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7. PROOFS OF THEOREMS 3.1 AND 3.2.

The first step is to show that for a parameter point p^ which
satisfies Condition A or B of Ch. 3 there exist large rectangles for
which the crossing probabilities in both the horizontal and vertical
direction are bounded away from zero. The RSW theorem will then show
that with P -probability one there exist arbitrarily large occupied 

po
circuits on Q surrounding the origin. From this it follows that there

* i)are no infinite vacant clusters on Q under P '. An interchange of
* p0

the roles of Q and Q and of occupied and vacant then shows that
there is also no percolation on Q under P . This is just the con-

p0
tent of (3.43), which is the most important statement in Theorem 3.1 (i). 
Clearly the above implies that for p', p" such that p 1 (i) <.Pg(i)
£ p"(i), i = 1 ,... ,A also

Pp,{#W(v) = oo} = o and Ppll{#W*(v) = °°} = 0.

The above conclusions are basically already in Harris' beautiful
paper (Harris (I960)). The first proof that percolation actually occurs
for p" »  Pq is in Kesten (1980a). The proof given below is somewhat
simpler because we now use Russo's formula (Prop. 4.2) which only
appeared in Russo (1981). Actually we prove the dual statement that

*
for p' «  Pq infinite vacant clusters occur on Q . An easy argument 
shows that it suffices to show Ep,{#W(v)} < °°, and by Theorem 5.1 this 

will follow once we prove that the crossing-probabilities x(N;l,p') 
and t (bf;2,p') of some large rectangles are small for p' «  p. This
is done by showing that x(N;i,p(t)) is "large" for 0 <_ t <_ 1, 
p(t) = (1-t)p' + tpg. By Russo's formula, this amounts to showing that 

there are many pivotal sites (see Def. 4.2) for the events

(7.1) A(hT;i) = { 3 occupied crossing in the i-direction of T(N;i)}.

^  In this part we shall use some simplifications suggested by 
S. Kotani.
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This last step is the same as in Kesten (1980a). The pivotal sites for 
A(N;1) for instance are found more or less as the sites on the lowest 
occupied horizontal crossing of T(N;1 ) which have a vacant connection 
on Q* to the upper edge of T(N;1) (see Ex. 4.2(iii)). To enable us 
to talk about a "lowest horizontal crossing" the actual proofs are car- 
ried out on Qp^, Qp£ , rather than on Q, Q . For the remainder of this 

chapter (Q,Q*) is a matching pair of periodic graphs imbedded in 1R2, 
based on (ft?, 3) and Qp£S their planar modifications (see Ch.2.2, 
2.3) . ^ . .9U -js a periodic partition of the vertices of Q (and

hence of the vertices of Q*). For p c P, , P is the correspondingA p
A-parameter periodic probability measure (see Ch.3.2). Pp is always 
extended to a measure on the occupancy configurations of Qp^ and 
by taking the central vertices of occupied and those of
vacant, i.e.,

(7 .2) Pp (u)(v) = +1 } = 1 if v is a central vertex of some
face F e 3,

(7.3) Pp{o)(v) = -!} = ! if v is a central vertex of some
face F e 3*-

Lastly, we assume that the second coordinate axis is an axis of symmetry 
*

for Q, Q and the partition . As we saw in Comment 2.4
(iii) we may then also take Qp^

r .... A^
and Qp^ symmetric with respect to 

the vertical line x(l) = 0, and by periodicity also with respect to any 
line x(l)=k, k e TL . We always assume that Q 0 and Q* have beenPX/
imbedded in this symmetric way. * i

*P A

Lemma 7.1. 

that

(7.4)

Assume that pQ e satisfies Condition A in Ch. 3.3 and

o «  p0 « T .

Then there exists a vector A = (A(1),A(2)) and a sequence

{mn = (mn-| >mn2^ n>l integral vectors such that mnl- °° (n
i = 1,2) and sucF that for all large n (with 6 as in Condition A)

(7.5) a(mn;l,p0) > 6  and a(mn+ A;2,pQ) > 6 .

Also, for some sequence {m*>n>i 
(n -> i = 1 ,2) and a vector"

of integral vectors with
_3E-----------------------
A

5l (D oo
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(7.6) a*(m*;l9pQ) > 5 and a*(m*+ A*;2,pQ) > 6 

eventually.

Proof: First we show that there exists a constant C = C(Q,Pq ) such

that

(7.7) Tim a((n,eCn);l ,pQ) = 1 and lim a((eCn,n);2,pQ) = 1.
n-*» n-*» u

We prove the first relation in (7.7). Choose = A3(Q) such that

each horizontal (vertical) strip of height A3 (width A^) possesses
a horizontal (vertical) crossing on % (and hence also on Q, as well 

*
as on Q ). Such a A3 exists by Lemma A.3. We also pick a constant 
A = A(Q,Q*) for which

(7.8) diameter (e) < A for each edge e of Q or Q* or

or V  ■

We set

(7.9) y = y(Q,Q*) = number of vertices which belong to

Q or Q* in [0,1 ) x [0,1 ) .

Now consider the strips

Sk := [0,n]x [2kA33(2k+l)A3] . 

Each contains a horizontal crossing of at most 

(n + 2A)A3y £  2A3yn

vertices, for n sufficiently large. Therefore

P { 3 occupied horizontal crossing on Q of S, } 
P0 K

2A3yn
> [min P {v is occupied}]

veQ p0

> e“yn

for some y = y(p0»Q) 
have for C > y

Finally, since the are disjoint, we<  00
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a((n,eCn);l,pn) = Pn { 3 occupied horizontal crossing on Q 
u p0

of [0,n] x [0,e^n]} >_ P { 3 occupied horizontal crossing on
p0

Q of some with 1 < k £ ^

n (2A«)-1eCn-l 
> l - ( l . e ^ )  3

1 eCn - 1}

1 (n -*■ °°) .

This proves (7.7).

Now let C be such that (7.7) holds. For the sake of argument 
assume that the implication in (3.36) is valid for j = 2. Let n be 
so large that cr( (n ,expCn) ;1 ,Pq ) • We can then choose m = m(n) 
as the smallest integer £ exp Cn for which

(7.10) o((n.m)jl.p0) > \ .

In exactly the same way as we proved (7.7) we prove

(7.11) lim a*((n,-jllog n);2,Pg) = lim P{ 3 vacant vertical crossing
n-x» k-*»

of [0,eCk] x [0,k] on Q*} = 1.

But if there exists a vacant vertical crossing r of [0,n^] x [0,n2] 

for some n-j, n^, then there cannot be an occupied horizontal crossing 
r' of [0,n^] x [0,n2]. For r and r' would have to intersect, 
necessarily in a vertex of 7/i (see Comment 2.2 (vii)) and this vertex 
in r fl r1 would have to be vacant as well as occupied. This is clear
ly impossible. Consequently

(7.12) a( (n-j ,n2) ;1 *Pq) 5. 1 ” ^ ((n-|jn2)j2 >Pq ) ’

Taking ni = n* n2 = ^ ^°9 n we °ktian from (7.11) and (7.12) that 

a((n,” log n);l,pQ) + 0 (n ^ °°).

Comparing this with (7.10) and using the monotonicity property of o 
(Comment 3.3 (v))we see that

(7.13) m(n) > ^ log n eventually.

We now use Prop. 2.2 to prove that the inequality in (7.12) can 

almost be reversed. More precisely, let



172

a4 = r a3 + a n + 1

and assume ,n2 > 2A4- Then for any p e one has

(7.14) cr( (n-j ,n2);l ,p) + a*((n-, + 2A4,n2 - 2A4);2,p) > 1 

as well as

(7.15) a((n1 + 2A4,n2 - 2A4 ) ;2,p)+ a*((n1,n2); 1 ,p) > 1 .

We only prove (7.14). For (7.15) we only need to interchange the roles 
of Q and Q* and of occupied and vacant. To prove (7.14) we take a 
self-avoiding vertical crossing r-| on 7n of [-A4,-A-l] * [0,n2]. Such 
a vertical crossing exists by Lemma A.3 and our choice of Ag. Similar
ly we take a self a voiding vertical crossing r3 on 77i of 
[n-j + A+ 1 ,n-j + A4] x [0,n2] and horizontal crossings r2 and r4 of 
[-A4,n-| + A4] x [a + 15A41 and [-A4Sn.| + A4] x [n2 - A4,n2 - A - 1 ], respec

tively (see Fig. 7.1). Once again we remind the reader of the observa-

Figure 7.1 The solid rectangle is [ 09n^l x [ 0,n2l; the outer dashed 

rectangle is [~A4,n^+A4] x [0,n2]; the inner dashed rectangle 
is [0,n-|] x [A4,n2-A4].

tion at the beginning of Sect. 2.3: Since ^  is planar, and r. is

self-avoiding, the curve made up from the edges of r. is a simple 

curve, r-j contains therefore a simple curve, cj>-j say, inside the
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rectangle [-A^,-A-l] x [0,n2]> and connecting the top and bottom edge 
of this rectangle. Similarly rg contains a simple curve <|>g inside 
[n^+A+1,n^+A^], and connecting the top and bottom edge of this rectangle. 
Now, both r2 and r^ must intersect as well as Starting
from the left endpoint of r2 (r^) let u-| (ug) be the last inter
section of r2 (r̂ ) with <|>̂ and u2 (u^) the first intersection of 

r 2 (*4) Wlt  ̂ ^3* Denote the closed segment of from u^ to u-j 
by A.j, the closed segment of r2 from u-j to u2 by A2, the closed 

segment of <j)g from u2 to Ug by Ag, and the closed segment of r^ 
from Ug to u^ by A^. By construction Â  is strictly to the left 
of the vertical line x(l) = -A and A^ to the right of x(1) = n-j+A. 
Similarly A2 is below the horizontal line x(2) = A^ and A^ above 
x(2) = A^. In addition, the Â  are simple curves. It is not hard to 
see from this that the composition of A^,A2 ,Ag and A^ is a Jordan 
curve, J say. Any path on Q inside J = J U int(J) from a vertex 
on A-j to a vertex on Ag has to contain a horizontal crossing of 
[0,n-j] x [0,n2], since A2 lies strictly above the horizontal line 
x(2) = 0 and r^ strictly below x(2) = n2- If all vertices on r in 
int(J) are occupied then r contains an occupied horizontal crossing 
of [0,n̂ ]x [0,n2]. Thus, if there does not exist an occupied horizontal 
crossing of [0,n,] x [0,n9], then no path r of the above nature can 

exist. By Prop. 2.2 this implies the existence of a vacant path r on
Q and inside J\A-| U Ag with initial point on A2 and final point
on A^. Finally, any such path r* contains a vacant vertical crossing 
of [-A^,n^+A^]x [A^,n2-A^]. For the crossing probabilities this implies

l-a((n.j ,n2);1 ,p) = P^Ithere does not exist an occupied 

horizontal crossing of [0,n-|] x [0,n2] on Q}

£ Pp{ 3 vacant vertical crossing of [“A^n-j+A^] x [A4,n2-A4] 

on Q*} = a*((n1+2A4,n2-2A4);2 ,p)

(use periodicity for the last equality). This proves (7.14).
It is easy now to complete the proof. For n2 > 2A^ and 

m(n)-l >. ̂  1°9 n"1 > 2a4 we have (7.10) as well as

(7.16) a((n,m(n)-l);l,pQ) < ^  ,

by virtue of the definition of m(n). Then, by (7.14)
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a*((n+2A4,tn(n)-2A4-1);2,p0) > 1 , 

and finally, by (3.36) in Condition A

a(n+2A4-p*,m(n)-2A4-l-p*);2,p0) > 6  .

This,together with (7.10) implies (7.5) with = (n,m(n)) and 
A = (2A4-p*,-2A4-l-pp. When (3.36) holds for j = 1, then one merely 

has to interchange the roles of the first and second coordinate. To 
prove (7.6) one interchanges the roles of Q and Q* in the above 

proof. 1_1

Lemma 7.2. Assume that Pg satisfies (7.4) and Condition A or B in 

Ch. 3.3. Then there exist sequences of vectors {N^ = ( N ^ N ^ ) } ^ !  ,

that

, and for each integer k a number 6  ̂> 0

(7.17) N^i ■+■ °° , M^i -s- » , i = 1 ,2, as £ •+ °° ,

(7.18) a((kNs,rNs,2);1 ’P0,(5pi^ - 6k > ° ’

°((NJirkNJl2);2,po,Qpa) 1 «k > 0,

and

(7.19) a*((kM£i,MJl2);1 ,p0,QpJl) > &k > 0,

°*((M£l’kM£2);2’p0’V ) - 6k > °‘

Moreover

(7.20) P { 3  occupied circuit on Q surrounding 0 
P0 P*

and inside the annulus [-21̂ , 21̂ ]  x [-2N£2 ,2N£2 1 \

(-NJll,NJll)x(-Njl2 ,N£2)} > 4 ,

and
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(7.21) P ( 3  vacant circuit on Q* surrounding 0
P0 P*

and inside the annulus [-2M£1 ,2M£1 ]x[-2M£2 ,2M£2]

^ 'M£1 5\l ̂ X ̂ “M£2 9,V ^  - V

Proof: Again we restrict ourselves to proving (7.18) and (7.20). First
assume Condition A is satisfied. By the last lemma we then have (7.5). 
With A as in (7.8) this implies, by virtue of Lemma 2.1b,

(7.22) a((mnl-2A,mn2+2A);l,p0,Qpjl) > 6  and 

a((mnl+A(l)+2A,mn2+A(2)-2A);2,p0,Qp£) > 6

(Basically an occupied horizontal crossing on Q is turned into a 
horizontal crossing on Q 0 by inserting central vertices of Q. Thesepjo
central vertices are occupied with probability one by virtue of (7.2). 
The resulting horizontal crossing on Qp^ is therefore again occupied. 
The same argument applies to vertical crossings.) We can now apply the 
RSW theorem (Theorem 6.1) with tt = 2, rf = (mnl~2A,mn2+2A) and 
m =  (mn-|+A(l )+2A,mn2+A(2)-2A). (7.18) is then immediate from (6.9) and
(6.10) and the monotonicity properties of a (see Comment 3.3 (v)) with 

= 5m£ and 6  ̂= f(6 ,6,2,10k). (7.20) follows from (7.18), because

one can construct a circuit from two horizontal and two vertical cross
ings of suitable rectangles, as explained in the proof of Cor. 6.1 at 
the end of Ch. 6. This proves the lemma under Condition A.

Now assume that Condition B holds. Instead of (7.22) we now obtain 

from (3.38) and Lemma 2.1b

a((n^1-2A,nJl2+2A;1 ,p0,QpJl) > 6 and

a(ainAl+2A>a2nJl2-2A);2 ,Po»QpA) > &  ■

The Lemma again follows from the RSW theorem (this time with

tt = 2 | max{a-| , a2 ,a-j ,a2 }”~J) • | |

Lemma 7.3. Assume p c kJx satisfies

0 «  p «  1 .
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If for some vertex v of_ Q

(7.23) Ep{#W(v)} < - ,

*
then for every vertex w of Q

(7.24) Pp{#W*(w) = o°} > o .

Also

(7.25) Ep{#W*(w)} < =0 

implies

(7.26) Pp{#W(v) = cx>} > o.

Proof: We shall show that (7.23) implies

(7.27) Pp{ an infinite vacant component on Q* inside
the first quadrant} = 1 .

This will imply that

Pp(#W*(w1) = »} > 0

for some w-j e Q*. (7.24) follows then for any w by (4.8) (with 

n = °°). A similar proof will work for obtaining (7.26) from (7.25).
To prove (7.27) we first use (7.14) with

n] = 2k-2A4 , n2 = 2k+1+2A4 .

We obtain

(7.28) l-a*((2k,2k+1 );2,p,Q) < a((2k-2A4,2k+1+2A4);1 ,p,Q).

Next we claim that (7.23) implies
oo

(7.29) l a((2k+A 2k+1+A );l,p) < oo
k=l b b

for any A^, Ag. This was essentially already proved in Lemma 5.4. 
Exactly as at the end of the proof of that lemma (cf. (5.55)) one shows 

that
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a((2k+A5 ,2k+1+A6);l,p)

< y(2A+l)(2k+1+A,+2A+l) sup pn{w(vn) contains a vertex
v0(1)<A p 0

to the right of x(1) = 2k+Ag-A}

< y(2A+i)(2k+1+A6+2A+l)

1 ,„k,

v0c
y P_{#W(v0) > |(2^+A -2A)}

[O.lMO.l) P 0 A 5

(use periodicity for the last inequality). But (7.23) for some v 
implies

Ep{#W(v0)} < 00

for all Vg (see the Application 4.1 of the FKG inequality) and conse

quently

l I 2k+2P {#W(v ) > }(2k+A -2A)} < ~ .
v0e[0,1M0,1) k P 0 A 5

(7.29) follows.

From the Bore!-Cantelli lemma (Renyi (1970) Lemma VII.5.A), (7.28)

(7.29) it now follows that

(7.30) Pp{ 3 vacant vertical crossing on Q* of [0,2k]x [0,2k+1]

for al1 large k} = 1 .

In the same way one sees

£
(7.31) Pp{ 3 vacant horizontal crossing on Q of

[0,2k+1 ]x[0,2k] for all large k} = 1 .

Since a horizontal crossing of [0,2k+1] x [0,2k] or of [0,2k+3]x [0,2k+2]
k+l k+9

must intersect a vertical crossing of [0,2 ]x[0,2 ], one easily

sees that if for all large k there exists a vacant horizontal crossing

on Q of [0,2 ]x[0,2 ] and a vacant vertical crossing on Q
?k+l 2k+2of [0,2 ] x [0,2 ], then these crossings combine to an infinite

vacant cluster on Q* in the first quadrant. Thus (7.27) follows from 

(7.30) and (7.31). □
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Remark.

(i) The above proof is taken from Smythe and Wierman (1978),

Theorem 3.2. Together with parts (ii) and (iii) of Theorem 3.1 it will 
show that one actually has infinite occupied clusters on Q in the 
first quadrant under P „ with p" »  pQ, and infinite vacant clusters 
on Q* in the first quadrant under P , with p 1 «  p̂ .

Proof of Theorem 3.1 (i): With as in Lemma 7.2 consider the annuli

(7.32) U, := [-2MAl.2M4l]x[-ZMjl2.2MJl2]\(.M1 1 .Mil)x(-Mi2.MJl2).

Without loss of generality we may assume these annuli disjoint. In this 
case the occurrences of occupied circuits in different are inde

pendent of each other. Therefore, by (7.21) and the Bore!-Cartel!i 
Lemma (Renyi (1970), Lemma VII.5.B), with P -probability one infinite-

* P°ly many U0 contain a vacant circuit on Q* surrounding the origin.
 ̂ P ̂

If M^i > A, > A, and U£ contains a vacant circuit on

surrounding 0, then by Lemma 2.1a

(7.33) [-2MJll-A,2Mjl1+A] x [^M^-A^M^+A] \

(-m h +a -m aT A ) x ( - V a * V a)

contains a vacant circuit on Q* surrounding 0. In fact this latter 
circuit must surround all of (-M^+A,M^-A) x (-M^2+A,M^-A). Hence 

for all N

(7.34) P { 3 a vacant circuit on Q surrounding
p0

[-N ,+N] x [-N ,+N]} = 1.

In the same way we obtain arbitrarily large occupied circuits on Q, and
(3.45) follows. (3.43) is immediate from this, because if 
v e [-N,N]x [-N,N] and [-N,N]x [-N,N] is surrounded by a vacant 

circuit J on Q*, then W(v) is contained in int(J), and hence 
#W(v) < °°. In fact any path on Q from v to the complement of 
int(J) would have to be intersect J, necessarily in a vertex of Q 
and Q* (see Comment 2.2 (vii)) and this vertex would have to be vacant. 
Thus no vertex in ext(J) or on J can belong to W(v). Similarly
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#W*(v) is shown to be finite with probability one.

Finally, (3.44) is a consequence of (3.43) and Lemma 7.3. | [

Lemma 7.4. Assume Pq satisfies (7.4) and Condition A or B. Let 6 ,̂ 

and be as in Lemma 7.2 so that (7.17)-(7.21) hold. Then
for

p' «  PQ «  P"

(7.35) lim x(2M£;i,p‘,Q) = 0, i = 1,2,
£-*»

and

(7.36) lim t*(2N_;i ,p",Q) = 0, i = 1,2,

(see (5.5) and (5.6) for t and t ). * i

Proof: We shall only prove (with A as in (7.8))

(7.37) Pp,{ 3 occupied horizontal crossing on Qp  ̂ of

[A,2M^-j~A] x [-A,6M^2+A]} ->0 (£-*«>).

By Lemma 2.1b t (2M^;1,p‘,Q) = Ppl{ 3 occupied horizontal crossing on 
Q of [0,2M̂ -j] x [0,61̂ 2]} is bounded by the left hand side of (7.37).

Therefore (7.37) will imply (7.35) for i = 1. The proofs of (7.35) for
i = 2 and of (7.36) are similar.

To prove (7.37) take A^ and A^ as in the proof of Lemma 7.1. 
Suppress the subscript £ for the time being. Very much as in the 

proof of Lemma 7.1 take self-avoiding vertical crossings r̂  and r^ 
on 77{ of the strips [A,A4~1] x [-A4,6M2+a^] and [2M.j-A4+1 ,2M.|-A] 
x [-A^,6M2+A^], respectively. Also we take horizontal crossings 
and r4 on %  of [0,2M1 ] x [-A4,-A-l] and [0,2^] x [6M2+A+1,6M2+A4], 
respectively (see Fig. 7.2). Again ^  (<|> ) is a simple curve in 

[A,A4-1] x [-A4,6M2+A4] (2M1-A4+1,2Mr A] x [-A4,6M2+A4]) connecting the 

top and bottom edge of this rectangle. Starting from the left endpoint 

°f r2 (r4) let u-j (u4) be the last intersection of r2 (r4) with 
<(51; and u2 (u3) the first intersection of r? (r4) with <|>3. We 
denote the closed segment of ^  from u4 to û  by , the closed 
segment of <J>3 from u3 to u2 by B2, the closed segment of r2 

from u-j to u2 by A and the closed segment of r4 from u4 to u3
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Figure 7.2 The solid rectangle is [0,21̂ ] x [0,6M2]; the outer dashed 

rectangle is [0,2M^] x [-A4,6M2+A4]; the inner dashed rectangle 
is [A4-l, 2Mr A4+l] x [0,6M2] .

by C. As in Lemma 7.1, as soon as > 2A^ the composition of B^,
A, B2 and C is a Jordan curve, which we again denote by J. Also

(7.38) [A4,2M1-A4]x [-a ,6M2+A] <= int(J).

Any horizontal crossing r on Qp£ of [A,2M^-A]x [-A,6M2+A] contains 
some point v = (v(l),v(2 )) in the interior of the rectangle in the 
left hand side of (7.38), and hence in int(J). Let ^ be the segment 
of r from its last intersection with the vertical line x(l) = A to 
the first intersection with the line x(l) = 2M^-A . Then ip starts on 
x(l) = A to the "left of B-j" and when it reaches v it lies to the 
"right of B-j". Since ip minus its endpoints lies between the horizontal 

lines x(2) = -A and x(2) = 6M2+A, ip must intersect B̂  between its 
initial point and v. (Note that B-j runs from u-j below x(2) = -A 
to u4 above x(2) = 6M2+A.) Similarly the piece of ip between v

and its final point must intersect B2< The piece of r between the
last intersection before v with B-j and the first intersection after 
v with B2 is therefore a path r = (vQ,e1,... ,ev ,vv) on Qp£
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with the following properties:

(7.39) (vl,e2.... ev-i>vv-i) c

(7.40) ê  intersects J only in the point Vq e 9

(7.41) e^ intersects J only in the point e B2-

Thus if we introduce the event

E = { 3 occupied path r = (vQ9e1,...,ev ,vv) on

with the properties (7.39)-(7.41)},

then the left hand side of (7.37) is bounded by Pp,{E}.

We now introduce

Nq = Nq (E9u)) = # of pivotal sites for (E,o)) which 

are vertices of

and
p(t) = tp0+(l-t)p', 0 < t < 1 .

Since E is an increasing event we can apply Russo's formula (4.22) to 

obtain

(7.42) 4r P/.x{E} > i nfTP {v is occupied} - P ,{v is occupied}} 
dt P{Z) vzTn P0 p

Since p‘ «  Pq and

•Ep(t){No} •

Pp anc* Pp' are Penoc*ic9 the constant

(7.43) a := inf{P {v is occupied} - P, {v is occupied}}
Men po p

is strictly positive. We now write (7.42) as

<pP(t)(E» ‘' A pp(t){E> i “ Ep(t),NoiE> •

and integrate over t from 0 to 1. We obtain the inequality 

(7-44) Pp,{E}<Ppo{E}exp-a/’ Ep(t){N0|E}dt 

< exp-a /J Ep(t){N0 |E}dt.
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It therefore suffices to prove

(7.45) Ep ( t ) ^ 0 ^  °° uniformly ln t as M ■+ 00

through the sequence ,

for this will imply that the left hand sides of (7.44) and (7.37) tend 
to 0 as £ -* 00.

We follow the lines of Kesten (1980a)to prove (7.45). (7.39)-
(7.41) are just (2.23)-(2.25) in the present set up. E is the event 
that there exists at least one occupied path r with these properties. 
Proposition 2.3 (with S = K ) states that if E occurs, then there 
exists a unique minimal occupied path r satisfying (7.39)-(7.41), 
i.e., a path r for which the component of int(J)\r with A in its 
boundary is as small as possible (see Def. 2.11 and 2.12). As in Prop. 
2.3 we denote the minimal occupied path satisfying (7.39)-(7.41) by R. 
In Kesten (1980a)the suggestive term "lowest (occupied) left-right 
crossing" was used for R because there we could take for J the peri
meter of a rectangle. The above comments imply

(7.46) E = U{R = r) ,

where the union is over all paths r = (vn,e,,...,e ,v ) on G _r v 0 1 v v' ^p£
which satisfy (7.39)-(7.41). Next we use Ex. 4.2 (iii) to find pivotal 
sites for E. We restrict ourselves to pivotal sites which are ver
tices of 7I{, because these are the only ones counted in Nq . A vertex 
v of % on R H int(J) which has a "vacant connection on Q 0 to £ 
above r" is pivotal for E. To be more specific, for any path r on 
Q Q which satisfies (7.39)-(7.41) and vertex v of D\ on r fl int(J) 
we shall say that v has a vacant connection to C above r if there 
exists a vacant path s* = (v*,e*,...,e*,v*) on Q*£ which satisfies
(7.47) -(7.49) below.

(7.47) there exists an edge e of Q* between v and vn
o .  +  , . P^ u

such that e* c j  (r)

(7.48) v* e C

(7.49) (vo»e*s - • ■ »e*\{v*}) = s*\{V;> c j+(r)

(see Def. 2.11 for J+(r)). Note that p = 0 is permitted in (7.47)-
(7.49) . In this case s* reduces to the single point {Vq } and (7.49)
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becomes vacuous . (7.47)-(7.49) are merely the conditions (4.13)-(4.15)
with R replaced by r, except that in (7.47) we require e* to belong 
to rather than to , as in (4.13). The latter change does
not constitute a real change from (4.13) since we assumed here that v 
is a vertex of 5ft, i.e., of Q* and Q*^ . If such a v is connected 
by an edge e* to the vertex Vq of then e* automatically
belongs to . (The vacant connections defined here correspond to 
the weak cut sets with respect to r of Kesten (1980a)) Ex. 4.2 (iii) 
now shows that any vertex v of ^  on R n int(J) with a vacant 
connection to C above R is pivotal for E. Thus

Nn # of vertices v of %  on R n int(J) which have
U o

a vacant connection to C above R.

For the remainder of the proof we use the abbreviation

(7.50) N(r) = N(r,aj) = # of vertices of % on r n int(J)

which have a vacant connection to £ above r.

Then Nq (E,oj) >_N(R,w ), and by virtue of (7.46)

(7.5D Ep(t){N0 |E} > 1  Pp(t){R= r|E}Ep(t){N(r)|R= r} .

By Prop. 2.3 the event {R = r} depends only on the occupancies of 
vertices in l"(r) (note that B. is made up from edges of % and a 
fortiori of 7 ^  here). Moreover, for any v on r the existence of 
a vacant connection from v to C above r depends only on the 
occupancies of the vertices in J+(r) U C, (see (7.48), (7.49)) which 
is disjoint from ~j“(r). This allows us to drop the condition R = r 
in the last expectation in the right hand side of (7.51). More precisely

(7.52) E , tJN(r)|R = r}= I P_m {v has a vacant
p't' v e r n int(J) '

v a vertex of Vi

connection to C above r|R = r}

v e r H int(J) 
v a vertex of \

o

(v has a vacant

connection to C above r} .
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Clearly

{ B  vacant connection from v to C above r}

is a decreasing event. Lemma 4.1 shows that the Pp^-measure of any 
decreasing event is decreasing in t. It follows that the last member 
of (7.52) is also decreasing in t. Thus for 0 £ t £ 1

(7.53) Ep(t){N(r)lR = r} - Ep0{N (r )K

Substituting this estimate into (7.51) and using

I Pp(t){R = r|E} = 1 (see (7.46))

we obtain

(7.54) Ep( t ) {No lE} - mj.n Ep0{N(r)}»

where the minimum is over ail paths r on Q . satisfying (7 .39)-pic
(7.41). Fix such an r. Let its initial point on B-j be vQ and its 
final point on be v^ and consider the following curves on %

(and hence on : B-j := C, A := closed segment of B-j between u^
and Vq , §2 := r, C := closed segment of B2 between v^ and u^
(see Fig. 7.3). Together these curves form a Jordan curve, which we

Figure 7.3
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denote by J, and which is precisely Fr(J+(r)). Now let
a

v e r n int(J) e be a vertex of % and consider vacant paths
* = (v,e*,VQ,e*... e*,v*) on which satisfy

(7.55) s* minus its endpoints c int(J) 

and
o

(7.56) one endpoint of s* lies on B-j and one endpoint of
o

s* lies on §2 •

(Paths of this type correspond to the strong cut sets of Kesten (1980a).) 
Clearly if there exists such a vacant path, then its endpoint on

~  o
r = B2 has a vacant connection to C above r. We again want to 
apply Prop. 2.3, this time with Qp£ replaced by Q*£ and J,A,B-j,C,
B2 replaced by J,A,B-j,C and Bg, respectively. Analogously to Def. 
2.11 we set for any path s* satisfying (7.55) and (7.56)

J"(s*)(J+(s*)) = component of int(J)\s* with A(C) 
in its boundary.

Prop. 2.3 will give us an s* with minimal J~(s*). For later esti
mates (see (7.64), (7.65) and their use at the end of the proof) it is 

important that this minimal path is not too far to the right. We shall 
therefore consider only vacant connections in the vertical strip

X := [A4+1 ,H1+A4+1 ] x R •

9 ~
We remind the reader that for any subset S of R i* c  S means that 

all edges (and hence all vertices) of s* lie in S. We need to con

sider the event

F(r) := { 3 vacant path s* on Q* which satisfiespx,
(7.55), (7.56) and I* c x} .

From Propositon 2.3, applied to rather than and with S
taken as the strip x above we conclude that when F(r) occurs there 
is a unique i* with minimal J”(s*) among the vacant paths on Q*px,
which satisfy (7.55), (7.56) and are contained in x- denote this 
path by S*. (Intuitively, S* is the "left-most vacant vertical cross

cut" of int(J) in x-) As we saw above S* provides us with a vacant
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connection from its endpoint on B2 = r\{w^9w2> to C above r.
Before we estimate the number of sites which have such a connection we
estimate the probability of having at least one such site by estimating
the probability that S* exists, which equals Pn {F(r)>. Let

p0
(ug,f*,... ,f*,up be a vacant path on Q*^ with

(7.57) u* e A,

(7.58) u* e B1 = C,

(7.59) (f*\{u*},u*,...,u*_1 ,f*\{u*}) c int(J) n x .

Since x 1S closed any such path lies entirely in x*> and since B-| 
and B2 separate A and C on J the path must intersect r. The 
last intersection of this path on Q*£ with r - which is a path on 
Qp£ - is necessarily a vertex of Q*£ and of Qp£ (see Comment 2.3(v)) 

Thus this last intersection of (Ug,f|,...,f*,u*l with r is one of 
the u*, say u*, and also equals one of the v ., but not Vq or v^ 

since the latter two lie on B-j U B2, hence outside x- 0ne now easily 
sees that if one takes s* = (u*,f*+1 ,...,f*,u*) then the requirements 
(7.55) and (7.56) are fulfilled. Of course this s* is also contained 

in x to that

(7.60) P (F(r)} > P { 3 vacant path (iu,f?,... ,f*,u*)
pQ pQ u I T T

on Q*. with the properties (7.57)-(7.59)}.P>6

In turn it is easy to see that any vacant vertical crossing on Q* ofPJ6
[A^+l,M^+A^+1]x [-a^,6M2+A^] contains a path with the properties (7.57) 
(7.59). Indeed any such vertical crossing contains a continuous curve 
ip which connects the horizontal lines x(2) = -A^ (which lies below 
r2) and x(2) = 6M2+A^ (which lies above r^) (see Fig. 7.2). ip 

therefore intersects r2 in a point of A and r^ in a point of B-̂ ; 

ip also lies in x- Combining this observation with (7.60) we obtain

(7.61) P {F(r)} ^ P  { 3  vacant vertical crossing on Q* of
P0 P0 P36

[A4+l>Mi+A4+1] x [-A^,6M2+A^]}

> a*((M-j ,7M2) ;2,p0,Qp£) > 6y ,
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as soon as ,Mg > 2A^+1, by virtue of (7.19). By Prop. 2.3 also

(7.62) Pn {S* exists} = Pn {F(r)> > 67 .
p0 p0 '

The next step in estimating E {N(r)} is to write
p0

(7.63) {N(r)} > £ P{S* = s*}En {N(r)|S* = £*}
Po s* P0

> S7 min E {N(r)|S* = s*} ,
-  7 5*  p0

where s* ranges over all paths on Q* which lie in x and satisfyp)6
(7.55) and (7.56). For the remainder of the proof we fix a path
s* = (v,e*9...se* v*) on Q* which lies in x

"P"P# P&
and (7.56). The initial point v = (v(l),v(2)) lies on r

* lies on C H X  c [

and satisfies (7.55) 
and is a

vertex of % while vP Let the annulus U. be

defined as in (7.32) and let Vk 

(L v(l) J,L v(2) J), i.e.,
be U, translated by

Vk = EL V(l) J-2Mk r Lv(l) J+2Mkl]x[L v(2) J-2Mk2,Lv(2) J+2Mk2]\

(LvO) J-Mkl ,Lv(D J+Mk l) x (L v(2) J-Mk2,Lv(2) J+Mk2).

C

Figure 7.4 Vk is the region between the dashed rectangles.
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We restrict ourselves to k with

(7.64) Mkl > 1, Mk2 > 1 and 2Mkl < M£l-2A4-1 .

(Note the M̂ -j in the last expression in (7.64); we reintroduced to 
subscript l to distinguish Mk and M£.) Under (7.64) v lies in
side the center rectangle

(L vO ) J-Mk r Lv(l) J+Mkl)x (Lv(2)J-Mk2 ,Lv(2) J+Mk2)

of Vk- Moreover, since s* c x > v(l) 1. M^i+A^+1 and consequently

(7.65) v(l)+2Mkl < 2M£1-A4 .

Assume now that there exists a path t* = (w,g*,WQ,g*,...,g*,w*) on 
Q* with the following properties:pJ6

(7.66) w e Vk, w is a vertex on r H int(J)

(7.67) w* e C \{v*} or w* lies on s* ,

(7.68) (g*\{w } ,Wq ,... sw*_-| ,g^\{w*})

= t*\{w ,w*} 3+(i*) n vk

and

(7.69) Wq ,...,w*_-j are vacant> and if w e C\(v*}

then also w* is vacant.

Again we allow a = 0, t* = (w,g*,WQ), in which case (7.68) reduces to 
g*c:j+(s*) n V. . We claim that if such a t* exists and S* = s*,

^  . o
then w, the initial point of t , has a vacant connection to C above 
r. This is obvious if w* e C\{v*} (see (7.47)-(7.49)) and recall 
that J+(s*) c  int(J) = J (r); also w* e closure of (J+(s*) D Vk) 
fl(C\v*) implies w* e C (use (7.65).) But also in the other case - 
when w* lies on s*- it is easy to substantiate this claim. Indeed, 

if w* = v* for some 0 < i £ p then t* := (w*,g*,... ,g*,w* = v*, 
e*+-|,... ,e*,v*) is a path on consisting of t*\g^ followed by a
piece of s*. It is self-avoiding since t\{w*} does not intersect 
s* (see (7.68)). There is an edge g* of Q*^ from w to Wq with 

g e J+(r), while t* ends at v* e C. Also c J+(r) by
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(7.68) and (7.55). Finally t* is vacant by (7.69) and the fact that 
s* = S* is vacant whenever S* exists. Thus indeed w has a vacant
connection to £ above r. The last conceivable case with w* = va
cannot occur, since v  ̂V, while w* is the endpoint of g* or g*,K u O
hence w* e = V^, by (7.68). This proves our claim.

As before we may assume the of (7.32) disjoint. Then the 
are also disjoint and then distinct for which there exist a 

t* as above provide us with distinct vertices of % on r which have 
a vacant connection above r to £. In view of the definition (7.50) 

we therefore have

(7.70) E {N(r)|$* = s*} > \ Pn { 3 path t*
p0 k satisfying p0

(7.64)

which satisfies (7.66)-(7.69)| S* = s*} .

We now complete our proof by showing

(7.71) P { 3 path t* which satisfies (7.66)-(7.69)|S* = §*} 
p0

*4
.> 64 »

whenever (7.64) holds and s* c: x satisfies (7.55) and (7.56). This 

will indeed imply (7.45) by means of (7.54), (7.63), (7.70) and the 

fact that the number of k which satisfy (7.64) tends to 00 as £ + °°. 
Now for the proof of (7.71). To begin with observe that we may drop 
the condition S* = s*, because the existence of a path t* which 
satisfies (7.66)-(7.69) depends only on the occupancies of vertices 
in J+(s*) H V. or vertices on C\(v*} which are an endpoint of someK P
edge of Q*0 with interior in J (s*). None of these vertices lie in
J”(s*). The only vertices for which this is possibly in doubt are those
on C\{v*}. However, these vertices would have to be in J+ (s*), since 

x P ~+
they are an endpoint of an edge with interior in J (s*). But the only
vertex on C in J+(s*) H J’(s*) is v*, the final point of s* . On 

the other hand, by Prop. 2.3 the event {S* = s*} depends only on the 
occupancies of vertices in J"(s*). Therefore the conditional probabi

lity in (7.71) is the same as the unconditional probability. Next let 
c* be a vacant circuit on Q* surrounding the pointpx,
( L v(l) J , L v(2 ) J ) and with all its edges and vertices in V̂ . We 

want to show that if such a c* exists, then it contains a t* with
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the properties (7.66)-(7.69). This is intuitively clear from Fig. 7.4 
if one takes into account that by (7.65) the right edge of Vk is on 

the vertical line x(l) = L vO) J+2M^ < 2M^-j-A^s while C is part of 
r3 and hence to the right of the vertical line x(l) = 2M£-|-Â . A 

formal proof was given in Kesten (1980a) Lemma 3 for the case where the 
upper edge of also lies below C = B-j (as depicted in Fig. 7.4). 
Here we shall appeal to Lemma A.2. Let be Fr(J+(s*)), viewed as 

a Jordan curve. J-j is made up of the following four arcs: A ^  = {v}
(i.e., consisting of the single point v only), A^2 = s* followed by 
the piece of C from v* to u3 (v* is the intersection of s* and 
C, u3 is the intersection of C and C; see Fig. 7.3 and 7.5),
A-j3 = C and A ^  = piece of r between vv and v (vv is the inter
section of r and C, v is the intersection of r and s* (see 
Fig. 7.3-7.5). For J2 we take c*, viewed as a Jordan curve. Then

Figure 7.5 is the region between the dashed rectangles.
--------  denotes the circuit c*.

under (7.64) c* also surrounds v, i.e., A-j-j = {v} czint(J2), and 
A13 = C c ext(J2), since by the above C lies outside the exterior 

boundary of whenever (7.64) and hence (7.65) holds. Therefore, 
by Lemma A.2 c* contains an arc, t* say, with one endpoint each on
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o ~ o ° ~
A^2 s* U C and c r, and such that t* minus its endpoints is 
contained in int(J-j) = J+(s*). If t* = (w,g*,wg,...,g*,w*) with w 

the endpoint on r and w* the endpoint on A^, then t* satisfies 
(7.66)-(7.69) (recall that c* <- Vk and that c* is vacant; also 
w e A]4 c int(J)). Thus the existence of c* implies the existence of 
t* as desired. Consequently,

(7.72) Pn { 3 path t* which satisfies (7.66)-(7.69)|S* = s*}
p0
= P { 3  path t* which satisfies (7-66)-(7.69)} 

p0

>_ P { 3  vacant circuit on Q* surrounding 
Pq P36

( LvO) J >L v(2) J) and inside Vk).

Since Vk is just the translate by ( L vO ) J > L v(2) J ) of the 
last member of (7.72) equals the left hand side of (7.21) (with i 
replaced by k), by virtue of periodicity. Thus (7.71) follows from
(7.72) and (7.21). The proof is complete. f~[

Remark.

(ii) In Ch. 10 it will be necessary to have an estimate for the 

conditional distribution of N(r), given (R = r} under Pp(t)s insteacl 
of just for the conditional expectation of N(r). This estimate was 
already given in Kesten (1980a), Steps (i) and (ii) in the proof of 
Prop. 1. We shall want to restrict ourselves in Ch. 10 to counting 
only vertices with vacant connections in

r = r, := c* iU 2 R

More precisely let Np(r) be the number of vertices v of Qp^ on r 
for which there exists a vacant path s* = (vg,e|,... ,e*,v*) on 
which satisfies the following properties

(7 .73) there exists an edge e* of between v and vg

such that e* c J+(r) fl r ,

(7.74) v* c C

(7.75) (v*,e*,...,e*_1 \{v*}) = s*\{v*} <= j+ (r) n r  .
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(Note that we dropped the restriction v e and therefore only re
quire e* is an edge of in (7.73)). Let r be as in ( 7 . 3 9 ) -

(7.41 ) and
r ' = in*! * ^ 1 * » •

The desired estimate is that for l greater than some &q (fti)

(7.76) pp(t){Nr(r) - m lR = r}

> i P_ { 3 at least one v on r and a vacant path 
c p0

s* which satisfy (7.73)-(7.75) with r replaced 

by r 1} ,

uniformly in r, 0 < t < 1. We briefly indicate the trivial changes 
necessary in the proof of Lemma 7.4 to obtain (7.76). Instead of (7.52) 

and (7.53) we have

Pp(t){Nr(r) > m|R = r} = pp(t) ^ r(r) > m} > Pp {Nr(r) > m} .

Also, for fixed r we again consider vacant paths s* satisfying 
(7.55) and (7.56) with the right hand side of (7.55) replaced by 
int(J) H r 1 . Again S* will be the left-most of all these paths. Then 
there exists at least one v on r and a vacant path s* which sat
isfies (7.73)-(7.75) with r replaced by T' whenever S* exists. 
Instead of (7.63) we get

Pn {N (r) > m} 
p0 1

_> P {S* exists} • min P {Nr(r) >^m|S* = s*}
P0 s* P0

Now if s* r 1 then its endpoint v on r lies in r 1. Thus, if we 

strengthen (7.64) to

(7.77) Mk l > l , M k 2 >l and 2MR1 < 1 M£]-l .

then the whole annulus lies inside r . Instead of (7.70) we 

therefore obtain
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(7.78) P {Nr(r) > m|?= s*} > Pn {# of k satisfying (7.77)
p0 1 p0
for which there exists a path t* which satisfies 

(7.66)-(7.69) at least m|S* = s*}

As in the proof of (7.72) we may drop the condition S*= s* and re

place "path t which satisfies (7.66)-(7.69)" by "vacant circuit in 
Vk" in (7.78). In other words the right hand side of (7.78) is at least

(7.79) P {# of k satisfying (7.77) for which V, contains
P0 k
a vacant circuit on Q*^ surrounding [_VJ 1S at 
least m} .

However, the PD -probability that any fixed V, contains a vacant

circuit on Q*£ surrounding L v J is at least 6^ (cf. (7.2 1) and
Lemma 4.1) and the different are disjoint. Vacant circuits in
different occur therefore independent of each other. Moreover,
as £ °° the number of k which satisfies (7.77) also tends to °°.

If we call this number v, then the number of k satisfying (7.77) for
which Vk contains a vacant circuit on Q*^ surrounding Lv J has
just a binomial distribution corresponding to v trials with success 

4probability >_ 6^ . Clearly the probability that such a variable is 
>_ m tends to 1 as v ■* °°. Thus (7.79) is at least 1/2 for all 
large £. This implies (7.76). ///

Proof of Theorem 3.1 (ii) and (iii). It suffices to prove part (ii), 
since part (iii) then follows by interchanging the roles of Q, p and 
"occupied" with those of Q*, 1-p and "vacant", respectively.

(3.46) follows from (7.35), Theorem 5.1 and Lemma 7.3. To see this 
note that (7.35) implies (5.10) with N = 2M^, £ large and p = p 1 . 

Thus by (5.11)

(7.80) P ,{#W(v) = «} = o,

which is the first relation in (3.46). It is also immediate from (5.11) 
that (3.48) holds. To obtain the second relation in (3.46) pick a 
p e such that p 1 «  p «  pg. Then automatically 0 «  p «  1 and 

by the above (applied to p instead of p 1) also

Ep{#W(v)} < °° .
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Lemma 7.3 now shows

Pp{#W*(v) = 0°} > 0.

But (#W*(v) = 00} is a decreasing event so that Lemma 4.1 implies 

Pp ,{#W*(v) = «} > Pp{#W*(v) = 00} > 0 .

The second relation in (3.46) follows. Finally, we have from Lemma 4.1 

and (7.34)

(7.81) Pp,{ 3 a vacant circuit on Q* surrounding

[N,N]x [-N,N]} > P { 3 vacant circuit on Q* surrounding 
p0

[-N,N]x [-N,N] = 1 for all N.

If v-j and v2 are two vertices of Q* in [-N,N] x [-N,N] and 

#W*(v-|) = #W*(v2) = 00, then there exist vacant paths, tt* and *rr2 say, 
on Q* from v-j to 00 and from v2 to °° , respectively. Both 

these paths have to intersect any vacant circuit c* on Q* which 
surrounds [-N,N] x [-N,N] (and hence v-| and v2). The intersection 
of tt* and c* does not have to be a vertex of Q*, but nevertheless 
tt* and c* must contain a pair of neighboring vertices on Q*, as 

explained in Comment 2.2 (vii). Consequently c* has to belong to 
W*(v..) for i = 1,2. Thus, if a vacant circuit c* as above exists, 

then W*(v-j) and W*(v2) have c* in common and W*(v-|) = W*(v2).
Thus (7.81) shows W*(v-|) = W*(v2) whenever #W*(v-|) = #W*(v2) = 00 

so that there is at most one infinite vacant cluster on Q*. The fact 
that there actually exists an infinite vacant cluster follows from 
Birkhoff's ergodic theorem (Walters (1982) Theorem 1.14) since for fixed 

v e Q*

i n
-L l l[#W*(v+kg1) = »] -> P 1 (#W*(v) = 00} > 0 a.e. [Pn ,] 
n k=0 p p

(compare Harris (1960), Lemma 5.1 and Lemma 3.1). (3.47) is immediate

from these considerations. f~l

Proof of Theorem 3.2. Let p-j e be such that the set in the right 
hand side of (3.56) is nonempty, so that tg in (3.56) is well defined. 
Assume further that 0 «  Pq = tgP-j «  1. We shall now give an indir

ect proof of
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(7.82) 1 im inf a*((cLn5cLn);l ,p ) > o
n-*°° J u

and

(7.83) lim inf a*((c2n,c3n);2,pQ) > 0 .
n-*» u

Assume for the sake of argument that (7.82) fails. Then there exists 
a sequence n^ -> 00 such that

lim a*((d2nJ,,d3nJl);l ,pQ) = 0
£-*»

and by (3.55) also

Jim a*((nJl,d1nJl);2 ,p0) = 0.

If this is the case, then we see from (7.14) and (7.15) that

(7.84) lim o((nJl-2A4,d1nJl+2A4);l ,pQ) = 1

as well as

lim a((d2n^+2A4 ,d3n£-2A4);2 ,p0) = 1 .

By virtue of Lemma 2.1b the probabilities of occupied horizontal and
vertical crossings on Q of suitable rectangles also tend to 1 .

px,
More precisely, the existence of an occupied horizontal crossing on Q 
of [0,n-2A^] x [0,d-|n+2A^] implies the existence of an occupied hori
zontal crossing on Qp^ of [A,n-2A^-A] x [-A,d-|n+2A^+A]. Therefore

(7.84) implies

lim a((nJl-2A4-2A-l . d ^ ^ A ^ A + l )  ;1 ,pq,Q ) = 1.
£-*»

Similarly

lim a((d2n£+2A4+2A+l,d3n£-2A4-2A-l);2,p0 ,Q „) = 1.
£-*x> ^

By virtue of the RSW theorem (Theorem 6.1) (and Comment 3.3 (v)) there 
must exist a tt (depending on d.pd2 ,d3 only) such that for all k

lim o((kn£,(ir+3)na);l ,p ,Q ) = lim cr((ir+3)n ,kn );2,pQ ,Q ) = 1.
£ -* »  ^  £-»o o  "

By Lemma 2.1a we can now go back to Q to obtain
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(7.85) lim a((kn£,(tr+4)nJl);1 ,pq ,Q) = lim a(((ir+4)n. ,kn£) ;2,pQ ,Q) = 1. 

Finally, by (7.12) we have for any integers , m2

(7 .86) a((m15m2);l5p0)+a*((m19m2);2 ,p0) <^1

and by interchanging the horizontal and vertical direction also

(7.87) cj( (iri-j sm2) j2 ,Pq )+cj*( (ni-| ,m2) ;1 ,Pq ) <_ 1.

(7.85)-(7.87) show that

lim a*((knr (TT+4)n£);29p0) = lim a*( ((ir+4)n£5kn£) ;1 ,pQ) = 0.

If we take = (7T+4)n£ and k = 3tt+12 this implies

(7.88) T*((Nr N£);i,p0,Q) = x( (N£,N£) ;i ,T-p0,Q*) 0

as l 00 for i = 1,2. Indeed (3TT+12)n£ = 3N£ so that

t*((N£,N£);1,Pq ,Q) = Pp { 3 vacant horizontal crossing on 

Q* of [0,N£]x[0,3N£]} = a*((TT+4)nJl9(3iT+12)n£);l9p0),

and similarly for the vertical direction. In particular (7.88) allows 

us to pick on N with

x((N,N);i ,T-P0»Q*) < 1 k (2), i = 1,2,

where k (2) is defined by (5.9). By continuity we can then also find 
a 0 < t-j < tg such that 0 «  t^p^ «  T and

(7.89) T*((N9N);i9t1P1 ,Q) = t*((N,N);i ,T-1 ]p],Q*) < k (2).

This, however, contradicts the definition of tg via Theorem 5.1. 

Indeed (7.89) and Theorem 5.1 applied to Q* show
-c9n

(7.90) P+ n {#W*(v) > n} < C.e c , n > 0
H P1 1

for any vertex v of Q*, which implies
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lim a*((n+2A4,a.|n-2A4) ;t^i ,2) = 0,
n-*®

by the same argument as at the end of the proof of Lemma 5.4 (especially 
(5.55)). Together with (7.14) this finally gives

lim a((n,a,n);t1 p1 ,l) = 1 ,
n->oo

contradicting (3.56) since t-j < tg. It follows that (7.82) must hold 
and (7.83) is proved in the same way. (3.39) for some choice of 6, 
m£ is now immediate from (7.82) and (7.83). (Note however, that the 
b-| for which (3.39) holds are not the b-j ,b2 of (3.53).)

Interchanging the role of Q and Q* one proves in the same way

that
lim inf o((b2n,b3n);1 ,pQ) = 0 

implies for some t^ > t^ with 0 «  t2p-| «  1

lim a((n,a1n);l ,t2p-.) = lim a((n,b-|n) ;2 ,t2p,) = 0.
n-x» n-*»

Again this contradicts (3.56), since t2 > tg. Hence

lim inf o((b2n,b3n);1 ,p«) > 0 
n-x»

and similarly
lim inf a((a2n,a3n);2 ,pQ) > 0.
n-*»

Thus also (3.38) holds, i.e., Condition B is fulfilled for p̂ .


