SOLUTIONS

Chapter 8

Intrinsic Local Descriptions and Manifolds

Problem 8.1. Covariant Derivative and Connection

a.

Using Problem 5.4 we calculate

$$
\begin{aligned}
& \mathbf{X f}-\nabla_{\mathbf{X}} \mathbf{f}=\lim _{\delta \rightarrow 0} \frac{1}{\delta}[\mathbf{f}(a(\delta))-\mathbf{f}(p)]-\lim _{\delta \rightarrow 0} \frac{1}{\delta}[\mathbf{f}(a(\delta))-P(a, p, a(\delta)) \mathbf{f}(p)]= \\
& \quad=\lim _{\delta \rightarrow 0} \frac{1}{\delta}[P(a, p, a(\delta)) \mathbf{f}(p)-\mathbf{f}(p)]=\frac{d}{d s} P(a, p, a(s)) \mathbf{f}(p)_{s=0}=c \mathbf{n},
\end{aligned}
$$

this is in the normal direction by Problem 5.4 and since $\nabla_{\mathbf{X}} \mathbf{f}$ is a tangent vector $c \mathbf{n}$ must be the normal component of $\mathbf{X f}$, which normal component is $\langle\mathbf{X f}, \mathbf{n}(p)\rangle \mathbf{n}$.
b.

From the definition of geodesic and normal curvatures (and using Part a)

$$
\boldsymbol{\kappa}_{g}(0)=\boldsymbol{\kappa}(0)-\boldsymbol{\kappa}_{n}(0)=\mathbf{T} \gamma_{s=0}^{\prime}-\left\langle\mathbf{T} \gamma_{s=0}^{\prime}, \mathbf{n}(0)\right\rangle \mathbf{n}(0)=\nabla_{\mathbf{T}} \gamma_{s=0}^{\prime} .
$$

c.

That this intrinsic derivative is zero implies (using part a) that the directional derivative $\gamma^{\prime}(s) \boldsymbol{V}$ is in the normal direction, which implies (by Problem 5.4) that the vector field is parallel.
d.

Using part a we calculate

$$
\begin{gathered}
\nabla_{\mathbf{X}+\mathbf{Y}} \mathbf{f}=(\mathbf{X}+\mathbf{Y}) \mathbf{f}-\langle(\mathbf{X}+\mathbf{Y}) \mathbf{f}, \mathbf{n}\rangle \mathbf{n}=\mathbf{X} \mathbf{f}+\mathbf{Y f}-\langle\mathbf{X f}+\mathbf{Y f}, \mathbf{n}\rangle \mathbf{n}=\mathbf{X f}+\mathbf{Y f}-\langle\mathbf{X f}, \mathbf{n}\rangle \mathbf{n}-\langle\mathbf{Y} \mathbf{f}, \mathbf{n}\rangle \mathbf{n}=\nabla_{\mathbf{X}} \mathbf{f}+\nabla_{\mathbf{Y}} \mathbf{f} \\
\nabla_{a \mathbf{X}} \mathbf{f}=(a \mathbf{X}) \mathbf{f}-\langle(a \mathbf{X}) \mathbf{f}, \mathbf{n}\rangle \mathbf{n}=a(\mathbf{X f})-\langle a(\mathbf{X f}), \mathbf{n}\rangle \mathbf{n}=a[\mathbf{X f}-\langle\mathbf{X f}, \mathbf{n}\rangle \mathbf{n}]=a \nabla_{\mathbf{X}} \mathbf{f} .
\end{gathered}
$$

e.

Using part a and Problem 4.8 we calculate

$$
\nabla_{\mathbf{X}} r \mathbf{Y}=\mathbf{X}(r \mathbf{Y})-\langle\mathbf{X}(r \mathbf{Y}), \mathbf{n}\rangle \mathbf{n}=r(\mathbf{X Y})-\langle r(\mathbf{X Y}), \mathbf{n}\rangle \mathbf{n}=r[\mathbf{X Y}-\langle\mathbf{X Y}, \mathbf{n}\rangle \mathbf{n}]=r \nabla_{\mathbf{X}} \mathbf{Y},
$$

and, using the fact that $\mathbf{X} f$ is a scalar and that \mathbf{Y} is perpendicular to \mathbf{n},

$$
\begin{gathered}
\nabla_{\mathbf{x}} f \mathbf{Y}=\mathbf{X}(f \mathbf{Y})-\langle\mathbf{X}(f \mathbf{Y}), \mathbf{n}\rangle \mathbf{n}=[(\mathbf{X} f) \mathbf{Y}+f(\mathbf{X Y})]-\langle(\mathbf{X} f) \mathbf{Y}+f(\mathbf{X Y}), \mathbf{n}\rangle \mathbf{n}= \\
=[(\mathbf{X} f) \mathbf{Y}+f(\mathbf{X Y})]-\langle f(\mathbf{X Y}), \mathbf{n}\rangle \mathbf{n}=(\mathbf{X} f) \mathbf{Y}+f(\mathbf{X Y})-\langle f(\mathbf{X Y}), \mathbf{n}\rangle \mathbf{n}=(\mathbf{X} f) \mathbf{Y}+f \nabla_{\mathbf{X}} \mathbf{Y} .
\end{gathered}
$$

*Problem 8.2. Manifolds - Intrinsic and Extrinsic

*a.

Outline of a proof of Problem 8.2.a:

i. First we prove this in the case that the chart is a Monge patch \mathbf{y}. The inverse $\mathbf{y}^{-1} \mid M$ is just the orthogonal projection of M onto \mathbf{R}^{2}. If f is \mathbf{C}^{k} then $\mathbf{y}^{-1} o f$ is C^{k} because it is just the projection onto the first two coordinates. On the other hand, if $\mathbf{y}^{-1} \circ f$ is C^{k} then so is $\mathbf{y} \circ\left(\mathbf{y}^{-1} \circ f\right)=f$.
ii. Now we look at $\mathbf{x}^{-1} \mathbf{y}$. This is one-to-one because it is the composition of one-to-one functions. If \mathbf{x} is defined on U and \mathbf{y} is defined on V then $\mathbf{x}^{-1} \mathbf{y}$ is defined on $\mathbf{y}^{-1}(\mathbf{x}(U) \cap \mathbf{y}(V))$ and maps it to $\mathbf{x}^{-1}(\mathbf{x}(U) \cap \mathbf{y}(V))$. These are both open sets because they are the inverse image of open sets under a continuous map.
iii. By step \mathbf{i}, the function $\mathbf{y}^{-1} \mathbf{o x}$ (the inverse of $\mathbf{x}^{-1} \circ \mathbf{y}$) is C^{k}. Since $\mathbf{y}^{-1} \mathbf{o x}$ is one-to-one and onto an open set its differential $d\left(\mathbf{y}^{-1} \mathbf{0}\right)$ (which is represented by a matrix for given basis in \mathbf{R}^{2}) is invertible. We can then find the inverse of the matrix and since the entries of $d\left(\mathbf{y}^{-1} \mathrm{x}\right)$ are C^{k} the entries of its inverse $d\left(\mathbf{x}^{-1} \mathbf{o y}\right)$ are also C^{k}. [You can use the Inverse Function Theorem (see Appendix B.3) but this is overkill in this case because the hard part of the Inverse Function Theorem is to prove that the function and its inverse are one-to-one and onto.]
b.

Let \mathbf{x} be a local chart whose image contains a neighborhood of p. Look at the projection π which takes a neighborhood of p onto the tangent space at p. Then $\pi \circ \mathbf{x}$ is a \mathbf{C}^{k} function from \mathbf{R}^{n} to \mathbf{R}^{n}. By the Inverse Function Theorem (Appendix B.3), $\pi \circ \mathbf{x}$ has a local C^{k} inverse g. Then $\mathbf{x} \circ g$ is a map from the tangent space onto a neighborhood of p in M such that $\pi \circ(\mathbf{x} \circ g)$ is the identity. Thus, $\mathbf{x} \circ g$ is a Monge patch.

c.

By part b, M has a Monge patch \mathbf{y}. The inverse $\mathbf{y}^{-1} I M$ is just the orthogonal projection of M onto \mathbf{R}^{2}. If \mathbf{x} is another chart then $\mathbf{y}^{-1} \mathbf{o x}$ is C^{k} because it is just the projection onto the first two coordinates. Now we look at $\mathbf{x}^{-1} \circ \mathbf{y}$. This is one-to-one because it is the composition of one-to-one functions. If \mathbf{x} is defined on U and \mathbf{y} is defined on V then $\mathbf{x}^{-1} \circ \mathbf{y}$ is defined on $\mathbf{y}^{-1}(\mathbf{x}(U) \cap \mathbf{y}(V))$ and maps it to $\mathbf{x}^{-1}(\mathbf{x}(U) \cap \mathbf{y}(V))$. These are both open sets because they are the inverse image of open sets under a continuous map. Since $\mathbf{y}^{-1} \mathbf{0}$ is one-to-one and onto an open set its differential $d\left(\mathbf{y}^{-1} \mathbf{x}\right)$ (which is represented by a matrix for given basis in $\left.\mathbf{R}^{2}\right)$ is invertible. We can then find the inverse of the matrix and since the entries of $d\left(\mathbf{y}^{-1} \mathbf{0}\right)$ are C^{k} the entries of its inverse $d\left(\mathbf{x}^{-1} \mathbf{y}\right)$ are also C^{k}. [You can use the Inverse Function Theorem (see Appendix B.3) but this is overkill in this case because the hard part of the Inverse Function Theorem is to prove that the function and its inverse are one-to-one and onto.]

Now, let \mathbf{z} be any other of the extrinsic charts for M. Then, by the previous argument, \mathbf{z} is compatible with \mathbf{y}. Then $\mathbf{x}^{-1} \circ \mathbf{z}=\left(\mathbf{x}^{-1} \circ \mathbf{y}\right) \circ\left(\mathbf{y}^{-1} \circ \mathbf{z}\right)$ is the composition of \mathbf{C}^{k} functions and is, thus, C^{k}. Therefore, the collection of extrinsic charts is an atlas for M.

d.

That a surface with a single chart is a C^{k} manifold follows immediately from the definition. We now check that the two charts, \mathbf{x} and \mathbf{z}, defined for the annular hyperbolic plane (with $r=1$) in Problem 1.8 are compatible. The compositions $\mathbf{x}^{-1} \circ \mathbf{z}(x, y)=\mathbf{x}^{-1} \circ \mathbf{x}(x, \ln (y))=(x, \ln (y))$ and $\mathbf{z}^{-1} \circ \mathbf{x}(x, y)=(x, \exp (y)$ are both C^{k}, and thus the charts are compatible.

e.

If γ and λ are two curves containing the point p in M and \mathbf{x} and \mathbf{y} are two charts containing p, then we can explicitly calculate:

$$
\left(\mathbf{x}^{-1} \circ \gamma\right)^{\prime}(0)=\left(\mathbf{x}^{-1} \circ \lambda\right)^{\prime}(0) \Leftrightarrow\left(\mathbf{y}^{-1} \circ \gamma\right)^{\prime}(0)=d\left(\mathbf{y}^{-1} \circ \mathbf{x}\right)\left[\left(\mathbf{x}^{-1} \circ \gamma\right)^{\prime}(0)\right]=d\left(\mathbf{y}^{-1} \circ \mathbf{x}\right)\left[\left(\mathbf{x}^{-1} \circ \lambda\right)^{\prime}(0)\right]=\left(\mathbf{y}^{-1} \circ \lambda\right)^{\prime}(0) .
$$

Thus, the definition does not depend on which chart containing p you choose.
We now show, for each chart \mathbf{y} (containing p), that the function from the tangent space of \mathbf{R}^{n} at $q=\mathbf{y}^{-1}(p)$ to $T_{p} M$ defined by $d \mathbf{y}\left(\mathbf{X}_{q}\right)=\left[t \rightarrow \mathbf{y}\left(q+t \mathbf{X}_{q}\right)\right]$ is one-to-one and onto. Let \mathbf{X}_{q} and \mathbf{Y}_{q} be two tangent vectors at q in \mathbf{R}^{n}. Suppose that $d \mathbf{y}\left(\mathbf{X}_{q}\right)=\left[t \rightarrow \mathbf{y}\left(q+t \mathbf{X}_{q}\right)\right]=\left[t \rightarrow \mathbf{y}\left(q+t \mathbf{Y}_{q}\right)\right]=d \mathbf{y}\left(\mathbf{Y}_{q}\right)$, then, by definition, $\quad \mathbf{X}_{q}=\left(\mathbf{y}^{-1} \circ \mathbf{y}\left(q+t \mathbf{X}_{q}\right)\right)^{\prime}(0)=\left(\mathbf{y}^{-1} \circ \mathbf{y}\left(q+t \mathbf{Y}_{q}\right)\right)^{\prime}(0)=\mathbf{Y}_{q}$. This correspondence is onto because, if γ is any curve in M with $\gamma(0)=p$, then $\left(\mathbf{y}^{-1} \circ \gamma\right)^{\prime}(0)=\mathbf{Y}_{q}$ is a tangent vector at q in \mathbf{R}^{n}, and thus, $[\gamma]=d \mathbf{y}\left(\mathbf{Y}_{q}\right)$.

Use the above one-to-one, onto correspondence (dependent on the chart \mathbf{y}) define a vector space structure on $T_{p} M$. If \mathbf{x} is any other chart containing p then $d\left(\mathbf{x}^{-1} \circ \mathbf{y}\right)$ is a linear isomorphism from the tangent of \mathbf{R}^{n} at $\mathbf{y}^{-1}(p)$ to the tangent space of \mathbf{R}^{n} at $\mathbf{x}^{-1}(p)$ and $d \mathbf{x}\left(d\left(\mathbf{x}^{-1} \circ \mathbf{y}\right)\left(\mathbf{X}_{q}\right)\right)=\left(d \mathbf{x} \circ d\left(\mathbf{x}^{-1} \circ \mathbf{y}\right)\right)\left(\mathbf{X}_{q}\right)=$ $d\left(\mathbf{x} \circ\left(\mathbf{x}^{-1} \circ \mathbf{y}\right)\right)\left(\mathbf{X}_{q}\right)=d \mathbf{y}\left(\mathbf{X}_{q}\right)$. Thus, the vector space structure defined by $d \mathbf{y}$ will be the same as the structure defined by $d \mathbf{x}$.

Problem 8.3. Christoffel Symbols, Intrinsic Descriptions

a.

1. We calculate $\left\langle\mathbf{x}_{i j}, \mathbf{x}_{l}\right\rangle=\left\langle\mathbf{x}_{i} \mathbf{x}_{j}, \mathbf{x}_{l}\right\rangle=\left\langle\left(\nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}+\left\langle\mathbf{x}_{i} \mathbf{x}_{j}, \mathbf{n}\right\rangle \mathbf{n}\right), \mathbf{x}_{l}\right\rangle=\left\langle\nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}, \mathbf{x}_{l}\right\rangle+\left\langle\left\langle\mathbf{x}_{i} \mathbf{x}_{j}, \mathbf{n}\right\rangle \mathbf{n}, \mathbf{x}_{l}\right\rangle$, this last term is equal to zero because \mathbf{n} is perpendicular to \mathbf{x}_{l}. Thus,

$$
\left\langle\mathbf{x}_{i j}, \mathbf{x}_{l}\right\rangle=\left\langle\nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}, \mathbf{x}_{l}\right\rangle=\left\langle\sum_{k} \Gamma_{i j}^{k} \mathbf{x}_{k}, \mathbf{x}_{l}\right\rangle=\sum_{k} \Gamma_{i j}^{k}\left\langle\mathbf{x}_{k}, \mathbf{x}_{l}\right\rangle=\sum_{k} \Gamma_{i j}^{k} g_{k l} .
$$

2. The matrix $\left(g^{l k}\right)$ is the inverse of the matrix $\left(g_{k k}\right)$, which means that

$$
\sum_{l} g_{k l} g^{l m}=1, \text { when } k=m, \text { and } \sum_{l} g_{k l} g^{l m}=0, \text { when } k \neq m .
$$

Thus, we show that $\sum_{l}\left\langle\mathbf{x}_{i j}, \mathbf{x}_{l}\right\rangle g^{l m}=\sum_{l}\left(\sum_{k} \Gamma_{i j}^{k} g_{k l}\right) g^{l m}=\sum_{k} \sum_{l}\left(\Gamma_{i j}^{k} g_{k l} g^{l m}\right)=\sum_{k}\left(\Gamma_{i j}^{k} \sum_{l} g_{k l} g^{l m}\right)=\Gamma_{i j}^{m}$.
b.

If $\mathbf{Y}=\sum Y^{j} \mathbf{x}_{j}$ is a (tangent) vector field (note that the Y^{j} are real valued functions), then (using Problem 8.1.e)

$$
\begin{gathered}
\nabla_{\mathbf{x}_{i}} \mathbf{Y}=\sum_{j} \nabla_{\mathbf{x}_{i}}\left(Y^{j} \mathbf{x}_{j}\right)=\sum_{j}\left[\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}+Y^{j}\left(\nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}\right)\right]= \\
=\sum_{j}\left[\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}+Y^{j}\left(\sum_{k} \Gamma_{i j}^{k} \mathbf{x}_{k}\right)\right]=\sum_{j}\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}+\sum_{j} Y^{j}\left(\sum_{k} \Gamma_{i j}^{k} \mathbf{x}_{k}\right)=\sum_{k}\left(\mathbf{x}_{i} Y^{k}\right) \mathbf{x}_{k}+\sum_{k}\left(\sum_{j} Y^{j} \Gamma_{i j}^{k} \mathbf{x}_{k}\right)= \\
=\sum_{k}\left(\mathbf{x}_{i} Y^{k}+\sum_{j} \Gamma_{i j}^{k} Y^{j}\right) \mathbf{x}_{k} .
\end{gathered}
$$

c.

We calculate, using properties of the directional derivative from Chapter 4:

$$
\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle=\left\langle\mathbf{x}_{i j}, \mathbf{x}_{k}\right\rangle+\left\langle\mathbf{x}_{j}, \mathbf{x}_{i k}\right\rangle \text { and, thus, }\left\langle\mathbf{x}_{i j}, \mathbf{x}_{k}\right\rangle=\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle-\left\langle\mathbf{x}_{j}, \mathbf{x}_{i k}\right\rangle .
$$

Applying this three times with different indices we get

$$
\begin{aligned}
\left\langle\mathbf{x}_{i j}, \mathbf{x}_{k}\right\rangle & =\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle-\left\langle\mathbf{x}_{j}, \mathbf{x}_{i k}\right\rangle= \\
& =\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle-\left(\mathbf{x}_{k}\left\langle\mathbf{x}_{j}, \mathbf{x}_{i}\right\rangle-\left\langle\mathbf{x}_{k}, \mathbf{x}_{i}\right\rangle\right)= \\
& =\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle-\mathbf{x}_{k}\left\langle\mathbf{x}_{j}, \mathbf{x}_{i}\right\rangle+\mathbf{x}_{j}\left\langle\mathbf{x}_{k}, \mathbf{x}_{i}\right\rangle-\left\langle\mathbf{x}_{k}, \mathbf{x}_{j i}\right\rangle .
\end{aligned}
$$

Thus, $\left\langle\mathbf{x}_{i j}, \mathbf{x}_{k}\right\rangle=\frac{1}{2}\left[\mathbf{x}_{i}\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle-\mathbf{x}_{k}\left\langle\mathbf{x}_{j}, \mathbf{x}_{i}\right\rangle+\mathbf{x}_{j}\left\langle\mathbf{x}_{k}, \mathbf{x}_{i}\right\rangle\right]=\frac{1}{2}\left[\mathbf{x}_{i} g_{j k}-\mathbf{x}_{k} g_{j i}+\mathbf{x}_{j} g_{k i}\right]$.
d.

For a surface with geodesic rectangular (or polar) coordinates, we have

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
h^{2} & 0 \\
0 & 1
\end{array}\right) \text { and }\left(g^{i j}\right)=\left(\begin{array}{cc}
h^{-2} & 0 \\
0 & 1
\end{array}\right)
$$

Thus, we can calculate

$$
\begin{gathered}
\Gamma_{11}^{1}=\frac{1}{2} \sum_{l} g^{1 l}\left[\mathbf{x}_{1} g_{1 l}-\mathbf{x}_{l} g_{11}+\mathbf{x}_{1} g_{l 1}\right]=\frac{1}{2} g^{11}\left[\mathbf{x}_{1} g_{11}-\mathbf{x}_{1} g_{11}+\mathbf{x}_{1} g_{11}\right]=\frac{1}{2} h^{-2} \mathbf{x}_{1}\left(h^{2}\right)=\frac{1}{2} h^{-2}\left(2 h h_{1}\right)=h_{1} / h, \\
\Gamma_{11}^{2}=\frac{1}{2} \sum_{l} g^{2 l}\left[\mathbf{x}_{1} g_{1 l}-\mathbf{x}_{l l} g_{11}+\mathbf{x}_{1} g_{l l}\right]=\frac{1}{2} g^{22}\left[\mathbf{x}_{1} g_{12}-\mathbf{x}_{2} g_{11}+\mathbf{x}_{1} g_{21}\right]=\frac{-1}{2} \mathbf{x}_{2}\left(h^{2}\right)=-h h_{2}, \\
\Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{2} \sum_{l} g^{1 l}\left[\mathbf{x}_{2} g_{1 l}-\mathbf{x}_{l} g_{12}+\mathbf{x}_{1} g_{l 2}\right]=\frac{1}{2} g^{11}\left[\mathbf{x}_{2} g_{11}-\mathbf{x}_{1} g_{12}+\mathbf{x}_{1} g_{12}\right]=\frac{1}{2} h^{-2}\left(\mathbf{x}_{2}\left(h^{2}\right)\right)=h_{2} / h, \\
\Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{2} \sum_{l} g^{2 l}\left[\mathbf{x}_{1} g_{2 l}-\mathbf{x}_{l} g_{21}+\mathbf{x}_{2} g_{l 1}\right]=\frac{1}{2} g^{22}\left[\mathbf{x}_{1} g_{22}-\mathbf{x}_{2} g_{21}+\mathbf{x}_{2} g_{21}\right]=0,, \\
\Gamma_{22}^{k}=\frac{1}{2} \sum_{l} g^{k l}\left[\mathbf{x}_{2} g_{2 l}-\mathbf{x}_{l} g_{22}+\mathbf{x}_{2} g_{l 2}\right]=\frac{1}{2}\left[g^{k 1}\left(\mathbf{x}_{2} g_{21}-\mathbf{x}_{1} g_{22}+\mathbf{x}_{2} g_{12}\right)+g^{k 2}\left[\mathbf{x}_{2} g_{22}-\mathbf{x}_{22} g_{22}+\mathbf{x}_{2} g_{22}\right]\right]=0 .
\end{gathered}
$$

As derived in the solution to Problem 7.2.a, for the sphere,

$$
h\left(u^{1}, u^{2}\right)=\cos \frac{u^{2}}{R}, \text { thus } h_{1}=0 \text { and } h_{2}\left(u^{1}, u^{2}\right)=-\frac{1}{R} \sin \frac{u^{2}}{R} .
$$

Thus, we calculate

$$
\Gamma_{11}^{1}=h_{1} / h=0, \Gamma_{11}^{2}=-h h_{2}=\frac{1}{R} \cos \frac{u^{2}}{R} \sin \frac{u^{2}}{R}, \Gamma_{12}^{1}=\Gamma_{21}^{1}=h_{2} / h=\frac{-1}{R} \tan \frac{u^{2}}{R} \text {, all others zero. }
$$

Problem 8.4. Intrinsic Curvature and Geodesics

a.

We calculate using the fact that, for any real-valued function $f(s),\left.\nabla_{\gamma^{\prime}(a)} f(s)\right|_{s=a}=f^{\prime}(a)$,

$$
\begin{aligned}
& \boldsymbol{\kappa}_{g}(a)=\nabla_{\gamma^{\prime}(a)} \gamma^{\prime}=\nabla_{\gamma^{\prime}(a)} \Sigma_{j}\left(\gamma^{j}\right)^{\prime} \mathbf{x}_{j}=\Sigma_{j}\left[\left(\gamma^{\prime}(a)\left(\gamma^{j}\right)^{\prime}\right) \mathbf{x}_{j}+\left(\gamma^{j}\right)^{\prime} \nabla_{\gamma^{\prime}(a)} \mathbf{x}_{j}\right]= \\
& =\Sigma_{j}\left[\left(\left(\gamma^{j}\right)_{a}^{\prime \prime}\right) \mathbf{x}_{j}+\left(\gamma^{j}\right)_{a}^{\prime} \nabla_{i} \Sigma_{i}\left(\gamma^{i}\right)_{a}^{\prime} \mathbf{x}_{i} \mathbf{x}_{j}\right]=\Sigma_{j}\left[\left(\left(\gamma^{j}\right)_{a}^{\prime \prime}\right) \mathbf{x}_{j}+\left(\gamma^{j}\right)_{a}^{\prime} \Sigma_{i}\left(\gamma^{i}\right)_{a}^{\prime} \nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}\right]= \\
& =\Sigma_{j}\left(\left(\gamma^{j}\right)_{a}^{\prime \prime}\right) \mathbf{x}_{j}+\Sigma_{i, j}\left(\gamma^{j}\right)_{a}^{\prime}\left(\gamma^{i}\right)_{a}^{\prime} \Sigma_{k} \Gamma_{i j}^{k}(\gamma(a)) \mathbf{x}_{k}=\Sigma_{k}\left(\left(\gamma^{k}\right)_{a}^{\prime \prime}\right) \mathbf{x}_{k}+\Sigma_{k} \Sigma_{i, j}\left(\gamma^{j}\right)_{a}^{\prime}\left(\gamma^{i}\right)_{a}^{\prime} \Gamma_{i j}^{k}(\gamma(a)) \mathbf{x}_{k}= \\
& =\sum_{k}\left[\left(\gamma^{k}\right)_{a}^{\prime \prime}+\sum_{i, j} \Gamma_{i j}^{k}(\gamma(a))\left(\gamma^{i}\right)_{a}^{\prime}\left(\gamma^{j}\right)_{a}^{\prime}\right]_{k} .
\end{aligned}
$$

b.

This follows immediately from part a because a curve is a geodesic if and only if $\boldsymbol{\kappa}_{8}=0$ at every point along the curve.
c.

For geodesic coordinates \mathbf{x} we have expressions for the Christoffel symbols from Problem 8.3.d. Thus, we can say that, for a curve $\gamma(s)=\mathbf{x}\left(\gamma^{1}(s), \gamma^{2}(s)\right)$,

$$
\begin{gathered}
\kappa_{g}(a)=\sum_{k}\left[\left(\gamma^{k}\right)_{a}^{\prime \prime}+\sum_{i, i} \Gamma_{i j}^{k}(\gamma(a))\left(\gamma^{i}\right)_{a}^{\prime}\left(\gamma^{j}\right)_{a}^{\prime}\right] \mathbf{x}_{k}= \\
{\left[\left(\gamma^{1}\right)_{a}^{\prime \prime}+\frac{h_{1}(\gamma(a))}{h \gamma((a))}\left(\left(\gamma^{1}\right)_{a}^{\prime}\right)^{2}+2 \frac{h_{2}(\gamma(a))}{h(\gamma(a))}\left(\gamma^{1}\right)_{a}^{\prime}\left(\gamma^{2}\right)_{a}^{\prime}\right] \mathbf{x}_{1}+\left[\left(\gamma^{2}\right)_{a}^{\prime \prime}-h(\gamma(a)) h_{2}(\gamma(a))\left(\left(\gamma^{1}\right)_{a}^{\prime}\right)^{2}\right] \mathbf{x}_{2},}
\end{gathered}
$$

and γ is a geodesic if and only if

$$
\left[\left(\gamma^{1}\right)_{a}^{\prime \prime}+\frac{h_{1}(\gamma(a))}{h \gamma((a))}\left(\left(\gamma^{1}\right)_{a}^{\prime}\right)^{2}+2 \frac{h_{2}(\gamma(a))}{h(\gamma(a))}\left(\gamma^{1}\right)_{a}^{\prime}\left(\gamma^{2}\right)_{a}^{\prime}\right]=0=\left[\left(\gamma^{2}\right)_{a}^{\prime \prime}-h(\gamma(a)) h_{2}(\gamma(a))\left(\left(\gamma^{1}\right)_{a}^{\prime}\right)^{2}\right],
$$

for each a.

Problem 8.5. Lie Brackets and Coordinate Vector Fields

a.

From Problems 8.2.a or 8.2.c it is clear that $\Gamma_{i j}^{k}=\Gamma_{j i,}^{k}$, thus, $\nabla_{\mathbf{x}_{i}} \mathbf{x}_{j}=\sum_{k} \Gamma_{i j}^{k} \mathbf{x}_{k}=\sum_{k} \Gamma_{j i}^{k} \mathbf{x}_{k}=\nabla_{\mathbf{x}_{j}} \mathbf{x}_{i}$.
b.

Let $a(x, y)=y$ then, since \mathbf{B} is constant, $\nabla_{\mathbf{A}(0,0)} \mathbf{B}=\mathbf{A}(0,0) \mathbf{B}=\mathbf{0} \neq \mathbf{e}_{2}=\frac{\partial}{\partial y} \mathbf{A}(x, y)=\mathbf{B}(0,0) \mathbf{A}=\nabla_{\mathbf{B}(0,0)} \mathbf{A}$.
c.

In any geodesic coordinates \mathbf{x} where the second coordinate curves are not extrinsically straight we have $\mathbf{x}_{2} \mathbf{x}_{2}=\mathbf{x}_{22}$ equal to the extrinsic curvature which is perpendicular to the surface because the curves are geodesics. However, expressing the tangent vectors in local coordinates \mathbf{x} and using Problem 8.1 and linearity, we can calculate

$$
\begin{aligned}
\sum_{i}\left(X^{i} \mathbf{x}_{i}\right)_{p} \sum_{j}\left(Y^{j} \mathbf{x}_{j}\right) & =\sum_{i}\left(X_{p}^{i}\right) \sum_{j} \mathbf{x}_{i}\left(Y^{j} \mathbf{x}_{j}\right)=\sum_{i}\left(X_{p}^{i}\right) \sum_{j}\left[\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}+Y^{j}\left(\mathbf{x}_{i} \mathbf{x}_{j}\right)\right] \\
& =\sum_{i, j} X_{p}^{i}\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}+\sum_{i, j} X_{p}^{i} Y_{p}^{j}\left(\mathbf{x}_{i j}\right)
\end{aligned}
$$

In this last expression the first term is a tangent vector and the last term is symmetric in i and j, thus,

$$
\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X}=\sum_{i, j} X_{p}^{i}\left(\mathbf{x}_{i} Y^{j}\right) \mathbf{x}_{j}-\sum_{i, j} Y_{p}^{i}\left(\mathbf{x}_{i} X^{j}\right) \mathbf{x}_{j}=\sum_{i, j}\left[X_{p}^{i}\left(\mathbf{x}_{i} Y^{j}\right)-Y_{p}^{i}\left(\mathbf{x}_{i} X^{j}\right)\right] \mathbf{x}_{j}
$$

is a tangent vector. Then we can calculate

$$
\begin{gathered}
{[\mathbf{X}, \mathbf{Y}]_{p} \equiv \nabla \mathbf{X}(p) \mathbf{Y}-\nabla \mathbf{Y}(p) \mathbf{X}=\mathbf{X}_{p} \mathbf{Y}-\left\langle\mathbf{X}_{p} \mathbf{Y}, \mathbf{n}\right\rangle \mathbf{n}-\mathbf{Y}_{p} \mathbf{X}+\left\langle\mathbf{Y}_{p} \mathbf{X}, \mathbf{n}\right\rangle \mathbf{n}=} \\
\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X}+\left\langle\mathbf{Y}_{p} \mathbf{X}, \mathbf{n}\right\rangle \mathbf{n}-\left\langle\mathbf{X}_{p} \mathbf{Y}, \mathbf{n}\right\rangle \mathbf{n}=\left(\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X}\right)-\left\langle\left(\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X}\right), \mathbf{n}\right\rangle \mathbf{n}=\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X},
\end{gathered}
$$

where the last equality is because $\mathbf{X}_{p} \mathbf{Y}-\mathbf{Y}_{p} \mathbf{X}$ is a tangent vector, and thus has no projection onto the normal \mathbf{n}.
*d.
Outline of a proof: This outline assumes that the reader has a familiarity with flows defined by vector fields and with the theorem from analysis that a C^{1} vector field always has a unique flow. For a discussion of these results the interested reader can consult [An: Strichartz], Chapter 11, or [DG: Dodson/Poston], VII. 6 and VII.7. In the latter, the details of this outline are filled in.

1. Given a C^{1} vector field \mathbf{V} defined and nonzero in a neighborhood of p in M then there is a coordinate chart \mathbf{x} such that $\mathbf{V}=\mathbf{x}_{1}$.
2. If \mathbf{V} and \mathbf{W} are two C^{1} vector fields on M with flows ϕ_{s} and ψ_{s} then the flows commute

$$
\phi_{a} \circ \psi_{b}=\psi_{b} \circ \phi_{a}, \text { wherever defined }
$$

if and only if $[\mathbf{V}, \mathbf{W}]_{p}=\mathbf{0}$, for all p.
3. Use the flows to define the coordinate chart \mathbf{x}.

Problem 8.6. Riemann Curvature Tensors

a.

Outline of a proof:
Let $p=\mathbf{x}(0,0)$. Since the covariant derivative and the intrinsic curvature can both be defined in terms of parallel transport, we look at parallel transport along the coordinate curves and use the abbreviations:

$$
P_{1}(\delta, a)=P(t \rightarrow \mathbf{x}(t, a), \mathbf{x}(0, a), \mathbf{x}(\delta, a)), P_{2}(a, \delta)=P(t \rightarrow \mathbf{x}(a, t), \mathbf{x}(a, 0), \mathbf{x}(a, \delta))
$$

Since $P_{1}(\varepsilon, \delta)\left[P_{2}(0, \delta) \boldsymbol{V}(p)\right]$ is the parallel transport $\mathbf{V}(p)$ along the second coordinate curve to the point $\mathbf{x}(0, \delta)$ and then along the first coordinate curve to the point $\mathbf{x}(\varepsilon, \delta)$ and $P_{2}(\varepsilon, \delta)\left[P_{1}(\varepsilon, 0) \boldsymbol{V}(p)\right]$ is the parallel transport of $\mathbf{V}(p)$ along the first coordinate curve to $\mathbf{x}(\varepsilon, 0)$ and then along the second coordinate curve to
$\mathbf{x}(\varepsilon, \delta)$, then the angle θ between these two parallel transports is the holonomy of the region R bounded by the coordinate curves with "corners" $p=\mathbf{x}(0,0), \mathbf{x}(\varepsilon, 0), \mathbf{x}(\varepsilon, \delta), \mathbf{x}(0, \delta)$. (See Figure 8.4 in the text.)

Then, denote

$$
\mathbf{P}(\varepsilon, \delta)=P_{1}(\varepsilon, \delta)\left[P_{2}(0, \delta) \mathbf{V}(p)\right]-P_{2}(\varepsilon, \delta)\left[P_{1}(\varepsilon, 0) \mathbf{V}(p)\right] .
$$

Then note that $\pm|\mathbf{P}(\varepsilon, \delta)| / / \mathbf{V} \mid=2 \sin (\theta / 2)$, where we assign $\pm|\mathbf{P}|$ the same sign as θ (positive, if counterclockwise). We can calculate

$$
K(p)=\lim _{R \rightarrow 0}(\mathscr{H}(R) / A(R))=\lim _{R \rightarrow 0}(\theta / A(R))=\lim _{\varepsilon, \delta \rightarrow 0} \frac{\theta}{2 \sin (\theta / 2)}\left(\frac{ \pm \mathbf{P}(\varepsilon, \delta)|/ \mathbf{| v |}|}{\varepsilon \delta}\right) \frac{\varepsilon \delta}{A(R)} .
$$

Since this limit exists it is equal to the product

$$
\lim _{\varepsilon, \delta \rightarrow 0} \frac{\theta}{2 \sin (\theta / 2)}\left(\lim _{\varepsilon, \delta \rightarrow 0} \frac{ \pm \mathbf{P}(, \delta)| | \mathbf{V} \mid}{\varepsilon \delta}\right) \lim _{\varepsilon, \delta \rightarrow 0} \frac{\varepsilon \delta}{A(R)}
$$

as long as two of these three limits exists. As the region gets smaller it becomes closer and closer to a planar region and, thus, the angle θ goes to zero and the first limit exists and is equal to 1 . We look at the inverse of the third limit

$$
\begin{aligned}
\lim _{\varepsilon, \delta \rightarrow 0} \frac{1}{\varepsilon \delta} A(R) & =\lim _{\varepsilon, \delta \rightarrow 0} \frac{1}{\delta} \int_{0}^{\delta} \int_{0}^{\varepsilon} \sqrt{g_{i j}\left(u^{1}, u^{2}\right)} d u^{1} d u^{2}=\lim _{\varepsilon, \delta \rightarrow 0} \frac{1}{\varepsilon \delta} \int_{0}^{\delta} \int_{0}^{\varepsilon}\left|\mathbf{x}_{1}\left(u^{1}, u^{2}\right)\right|\left|\mathbf{x}_{2}\left(u^{1}, u^{2}\right)\right| d u^{1} d u^{2}= \\
& =\lim _{\varepsilon, \delta \rightarrow 0}\left(\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|\mathbf{x}_{1}\left(u^{1}, u^{2}\right)\right| d u^{1}\right)\left(\frac{1}{\delta} \int_{0}^{\delta}\left|\mathbf{x}_{2}\left(u^{1}, u^{2}\right)\right| d u^{2}\right)=\left|\mathbf{x}_{1}(0,0)\right|\left|\mathbf{x}_{2}(0,0)\right| .
\end{aligned}
$$

Thus, $|\mathbf{V}|\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right| K(p)=\lim _{\varepsilon, \delta \rightarrow 0} \frac{ \pm P(\varepsilon, \delta) \mid}{\varepsilon \delta}$.
Now, denoting $\mathbf{V}(\mathbf{x}(a, b))=\mathbf{V}(a, b)$, we use the limit definition of covariant derivative, the fact that $\nabla_{\mathbf{x}_{1}}$ is continuous, and the fact that parallel transport is a linear isometry to conclude

$$
\begin{gathered}
\nabla_{\mathbf{x}_{1}} \nabla_{\mathbf{x}_{2}} \mathbf{V}=\nabla_{\mathbf{x}_{1}} \lim _{\delta \rightarrow 0} \frac{1}{\delta}\left[\mathbf{V}(a, \delta)-P_{2}(a, \delta) \mathbf{V}(a, 0)\right]=\lim _{\delta \rightarrow 0} \nabla_{\mathbf{x}_{1}}\left(\frac{1}{\delta}\left[\mathbf{V}(a, \delta)-P_{2}(a, \delta) \mathbf{V}(a, 0)\right]\right)= \\
=\lim _{\delta \rightarrow 0} \lim _{\delta \rightarrow 0} \frac{1}{\varepsilon}\left\{\frac{1}{\delta}\left[\mathbf{V}(\varepsilon, \delta)-P_{2}(\varepsilon, \delta) \mathbf{V}(\varepsilon, 0)\right]-P_{1}(\varepsilon, \delta) \frac{1}{\delta}\left[\mathbf{V}(0, \delta)-P_{2}(0, \delta) \mathbf{V}(0,0)\right]\right\}= \\
=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \frac{1}{\delta}\left\{\mathbf{V}(\varepsilon, \delta)-P_{2}(\varepsilon, \delta) \mathbf{V}(\varepsilon, 0)-P_{1}(\varepsilon, \delta) \mathbf{V}(0, \delta)+P_{1}(\varepsilon, \delta)\left[P_{2}(0, \delta) \mathbf{V}(0,0)\right]\right\}
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\nabla_{\mathbf{x}_{1}} \nabla_{\mathbf{x}_{2}} \mathbf{V}-\lim _{\varepsilon, \delta \rightarrow 0} \frac{\mathbf{P}(\varepsilon, \delta)}{\varepsilon \delta}= \\
=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \frac{1}{\delta}\left\{\mathbf{V}(\varepsilon, \delta)-P_{2}(\varepsilon, \delta) \mathbf{V}(\varepsilon, 0)-P_{1}(\varepsilon, \delta) \mathbf{V}(0, \delta)+P_{1}(\varepsilon, \delta)\left[P_{2}(0, \delta) \mathbf{V}(0,0)\right]-\mathbf{P}(\varepsilon, \delta)\right\}= \\
=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\mathbf{1}\left\{\mathbf{V}(\varepsilon, \delta)-P_{2}(\varepsilon, \delta) \mathbf{V}(\varepsilon, 0)-P_{1}(\varepsilon, \delta) \mathbf{V}(0, \delta)+P_{2}(\varepsilon, \delta)\left[P_{1}(\varepsilon, 0) \mathbf{V}(0,0)\right]\right\}=\right. \\
=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{\delta}\left\{\frac{1}{\varepsilon}\left[\mathbf{V}(\varepsilon, \delta)-P_{1}(\varepsilon, \delta) \mathbf{V}(0, \delta)\right]-\frac{1}{\varepsilon}\left[P_{2}(\varepsilon, \delta) \mathbf{V}(\varepsilon, 0)-P_{2}(\varepsilon, \delta)\left[P_{1}(\varepsilon, 0) \mathbf{V}(0,0)\right]\right]\right\}= \\
=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{1}{\delta}\left\{\frac{1}{\varepsilon}\left[\mathbf{V}(\varepsilon, \delta)-P_{1}(\varepsilon, \delta) \mathbf{V}(0, \delta)\right]-P_{2}(\varepsilon, \delta)\left(\frac{1}{\varepsilon}\left[\mathbf{V}(\varepsilon, 0)-P_{1}(\varepsilon, 0) \mathbf{V}(0,0)\right]\right)\right\}= \\
=\lim _{\delta \rightarrow 0} \frac{1}{\delta}\left\{\left(\nabla_{\mathbf{x}_{1}} \mathbf{V}\right)(0, \delta)-P_{2}(\varepsilon, \delta)\left[\left(\nabla_{\mathbf{x}_{1}} \mathbf{V}\right)(0,0)\right]\right\}=\nabla_{\mathbf{x}_{2}}\left(\left(\nabla_{\mathbf{x}_{1}} \mathbf{V}\right)(0,0)\right) .
\end{gathered}
$$

Therefore,

$$
\left|\nabla_{\mathbf{x}_{1}} \nabla_{\mathbf{x}_{2}} \mathbf{V}-\nabla_{\mathbf{x}_{2}} \nabla_{\mathbf{x}_{1}} \mathbf{V}\right|=\left|\lim _{\varepsilon, \delta \rightarrow 0} \frac{\mathbf{P}(\varepsilon, \delta)}{\varepsilon \delta}\right|=\lim _{\varepsilon, \delta \rightarrow 0}\left|\frac{\mathbf{P}(\varepsilon, \delta)}{\varepsilon \delta}\right|=\left|\mathbf{V} \| \mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right||K(p)| .
$$

b.

In part a we can set \mathbf{V} equal to \mathbf{x}_{1} and then after parallel transport around the vector $\mathbf{x}_{1}(0,0)$ will change only in the \mathbf{x}_{2} direction, because the length of \mathbf{x}_{1} does not change and the change must be in the tangent plane and, thus, be parallel to the \mathbf{x}_{2} direction, and thus,

$$
\left\langle\left(\nabla_{\mathbf{x}_{1}} \nabla_{\mathbf{x}_{2}} \mathbf{x}_{1}-\nabla_{\mathbf{x}_{2}} \nabla_{\mathbf{x}_{1}} \mathbf{x}_{1}\right), \mathbf{x}_{2}\right\rangle_{p}=\left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{x}_{2}, \mathbf{x}_{2}\right\rangle K(p)
$$

because $\pm\left\langle\left(\nabla_{\mathbf{x}_{1}} \nabla_{\mathbf{x}_{2}} \mathbf{x}_{1}-\nabla_{\mathbf{x}_{2}} \nabla_{\mathbf{x}_{1}} \mathbf{x}_{1}\right), \mathbf{x}_{2}\right\rangle_{p}=\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{1}\right|\left|\mathbf{x}_{2}\right||K(p)|\left|\mathbf{x}_{2}\right|= \pm\left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle\left\langle\mathbf{x}_{2}, \mathbf{x}_{2}\right\rangle K(p)$, where the left \pm is positive when the change after parallel transport in the positive \mathbf{x}_{2}-direction and in this case the angle of change (which is the holonomy) is positive, and thus $K(p)$ is positive.
c.

If $\mathbf{F}(\mathbf{X})$ is a vector field that depends linearly on another vector field \mathbf{X}, then there is a trick that works to check whether $\mathbf{F}_{p}(\mathbf{X})$ depends only on \mathbf{X}_{p}. Let k be any real-valued function defined in a neighborhood of p such that $k(p)=1$, then $\mathbf{F}_{p}(\mathbf{X})$ depends only on \mathbf{X}_{p} if and only if $\mathbf{F}_{p}(k \mathbf{X})=k(p) \mathbf{F}_{p}(\mathbf{X})=$ $\mathbf{F}_{p}(\mathbf{X})$. Note that, in this case and because \mathbf{F} is linear, if $\mathbf{X}=\Sigma X^{i} \mathbf{x}_{i}$ then $\mathbf{F}_{p}(\mathbf{X})=\Sigma X^{i}(p) \mathbf{F}_{p}\left(\mathbf{x}_{i}\right)$. So we now calculate, $k(p)$ is as above,

$$
\begin{gathered}
\nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{Y}}(k \mathbf{Z})=\nabla_{\mathbf{x}_{p}}\left[(\mathbf{Y} k) \mathbf{Z}+k(p) \nabla_{\mathbf{Y}} \mathbf{Z}\right]=\left(\mathbf{X}_{p} \mathbf{Y} k\right) \mathbf{Z}+\left(\mathbf{X}_{p} k\right) \nabla_{\mathbf{Y}_{\mathbf{p}}} \mathbf{Z}+\left(\mathbf{Y}_{p} k\right) \nabla_{\mathbf{x}_{p}} \mathbf{Z}+k(p) \nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{Y}} \mathbf{Z}, \\
\left.\nabla_{\boldsymbol{Y}_{p}} \nabla_{\boldsymbol{X}}(k \mathbf{Z})=\nabla_{\mathbf{Y}_{p}}\left[(\mathbf{X} k) \mathbf{Z}+k(p) \nabla_{\mathbf{X}} \mathbf{Z}\right]=\left(\mathbf{Y}_{p} \mathbf{X} k\right) \mathbf{Z}+\left(\mathbf{Y}_{p} k\right) \nabla_{\mathbf{x}_{p}} \mathbf{Z}+\left(\mathbf{X}_{p} k\right) \nabla_{\mathbf{Y}_{p}} \mathbf{Z}+k(p) \nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{X}} \mathbf{Z}, \mathbf{Y},\right]_{p}(k \mathbf{Z})=\left(\mathbf{Y}_{p} \mathbf{X} k\right) \mathbf{Z}-\left(\mathbf{X}_{p} \mathbf{Y} k\right) \mathbf{Z}+k(p) \nabla_{[\mathbf{X}, \mathbf{Y}]_{p}} \mathbf{Z} .
\end{gathered}
$$

Thus, we can cancel terms and get

$$
\begin{gathered}
\mathbf{R}_{p}(\mathbf{X}, \mathbf{Y})(k \mathbf{Z}) \equiv \nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{Y}}(k \mathbf{Z})-\nabla_{\mathbf{Y}_{p}} \nabla_{\mathbf{X}}(k \mathbf{Z})-\nabla_{[\mathbf{X}, \mathbf{Y}]_{p}}(k \mathbf{Z})= \\
=k(p) \nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{Y}} \mathbf{Z}-k(p) \nabla_{\mathbf{Y}_{p}} \nabla_{\mathbf{X}} \mathbf{Z}-k(p) \nabla_{[\mathbf{X}, \mathbf{Y}]_{p}} \mathbf{Z}=k(p) \mathbf{R}_{p}(\mathbf{X}, \mathbf{Y}) \mathbf{Z}=\mathbf{R}_{p}(\mathbf{X}, \mathbf{Y}) \mathbf{Z} .
\end{gathered}
$$

Thus, we have established that \mathbf{R}_{p} depends on \mathbf{Z}_{p} and not on the rest of the field \mathbf{Z}. Now we look at whether it depends on \mathbf{Y}_{p}. We calculate

$$
\begin{gathered}
\nabla_{\mathbf{x}_{p}} \nabla_{k \mathbf{Y}} \mathbf{Z}-\nabla_{k \mathbf{Y}_{p}} \nabla_{\mathbf{X}} \mathbf{Z}=\left(\mathbf{X}_{p} k\right) \nabla_{\mathbf{Y}} \mathbf{Z}+k(p) \nabla_{\mathbf{x}_{p}} \nabla_{\mathbf{Y}} \mathbf{Z}-k(p) \nabla_{\mathbf{Y}_{p}} \nabla_{\mathbf{X}} \mathbf{Z}, \\
\nabla_{[\mathbf{X}, k \mathbf{Y}]_{p}} \mathbf{Z}=\nabla_{\mathbf{x}_{p}(k \mathbf{K})} \mathbf{Z}-\nabla_{k \mathbf{Y}_{p} \mathbf{X}} \mathbf{Z}=\nabla_{\left(\mathbf{x}_{p} k \mathbf{Y}_{p}\right.} \mathbf{Z}+\nabla_{k(p) \mathbf{X}_{p} \mathbf{Y}} \mathbf{Z}-k(p) \nabla_{\mathbf{Y}_{p} \mathbf{X}} \mathbf{Z}=\left(\mathbf{X}_{p} k\right) \nabla_{\mathbf{Y}_{p}} \mathbf{Z}+k(p)\left[\nabla_{\mathbf{x}_{p} \mathbf{Y}} \mathbf{Z}-\nabla_{\mathbf{Y}_{p} \mathbf{X}} \mathbf{Z}\right] .
\end{gathered}
$$

Thus, $\mathbf{R}_{p}(\mathbf{X}, k \mathbf{Y}) \mathbf{Z}=\nabla_{\mathbf{x}_{p}} \nabla_{k \mathbf{Y}} \mathbf{Z}-\nabla_{k \mathbf{Y}_{p}} \nabla_{\mathbf{X}} \mathbf{Z}-\nabla_{[\mathbf{X}, k \mathbf{Y}]_{p}} \mathbf{Z}=k(p) \mathbf{R}_{p}(\mathbf{X}, \mathbf{Y}) \mathbf{Z}$, and by symmetry we have that \mathbf{R}_{p} depends only on \mathbf{Y}_{p} and on \mathbf{X}_{p}.
d.

We calculate $K(\mathbf{X} \wedge \mathbf{Y})=\mathbf{R}_{p}(\mathbf{X}, \mathbf{Y}, \mathbf{X}, \mathbf{Y})=\mathbf{R}_{p}\left(\Sigma_{i} X^{i} \mathbf{x}_{i}, \Sigma_{j} Y^{j} \mathbf{y}_{j}, \Sigma_{k} X^{k} \mathbf{x}_{k}, \Sigma_{h} Y^{h} \mathbf{y}_{h}\right)=\sum_{i} \sum_{j} \sum_{k} \sum_{h} R_{i j k h} X^{i} Y^{j} X^{k} Y^{h}$.

Problem 8.7. Intrinsic Calculations in Examples

a. the cylinder,

In geodesic rectangular coordinates $\left(g_{i j}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \Gamma_{i j}^{k}=0, R_{i j k}^{h}=0=R_{i j k h}, K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2}\right)=0$.
We also know all of these because the cylinder is locally isometric to the plane.
b. the sphere,

In geodesic rectangular coordinates

$$
\begin{gathered}
\left(g_{i j}(\theta, \phi)\right)=\left(\begin{array}{cc}
\sin ^{2}(\phi / r) & 0 \\
0 & 1
\end{array}\right), \\
\Gamma_{11}^{1}=\frac{h_{1}}{h}=0, \Gamma_{11}^{2}=-h h_{2}=\frac{-\sin (\phi \mid r) \cos (\phi \mid r)}{r}, \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{h_{2}}{h}=\frac{\cot (\phi \mid r)}{r}, \text { others zero } \\
R_{212}^{1}=K=\frac{1}{r^{2}}, R_{121}^{2}=h^{2} K=\frac{\sin ^{2}(\phi r)}{r^{2}}, R_{2121}=R_{121}^{1} g_{11}=\frac{\sin ^{2}(\phi / r)}{r^{2}}=R_{121}^{2} g_{22}=R_{1212} \\
K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2}\right)=\frac{R_{121}}{g_{11222}}=\frac{R_{121}}{g 11822}=\frac{1}{r^{2}} .
\end{gathered}
$$

c. the torus $\left(\mathbf{S}^{1} \times \mathbf{S}^{1}\right)$ in \mathbf{R}^{4} with coordinates $\mathbf{x}\left(u^{1}, u^{2}\right)=\left(\cos u^{1}, \sin u^{1}, \cos u^{2}, \sin u^{2}\right)$.

We compute

$$
\begin{gathered}
\mathbf{x}_{1}\left(u^{1}, u^{2}\right)=\left(-\sin u^{1}, \cos u^{1}, 0,0\right), \mathbf{x}_{2}\left(u^{1}, u^{2}\right)=\left(0,0,-\sin u^{2}, \cos u^{2}\right) \\
g_{11}=g_{22}=1, g_{12}=g_{21}=0, \Gamma_{i j}^{k}=0, R_{i j k}^{h}=0=R_{i j k h}, K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2}\right)=0 .
\end{gathered}
$$

The name flat torus is appropriate because it is locally isometric to the plane.
d. the annular hyperbolic plane with respect to its natural geodesic rectangular coordinate system. (See Problem 1.8.)

In rectangular geodesic coordinates

$$
\begin{gathered}
\left(g_{i j}(x, y)\right)=\left(\begin{array}{cc}
\exp ^{2}(-y / r) & 0 \\
0 & 1
\end{array}\right) \\
\Gamma_{11}^{1}=\frac{h_{1}}{h}=0, \Gamma_{11}^{2}=-h h_{2}=\frac{\exp ^{2}(-y / r)}{r}, \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{h_{2}}{h}=\frac{-1}{r}, \text { others zero } \\
R_{212}^{1}=K=\frac{-1}{r^{2}}, R_{121}^{2}=h^{2} K=\frac{-\exp ^{2}(-y / r)}{r^{2}}, R_{2121}^{1}=R_{212}^{1} g_{11}=\frac{-\exp ^{2}(-y / r)}{r^{2}}=R_{121}^{2} g_{22}=R_{1212} \\
K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2}\right)=\frac{R_{121}}{g_{11222}}=\frac{R_{2121}}{g_{1122}}=\frac{-1}{r^{2}} .
\end{gathered}
$$

e. the 3-manifold $\mathbf{S}^{2} \times \mathbf{R} \subset \mathbf{R}^{4}$, that is the set of those points $\left\{(x, y, z, w) \in \mathbf{R}^{4} \mid(x, y, z) \in \mathbf{S}^{2} \subset \mathbf{R}^{3}\right\}$.

In local coordinates, $\mathbf{x}(\theta, \phi, w)=(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi, w)$, we compute

$$
\begin{gathered}
\mathbf{x}_{1}(\theta, \phi, w)=(-\sin \theta \sin \phi, \cos \theta, \phi, 0,0), \mathbf{x}_{2}(\theta, \phi, w)=(\cos \theta \cos \phi, \sin \theta \cos \phi,-\sin \phi, 0), \mathbf{x}_{3}=(0,0,0,1) \\
\left(g_{i j}\right)=\left(\begin{array}{cccc}
\sin ^{2} \phi & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l} g^{k l}\left[\mathbf{x}_{j} g_{i l}-\mathbf{x}_{l} g_{i j}+\mathbf{x}_{i} g_{l j}\right]=\frac{1}{2} g^{k k}\left[\mathbf{x}_{j} g_{i k}-\mathbf{x}_{k} g_{i j}+\mathbf{x}_{i} g_{k j}\right],
\end{gathered}
$$

and thus $\Gamma_{i j}^{k}=0$ unless two of i, j, k are equal to 1 . We compute

$$
\begin{gathered}
\Gamma_{11}^{1}=\frac{\mathbf{x}_{1} g_{11}}{2 \sin ^{2} \phi}=0, \Gamma_{11}^{2}=\frac{\mathbf{x}_{1} g_{12}-\mathbf{x}_{2} g_{11}+\mathbf{x}_{1} g_{21}}{2}=-\sin \phi \cos \phi, \Gamma_{11}^{3}=\frac{\mathbf{x}_{1} g_{13}-\mathbf{x}_{3} g_{11}+\mathbf{x}_{1} g_{31}}{2}=0 \\
\Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{\mathbf{x}_{2} g_{11}-\mathbf{x}_{1} g_{12+}+\mathbf{x}_{1} g_{12}}{2 \sin ^{2} \phi}=\cot \phi, \Gamma_{13}^{1}=\Gamma_{31}^{1}=\frac{\mathbf{x}_{31} g_{11} \mathbf{x}_{1} g_{13}+\mathbf{x}_{1}{ }_{13}}{2 \sin ^{2} \phi}=0 .
\end{gathered}
$$

Then we compute, using

$$
R_{i j k}^{h}=\mathbf{x}_{j} \Gamma_{i k}^{h}+\Sigma_{l} \Gamma_{i k}^{l} \Gamma_{j l}^{h}-\mathbf{x}_{i} \Gamma_{j k}^{h}-\Sigma_{l} \Gamma_{j k}^{l} \Gamma_{i l}^{h}
$$

that

$$
\begin{aligned}
& R_{212}^{1}=\mathbf{x}_{1} \Gamma_{22}^{1}+\Sigma_{l} \Gamma_{22}^{l} \Gamma_{1 l}^{1}-\mathbf{x}_{2} \Gamma_{12}^{1}-\sum_{l} \Gamma_{12}^{l} \Gamma_{2 l}^{1}=0+0-\mathbf{x}_{2} \cot \phi-\cot ^{2} \phi= \\
&=-\mathbf{x}_{2} \cot \phi-\cot ^{2} \phi=\frac{1}{\sin ^{2} \phi}-\frac{\cos ^{2} \phi}{\sin ^{2} \phi}=1, \\
& R_{121}^{2}=\mathbf{x}_{2} \Gamma_{11}^{2}+\Sigma_{l} \Gamma_{11}^{l} \Gamma_{2 l}^{2}-\mathbf{x}_{1} \Gamma_{21}^{2}-\Sigma_{l} \Gamma_{21}^{l} \Gamma_{1 l}^{2}=\mathbf{x}_{2}(-\sin \phi \cos \phi)+0-0-\cot \phi(-\sin \phi \cos \phi)= \\
&=(-\cos \phi \cos \phi+\sin \phi \sin \phi)+\cos ^{2} \phi=\sin ^{2} \phi,
\end{aligned}
$$

and thus

$$
\begin{aligned}
R_{2121}=R_{212}^{1} g_{11} & =\sin ^{2} \phi=R_{121}^{2} g_{22}=R_{1212} \\
K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{2}\right) & =\frac{R_{1212}}{g 11 g_{22}}=\frac{R_{2121}}{g 11822}=1 .
\end{aligned}
$$

Then we compute

$$
\begin{gathered}
R_{313}^{1}=\mathbf{x}_{1} \Gamma_{33}^{1}+\Sigma_{l} \Gamma_{33}^{l} \Gamma_{1 l}^{1}-\mathbf{x}_{3} \Gamma_{13}^{1}-\Sigma_{l} \Gamma_{13}^{l} \Gamma_{3 l}^{1}=0+0-0-0=0 \\
R_{131}^{3}=\mathbf{x}_{3} \Gamma_{11}^{3}+\Sigma_{l} \Gamma_{11}^{l} \Gamma_{3 l}^{3}-\mathbf{x}_{1} \Gamma_{31}^{3}-\Sigma_{l} \Gamma_{31}^{l} \Gamma_{1 l}^{3}=0+0-0-0=0 \\
R_{3131}^{3}=R_{1313}=K\left(\mathbf{x}_{1} \wedge \mathbf{x}_{3}\right)=0,
\end{gathered}
$$

and

$$
\begin{gathered}
R_{323}^{2}=\mathbf{x}_{2} \Gamma_{33}^{2}+\Sigma_{l} \Gamma_{33}^{l} \Gamma_{2 l}^{2}-\mathbf{x}_{3} \Gamma_{23}^{2}-\Sigma_{l} \Gamma_{23}^{l} \Gamma_{3 l}^{2}=0+0-0-0=0 \\
R_{232}^{3}=\mathbf{x}_{3} \Gamma_{22}^{3}+\Sigma_{l} \Gamma_{22}^{l} \Gamma_{3 l}^{3}-\mathbf{x}_{2} \Gamma_{32}^{3}-\Sigma_{l} \Gamma_{32}^{l} \Gamma_{2 l}^{3}=0+0-0-0=0 \\
R_{3232}=R_{2323}=K\left(\mathbf{x}_{2} \wedge \mathbf{x}_{3}\right)=0 .
\end{gathered}
$$

This makes sense since the surface in the $\mathbf{x}_{1}, \mathbf{x}_{2}$ directions is a sphere of radius one and the surfaces in the $\mathbf{x}_{1}, \mathbf{x}_{3}$ and $\mathbf{x}_{2}, \mathbf{x}_{3}$ directions are cylinders, and thus have curvature zero.

