
PROBLEM 7.1. Gaussian Curvature in Local Coordinates

*a. 
We calculate:  x1(x,y) = (1,0,fx(x,y)), x1(0,0) = (1,0,0)  and  x2(x,y) = (0,1,fy(x,y)), x2(0,0) = (0,1,0).

Thus,

x11(x,y) = (0,0,fxx(x,y)),  x12(x,y) = (0,0,fxy(x,y)) = (0,0,fyx(x,y)) = x21(x,y),  and  x22(x,y) = (0,0,fxx(x,y)).

But n(0,0) = (0,0,1) and so 

K(0, 0) = �1(0, 0)�2(0, 0) = (det(g ij(0, 0)))−1 det
…x11(0, 0), n(0, 0)  …x12(0, 0), n(0, 0) 

…x21(0, 0), n(0, 0)  …x22(0, 0), n(0, 0) 
=

(1) det
fxx(0, 0) fxy(0, 0)

fyx(0, 0) fyy(0, 0)
= fxx(0, 0) fyy(0, 0) − (fxy(0, 0))2.

 b.

Outline of a proof of Problem 7.1.b:

1. Since    we can calculate that h = x1 = …x1, x1  

                             h2 = 1
2

x2…x1, x1  

…x1, x1  
= 1

2

…x21, x1   + …x1, x21  

…x1, x1  
=
…x21, x1  

…x1, x1  

and that (using the quotient rule)

h22 =
(…x221, x1   + …x21, x21  ) …x1, x1   − …x21, x1  

1
2

(…x1, x1  )
−1/2(2…x21, x1  )

…x1, x1  

.−
h22

h
= −

(…x221, x1   + …x21, x21  )…x1, x1   − …x21, x1  
2

…x1, x1  
2

2. Next we show that

…x221, x1   = …x2x21, x1   = …x2x12, x1   = …(x2x1 )x2, x1   = …(x1x2 )x2, x1   = …x122, x1   =

,=x1…x22, x1   − …x22, x11   = 0 − …x22, x11  

where the “0” is because x22(a,b) is the curvature of the geodesic curve γ(s) = x(a,s) at s=b (which is
assume to be parametrized by arclength), and thus is perpendicular to x1. 

3. We can then calculate that:    −
h22

h
=
…x22, x11  

…x1, x1  
−
…x21, x12  …x1, x1   − …x21, x1  

2

…x1, x1  
2 =

,=
…x22, x11  

…x1, x1  
−
…x21, x12  …x1, x1   − x21

2
x1

2 cos2�

…x1, x1  
2 =

…x22, x11  

…x1, x1  
−

x21
2(1 − cos2�)
…x1, x1  

where θ is the angle from x1 to x21.
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4. At the same time               K = (det(g ij ))−1 % det
…x11, n  …x12, n 

…x21, n  …x22, n 
=
…x11, n …x22, n  − …x12, n 

2

…x1, x1  
=

,  where, since x22 is in the same direction as the normal n,  =
…x22, x11  

…x1, x1  
−

x21
2 cos2�

…x1, x1  

,  and where φ is the angle from x21 to n. …x11, n …x22, n  = …x11, x22  

5. Differentiating   we get  get    because x22 is parallel to n. Thus, x21…x1, x2   = 0 …x21, x2   = −…x1, x22   = 0
lies in the plane of x1 and n. Therefore,  θ + φ = (the angle from x1 to n) = π/2 and cos φ = sin θ,  and

the above expressions imply that the Gaussian curvature is given by  .K = −
h22

h

 c.  
The base curve (being parametrized by arclength) has velocity vector x1(u1,0) whose length is 1,

thus, f (0) = 1. Then we can calculate

f ∏(0) =x2 …x1, x1   t=0
= 1

2
2…x21(u1, 0), x1(u1, 0) 

…x1(u1, 0), x1(u1, 0) 
= …x21(u1, 0), x1(u1, 0)  =

…x12(u1, 0), x1(u1, 0)  = −…x2(u1, 0), x11(u1, 0)  = 0
because the base curve is a geodesic and thus, x11(u1,0) is in the direction of the normal. Using the second
derivative test for local extrema  .  Thus, f (t) has a local maximum at t=0 whenf ∏∏(0) = h22(u1, 0) = −K

K > 0 and a local minimum at t = 0 when K < 0.

*PROBLEM 7.2. Curvature on Sphere, Strake & Catenoid
a. 

We must use geodesic rectangular coordinates on the sphere, that is the equator and the longitude
must be parametrized by arclength, u1 = Rθ and u2 = Rφ. These coordinates are

x(u1, u2) = (R cos u1

R cos u2

R , R sin u1

R cos u2

R , R sin u2

R ),

thus,                          .h(u1, u2) = x1(u1, u2) = (− sin u1

R cos u2

R , cos u1

R cos u2

R , 0) = cos u2

R

Then                                      .K = −
h22

h
= −

(1/R2 )(− sin(u2/R))

sin(u2/R)
= 1

R2

b.
The local coordinates for the strake are  x(θ,r) = (r cos θ, r sin θ, kθ),  which satisfy the hypotheses

for Problem 7.2.b. Thus,  x1(θ,r) = (−r sin θ, r cos θ, k)  and  h(θ,r) = ,  andr2 + k2

 < 0.K(�, r) = −
h22

h
= − 1

h
Ø
Ør

r

r2 + k2
= − 1

h

r2 + k2 − r(r2 + k2 )−1/2(r)
r2 + k2 = − k2

(r2 + k2 )2

c.
The Gaussian curvature of the helicoid is the same as the strake since they have the same local

coordinates (just different domain for r). But, if we use geodesic rectangular coordinates as in the
solution to Problem 6.6.e, then we have for the helicoid (denoting  g(s,r) = |y1(s,r)| )  

 and  .  From the solution to Problem 6.6.e we have that fory(s, r) = (r cos s

h , r sin s

h , s) g(s, r) = 1 + ( r

h
)2

the catenoid

 and  .x(w, s) = 1
a 1 + (as)2 cos aw, 1

a 1 + (as)2 sin aw, 1
a sinh−1as

Thus, for the catenoid,

,K = −
h22

h
= − 1

h
Ø
Øs

a2s

1 + (as)2
= − 1

h

a2 1 + (as)2
− a2s(1 + (as)2 )−1/2(a2s)

1 + (as)2 = −
a2

(1 + (as)2 )2

with the same result for the helicoid if we replace a by 1/h and replace s by r.
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d.
Note that r/R is the angle subtended at the center of the sphere by the circle’s intrinsic radius. Thus,

it is easy to see the first formula for the circumference. The second formula then follows by using the
Taylor series for sin(r/R).

e.
The first formula was derived in the solution to Problem 4.5.b. The power series comes from

expanding cos(r/R) using the Taylor series.

PROBLEM 7.3. Circles, Polar Coordinates, and Curvature

a.
Let f(r) ≡ h(θ,r) ≡ |y1(θ,r)|, then in order to determine the third Taylor approximation we need to find

f (0), f ′(0), f ′′(0), and f ′′′(0). Since y(θ,0) = p is constant, it follows that f (0) = 0.
To determine f ′(0) we use the fact that M is a smooth surface and we can zoom in on p enough that

the surface in indistinguishable from the tangent plane. Expanding the derivatives we have

.f ∏(0) = limrd0+
y1(�,r)

r = limrd0+
1
r limhd0

y(�+h,r)−y(�,r)

h = limrd0+ limhd0
y(�+h,r)−y(�,r)

rh

Now fix h and pick a tolerance 0 < ε < h2 < 1 and zoom in further, if necessary, so that the intrinsic
circles in M are indistinguishable from circles in the tangent plane, and that intrinsic radii of the circles in
M are indistinguishable from straight. Then, for r = δ (the radius of the field of view),

.(r − ��)2 sin h

2 − 2�� [ y(� + h, r) − y(�, r) [ (r + ��)2 sin h

2 + 2��

Then                         ,limrd0+

(r−��)
r limhd0

2 sin h
2 −2��

h [ f ∏(0) [ limrd0+

(r+��)
r limhd0

2 sin h
2 +2��

h

and thus, independent of r,       .(1 − �) limhd0
2 sin h

2 −2��

h [ f ∏(0) [ (1 + �) limhd0
2 sin h

2 +2��

h

We conclude that .f ∏(0) = 1
Problem 7.1.b gives us information about f ′′(0),  .f ∏∏(0) = limrd0 h22(�, r) = − limrd0 K(�, r)h(�, r) = 0

Find f ′′′(0) by differentiating the result from Problem 7.1.b and then (carefully) taking the limit:

.f ∏∏∏(0) = limrd0 h222(�, r) = − limrd0[K(�, r)h2(�, r) + K2(�, r)h(�, r)] = −K(�, 0) = −K(p)

Now according to the theory of Taylor polynomials  .h(�, r) = f(r) = r −
K(p)r3

6 + R(�, r), where lim
rd0

R(�,r)

r3 = 0

The limit is uniform in θ because R(θ,r) is continuous in θ over the compact interval [0,2π].

b.  
We integrate around the intrinsic circle

C(r) = ¶0
2�

y1(�, r) d� = ¶0
2�

h(�, r) d� = ¶0
2�

r −
K(p)r3

6 + R(�, r) d� =

,¶0
2�

r −
K(p)r3

6 d� + ¶0
2�

R(�, r)d� = 2� r −
K(p)r3

6 + RC(r)

where                           .limrd0
RC(r)

r3 = limrd0 ¶0
2� R(�,r)

r3 d� = ¶0
2�

limrd0
R(�,r)

r3 d� = 0
You can interchange the limit and the integration because the limit is uniform in θ.

c.
We integrate using Problem 4.5.a:

¶0
r ¶0

2�
det g(�, r) d�dr = ¶0

r ¶0
2�

h d�dr = ¶0
r ¶0

2�
r −

K(p)r3

6 + R(�, r) d� dr =

.¶0
r

2� r −
K(p)r3

6 + RC dr = ¶0
r

2� r −
K(p)r3

6 dr + ¶0
r

RC dr = �r2 − �
K(p)r4

24 + RA

where, using L’Hôpital’s Rule,  .limrd0
RA

r4 = limrd0
1
r4 ¶0

r
RC dr = limrd0

RC(r)

4r3 = 0
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PROBLEM 7.4. Exponential Map and Shortest Is Straight
a.  

Let α(s) be the geodesic (parametrized by arclength) in the direction of U(θ) starting at α(0) = p.
Then  and  y(θ,r) = exp(rU(θ)) = α(r1) = α(r),  which is the definition of geodesic polar� ∏(rs) = rU(s)
coordinates.

It follows directly from Problem 4.9 that all the geodesics in Up that pass through p are perpendicular
to the level curves  { expp(V) | |V| = constant }.

b.
Proof of Problem 7.4.b:

1.   Assume that there is a piecewise smooth path αααα: [0,b] → Up from p to p* which is shorter than γ.
Then using geodesic polar coordinates y(θ,r) we can write αααα(t) = y(θ(t),r(t)). Differentiate

αααα′(t) = θ′(t)y1(θ(t),r(t)) + r′(t)y2(θ(t),r(t)).

Then, for 0<a≤t≤b,  .� ∏(t) = (� ∏(t))2
h2 + (r∏(t))2

m |(r∏(t))|, with equality if and only if � ∏(t) = 0

2. Then integrate:  ,  with equality if and only if r(t) is monotone and¶
a

b
���� ∏(t) dt m ¶a

b
r ∏(t) dt m |r(a) − r(b)|

θ(t) is constant.

3. Then the length of α from 0 to b is  ,  limad0 ¶a
b
���� ∏(t) dt m limad0 |r(a) − r(b)| = |r(0) − r(b)| = |0 − r(b)|

which is the length of the geodesic from p = y(θ,0) to p* = y(θ(b),r(b)). This is the desired result.

c.

Proof of Problem 7.4.c:

1. Look at the path α marked in Figure 7.2 (in the text) with parametrization  αααα(θ) = y(θ,r(θ)), −φ/2 ≤ θ
≤ φ/2  where  r(θ) =   and  .  Thusa

cos�/2

cos � r∏(�) = a cos�/2 −sin�
cos2� = −r(�) tan�

.���� ∏(�) = y1(�, r(�)) + r ∏(�)y2(�, r(�)) = h2 + (r ∏(�))2
= h2 + r2(�) tan2�

2. Look at the integral that expresses the length of α:

¶−�/2
�/2

|���� ∏(�)|d� = ¶−�/2
�/2

h2 + r2(�) tan2� d� = ¶−�/2
�/2

r(�) −
K(p)r3(�)

6 + R(�, r(�))
2

+ r2(�) tan2� d� =

= ¶−�/2
�/2

r − Kr3

6 + R
2

+ r2 tan2� d� = ¶−�/2
�/2 r

cos � 1 − Kr2

6 + R
r

2
cos2� + sin2� d� =

= ¶−�/2
�/2 r

cos � 1 + − Kr2

3 + K2r4

36 + R
r 2 − Kr2

3 + R
r cos2� d� =

.= ¶−�/2
�/2 r

cos � 1 + a2 −
K cos2�/2

3 +
K2a2 cos4�/2

36 cos2� +
R cos2�

a2

2a cos�
cos�/2 −

Ka3 cos�/2

3 cos� +
R cos2�
cos2�/2 d�

3. Thus, we have shown that  ,  where A(a,θ)¶−�/2
�/2
���� ∏(�) = ¶−�/2

�/2 a cos�/2

cos2� 1 + a(A(a,�)) +
R(�,r(�))

a2 (B(a,�)) d�

and B(a,θ) are bounded for  −π/2 < −φ/2 ≤ θ ≤ φ/2 < π/2  and  0 < a ≤ 1.  Then, we have

.0 = limrd0
R(�,r(�))

r3(�) = limad0
R(�,r(�))

a2

cos3�
a cos3�/2 e limad0

R(�,r(�))

a2 = 0

Thus, for sufficiently small a,  ,  and1 + a(A(a,�)) +
R(�,r(�))

a2 (B(a,�)) [ C < 1
sin�/2

.¶−�/2
�/2
���� ∏(�) [ ¶−�/2

�/2 a cos�/2

cos2� Cd� = 2aC sin�/2 < 2a
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d.
Proof of Problem 7.4.d:
1. Let p, q be any two points in M with their distance d(p,q) = b. Let C be a circle of radius δ and center

p so that C ⊂ Up. There is a point p* on C such that d(p*,q) ≤ d(x,q), for all x ∈ C. Now
p* = expp(δV), for some unit tangent vector V ∈ Tp M.  CLAIM:  expp(bV) = q; this will show that the
geodesic γγγγ(t) = expp(tV) is a geodesic of length b joining p to q.

2. The claim will be true if  b ∈ A ≡ { t | d(γγγγ(t),q) = b − t },  because then d(γγγγ(b),q) = b − b = 0 and thus,
γγγγ(b) = q. 

3. Since every curve from p to q must cross C, we have  .  Sod(p, q) = min
xcC

[d(p, x) + d(x, q)] = � + d(p&, q)

d(p*,q) = b−δ  and δ ∈ A.

4. Let t* be the least upper bound of all t in A. Then t* ∈ A. Suppose that t* < b. Let C* be the circle of
radius δ* around γ(t*). Let q* be the point on C* which is closest to q and let q** be the point on C*

which is closest to p*. See Figure 7.3 in the text.

5. But then Problem 7.4.c tells us that we can obtain a shorter path by going directly from q** to q*

unless the angle φ in Figure 7.3 is equal to π. But if φ = π then q* is in A and therefore t* is not the
least upper bound of elements in A. 

Thus, it must be true that b is in A and the result is established.

*e.
If M is Cauchy complete and γ(s) is a geodesic in M which is defined for all 0 ≤ s < b, then choose tn

converging to b. Clearly, γ(tn) is a Cauchy sequence in M and so γ(tn) converges to some point p in M and
we can define γ(b) = p. Then, by Problem 7.4.a, we can continue this geodesic past b for at least a little
bit. This continues indefinitely. 

If M is geodesically complete and {xi} is a Cauchy sequence, then pick xi so that for j > i we have
| xi − xj | < 1/m. Then for each j > i, use 7.4.d to find a geodesic γj which joins xi to xj. Assume each of the
geodesics is parametrized by arclength with γ(0) = xi and , for each j > i. Since the Tj are unit� j

∏(0) =T j

tangent vectors at xi and since the unit circle is compact, there is a subsequence  which converges toT j i

the unit vector T. Let γ(s) be the geodesic starting at xi with velocity vector T. For each j > i, let xj  = γ(sj).
The sequence {sj} is a Cauchy sequence on the real line since  |sj−sk| ≤ d(xj,xk).  Let so be the limit of ,s ji

where we take a subsequence again if necessary. Since M is geodesically complete the exponential map
is continuously defined on the whole tangent space at xi, . It is easy to see that  is a CauchyTxi

M s ji
T ji

sequence in  that must converge to soT. But then , some point in M which isTxi
M exp

xi
(soT) = �(so) = p

the limit of . It is then easy to check that p is also the limit of the whole sequence {xj}.x ji

PROBLEM 7.5. Surfaces with Constant Curvature
a.

According to Problem 4.9 the Riemannian metric is as stated in 7.5a. Problem 7.1.b asserts that

.  Problem 7.1.c tells us that for the function  f (t) = h(u1,t) = |x1(u1,t)|  satisfies, for each u1:K = −
h22(a, b)

h(a, b)

 f (0) = 1  and  f′(0) = 0.  Thus, for surfaces with constant Gaussian curvature, the function f satisfies the
differential equation  .  By ordinary calculus thef ∏∏(t) = −Kf (t) with initial conditions f(0) = 1, f ∏(0) = 0
general solutions of this equation are  ,  and applying the initial conditionsf (t) = a sin K t + b cos K t

we get . When the Gaussian curvature K is negative then .f (t) = cos K t f (t) = cos i K t = cosh K t
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b.
Denote the surfaces by M and N and let p∈M and q∈N be any two points on the surfaces. Construct

geodesic rectangular coordinates (with the base curve a geodesic) on both surfaces (x on M and y on N)
with p=x(0,0) and q=y(0,0). Define a map that takes the point x(a,b) on M to the point y(a,b) on N. Then,
by Problem 7.5.a, the Riemannian metrics of the two surfaces are equal at the corresponding points. The
arclength of any curve γ on a surface is given by the integral , and angles¶ � ∏(t) dt = ¶ …� ∏(t), � ∏(t)  dt

between tangent vectors are also determined by the Riemannian metric. Thus, since the Riemannian
metrics are the same at corresponding points the above map must preserve all lengths and angles and,
thus, be an isometry wherever the geodesic rectangular coordinates are defined.

c.
In Problem 7.5.b we could have M = N and choose p and q to be any two points and the base curves

be any geodesics emanating from p or q. If γ is any geodesic in M and p and q are any two points on γ,
then we can apply the construction in Problem 7.5.b with γ being the base curve at both p and q and the
second coordinate curves being positive on the same sides of γ – the result will be a locally defined trans-
lation along γ that takes p to q. In order to construct a local rotation through angle φ about the point p,
pick p = q in Problem 7.5.b and pick as base geodesics two geodesics emanating from p in directions that
are φ apart and pick the positive direction for the second coordinate consistently. A local reflection can
be constructed by using in Problem 7.5.b p = q and the same base curve but with the positive direction of
the second coordinate reversed.

PROBLEM 7.6. Ruled Surfaces and Ribbons

a.

In Problem 7.1, we showed that  .K = �1�2 = (det(gij ))−1 det
…x11, n  …x12, n 

…x21, n  …x22, n 

We now calculate           x11(t,s) = αααα''(t) + sr''(t);  x12(t,s) = r'(t);  x22(t,s) = 0,
                                        n = x1 × x2 = (αααα' + sr') × r = αααα' × r(t) + s(r' × r).
Since for C1 local coordinates det (gij) is never zero, we conclude

 0 = 〈x12, n〉K = 0g det
…x11, n  …x12, n 

…x21, n  …x22, n 
= 0g

〈x12, n〉 = 〈r', αααα' × r + s(r' × r)〉 = 〈r', αααα' × r〉 + 〈r', s(r' × r)〉 = 〈r', αααα' × r〉,

since 〈V,V × r〉 = 0. Thus, M is developable if and only if (see Problem 7.5.b) 

0 = 〈r'(t), αααα'(t) × r(t)〉 = [r'(t),αααα'(t),r(t)] = −[r(t),r'(t),αααα'(t)],

see Appendix A.5 for result on triple products.

b.
First we check that this ruled surface is regular along αααα, that is when s = 0:

  and  .x1(t, s) = ���� ∏ + s
−…n∏∏,n∏  

…n∏,n∏  3/2 (n % n ∏ ) +
(n∏%n∏)+(n%n∏∏)

n∏
= ���� ∏ + s

−…n∏∏,n∏  

…n∏,n∏  3/2 (n % n ∏ ) +
(n%n∏∏ )

n∏ x2(t, s) = n%n ∏

|n∏ |

If  were parallel to x2(t,0) then  would be perpendicular to ; but notice that  isx1(t, 0) = ���� ∏(t) ���� ∏(t) n∏(t) n∏(t)
exactly the directional derivative . Thus,  .  Thus, for |s| near���� ∏n …���� ∏(t), n ∏(����(t))  = …���� ∏(t), ���� ∏n ∏   = −����n ! 0
zero, it must be that x(t,s) define a regular surface.

This ruled surface is developable if and only if . So we calculate, using Theorems0 = [r(t), r ∏(t), ���� ∏(t)]
A.5.2 and A.5.3 and the fact that  is perpendicular to n:���� ∏
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[r(t), r ∏(t), ���� ∏(t)] =
(n%n∏∏ )

n∏
−
…n∏∏,n∏  

…n∏,n∏  3/2 (n % n ∏ ), ���� ∏ % n%n∏

n∏
=

.= c…n %B, ���� ∏ % (n % n ∏ )  = c…n %B, …n ∏, ���� ∏  n − …n, ���� ∏  n ∏   = c…n %B, …n ∏, ���� ∏  n  = 0

Thus, the ruled surface is developable.
Along αααα (that is, s = 0), the normal to the ruled surface is parallel to

x1 %x2 = ���� ∏ + s
−…n∏∏,n∏  

…n∏,n∏  3/2 (n % n ∏ ) + s
(n%n∏∏)

n∏
%

n%n∏

n∏
=

..= a(���� ∏ % (n % n ∏ )) + b( (n % n ∏ ) % (n % n ∏ )) + c((n % n ∏∏ ) % (n % n ∏ )) = a…n ∏, ���� ∏  n + 0 + c…n % n ∏∏, n ∏  n

Thus the ruled surface is tangent to the curve along αααα.

c.
If αααα is a geodesic on M, then it is also a geodesic on the ruled surface because the two surface have

parallel normals which are thus both parallel the (extrinsic) curvature vector of αααα. Since αααα is geodesic on
the ruled surface and since the ruled surface is developable near αααα, then the ruled surface is locally
isomorphic to a neighborhood of a straight line in the plane – this neighborhood contains a ribbon with
center line on αααα.

PROBLEM 7.7. Curvature of the Hyperbolic Plane
a.

In Problem 3.1.f we showed that the hyperbolic plane was locally isometric to a certain surface of

revolution (R(z) cos θ, R(z) sin θ, z). From Problem 6.2.f we have that  .  Unfortu-K = �1�2 =
−R ∏∏(z)

R(z)[1+(R ∏(z))2 ]2

nately we do not have an explicit expression for R(z), but from Problem 3.1.f we do have R ∏(z) =
R(z)

r2−R(z)2

, and thus,  .  Putting these into the expression for K we get R ∏∏(z) =
r2R∏(z)

(r2−R(z)2 )3/2 =
r2R(z)

(r2−R(z)2 )2

.K =
−r2R(z)

(r2−R(z)2 )2 R(z) 1 +
R(z)

r2−R(z)2

2 2 −1

=
−r2R(z) (r2−R(z)2 )2

(r2−R(z)2 )2
R(z)r4

= −1
r2

b.
Pick geodesic rectangular coordinates so that the coordinate curves x(x,b) follow the annular strips

and the coordinate curves x(a,y) are perpendicular to the annular strips. From Problem 1.8.c it easily
follows that, for the annular hyperbolic plane, we have  .  Then we canh(x, y) = x1(x, y) = exp

−y
r

calculate

.K =
−h22(x,y)

h(x,y) =
−( −1

r )2 exp
−y
r

exp
−y
r

= −1
r2

c.

In Problem 5.7.d we used holonomy and area to calculate that the intrinsic curvature is −1/r2.

d.
The extrinsic computation in part a is the most algebraic and analytically involved. The intrinsic

computation in part b is straight forward but involves using the formula from Problem 7.1 that was diffi-
cult to derive. The intrinsic and geometric computation in Problem 5.6.d is the most elementary and the
most directly related to the construction of the annular hyperbolic plane.
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