L2(T N ) for all α with
|α| ≤ k. The norm on L2k(T

N ) is given by

k f k2L2k(T N )
=

P

|α|≤k
(2π)−N

R
[−π,π]N |Dα f |2 dx .

25. Prove that L2k(T
N ) is complete.

26. Prove that C∞(T N ) is dense in L2k(T
N ) for all k ∏ 0.

27. Prove for each multi-index α and each k ∏ 0 that there exists a constant Cα,k
such that

kDα f kL2k(T N )
≤ Cα,kk f kL2k+|α|(T N )

for all f in C∞(T N ).
28. Prove for each k ∏ 0 that there is a constant Ak such that every member f of

L2k(T
N ) has

k f kL2k(T N )
≤ Ak

P

|α|≤k
sup

x∈[−π,πN ]
|Dα f (x)|.

29. Prove for each integer k ∏ 0 that there exist positive constants Bk and Ck such
that Bk

P

|α|≤k
l2α ≤ (1+ |l|2)k ≤ Ck

P

|α|≤k
l2α .

30. Prove that if f is periodic and locally integrable on RN with multiple Fourier
series f (x) ∼

P
l∈ZN cleil·x , then f is in L2k(T

N ) if and only if

P

l∈ZN
|cl |2(1+ |l|2)k < ∞.

31. With notation as in the previous problem, prove for each k ∏ 0 that there exist
positive constants Bk and Ck independent of f such that

Bkk f k2L2k(T N )
≤

P

l∈ZN
|cl |2(1+ |l|2)k ≤ Ckk f k2L2k(T N )

for all f in L2k(T
N ).

32. (Sobolev’s Theorem) Suppose that K is an integer with K > N/2. Prove thatP
l∈ZN (1 + |l|2)−K < ∞, and deduce that any f in L2K (T N ) can be adjusted

on a set of measure 0 so as to be continuous.
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33. Prove for each multi-index α that there exist some integerm(α) and constant Cα

such that
sup

x∈[−π,π]
|Dα f (x)| ≤ Cαk f kL2m(α)

(T N )

for all f in C∞(T N ).
34. Prove that the separating family of seminorms k · kL2k(T N )

on C∞(T N ), indexed
by k, is equivalent to the family of seminorms supx∈[−π,π]N |Dα( · )(x)|, indexed
by α. Here “is equivalent to” is to mean that the identity map is uniformly
continuous from the one metric space to the other.




