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6. THE RUSSQ-SEYMOUR-WELSH THEOREM .

The object of this chapter is a result which states that if the
crossing probabilities of certain rectangles in both the horizontal and

vertical direction are bounded away from zero, then so are the crossing
probabilities for larger rectangles. This result will then be used to
prove the existence of occupied circuits surrounding the origin. The
idea is to connect an occupied horizontal crossing of [0,n-j] x [0,n2]
and an occupied horizontal crossing of [m,n-j + m] x [0,n2] by means
of a suitable occupied vertical crossing, in order to obtain a horizontal
crossing of [0,n-| + m] x [0,n2]. This would be quite simple (compare
the proof of Lemma 6.2) if one had a lower bound for the probability of
an occupied vertical crossing of [m,n^] x[0,n2], but in the applications
one only has estimates for the existence of occupied vertical crossings
of rectangles which are wider and/or lower. One therefore has to use
some trickery, based on symmetry to obtain the desired connections. Such
tricks were developed independently by Russo (1978) and Seymour and
Welsh (1978). (See also Smythe and Wierman (1978), Ch. 3 and Russo
(1981).) These papers dealt with the one-parameter problems on the
graphs Qg or (see Ex. 2.1 (i) and (ii)) and therefore had at their
disposal symmetry with respect to both coordinate axes, as well as
invariance of the problem under interchange of the horizontal and
vertical direction. We believe that neither of these properties is

necessary, but so far we still need at least one axis of symmetry. We
also have to restrict ourselves to a planar modification Q 0 of a

2
graph Q which is one of a matching pair of graphs in 1R .

Throughout this chapter we deal with the following setup:

(6.1) (Q,Q ) is a matching pair based on (^,3) for some mosaic
771 satisfying (2.1)-(2.5) and subset 3 of its collection oi 

faces (see Sect. 2.2). is the planar modification of
Q (see Sect. 2.3).
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(6.2) Q and Qp^ are periodic and the second coordinate axis 
Lg'.x(l) = 0 is an axis of symmetry for Q and for

(Note that we can construct Q 0 symmetrically with respectpjc
to Lq as soon as Q is symmetric with respect to this 
axis, by virtue of Comment 2.4(iii).)

(6.3) P is a product measure on (Q^, B^), where is is the

vertex set of Q 0 (compare Sect. 3.1). P is symmetric 
with respect to Lq , i.e. if v =(v(l), v(2)) is any vertex 
of Qp£ , then P{v = (v(l), v(2)) is occupied}

= P{(-v(l), v(2)) is occupied} . (It is not required that
(2.15), (2.16) be satisfied).

Finally A is a constant such that

(6.4) diameter of any edge of Q or of Q 0 is < A .px, —

Theorem 6,1. Assume (6.1) - (6.4). Let tt >_ 1 be an integer and 
assume that rT = (n-j, n2) and m = (m-̂ , m2) are integral vectors 

for which

a(n;l ,P,Qp^) = Pp{ 3 an occupied horizontal crossing on 

of [0,n-j] x [0,n2]} > 6-| > 0

a(m;2,p,Qp£) = Pp{ B an occupied vertical crossing on of

[0,m^] x [0,m2]} > 62 > 0 ,

1 m.
1 < - 1 < ir i = 1,2
tt —  n.j —

]lTjBn_jŷ  n0 = n0(Q,7r) , and for each integer k :> 1 an
f = f(S.| ,62,TF,k) > 0 depending on the indicated parameters only, 

such that for

(6.8) ni > nQ = nQ(Q,Tr)

one has

(6.5)

(6 .6 )

and

(6.7)
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(6.9) cr(kn.|, 2n9); Ijp.Q^) = Pp{ 3 occupied horizontal crossing 

on of f°»kni] x t°»2n2^  1 f(6i »<52 ^ » k) > 0

and

(6.10) a((7i + 3)n.|, kn2); 2,p,Qp )̂ = Pp{ 3 occupied vertical crossing 

on Q ^ of [0,(tt + 3)n^] x [0,kn2]} > f(6  ̂,62,7r,k) > 0 .

Moreover, for fixed tt , k

(6.11) lim f(6r 62,TT,k) = 1 .
6-j -*■ 1
$2 -»■ 2

Corollary 6.1. Under the hypotheses of Theorem 6.1 (including (6.8))

(6.12) P { 3 occupied circuit on Q 0 surrounding 0, and inside 
P P*

the annulus [-2(tt + 3)n^, 2(tt + 3)n-|] x [-3n2,3n2]

(- (tt + 3)n-j, (tt + 3)n^) x (-n2, n2)} >_ f^(6-| ,62,tt, 4tt +12)..

The very long proof will be broken down into several lemmas. If one 
is content with proving the theorem only for the case m-j = n-j, 

m2 = n2 7̂T = ^  anc* unc*er additional hypothesis that both the 
x(l) and x(2)-axis are symmetry-axes, then Lemma 6.1 suffices. Since 
these extra hypotheses hold for most examples the reader is strongly 

urged to stop with Lemma 6.1 at first reading, or to read the original 
proofs of Russo (1978) or Seymour and Welsh (1978). The proof of 
Theorem 6.1 in its full generality is only included for readers 
interested in technical details, with the hope that it will lead 
someone to a proof which does not use symmetry.

The principal ideas appear already in the first lemma. These 

ideas are due to Russo (1978), (1981) and Seymour and Welsh (1978). A 
very important role is played by an analogue of the strong Markov 
property, not with respect to a stopping time, but with respect to a 
lowest occupied horizontal crossing (see step (b) of Lemma 6.1).
Harris (1960) seems to have been the first person to use this property.

In each of the lemmas we construct an occupied crossing of a large
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rectangle by connecting several occupied horizontal and vertical 
crossings. The existence of suitable crossings will come from
(6.5) - (6.7). The difficulty is to make sure that the vertical crossings 
really intersect the horizontal ones, so that they can all be connected.
To do this we shall repeatedly use the FKG inequality (and symmetry 
considerations) to restrict the locations of the crossings. In other 
words, if we know that with high probability there exists an occupied 
crossing of some rectangle, we shall deduce that there is also a high 
probability for the existence of an occupied crossing with additional 
restrictions on its location. Lemma 6.3 and the proofs of Lemmas 
6.6 - 6.8 exemplify this kind of argument.

Since we only consider paths and crossings on Q . we shall droppjc
the specification "on Qp^" for paths for the remainder of this chapter. 
We remind the reader that is planar, and that a path in our
terminology has therefore no self intersections (see beginning of Sect. 
2.3). We shall suppress the subscript p in P . (6.1) - (6.4) will
be in force throughout this chapter.

Lemma 6.1. Assume

(6.13) ct((A1 ,Jl2); l.P.Qp^) > S3 > 0

and

(6.14) a ( U 3,H2); 2,p,c;p£) > 64 > 0

for some integers  ̂ with^ ̂

(6.15) l3 £ |«-|» *-■, > 32 + 16A, > A.

Then for each k there exists an ^ ( 63,64,^ > 0 such that

(6.16) a((k£r A2); l,p,Q ) > f ^ . ^ . k )  >0

and

(6.17) lim f..(S~,5.,k) = 1
6 -* 1 1 6 4

1

1 \ * 1 3
' The requirement Jl- <_ y £, can be replaced by £ (2-5) 

for any 6 > 0.
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Proof: The proof is somewhat lengthy and will be broken down into

three steps.

Step (a). Consider a fixed horizontal crossing 

r = (vQ,e15... ,ev ,vv) of [0,^ - 1] x [0,£2] such that e^ 
intersects the right edge, - 1} x [0,£2] , in its interior only.
In view of Def. 3.1 and > 1 + A, this implies that r intersects 

the vertical line L:x(l) = £-j - 1 only in the open segment 

{&i - 1} * (0,£2) • The rather trivial technical reasons for insisting 
that the intersection of r with L is in this open segment rather 
than the closed segment - 1} x [0,£2] will become clear
below. For the moment we merely observe that any horizontal crossing 
r-j of [0,£-|] x [0,J12] contains a path r with the above properties. 
Indeed we can simply take for r the initial piece of r̂  up till 
and including the first edge e of r-j which intersects L. (Note 
that L is an axis of symmetry of Qp^ because Lg:x(l)=0 is an 
axis of symmetry and Qp^ is periodic with period ^  = (1,0). As 

explained in Comment 2.4(ii) this implies that e intersects L in 
exactly one point; e cannot be in case (a) or (b) of that Comment 
because it has one endpoint strictly to the left of L.) Therefore

(6.18) P{ 3 occupied crossing r = (vQ,e1,...,e ,v ) of

[0,&i - 1] x [0,£2] which intersects L only in

~ 1} x (0,&2)} (&i 9  ̂ *^p£^ — 3̂ *

We shall write e(v) for the reflection of an edge e (a vertex v)
in L. r will denote the reflection of r in L. Then for r as 
above r U r is a horizontal crossing of [0,2£.| - 2] x [0,£2], pro­

vided we interpret this statement with a little care. If v^ lies 
on {£-| - 1} x (0,&2) then r U r is simply the path 
(Vg,e^,...,e^,v^ = v^,e^,v^_i,...,Vg). As observed above, by Comment 

2.4(ii) the only other possibility is that the intersection of 
and L is the midpoint of ev . Then e^ = e^ and r U r should 

be interpreted as the path (vQ,e1,... ,ev ,vv = v^-j, e ^  , v 2,...,Vg). 
Note that we insisted on e^ intersecting L in the open segment

- 1} x (0,&2) precisely to make r U r a horizontal crossing 
of [0, 2£-, - 2] x [0,£2] .

Now we take for J2 the perimeter of [0,2^ - 2] x [0,£2] viewed

as a Jordan curve. We further take B-| = {0} x [0,£2], B2 = {2^ - 2}
[0,£2], A2 = [0,2£-| - 2] x {0} and C2 = [0,2^ - 2] x . TheseX
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are the left, right, bottom and top edge of [0,2£.j - 2] x [O,^], 
respectively. These four edges make up and r U r satisfies 

the analogues of (2.23) - (2.25), i.e., all its edges and vertices 
except for VQ,e^,e^ and Vq lie in int^), while e-j(e-j) has exactly 
one point in common with B^B^). We can therefore define J*(r U r)
J^(r U r)) as the component of i n t ^ J X r  U r which contains
C0(A0) in its boundary, exactlv as in Def. 2.11. We also introduce
* * 1) the events '

(6.19) D(r): = { 3 path s = (wn,f,,...,f ,w ) such thatu I p P
wi,-.-,wp_i are occupied, w^ = v̂  for some v.. e r, f 

intersects in some point £, and

wr  f2*■ ■ fP-r wp-r ŵP-i,c^  
c {J^(r Ur) n [L-g^ J . 2Jl1 - 2 - l_-y J] X (0,s,2)}}

and D(r), defined as D(r), except that one now requires w^ = v.. for 

some v.j e r, or equivalently that w^ is a vertex on r. We shall 
prove in this step that

(6.20) P{D(r)} > 1 - / N 64 .

Note that (6.19) estimates the probability of the existence of an 

"occupied connection from r to the upper edge of 
[0,2£-, - 2] x [0,£?] above r U r" and in the rectangle

[L-J-J. 2£1 - 2 - L-f-J] x [0.^2] (see Fig. 6.1).

(0,£2) C2 (2£1-2,£2)

Recall that |_ a J denotes the largest integer < a
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Before starting on the proof of (6.20) proper we first observe 
that for any two increasing events E-j, one obtains from the FKG 

inequality

P{E1 U E2} = 1 - P{E^ n E^} < 1 - P{E^} P{e|> 

or

(6.21) (1 - PIE^Ml - P{E2}) < 1 - P{E1 U E2J .

We apply this with E-j = D(r), E2 = D(r) . Since D(r) is obtained 
by "reflecting D(r) in L" and L is an axis of symmetry we have 

P{D(r)} = P{D(r)} and (6.21) becomes

P{D(r)} > 1 - (1 - P{D(r) U D(r)})1/2

For (6.20) it therefore suffices to prove

P{D(r) U D(r)} = P{ 3 path s = (w0,1V - ,f , w ) such
P P

that w-j,....,wp are occupied.' wo = vi or v. for
some i, f

p
intersects C2 in some point C and

(f̂  \  {Wq} ., W1 , f 9 9 • • • a f 1 5 W -i <c n p-1 p-I ’ K .r 5))

c {JgCr U r) n
u

C L “8~ J 5 - 2 - 1 41 J] x (0,S,?)}} > 64

To prove (6.22) assume for the moment that there exists an occupied 

vertical crossing t = (u0,g.j,...,g , u ) of

£-i £i
[L-g-J, 2£-j - 2 -  L-g-J] x [0,£2] • Then * contains a continuous 
curve from the bottom to the top of this rectangle, while r U r 
contains a continuous curve from the left to the right edge of this 
rectangle. Both these curves are contained in the rectangle and must 
therefore intersect. Thus r U r and t intersect, and since both 
are paths on the planar graph they intersect in a vertex. Let
u be the last point of t on r U r and let u equal v. ora a i
v., v. e r. Since t is a vertical crossing of
1 £ 1 £

2£1 - 2 - L-J-J] x [0,£2] and £2 > A gx is the only

edge of t which intersects C2- Let c be the first intersection
of g with C?, so that the segment from u to £ (excluding s) 
is disjoint from C2- Since C2 is part of Fr(J2(r U r)), and 
j*(r U r) as well as ux_-| lie below C2, it follows that near £ the
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segment of g^ from to £ lies in J2(r U r). Moreover, the

connected set ga+-j\(ua> U ga+2 U...U g  ̂ U (the segment of 
ĝ_ from u ^  to c) does not intersect Fr(J2(r Ur)). Consequently

g and the vertices u u3x-I a+1 t-1 on these9a+l \  {ua} "
edges also lie in J2(r U r). These observations show that the path 

(ua, 9a+]>•*•>9t’ux) satisfies the requirements for s in (6.22) (if

we take w. = u , •, f . = g , ■, p = x - a). We have thereforeJ CX + j J 06”* j
proved that the event in (6.22) occurs whenever there exists an

£, JL
occupied vertical crossing of CL "g" J » 2^  - 2 - [_-— -_! ] x [0,^] 
and consequently

P{D(r) U D(r)} > P{ 3 an occupied vertical crossing of
£ £

[L-j-J » 2£̂  - 2 - L-ff-J] x [0>^2^

>_ o( j — 4̂

For the second inequality we used periodicity, £g < 2£̂
£-.

- 2 l 4 j

(see 6.15)) and the monotonicity property of Comment 3.3(v). This 

proves (6.22) and (6.20).

Step (b). We apply Prop. 2.3 with J equal to the perimeter 

of [0,£-j - 1] x [0,£2] and B-j = {0} x [0,£2] , B2 = (£-| - 1} x [0,£2],

A = [0,£-j - 1] x {0} and C = [0,£^ - 1] x {£^} , and with

S = 1R2 \{(£-j -1,0), (£-j - 1,£2)} . Note that B2 here differs from 
B^ in step (a)i in any case B-j fl B2 = 0  so that (2.2 6) holds. 
Moreover the lines x(l) = 0 and x(l) = £̂  - 1 containing B-j 
and B2 are axes of symmetry. Prop. 2.3 now tells us that if there 
exists an occupied horizontal crossing of [0,^ - 1] x [0,£2] in S, 

then there exists a lowest such crossing, i.e., an occupied crossing 
with minimal J~(r). As in Prop. 2.3 we denote the lowest such 
crossing by R if it exists. Note that a crossing in S is precisely 
one which intersects L in the open segment {9̂  - 1} x (0,£2). 

Therefore, by Prop. 2.3 and (6.18), the probability that R exists is 

at least ct((£.j,£2); l,p,(;p )̂ 2 63 • For any fixed horizontal 
crossing r = (vQ ,e^,... ,ev ,vv) of [0,£-| - 1] x [0,£2] denote by
Y(r) the second coordinate of the last intersection of r with the

£l
vertical line :x( 1) = . Formally, if ê  intersects L-|
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in y = (y(l), .y(2)) and the segment of e. from y to v. asJ J
well as e.+.|,...,ê  do not intersect L-j anymore, then Y(r) = y(2).
Note that Y(r) is well-defined since r - which goes from

(x(l) 1 to W O  > - 1) - must intersect . Finally, we choose
m as the conditional (1-e) - quantile of Y(R), given that R exists,
where

e = j- { /I-63 - (1-63)} •

More formally, we choose m such that

(6.23) P{R exists and Y(R) £ m} _> (1-e) P{R exists}

= (1-e) x (left hand side of (6.18))

£ (1-e) o{ (&i,&2) j i»P>Qp^) 

and

(6.24) P{R exists and Y(R) < m} £  (l-e)P {R exists}

= (1-e) x (left hand side of (6.18)).

Finally, we take the segments A2 = [0, 2^ - 2] x {0} and
C2 = [0, 2&i - 2] x {£^} as in step (a) and define the horizontal

semi-infinite strip H by

H - [L “g”J 5 00) x (0S&2) .

In this step we shall prove

(6.25) P{ 3 an occupied horizontal crossing r1 of [0,£-j-l]
x [0,£2] with Y(r') £ m and r' fl L c - 1} x (0,^)

and 3 path s' = (wQ,f.|,... ,f , wp) such that 

w0,.-.»wp-i are occupied, Wq is a vertex of r 1, fp 

intersects C2 in some point £, while ( w ^ ^ f ^ .. »fp_i 9 

Wp_i) [wp,c)) <=H}

> 0 - / T 63)(i-/r64)

and
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(6.26) P{ 3 an occupied horizontal crossing r" of

[Oj&i - 1] x [ 0 , 1  with Y(r") £  m and

r" n L c  - 1} x (O,^) and 3 a path

s" = (uo,gi»•••»9X» ux) such that uQ....u ^  are

occupied, uQ is a vertex of r", g intersects A2 
in some point z, while (Ug,g-| ,...,gx_-| >u _-j5 
[ut ,c)) c= H}

> (1 _ / T ^ )  (t . ).

To prove (6.25) we observe that the event in the left hand 
side contains the union

(6.27) U {R = r' and 3 a path s' = (wg,f-|,... ,fp,wp)

such that Wg,...,wp_.| are occupied, Wg is a vertex 

on r', f intersects C2 in some point 5 and

(w0’fi....fP- r wp - r [V c)) cH} ’

where the union in (6.27) is over all horizontal crossings r' of 
[0,&-| - 1] x [0,£2] with Y(r') £  m and which intersect L in 
{£.j - 1} x (O,^)- The events in (6.27) are clearly disjoint. In 
addition, if R = r1 and D(r') occurs (see (6.19)) , then the event 
in (6.27) corresponding to r' occurs. Indeed, D(r') implies the 

existence of a path s = (wg,f-| * • • • >fp,wp) with w-|,...,w ^
occupied, Wg a vertex of r1, fp intersecting^ C2 in a point 

C and (f 1 \  I Wg}» W-|, . . .  sf p_-j j Wp_-|j[wp_i,c)) ^ CL g J » 00) x (0*^2  ̂ -  ̂*

In addition Wg is occupied since it belongs to r' = R, and Wg lies 
on f̂  H r1 c H (since r' lies strictly between the horizontal 
lines x(2) = 0 and x(2) = to The right of L-j) . Therefore 
s satisfies all requirements for s'. It follows from these obser­

vations that the left hand side of (6.25) is no less than

(6.28) l P{R = r'} P{D(r1) | R = r'> .
Y(r') £ m

r' fl L c {£.j - 1} x (0,£2)

The "strong Markov property" to which we referred earlier is that 

{R = r1} and D(r') are independent. This is true, because by 
Prop. 2.3 {R = r1} depends only on the occupancies of vertices in
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J'(r')U{v:v is a vertex of Qp£ with its reflection v in LQ : x(l) = 0 or

L:x(l) = £-| - 1 belonging to J~(r') and such that e fi J c'j’(r') 
for some edge e of Qp^ between v and v}. Here J is still
the perimeter of [0,^ - 1] x [0,£2] and J is the closure of 
int(J), i.e.9 [0,£-| - 1] x [0,£2]. One easily sees that all these 

vertices lie in "J^r1 u Plus possibly a collection of points 
in the half plane x(l) <0  (note that the endpoint of r' lies 
on r' in all cases; the notation here is as in step (a)). On the 
other hand the definition (6.19) shows that D(r') depends only on 
vertices in J2(r' U r 1). Thus {R = r1} and D(r') depend on 

disjoint sets of vertices so that they are indeed independent. It 
now follows from (6.20), (6.23) and (6.13) that (6.28) is at least

l P{R = r'} P{D(r1)}

Y (r1) £ m
r1 H L c  - 1} x (0,£2)

_> (1 - A -S^) P{R exists and Y(R) £  m}

> 0  - vT=6̂ ) (1-e) a((£ls£2);l,p,Qp£)

> (l-e)63 0 “ /T=64) = 0 - 0 - / T 64) .

This proves (6.25).
The proof of (6.26) is essentially obtained from (6.25) by 

interchanging the role of "top and bottom" or rather the role 
of the positive and negative second coordinate axis. The lowest 
occupied horizontal crossing now has to be replaced by the highest 
occupied horizontal crossing, i.e., the roles of A and C have to 
be interchanged. We are not using symmetry with respect to the first
coordinate axis, but merely saying that the same proof works when we
make the above change, except for one step. The analogue of (6.23)
which we need is the following: Let R be the highest occupied
horizontal crossing of [0,£-j - 1] x [0,£2] which intersects L in 
{£-, - 1} x (0,£9) . In other words, R+ is the occupied horizontal 

crossing r of the above type with minimal J (r). R exists by 
Prop. 2.3 as soon as there exists an occupied horizontal crossing 

of [0,£-| - 1] x [0,£2] in S = F 2 \{(£-| - 1,0), (^ - 1,£2)} (Just 
interchange A and C). We want
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(6.29) P {R+ exists and Y(R+) _> m} (l-e)6g .

Once one has (6.29) to replace (6.23), the proof of (6.26) becomes 
a copy of that of (6.25).

We now deduce (6.29) from (6.24). First observe that R+ exists 
iff R exists iff there exists any occupied horizontal crossing of 
[0,£-| - 1] x [0,£2] in S. Second, if such crossings exist, then

(6.30) Y(R+) > Y(r) > Y(R)

for any occupied horizontal crossing r of [0,^ - 1] x [O,^] in 
S. We only have to prove the right hand inequality in (6.30); the 

left hand inequality will then follow by interchanging the role of 
A and C. To obtain this right hand inequality note that the piece of

1̂
R from its last intersection C -j ’• = ( L -g- J , Y(R)) with L-j to its 
unique intersection, say, with the line L:x(l) = £. - 1 formsC £ I
a crosscut of the rectangle F := (L "f" J - 1) * (0,£2) (see Fig. 6.2).

U r i,o)

Figure 6.2

Let us write R̂  for the piece of R between ^  and £2- Thus

R̂  divides F into two Jordan domains. The lower one, which we
denote by F” is bounded by R-|, the segment of L from £2 to
(£, - 1,0), the horizontal seament at the bottom from (£1 - 1,0)

£1 ~ £1 
to (L -Q-J , 0) and the segment of from (L"g~J t0 ^1‘
Any point in F" which is close enough to R-j can be connected
by a continuous curve in F"\R to the segment of L below
£2 , i.e., the segment from s2 to (£-j - 1,0). This is obvious if
R is a polygonal path. In general one can obtain this from the fact

that F” can be mapped homeomorphically onto the closed unit disc
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(see Newman (1951), Theorem VI. 17.1 or use conformal mapping as 
in Hi 11 e (1962), Theorem 17.5.3). Since the segment of L from ^  

to (£-| - 1, 0) belongs to Fr(J~(R)) and not to Fr(J+(R)) it follows 
that all points of F” close to R̂  belong to J~(R). Consequently 
for any occupied horizontal crossing r of [0,£̂  - 1] x [0,&2] in S, 

the piece between the last intersection of r with L-j and the first 
intersection with L cannot enter F , because such a crossing r 
satisfies r fl J c: J+(R) (see (2.27)). In particular, the last

£1intersection of r with , ([_-̂ -J , Y(r)), cannot lie strictly 

below £-| on . This just says Y(r) :> Y(R), and therefore 
proves (6.30).

Now we apply (6.21) with E-|(E2) the event that there exists an 
occupied horizontal crossing r of [0,£  ̂ - 1] * [0,£2] in S with 
Y(r) < m (Y(r) _> ni). E-j U E2 is the event that there is some 
occupied horizontal crossing of [0,£-| - 1] x [0,£2] in S and this 

has probability at least 63 by (6.18). Also, by (6.30) P{E^} is 
given by the left hand side of (6.24), and hence is at most 
(1 - e) P{E-j U E2> . Thus, by (6.30) and (6.21)

P{R+ exists and Y(R+) _> m} _> P{ 3 an occupied horizontal crossing 
r of [0,£-|“l] x [0,£2] in S with Y(r) >_ m}

l-P{E-i
= p{e2} > 1 - ’T pIeTT

]’63
1 ' 1-(1-e)63

u E2}

1 -

>

/ P 6

1

3

1 -P { E U  E2)

1-(l-e)P{E-| U E2)

(1-0)63 ’

This is precisely (6.29), and as stated above, implies (6.26).

Step (c). In this step, we complete the proof of the lemma from 
(6.25) and (6.26). Assume that the events in braces in the left hand 
sides of (6.25) and (6.26) both occur. Then r' U s' contains in

£1H a continuous curve from ( L “q"J * Y(r')) = last intersection of
£1

r1 with l_.| to the upper edge of H, [[_-§-J , °°) x • A1so
£1r" Us" contains in H a continuous curve from (L^fJ, Y(r")) to the

£1lower edge of H s [ L“g“ J »00) x {0} • Moreover, Y(r") m > Y(r') , 
so that the second curve begins above the first curve on and ends
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below the first curve. Thus these curves intersect, necessarily in a 
vertex and in H. Since all vertices of s' U s" in H are occupied 
it follows that r1 r", s' fi H and s" fl H all belong to one occupied 
component and (r‘ U s 1 U r" U s") fl H contains a continuous curve,

Figure 6.3 r' and r" are solidly drawn, s' and s" are 
dashed. The curve ip is indicated by + signs.

\p say, in H which connects the upper and lower edge of H. If 
ip contains any point on or to the right of the vertical line

&1
l_2:x(l) = L-g-J + M for a given integer M (to be specified later)

then r' Us' U r" U s" contains an occupied horizontal crossing 

of

(6.31) [0, L g J + M - A] x [0,Ji2]

If, on the other hand, ip lies strictly to the left of l_2, then we 
must bring in a further path. Assume in this case that there also 
exists an occupied horizontal crossing r"1 of

z z
(6.32) CL-ff-J - 1. L-rJ + M] x E°’*2]

If ip lies entirely to the left of L2, then ip lies in the 

rectangle
z z

CL-g-J » L-g-J + x

and connects the top and bottom edges of this rectangle. Thus ip inter­
sects r"1 to the right of L-j and r',rl,,rni , s' fl H and s" fl H all 
belong to one occupied component in this situation. Since r* begins
on or to the left of x(l) = 0 and r"1 ends on or to the right of

£
x(l) = L-g-J + M, we see that now r‘ U r" U rm U s' U s" contains 
an occupied horizontal crossing of the rectangle (6.31). Consequently
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a((Llf J + M - A, £2); 1 ,psQp^) >_ P{the events in (6.25)

and (6.26) both occur and there exists an occupied 
horizontal crossing r,n of the rectangle (6.32)} .

By the FKG inequality, (6.25), (6.26) and periodicity we finally 
obtain from this

*1
(6.33) + M - A, £2); l,p,Qp£)

> (1 - ^ S 3)2 0 - ^ 64)2 a((M + 1 ,JL2); l,p,QpJl) .

We apply this first with M = Mg : = - 1. Then by (6.13)

*1
(6.34) a(( L-ff-J + *i - A - 1. V ;1,P* V )

> 63(1 - /r^sp2 (1 - v T O p 2 .

We now use (6.33) with M = : = Mq + “ A - 2, and use the

estimate (6.34) for the last factor in the right hand side of (6.33).
We can repeat this procedure and successively obtain lower bounds for

a((Mj+1 + 1, £2^;1,p,CW  in tGrmS °f a^ Mj + 1# V  ;1 ,Ps% £ ^ ’ where

Mj = ^  - 1 + j(L^-J - a - 1) •

By induction on j one sees that these lower bounds tend to one when 

t 1 and 6̂  f 1. Since ±. this implies (6.16) and (6.17)
for a suitable f^(cf Comment 3.3 (v)). PI

Lemma 6.2. Assume (6.13) holds as well as

(6.35) a((«,1,Jl4); 2,p,QpP  > 65 > 0

for some integers >_ 1 _with^

QQ
(6.36) 2̂ ~  TOO 4̂ * 4̂ —

11 98' The requirement &2 1  Jog 4̂ can be replaced by

&2 —  O - 6H 4 any 6 > 0 .
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Then for each k there exists an ^2(53’55’ > 0 such that

(6.37) o( (£-| >k£^), 2,p,QpJl) > f2(63,65,k) > 0

and

(6.38) lim

1
4 "

f2(63,65,k) = 1 .

Remark.

The reader should note that the crossing probabilities in 
(6.13) and (6.35) are for rectangles of the same horizontal size Ẑ ,

while in (6.13) and (6.14) they are for rectangles of the same 
vertical size. Also, this lemma estimates the probability of "long" 
vertical crossings, while Lemma 6.1 deals with "long" horizontal 
crossings. This lemma is much simpler than the last one and does not 
rely on symmetry. The simplification comes from the assumption that 

is greater than Z . by a fixed fraction. In contrast to this,

(6.15) allowed £-| £  £3 .

Proof: To prove (6.37), we observe that if there exist occupied
vertical crossings of r* and r" of [0,£-j] x [0, M + 1] and 

[0,£-|] x [M - £2 - 1, 2M - £2] , for some integer M, and an 
occupied horizontal crossing t of [0,£.j] x [M - £2,M], then t must 
intersect r' as well as r' in the open rectangle (0,£.|) x (M - £2,M) 

(see Fig. 6.4). It follows that in this situation r1 U r" U t contains 
a vertical crossing of [0,£-|] x [0,2M - Z^l. Thus, again from the 
FKG inequality, periodicity and (6.13), we obtain

Figure 6.4.



142

(6.39) a ( U r  2M - ; 2,p,Qpjl)

> a((£r  M + 1); 2,p,Qpjl)

P{ 3 occupied vertical crossing of [0,^] x [M-£2-l s2M-£2]} 

P{ 3 occupied horizontal crossing of [0,ii-j] x [M-£2,M]}

> {a((£r  M + l);2,p,Qpjl)}2 63 .

We use this in the same way as (6.33). We first take M = MQ:= - 1.
Then by (6.35) the right hand side of (6.39) is at least 

26r . This is also a lower bound for

(6.40) a ( U r  Mj + D; 2-P’Qpjt)

when j = 1 and Mj : = [_ (1.01)J J (use (6.36)). Once we have a
lower bound for a given j we substitute it into the right hand side
of (6.39) to obtain a lower bound for (6.40) with M. + 1 replaced

J
> Mj+-j + 1 this is also a lowerby 2M. - . Since 2M. - JU

bound for (6.40) with M̂. replaced by Mj+-| . Again we see by 
induction on j that the lower bound for (6.40) obtained after j 
iterations of this procedure tends to one when 63 and 63 -* 1. 
(6.37) and (6.38) follow from this. PI

Lemma 6.3. Assume (6.13) holds. Let s > 0 be an integer. Then

one has

302(6.41) a(U-|, - £2 + 2); 1 »P>Qp£) = P{ 3 an occupied horizontal

crossing of [0,£.|] x [0, % + 2]}

> <$6:= 1 - (I-63)(s+2)
-2

or for some 300 < j < s the following estimate holds:.1 )

1) fa"] denotes the smallest integer > a.
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(6.42) P{ 3 occupied horizontal crossing of

j+2[0,£-|] x [0, r ^2 "̂ + ^  anc* ^ occupied vertical

lr
crossing of [0,^] * [f -j- ] + 1, |_ &2 J]}

> 66 = 1 - O - 63)(s+2) -2

This lemma does not depend on symmetry and the role of the horizontal 
and vertical direction may be interchanged.

Proof: Let r = (vQ,e^,....ê , v̂ ) be an occupied horizontal crossing

of [0,£-j] x [O,^]- Let ^  be the last intersection of ê  with 
the left edge, {0} x [0,^1 > of this rectangle, and ^  the first
intersection of e^ with the right edge, x [0,£2]. Then the

segment [̂ i * 1 e] > together with the edges e25“ ',ev-l and 
the segment [v^-p^] of ev form a continuous curve inside

[0,£-|] x [0,£2], connecting the left and right edge. Let y^(r) and 
y^(r) be the minimum and maximum value, respectively, of the 
second coordinates of the points on this curve. Also, let E(jpj2) 
for 0 £ j p  j2 £ s be the event

{ 3 occupied horizontal crossing r of

h  (ji+U
with |_ - ;r  &2 J < 1 L — i — ^2-1

j2 (j2+l)r-r'zT i  v >  i  r - f - * 2u  •

[0,^] X [0,£2]

and

Any horizontal crossing r of [0,£.j] x [0,£2] has

0 £y^(r) 5 so that ^  there exists an occupied horizontal
crossing of [0,£-|] x [0,£2], then one of the events E(jpj2),

-1 £  j p  j*2 £  s must occur. Exactly as in (6.21) we obtain from the 
FKG inequality and (6.13)

(6.43) I -63  > P{(U E ( j r j 2) ) c } > n ( i - P {E ( j r j 2) } )

The union and product in (6.43) run over -1 < j.,, j9 < s and hence2 •  ̂—
contain at most (s+2) elements. Therefore, for some -1 £  j p j 2 1 s

- 2
(6.44) P{E( jr j 2)}  > S6 := 1 - (1-63) (s+2)
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Assume now that (6.44) holds for some j-j < j'2 - 300. If E(j-j,j2) 
occurs for these j-| ,j'2 then there exists an occupied horizontal 
crossing r = (vQ,e1,... ,ev ,vv) of [0,^] x [0,£2] with

Lj-|S'15-2 J < y^r) < l_(j1+l)s’1X.2 J and

T d2s"1{'2^ — yh^r  ̂ < I” (d2+^ s 1 ^  ‘ By Def‘ 3-1 3 crossin9>
r is then also an occupied horizontal crossing of

[0,^] x H L ~  *2 J - r ^ T 1 *2 ~l ] ■ But also

y^(r ) 1  L (j-,+1 )s-1Jt2 J < r j 2s ' S l  1 yh(p) implies that

some edge eQ of r intersects the segment [0,S,-|] x {L(j-|+i)s" ^ 2 -Î

and some edge e^ intersects the segment [0,JI-|] x {p j^s- 3 ~1}. Choose
a and 3 such that |$-a| is minimal. For the sake of argument let 

a £ $  . Then the piece (va>ea+-|5 • • • ,e3,v3  ̂ r 1S an 0CCUPied

vertical crossing of [0,2̂ ] x [[_ (j +̂1 )s- 1 J , £2“| ] (see Fig. 6.5)
Thus for j = J2 - j-| - 1 the left hand side of (6.42) is (by virtue 
of the periodicity and the monotonicity property of Comment 3.3(v)) at 

least

F(j2+1 )s~ \ l

ru2s 2̂~"i

L( j +i) s_1 x_2j

l v ' S j

Figure 6.5. The boldly drawn pieces of r represent the edges
e and eo .
a 3
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3 t
P{ 3 occupied horizontal crossing of [0,iL] * [I —  £0 I , 
j2+i 1 s 2

r - — £2 "]] and ^ occupied vertical crossing of

C0,J11 ] x ELrV— *2 J • 1  <s6 •

Thus, (6.44) for some j-j < j2-300 implies (6.42) for a j > 300. If, 

on the other hand, (6.44) holds for some j-| £ j2 - 300 then the 
first part of the above argument and periodicity show that (6.41) 
holds. P|

Lemma 6.4. Assume (6.13) and (6.14) hold for some integers 

> 1 with

£3 £  U 1 ,£-j £  302 + 32A, %z > A 

Then for each k there exists an > 0

(6.45)

for some t. 
such that

(6.46)

and

(6.47)

a((ia1,il2);1,p,Qp£) > f3(63,64,t,k) > 0

im ̂  f3(63,64,t,k) = 1
3
4

3
For t = j this is Lemma 6.1. Here we relax condition (6.15) 

considerably.
Proof: For £3 £  3£-j/2 Lemma 6.1 already implies (6.46) and (6.47),
so that we may assume £3 £  3£^/2 . We now apply Lemma 6.3 with the 
horizontal and vertical direction interchanged. Take s = f 302^3^"* 
£  303£3£^ £  303t . We then have

cr(( JQL- + 2, £2); 2,p,Qp^) = P{ 3 occupied vertical 

crossing of [0, ^-^£3 + 2] x [0,£2]} £  :=( 1 -5^) ŝ+2^

or for some j > 300
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(6.48) P{ 3 occupied vertical crossing of

£3“] + 2] x [0,&2] and 3 occupied horizontal 

crossing of [f -j-~\ + 1, |_ J] x [O.^]} > &7 •

In the first case (6.14) and (6.15) hold for replaced by
302£

r ̂ 22. a, 1 + 2  < --- — f + 3 < I A, , and 6. by 67. Thus
s J “  302X.3fi,“1 c 1 4 /

in this case (6.46) and (6.47) follow from (6.16), (6.17) and the fact 
that Sj -»■ 1 as 6̂  1 (uniformly under the condition s £  303t
implied by (6.45)).

In the second case (6.48) implies the following replacements of 
(6.13) and (6.14):

( L “s” 3̂ J 2̂) ’ ^ — 7̂

(use periodicity again) and

°((rJr- i 3 “i + z. *2>; 2»pV  - 67

Thus il-| is replaced by I

I J- J -3 > ■ T - 4 > - 4 > 32 + 16A
s 6 303Jl3Jl̂

and £g by

+ 2 < ^  J,3 + 3 < |(f £3 - 4) < |( L £ *3 J - 3)

(recall £  302 + 32A,j £  300). With these replacements, and
S7 instead of 6q,5d, (6.16) and (6.17) give us (6.46) and 

(6.47). □
Now assume (6.5) and (6.6) hold. Assume also that m.,n. satisfy 

(6.7 ) for a given tt £  1 and take for the remainder of the proof

(6.49) s = 400tt

We then have (6.13) with £.. = n., = 6-j and by Lemma 6.3 (6.41)
holds or (6.42) holds for some 300 £  j £  s. Also (6.14) holds with
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£2 = m29 3̂ = ml * 5 4 = 52 * In the next ^emma we take care °f the
case where (6.41) holds, and then we deal with the case where (6.42) 
holds in a sequence of reductions in the succeeding lemmas.

Lemma 6.5. Assume (6.6), (6.7) hold and (6.41) for £.j = n., 5^ = 6-j 
and s = 40Chr . Then the conclusion of Theorem 6.1 holds.

Proof: By (6.7) and (6.49)

(6.50) V2-.= ™  l2 + 2

as soon as n2 exceeds some

S  n2 + 2 i  l i r  i i m2

n0(ir). Then by Comment 3.3(v) and (6.6)

(^1>^2 *̂ *”’̂ 9̂ p£^ ~ ^2 9

while by (6.41)

o( (£-| ,£2) jP>Qp£)

Since by (6.7) m-| £ Trn-j = it now follows from Lemma 6.4 that
for n-j ,n2 greater than some nQ(Tr) one has

(6.51) a((knr £p; l,p,Qp£) > f3((S6>(S2,Tr*k) .

Since (6.41) holds for 6  ̂= here has to be read as
_2

(6.52) 66 = 1 - (1-61)"(s+2)

(6.51) together with another application of Comment 3.3(v) gives 

us (6.9).
For (6.10) we use Lemma 6.2. (6.35) with £̂  = m^, £^ = m2> 

6r- = 60 holds by virtue of (6.6). Also, if we apply (6.51) witho c.
k = 7T, then we find (again using Comment 3.3(v))

cK (m-| s&2  ̂  ̂»P *^p£  ̂ —  ^ 5 ̂ 2  ̂ ^5 P 5̂ p£^ —  8̂ 9

where

(6.53) 6g = f3(66,62,'TT,Tr) .

98This takes the place of (6.13). Since ££ £ jqq m2 (see (6.50)) 
(6.37) now gives
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a((rrii ,km2); 2,p,Qp^) £  ^2  ̂̂ 8*^2*^

and hence (6.10). Finally (6.11) follows from (6.38), (6.47) and the 
fact that 6g + , 6g f 1 as 6-j t 1, 6^ f 1 . Q

In view of the last lemma and the comments immediately before 
it we may assume from now on that (6.42) holds for some 300 £  j £  s 
and &.| = , &2, = n2 and 63 = S-j . If the first coordinate
axis were also an axis of symmetry. Theorem 6.1 would now follow 
from (6.42) and Lemma 6.4. Without this extra symmetry assumption 
we must first show that (6.42) can be strengthened to (6.85) below.

For the remainder we take = ni • 2̂ = n2’ s = ^ O tt, S3 = 
and 300 £  j £  s such that (6.42) holds for these choices. We shall 
also use the following abreviations and notations:

*5 = r (j+2)s_1 %2 ~\ + 2 = r (j+2)s_1 n2 l + 2;

if r = (v0,e1#...,ev#vv) is a horizontal crossing of [0,JL|] x [0,£g],
then c-| denotes the last intersection of e-| with the segment
{0} x [ 0 .  For any vertical line L(a): x(l) = a with 0 £  a £  ^ ,
c(a) = c(a,r) is the first intersection of r with L(a) and
Y(a) = Y(a,r) is the second coordinate of s(a). Thus

C(a) = (a,Y(a)), and if c(a) e e , then the segment [c-j.v̂ ] of e-|,
together with the edges e2,...sep_̂  and the segment [vp_^,^(a)] of
e form a continuous curve inside [0,a] x [0,£r] connecting the 
P 3
left and right edge of this rectangle. For a = £^/8 we denote by 
z^(r) and z^(r) the minimum and maximum value, respectively, of the 
second coordinates of the points of this curve, i.e., of the piece of 
r from ^  to cU-j/8).

Lemma 6.6. Let 6g be as in (6.52). Assume

(6.54) P{ 3 occupied horizontal crossing r of [0,£-j] x [0,£g]

with z^(r) > (-03)^5 or z^(r) < (.97)Jl5 and 3 

occupied vertical crossing of

[0,il-|] x + 1, - 59:= 11 ” ^ ~ S6 '

Then the conclusion of Theorem 6.1 holds.

Proof: A horizontal crossing r of [0,^] x [0,̂ 5] with z^(r) > (.03)5t
contains a horizontal crossing of [0,£-|/8] x [(.03)£g,£g ]. Similarly



a horizontal crossing of [0,£-|] x [ 0 , with z^(r) < (.97)£5 contains 
a horizontal crossing of [0,£.j/8] x [0,(.97)£g]. Therefore (6.54) 

implies
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P{ 3 occupied horizontal crossing of
£ £

[0, -J- ] X [(.03)«.5,A5] or of [0, -J-] X [0,(.97)«,5]} > Sg .

By the FKG inequality, or rather (6.21), this implies

1̂(6.55) P{ 3 occupied horizontal crossing of [0, -g- ] 

x [(.03)£5,£5]} > 1 -

or

1̂(6.56) P{ 3 occupied horizontal crossing of [0, -g- ]

x [0,(.97)£5]} > 1 - .

For the sake of argument let (6.56) hold. From (6.54), Comment 
3.3(v) and periodicity it also follows that

(6.57) P{ 3 occupied vertical crossing of [0,£-|] 

x [0. L j  J - 3]} > Sg .

Since j _> 300, £  ̂ we ^ave ^or n2 9reater than some ng(7r)

(.97)i.5 + 1 < (.97) &£ + 4 1 (.98)(L i 42 J - 3).

We are therefore in the same situation as in the beginning of Lemma 

6.5 and (6.9) - (6.11) for suitable f(-) follow from Lemmas 6.4,
6.2 and Comment 3.3(v). Q

By virtue of the last lemma we only have to consider the case 

where (6.54) fails. Denote by E-| the event in the left hand 

side of (6.54) and set

2̂ = ^2^ 1’%^ =  ̂^ occupied horizontal crossing

r of [0,£-|] x [0,£5] with z^(r) £  (.03)£5 and 

z^(r) _> (.97)£g and 3 occupied vertical crossing

of [0,^] x + •
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Then E-j U Eg is the event in the left hand side of (6.42). Thus if
(6.42) holds with 62 = 6-1, but (6.54) fails, then by virtue of
(6 .21)

(l-«fi)
(6.58) P{E?} > 1 - .- .... 17?. = 6q .

L (l-6g) 1 y

It therefore remains to derive Theorem 6.1 if (6.58) prevails 

(with £-j = n-|, £g = n2» 6  ̂= 6-j). First we observe that we may 
assume an even stronger condition than (6.58). Specifically set

E3(k) £  E3(£-j,£5,k) = { 3 occupied horizontal crossing

r of [0 ,£-j ] x 

zh(r) > (.97)£5

[0 ,£5]

and

with h {r) (,03)£c

Y( 1_ -j-J , r) e [
k£g (k+l)£g
TOO 100 ]} •

Since Y([_-^-J , r) e [k£5/100, (k+l)£5/100] for some 

0 < k < 100 it follows from (6.58) that

P{ U 
0 < k < 100

E3(k)} = P{Eg} > 6g

As in (6.43), (6.44) this, together with the FKG inequality shows that 

for some 0 £  k-j <100

(6.59) P{E3(k1)} > 61q:= 1 - (1-<5g)17100 .

The next lemma will show that we can assume that the intersections of 
an occupied horizontal crossing of [0,£-, ] x [0,£r] with any line 

£1L(a), -j- £  a £ £.|, lie with high probability in
k-,-11 k1 +12

(6.60) {a} x [ yoo V  100“ £5  ̂ *

In order to state the lemmas to follow we need to introduce a further 
integer t = t(Qp^). By Lemma A.3 there exists a vertex Vg of ,
an integer a £ 1 and a path vQ on Qp^ from vQ to vQ + (a,0)
such that for all n £  1 the path on Qp^ obtained by successively
traversing the paths rQ + (ka,0), k = 0,1,...,n (these are translates

of Vg) is self-avoiding. We take

(6.61) t = 2f diameter of rQ) ] + 1 .
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For later use we observe that this definition of t guarantees that 
if (b^s b2) is any point of r^ then

(6.62) rQ + (ka,0) c [b̂  - t,°°) x ]R , k 0 .

Lemma 6.7.
---- *1~a e 1~y  ,

(6.63)

Assume that (6.59) holds and that there exists an integer 

] for which

P{ 3 occupied horizontal crossing r1 of 

[O.A-j] x [0s£g] with z^(r') < (.03)Ag

z^(r') —  (*97)̂ 5 and which intersects L(a)
k1 - 11

{a} x C°* ~ T o o -
> 6 ^  : = 1 - (1-6

Jl5] U {a}
\l/12t

10;

k, +12
x  ̂ 100 V V *

in

Then the conclusion of Theorem 6.1 holds.

Proof: Assume that

(6.64) P{ 3 occupied horizontal crossing r1 of

[0,&i] x [O.fcg] with z£(r') < (.03)£5 ,

z^(r') £  (.97)£g and which intersects L(a) in 

k, - 11 1/2
{a} x t°» " t o o "£5]} -  i - n- «n )

If (6.64) does not hold, then it will become valid after replacing 
the interval {a} x [0, (k^-11)&5/100] by {a} x [(k.j+12)£5/100,£5], by 
virtue of (6.63) and (6.21). In this case one only has to interchange 
the role of top and bottom in the following argument.

The idea of the proof is now roughly as follows. If Eg(k) occurs 
then there is an occupied path r with z^(r) £  (.03)£g, 

zh(r) £ (.97)£5 and which contains a connection, p, between the 
lower edge of the rectangle .

(6.65) T : = [0, * [(-03)^,^]

and the segment
£■, k. k1 + 1

1 : = ] L ~2 J } * ["Too ^5 ’ Too ^( 6 .6 6 )
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Figure 6.6. The interval I (in the right edge of the rectangle) and the
connection p are drawn boldly. The reflection p' of p is 
dashed (— ) --------  denotes r". The hatched region is A

in its right edge (see Fig. 6.6). (Note that (6.64) implies k-j > 11 so 
that I lies entirely in the right edge of the rectangle at (6.65).
Also, z£(r) £  (.03)£5 guarantees that r intersects the lower edge of 

this rectangle. Now if the translate by ( L £-|/2 J " a> L( •1H 5J ) of 
the event in (6.64) occurs, then there exists an occupied horizontal 
crossing r" of

£ £
(6.67). CL-yJ - a, L 7 -J - a + * [ L M H 5J > L M H 5 J + V

which gets above the upper edge of T (in fact its highest point will 

be on or above the line x(2) = (.97)£g + L (• 1)^5 J ■ Also r"

intersects L ( a + [ _ - ^ - J - a ) = L (  L-^r J ) in {a} * [ [_ (. 1 )£g J ,

k, - n
- —  £^ + [_(.l)£gj]. Thus the intersection of r" with

(i
L(L'y'J) ^ies in ri*9l1t edge of T below I. Denot| by A the 
“triangle" bounded by p , its reflection p* in LtL-jrJ)* and the 
horizontal line F x  (,03)£g. Then from the above observations we see 
that r" contains a point in A as well as points outside A (to 
wit points above the upper edge of T). Since r" is a horizontal 
crossing of the rectangle (6.67) it lies above the line x(2) = (_(.1)£5 J 
- A > (.03)£5 and does not intersect the horizontal bottom edge of
A. In order to enter A r" must therefore intersect p U p1. A 
symmetry argument will show that we may assume r" intersects p and 
hence r. But then r U r" will contain an occupied vertical crossing 

of + A ]  x [(.03) £g, (.97)£5 + L(.l)£5 J]. By periodicity this

gives us a lower bound for
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(6.68) P{ 3 occupied vertical crossing of

[0, 3^] x [0,L(1.04)£5 J - 2]}

This will take the place of (6.35) and then the lemma will follow 
directly from Lemmas 6.4, 6.2.

Now for the details. The symmetry argument is really the main 
part which needs to be filled in. To do this we shall use Prop. 2.3 and 
this requires a slight change in the definition of p and A . At 
various places we tacitly assume n2, and hence £g, large. Let B-j be 
a continuous path without double points, made up from edges of Q 0pJ6
inside the strip

[0, L x  J] * ((-OSHs* (.04)£g) ,

and connecting the left and right edge of this strip. It is easy to 
see from the periodicity and connectedness of (1 0 that such a B-,i pjc i
exists as soon as (,01)£5 >_ 3s n2 is larger than some constant 

which depends on G 0 only (see Lemma A.3 for a more detailed argument).
£i

Let the endpoints of B̂  be (0,c) and (L"2~ J ,Ĉ - Next c*e^ine t*ie 
straight line segments

&2 = x [ L U H 5J, |qq ^5] »

A = {L^-J> x [d. L ( - D ^ ]  •

Finally, let C be the curve made up of the three segments

{0} x [c ,£ 5] ,  [ 0 , L V 2 J ]  >< -C V  and L V 2J x [ ( k ^ D y iO O ,  £5].
Then B-j, A, B2, C together make up a Jordan curve J which almost 
equals the perimeter of T, except that the lower edge of T has been 
replaced by B-j(see Fig. 6.7). If r is an occupied horizontal

Figure 6.7. C is drawn boldly. The hatched region is A.
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crossing of [0 ] x [0,£g] with z£(r) < (.03)£g , and 
Y( L^/2 J, r) e [k-|£g/100, (k-j+1 )&g/100], then since r lies to the 

left of L([_£-|/2 j) until it reaches c(L£]/2 J >r) and since the 
piece of r between L(0) and L(Jl.|/8) gets below ]Rx (.03)^, r 

contains an occupied path p = (wQ , f-j >... ,fT,w ) with the following

properties:

(6.69) w1,f2,...,fT_1,wt_1 e int(J),

(6.70) wQ e B-j and \  c  int(J),

(6.71) f^ has exactly one point in common with J. This

lies in B2 and is either ŵ . or the midpoint of 
f .T

For (6.71) we used Comment 2.4(ii) again. The intersection of f 

with B2 is just the point c( L£-|/2 J ’ r) = ( L £-|/2 J> Y( L V 2) J ’ r)) 
in the notation introduced before Lemma 6.6. Also k-j _> 11. (6.70) holds
because B̂  is made up from edges of the planar graph Q the path

r on Qp^ can intersect B-j only in a vertex. wQ is just the first 
such intersection we reach when going back along r from 
£( L î i/2 J ,r) to its initial point. The above shows that

(6.72) P{ 3 occupied path p = (Wg,f.j,... jf^w^) with the

properties (6.69) - (6.71)} >_ P{E3(k^)> _> 6-|Q .

The properties (6.69) - (6.71) are just the analogues of (2.23) - (2.25)
in the present context and we can therefore apply Prop. 2.3 (again 

o
with S = IR ). If J (p) denotes the component of int(J)\ p which 
contains A in its boundary, then we denote by R the path p for 
which J"(p) is minimal among all occupied paths p satisfying 
(6.69) - (6.71). By Prop. 2.3 and (6.72) the probability that R exists 
is at least 6-|g. Now for any path pg satisfying (6.69) - (6.71)
denote by pg its reflection in L( |_ j^/2 J ). Also write B̂  for the 

reflection of B-j in L( L /2 J) and A = A(pg) for the triangular 
domain bounded by pQ U Pg and the piece of B-j U B̂  between wQ and 
Wg , the reflection of Wg in L( |_ &.|/2 J ). Now let pg be a given 
path which satisfies (6.69) - (6.71). Assume the translate of the
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event in (6.64) by [|_£.j/2 J “ a* L (-T)̂ 5 J 3 occurs. Then there 
exists an occupied horizontal crossing r" of the rectangle in (6.67). 
Moreover, the piece of r" between L([_£^/2j - a) and 
L([_£-|/2j - a + £-|/8) contains a point on or above the line 

]R x {(.97)£5 + |_(.lHg J} (by virtue of the condition on zh(r') in 
(6.64)). Also r" intersects L([_^/2j) in a point with second 
coordinate at most

k-,-11 k1
Too-  £5 + L ( • 1 ) 5̂ J < n w  5̂ ■

Lastly, r" lies above the horizontal line K x {|_ ('. 1 )£0 J - A} and 
a fortiori does not intersect B-j U B.j . In particular r" contains 
a point outside A(since A lies below ]R x {£ }) and a point on 

L( L ̂ 1 / 2 J ) inside A. Since r" does not intersect B̂  U B| it 
must intersect p0 U p'g, necessarily in a vertex of . Therefore
r" contains a path a = (Ug,g^,... ,gQ,u0) with the properties
(6.73) - (6.76) below.

(6.73) 9} intersects the horizontal line IRx (L(1.07)£5 J -1}.

(6.74) 1 9 •• • ’ 90 \ = a \  {u0} is contained in the
vertical strip [ ] _ £ n/2j - a - A, |_£-|/2_J + a + A] x ]R
but outside A(pq). (Use the inequality |_iL/2j
- a + £-| < L ^ / 2 J  + a).

(6.75) ue e po u p0 •

(6.76) u0 ,...,V l are occupied •

It follows from these observations and (6.64) that

P{ 3 a path a = (uQ,g1,...,gQ,uQ) satisfying (6.73)

- (6.76)} > 1 - (1-6^ )1/2 .

Since L([_il-|/2_J) is an axis of symmetry we obtain exactly as in the 

derivation of (6.20) from (6.22) that

P{3 a path a = (uQ ,g1,...,gQ,u0) satisfying (6.73),

(6.74), (6.76) and u0 e pQ} > l-(l-6n  )1/4.

(6.77)
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Now, by Prop. 2.3 the event {R = pg} depends only on vertices in 

J"(Pq ) U the reflection of “3" (pQ) in L([_£.|/2j) i.e., on
vertices in A(pq) . The event in (6.79) depends only on a set of 
vertices which is disjoint from the above one, and is therefore 

independent of {R = Pq } . As in the proof of (6.25) we now obtain

(6.78) PTR exists and 3 path a = (uQ,g1,...,gQ,u0) which 

satisfies (6.73) and (6.76), is contained in the vertical 

strip CL /2 J - a - A, ]_ il]/2 J + a + A] and has uQ e R} 

1 {1 - (l-S^)174} P{R exists}

> {1 - (1-611)1/4} 61q .

But if R exists, then it is occupied and contains a point on B-j. 
Thus, if the event in the left hand side of (6.78) occurs, then 
a U R  contains an occupied vertical crossing of

£ £
[L-f J - a - A - 1. L-f J + a + A + 1] x [(.04 )l5, L n -07)5-5 J - 1 ]

Since a £  ^  we obtain from periodicity and the monotonicity property 

in Comment 3.3(v).

o ((4£.j, |_1 -03î 5_] - 3); 2,p,Qp^)

> 6]0 (1 - .

This is just (6.35) for the values

£4 = L O - 0 3 H 5 J  - 3, fi5 = 61q{1 - ( l - S ^ ) 174} ,

and £-| replaced by 4£^. But we also have 

o ((£-j >£§) > 1 >P’Qp£^ 9̂

(by virtue of (6.58)) as replacement for (6.13), and 

5̂ -  TOO ( L (1 - 03) Jt5 J - 3).

We can therefore obtain (6.9) - (6.11) again from Lemmas 6.4 and 6.2 in 

the same way as in Lemma 6.5. Q
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One more reduction is necessary. Lemma 6.7 discusses intersections 
of horizontal crossings with L( a) for a single integer a. The next 
lemma considers the intersections with a vertical strip around such 

a line.

Lemma 6.8. Assume that (6.59) holds and that for the t of (6.61)

5JL 71,
there exists an integer a e [ — g—  , — g—  ] for which

(6.79) P{ 3 occupied horizontal crossing r' of

[0,^] x [09£5] with z£(r') £  (.03)£5 ,

z^(r') _> (.97)£g, and which contains some vertex

v = (v(l), v(2)) with |v(l) - a| < t and 
k, - 12 k, + 13

v(2) e [0, |qq £5] u C ioO V £5 ^  -  610

Then the conclusion of Theorem 6.1 holds.

Proof: If the event in (6.79) occurs, then v(l) must lie in one
of the intervals [b,b+l], a - t £ b < a  + t and v(2) in one of

k] - 12 k, + 13
the two intervals [0, — ^qo—  ^5^  E — Yqq— £5**5]. From the by 
now familiar argument using the FKG inequality it follows that one 
of these eventualities has a probability at least

<S12:" 1 ” ^ “61(P
l/4t

For the sake of argument let b be an integer with

1* 
2 1 £  a - t £ b < a  + t<£-|

and such that

(6.80) P{ 3 occupied horizontal crossing r' of

[0,^] x [0,£5] with z£(r') < (.03H5 ,

z^(r') £  (.97)£g and which contains a vertex 

v = (v(l), v(2)) with b £ v(l) < b + 1 and

v(2) e [0, -1too ^5^  > 6i2
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If for a = b or a = b + 1

(6.81) P{ 3 occupied horizontal crossing r1 of [0,5,̂ ] x [0,£g]

with z ̂ (r1) £ (.03)£g, z^Cr1) £ (.97)£5 and which
k1 - 11

intersects L(a) in {a} x [0, ---|-QQ—  i^]} > 6^

then we are done, by virtue of Lemma 6.7. Thus we may assume that
(6.81) fails for a = b and a = b + 1. The obvious generalization 
of (6.21) to three events together with (6.80) then gives

(6.82) P{ 3 occupied horizontal crossing r 1 of [0,£-|] x [0,£g]

k, - 11
which intersects L(b) only in {b} x ( —  £5,&5]

k1 - 11
and L(b+1) only in {b+1} x ( — ^qq---but contains

a vertex v = (v(l), v(2)) with b £  v(l) < b + 1,

k, - 12 1-61?
0 1 v(2) 1 100 ^5^ —  ̂ 7 T T T 2  611 ‘

” -<5ir

When the event in (6.82) occurs, then the piece of r1 from the last
edge of r' before v which intersects L(b) U L(b+1) through the

first edge of r1 after v which intersects L(b) U L(b+1) contains
k-, - 12 k1 - 11

a vertical crossing of [b,b+l] x [— ^ —  £g, — ^ — £^]. Thus,

(6.82) and periodicity implies

£r
(6.83) P{ 3 occupied vertical crossing of [0,1] x [o, - 2]}

As before let y be the number of vertices of Q 0 in thepX/
unit square [0,1) x [0,1), and let A as in (6.4) . Any vertical

crossing r" = 

all the segments

(wo>f i .... W  o f  x jo o -

[0 ,1]  ̂ {|_ 3ooj] J>> 1 1  J 1  V + 1- Let

2 ] intersects

wi(j) = ŵi ( j ) ^ s Wi(j)^2^  be the last vertex on

the segment of this form. Then

r" on or below
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0 *= wT ( j ) (1) < 1

while for j ^ k . l ^ j . k ^ y + l

1 < j < u + 1»

£ £

1 Wi(j)(2) ' wi(k)(2)l - 30§^ " A " 1 - T i m  *

provided is large enough, or equivalently, n2 >_ nQ(Q,7r) for
suitable nQ. Any such point 1S the translate by a vector
(0,m), m e 2Z , of some vertex in [0,1) x [0,1). Thus, by Dirichlet's 
pigeon hole principle there must be a pair and w ^ j  with
equal first coordinates, i.e., with

Wi(j) " wi (k) = (°’m) for some inte9er m — ToSia ‘

Since 1 < j < ]i + 1 and

wi(j) e x ^  300̂ 1-1 " Aj L 3oo^TJ] .

2 2 2there are at most X:=(A+1) y (y+1) possibilities for the pair 

wi(j), wi(k)' ThuSs periodicity and the FKG inequality, (6.83) 
implies the existence of a vertex w e [0,1) x [0,1) and integer

m .> (400y)”"*£g such that

(6.84) P{ 3 occupied path in [0,1] x ]R from w to

w + (0,m)} > 613 : = 1 - ( l -6n ) 1/X .

By periodicity (6.84) remains valid if w is replaced by w + (0,jm). 
Moreover, if we combine occupied paths from w + (0,jm) to 
w + (0,(j+l)m) for j = 0,...,v-l we obtain an occupied path with 
possible double points from w to w + (0,vm). We can remove the 
double points by loop-removal (see Sect. 2.1). Since all the paths 

which we combined lie in the strip [0,1] x 1R we obtain an occupied 
vertical crossing of [-1,2] x [l,vm-l]. Thus, by virtue of the FKG 

inequality (6.84) implies

P{ 3 occupied vertical crossing of [0,3] x [0,vm-2]}

> ^ 3  •

This, together with (6.5), implies (6.9) - (6.11)(this time we need
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only Lemma 6.1). fl
Lemma 6.8 was the last reduction. With t fixed as in (6.61) 

it follows from the preceding lemmas that it suffices to prove Theorem 
6.1 under the additional hypotheses that (6.58) holds, but (6.79) fails 
for every /8 < a £  /8 . Again by (6.21) we may therefore
assume that for such a in this interval.

(6.85) P{ 3 occupied horizontal crossing r of

[0,^] x [0,£5] with z£(r) < (.03)£5, zh(r) > (.97)£5,

and which intersects the strip [a-t, a+t] x ]R only in 
k-. - 12 k1 + 13 1-<SQ

[a-t, a+t] x [ 100 V  TOO V *  - 1 ' 1-5^ - 61Q ’

5£, 7JL
Lemma 6.9. If (6.85) holds for every integer a e [-ĝ - , ], then
the conclusion of Theorem 6.1 holds.

Proof: Assume 0 £ k-j ^ 50. The case 50 < k̂  < 100 again only
involves an interchange of the role of top and bottom. If the event 
in (6.85) occurs, then the segment of r between the points where 
z^(r) and z^(r) are achieved lies (by definition of z^ and ẑ ) 
in the vertical strip [0,£-|/8] x ]R . Consequently, by periodicity 

and (6.85).

(6.86) P{ 3 occupied vertical crossing r' of

J - r{ f *-,1 + 1] * [-(.om5. (.93h 5 -i] > 610

We shall again use Prop. 2.3 to find the "right most" of the vertical 
crossings in (6.86). More precisely, let vQ e [0,1) x [0,1) , a and 

rQ have the properties discussed before the definition (6.61) of t;
(see also Lemma A.3). For a suitable choice of the integers v-j ,V£ 
m the path obtained by traversing successively i 
j = 0,1,...,m will be a self-avoiding path s on Qr

and

*p£ in the

horizontal strip 3R x (-(.01)£5,0) (provided n2 1  n0(Q,Tr) again) 
which intersects both the vertical lines

L (L ^ * i  J - D + 1).
13

Denote by the segment of the path s from its last intersection
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with L(1_1H-| /16j - 1) to its first intersection with 

L( 13^/16 ~| + 1). Similarly s' will be a path in the horizontal

strip ]R x (.92 )£<- -1, (.93)£g -1) obtained by traversing
successively rQ + (v3 + ja,v^) j = 0,1,...,m, and B9 will be the 

11 ^segment of s' from its last intersection with L(|_jg- il-j/16 J - 1) 
to its first intersection with L(f 131^/16 + 1) (see Fig. 6.8).

- ( . o i U 5
Figure 6.8

By property (6.62), if a vertical line L(b) intersects B^ in a 
point of rQ + (v3 + JqCi,v4) then

(6.87) the paths rQ + (v3 + ja,v^), j'q < j < m, are contained 

in the halfplane [b-t,°°) x ]R .

We denote the endpoints of B., i = 1,2, by

( J  19 c -f) anĉ  ( f  j 5  1 + T » d^).

Furthermore A denotes the straightline segment

{f 13£^/16”| + 1} x [d-j^] and C the straightline segment

- 1} x [c-|,c2]. (see Fig. 6.8). The composition of

B-j ,A,B2 and C is a Jordan curve which we denote by J. If the event 
in (6.86) occurs, then the path r' begins below B̂  and ends above 

B2- Since is planar r' intersects B-j as well as B2 only
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in vertices of Q ^ . In particular r1 must contain an occupied 
path p = (Wg,f-|,... with the following two properties

(6.88) P\{Wq,wt} c int(J)

(6.89) wQ e B], w e B2 .

These are the analogues of (2.23) - (2.25). Again we denote the

component of int(J)\p which contains A in its boundary by
J”(p) whenever p is a path satisfying (6.88) and (6.89). Prop. 2.3 

2
with S = 1R shows that as soon as such an occupied path p exists, 

there also exists one with minimal J"(p) . As in Prop. 2.3 we denote 
the occupied path p for which J~(p) is minimal by R whenever 
it exists. By Prop. 2.3 and (6.86).

(6.90) P{ R exists } £ P{ 3 occupied path p which satisfies

(6.88) and (6.89)} > 61Q .

Now assume that R exists and equals some fixed path 

Pq == ŵo 9̂ l 5’ ‘

b = wt(1) , a = |_b J = Lwt (D  J .

and denote the highest intersection of pg with L(b) by (b^). 

Since the endpoint of pg, w^ = (w^O), ŵ(2)) lies on L(b) we have 
b^ £  w^(2). We write I for the segment {b} x [b^, L 5^/4 J ] of 
L(b), and p-| for the segment of pg from its initial point wQ 

to the intersection ( b ^ )  of pg and L(b). Then p-j U I 

contains a crosscut of the rectangle

T = = (LtJ J ' 1 + 1) x (0, L 55^/4 J),

because pg begins on B-j which lies below the lower edge of this 

rectangle (see Fig. 6.9). This crosscut divides T in a left and a 
right component, w^ lies on B^, hence belongs to 

(r0 + (vg + JgC6,v̂ ) for some jg. The piece of which belongs to 
Fr(J"(pg)) then consists of pieces of rQ + (v3 + ja,v^) with 
jg £  j £ m. By (6.87) and the construction of ^  B2 FI Fr(J (Pg) 
contained in the rectangle
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B2

B

Figure 6.9 B-j and are dashed. Pg is drawn solidly; the
boldly drawn part of Pg is p-̂ .

From the preceding it follows that it suffices to show that the left 
hand side of (6.91) is contained in (-°°, b + t - 1] x R . Now assume 
x is a point of rQ + (v3 + ja,v^) fl Fr(J"(pg)) for some 

jg 1 j 1 m - ro + v̂3 + ^les entirely strictly to the
right of L(b), then so do rQ + (v3 + j'a,^) for j' > j, because 
a >_ 1 . In this case there is a path from x to the right edge of
T which consists of pieces of rQ + (v3 + j'a,v^), j' • j, j+1....m.
This path neither intersects I cL(b) , nor does it intersect Pg, 

since pg fl B3 = {w^} . Consequently, x can be connected in
T \ Pg U I to the right edge of T, and x cannot lie in the left 
component of T. If on the other hand rQ + (v3 + ja,v^) is not 

entirely strictly to the right of L(b), then
rQ + (v3 + ja,v^) c (.oo, b + t -  l]x]R by the choice of t in 

(6.61). Thus (6.91) holds.
Assume now that the translate of the event in (6.85) by
%

( ° > L x J )  occurs* Then there exists an occupied horizontal crossing 
r of

[b-t, r H  *1 1 + 1] x U - 9 2 H 5 - 1, (.93)S,g] .

We show first that this implies

(6.91) B^ fl Fr(J~(pg)) fl left component of T

c [b - t, b + t - 1] x [(.92H5 - 1, (. 93) £g]

which intersects the strip [a - t, a + t] x ]R only in
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k, +12 k. + 38
[a “ t, a + t] x [- Yqq ls> foo-  ‘

Moreover, r passes through a point z = (z(l), z(2)) with

0 1  zO) < -y- ■ z(2) 1 (1.22)£5 - 1

JL
before it reaches L( ) . Since this horizontal crossing r begins

1U, 13 A,
to the le f t  of L([_yg— J  -  1) and ends to the rig h t of L( P ”| + 1)
it must intersect the crosscut of T contained in U I. We claim
that r intersects pg, but not I, and does not hit Fr(J~(pg)) 
before it hits pg). To prove this claim we first note that r cannot 

intersect

I U {B2 fl Fr(J"(pg)) fl left component of T} , 

since this set is contained in

[a - t, a + t] x [(.92H5 - 1, L 5£5 / 4J 3 » 

which is.disjoint from

k1 + 12 k1 + 38
[a -  t ,  a + t]  x [ ygg &5 , ioo ‘

To see this we use (6.91) and the facts b2 £ w(2) >_ (.92)£5 - 1 (recall 
that the lower endpoint of I, (b,b2) lies no lower than w^ e B2) and
k-| £  50. In particular r does not intersect I and must intersect
Pg. Moreover, r does not get below the horizontal line 
R x {[_£g/4j} and therefore cannot hit B̂  or the lower edge 

of T. Neither does r get above the top edge of T and therefore 
cannot enter the right component of T through the upper edge of T 
without hitting pg U I first. Lastly, since r stays between the 
upper and lower edge of T and begins to the left of T, it cannot
reach the right edge of T without hitting Pg U I. All in all we
see that r cannot enter the right component of T without hitting 
pg U I. A fortiori r cannot hit

B2 fl Fr(j“(pg)) fl right component of T

without hitting pg U I first. Combining the above observations we 
see that r must hit pg U I (and hence pg) before hitting the
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other parts of Fr(J~(pg)) (since these other parts lie in

F x (-oos o] U U right edge of T. This substantiates our 

claim.
An immediate consequence of the claim is that the piece of r from 

its initial point to its first intersection with pg is a path 

s = (UgSg-j,... >9a»ug) with the following properties:

(6.92) s \  {uQ} = (uQ,g1....ua_l,ga \  {UCT̂  c  C^(pQ))C,

and s fl Pg = {uQ}

(6.93) s is contained in the horizontal strip

[-A,^] x F ,

(6.94) s contains a point z = (z(l), z(2)) with

z(2) > (1.22)£5 - 1 .

and

(6.95) uo9’‘’,ua-l are occupied

Clearly the existence of such a path s depends only on the occupancies 

of vertices outside J”(pg) , and by Prop. 2.3, these are independent 

of the event {R = pg> . Just as in the proof (6.25) - in particular 
the estimates following (6.28) - it follows from this and (6.85) that

(6.96) P{R = Pg and there exists a path s with the properties 

(6.92) - (6.95)} > 610 P{R = Pg} .

Finally observe that if R = Pg and there exists a path s with the 
properties (6.92) - (6.95) then s and pg together contain an occu­
pied path from the initial point of pQ on , (and hence below 
Fx {0}) via ua(the intersection of pQ and s) to z above the 
horizontal line F x  {(1.22)£5 - 1} . This path also lies in the 
strip [-A,£.|] x F and consequently P g U s  contains an occupied 
vertical crossing of [- A - 1,£̂  + 1] x [0, (1.22)£g - 1]. Thus,
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P{ 3 occupied vertical crossing of [- A - 1 + 1]

x [0,(1.22)Jig - 1]} > l P{R = p„ and
Pq satisfying u
(6.88), (6.89).

there exists a path s with properties (6.92) - (6.95)}

> s-io I p{R = pn> (6-96))
Pq satisfying u

(6.88), (6.89)

> 6^0 (by (6.90).

By periodicity this implies for = n-j 2A + 3,

a((2S,r  (1 -22)5.5 - 1); 2,p,QpJl) > 6 ^  .

Since we also have

cj( (&1 ,£,-) *, l,p,Qp^)

(by virtue of (6.85)), and (1.22)£^ - 1 _> — p we can now obtain 

(6.9) - (6.11) from Lemma 6.4 and 6.2 in the same way as in Lemma 
6.5 (provided n̂  ^  i^Q,^) again). Q

As pointed out before Lemma 6.9 takes care of the last case and 
the proof of Theorem 6.1 is therefore complete. ] [

Proof of Corollary 6.1. It is easy to see that if r̂  and r^ are 
occupied horizontal crossings of [ - 2 (tt + 3)n^, 2(iT + 3)n^] x [-3n2,-n2]

and [-2(tt + 3)n^, 2(n + 3)n-j] x [n2,3n2] , respectively, and if r^

Figure 6.10
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and r^ are occupied vertical crossings of [-2(7r+3)n-| (tt+3)n- ]̂

x [-3n2,3n2l and [ (Tr+3)n-j ,2(iT+3)n-j] x [-3n2^ 2 ], respectively, then 

U r 2  U r^ U r^ contains an occupied circu it surrounding 0 inside 

the annulus [-2(Tr+3)n-|, 2(7r+3)n-| ] x [-Sn^ ,3n2]\(-(Tr+3)n-|, (7r+3)n-j) 

x (See Fig. 6.10).

Therefore the left hand side of (6.12) is at least equal to the prob­

ability of such r-|"r4 existing. However, by the FKG inequality this 

is at least
4 4II P{r. exists} > f (6n ,69 ,7r,4iT+12)
i=i 1 1 L

(by (6.9) and (6.10)).


