Contents

Preface x	i
Useful Supplements, xii	
Acknowledgments for the First Edition, xii	
Acknowledgments for This Edition, xiii	
How to Use Self Study Edition xi	V
Chapter 1	
Surfaces and Straightness	1
PROBLEM 1.1. When Do You Call a Line Straight?, 1	
How Do You Construct a Straight Line?, 2	
Local (and Infinitesimal) Straightness, 4	
PROBLEM 1.2. Intrinsic Straight Lines on Cylinders, 6	
PROBLEM 1.3. Geodesics on Cones, 8	
Is "Shortest" Always "Straight"?, 11	
Locally Isometric Surfaces, 12	
Local Coordinates for Cylinders and Cones, 13	
PROBLEM 1.4. Geodesics in Local Coordinates, 15	
PROBLEM 1.5. What Is Straight on a Sphere?, 16	
Intrinsic Curvature on a Sphere, 17	
Local Coordinates on a Sphere, 18	
PROBLEM 1.6. Strakes, Augers, and Helicoids, 18	
PROBLEM 1.7. Surfaces of Revolution, 20	
PROBLEM 1.8. Hyperbolic Plane, 21	
PROBLEM 1.9 . Surface as Graph of a Function $z = f(x,y)$, 23	

Chapter 2

Extrinsic Curves

25

Introduction, 25 PROBLEM **2.1**. Give Examples of F.O.V.'s, 26 Archimedian Property, 26 Vectors and Affine Linear Space, 27 PROBLEM **2.2**. Smoothness and Tangent Directions, 26 PROBLEM **2.3**. Curvature of a Curve in Space, 32 Curvature of the Graph of a Function, 33 PROBLEM **2.4**. Osculating Circle, 35 PROBLEM **2.5**. Strakes, 36 PROBLEM **2.6**. When a Curve Does Not Lie in a Plane, 37

Chapter 3

Extrinsic Descriptions of Intrinsic Curvature 41

PROBLEM 3.1. Smooth Surfaces and Tangent Planes, 41
PROBLEM 3.2. Extrinsic Curvature—Geodesics on Spheres, 43
PROBLEM 3.3. Intrinsic Curvature—Curves on Spheres, 43
Intrinsic (Geodesic) Curvature, 45
PROBLEM 3.4. Geodesics on Surfaces—the Ribbon Test, 46
Ruled Surfaces and the Converse of the Ribbon Test, 47

Chapter 4

Tangent Space, Metric, Directional Derivative49

PROBLEM 4.1. The Tangent Space, 49 PROBLEM 4.2. Mean Value Theorem—Curves—Surfaces, 51 Natural Parametrizations of Curves, 52 PROBLEM 4.3. Riemannian Metric, 53 Riemannian Metric in Local Coordinates on a Sphere, 55 Riemannian Metric in Local Coordinates on a Strake, 56 Intrinsic Riemannian Metric on an Annular Hyperbolic Plane, 57 PROBLEM 4.4. Vectors in Extrinsic Local Coordinates, 58 PROBLEM 4.5. Measuring Using the Riemannian Metric, 59 Directional Derivatives, 61 Directional Derivative in Local Coordinates, 63 PROBLEM 4.6. Differentiating a Metric, 64 PROBLEM 4.7. Expressing Normal Curvature, 64 Geodesic Local Coordinates, 66 PROBLEM 4.8. Differential Operator, 67 PROBLEM 4.9. Metric in Geodesic Coordinates, 68

Chapter 5

Area, Parallel Transport, Intrinsic Curvature 71

PROBLEM 5.1. The Area of a Triangle on a Sphere, 71
Introducing Parallel Transport, 72
The Holonomy of a Small Geodesic Triangle, 73
PROBLEM 5.2. Dissection of Polygons into Triangles, 74
PROBLEM 5.3. Gauss-Bonnet for Polygons on a Sphere, 75
PROBLEM 5.4. Parallel Fields and Intrinsic Curvature, 76
PROBLEM 5.5. Holonomy on Surfaces, 79
PROBLEM 5.6. Holonomy Explains Foucault's Pendulum, 80
PROBLEM 5.7. Intrinsic Curvature of a Surface, 80

Chapter 6

Gaussian Curvature Extrinsically Defined 83

Pep Talk to the Reader, 83 PROBLEM **6.1**. Gaussian Curvature, Extrinsic Definition, 83 PROBLEM **6.2**. Second Fundamental Form, 85 PROBLEM **6.3**. The Gauss Map, 87 PROBLEM **6.4**. Gauss-Bonnet and Intrinsic Curvature, 88 PROBLEM **6.5**. Second Fundamental Form in Coordinates, 89 *PROBLEM **6.6**. Mean Curvature and Minimal Surfaces, 90 Celebration of Our Hard Work, 92

Chapter 7

Applications of Gaussian Curvature93PROBLEM 7.1. Gaussian Curvature in Local Coordinates, 93*PROBLEM 7.2. Curvature on Sphere, Strake, Catenoid, 96PROBLEM 7.3. Circles, Polar Coordinates, and Curvature, 97PROBLEM 7.4. Exponential Map & Shortest Is Straight, 98PROBLEM 7.5. Surfaces with Constant Curvature, 101PROBLEM 7.5. Ruled Surfaces and Ribbons, 102PROBLEM 7.7. Curvature of the Hyperbolic Plane, 103

Chapter 8

Intrinsic Local Descriptions and Manifolds 105

PROBLEM 8.1. Covariant Derivative and Connection, 105

*PROBLEM 8.2. Manifolds—Intrinsic and Extrinsic, 107
PROBLEM 8.3. Christoffel Symbols, Intrinsic Descriptions, 111
PROBLEM 8.4. Intrinsic Curvature and Geodesics, 113
PROBLEM 8.5. Lie Brackets, Coordinate Vector Fields, 114
PROBLEM 8.6. Riemann Curvature Tensors, 115
Calculation of Curvature Tensors in Local Coordinates, 118
PROBLEM 8.7. Intrinsic Calculations in Examples, 119

Appendix A

Linear Algebra—a Geometric Point of View 121

A.0. Where Do We Start?, 121

A.1. Geometric Affine Spaces, 121

A.2. Vector Spaces, 125

A.3. Inner Product—Lengths and Angles, 126

A.4. Linear Transformations and Operators, 128

A.5. Areas, Cross Products, and Triple Products, 132

A.6. Volumes, Orientation, and Determinants, 134

A.7. Eigenvalues and Eigenvectors, 136

A.8. Introduction to Tensors, 137

Appendix B

Analysis from a Geometric Point of View 139

B.1. Smooth Functions, 139

B.2. Invariance of Domain, 139

B.3. Inverse Function Theorem, 140

B.4. Implicit Function Theorem, 140

Appendix C

Computer Scripts

141

Standard Functions, 141 Computer Exercise 1.6: Strake, 143 Computer Exercise 1.7: Surfaces of Revolution, 144 Computer Exercise 1.9: Surfaces as Graph of a Function, 144 Computer Exercise 2.2: Tangent Vectors to Curves , 145 Computer Exercise 2.3: Curvature and Tangent Vectors, 145

Computer Exercise 2.4a: Osculating Planes, 146
Computer Exercise 2.4b: Osculating Circles, 147
Computer Exercise 2.6: Frenét Frame, 147
Computer Exercise 3.1: Tangent Planes to Surfaces, 148
Computer Exercise 3.2a: Curves on a Surface, 149
Computer Exercise 3.2b: Extrinsic Curvature Vectors, 150
Computer Exercise 3.3: The Three Curvature Vectors, 151
Computer Exercise 3.4: Ruled Surfaces, 152
Computer Exercise 5.2: Non-dissectable Polyhedron, 153
Computer Exercise 5.5: Sign of (Gaussian) Curvature, 154
Computer Exercise 6.1: Multiple Principle Directions, 154
Computer Exercise 6.3: Gauss Map, 154
Computer Exercise 6.6: Helicoid to Catenoid, 156

Bibliography	157
Notation Index	173
Subject Index	175

Solutions for Chapter 1	179
Solutions for Chapter 2	191
Solutions for Chapter 3	199
Solutions for Chapter 4	203
Solutions for Chapter 5	211
Solutions for Chapter 6	219
Solutions for Chapter 7	227
Solutions for Chapter 8	235