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Abstract

We consider the semidirect product G = K ⋉ V where K is a connected
compact Lie group acting by automorphisms on a finite dimensional real
vector space V equipped with an inner product 〈, 〉. We denote by Ĝ the
unitary dual of G (note that we identify each representation π ∈ Ĝ to its
classes [π]) and by g‡/G the space of admissible coadjoint orbits, where g is
the Lie algebra of G. It was pointed out by Lipsman that the correspondence
between g‡/G and Ĝ is bijective. Under some assumption on G, we prove
that the Lipsman mapping

Θ : g‡/G −→ Ĝ

O 7−→ πO

is a homeomorphism.

1 Introduction

Let G be a second countable locally compact group and Ĝ the unitary dual of
G, i.e., the set of all equivalence classes of irreducible unitary representations of

G. It is well known that Ĝ comes equipped with the Fell topology [8, p. 426].
The description of the dual topology is a good candidate for some aspects of
harmonic analysis on G (for example, see [4, 7, 20]). In such a situation, the nat-
ural and important question arises of whether the bijection between the space
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of coadjoint orbits g∗/G of G (g∗ is the dual vector space of g := Lie(G)) and

Ĝ is a homeomorphism. For a simply connected nilpotent Lie group and more

generally for an exponential solvable Lie group G = exp(g), its dual space Ĝ is
homeomorphic to the space of coadjoint orbits through the Kirillov mapping (see
[16]). In the context of semidirect products G = K ⋉ N of compact connected Lie
group K acting on simply connected nilpotent Lie group N, then it was pointed
out by Lipsman in [17], that we have again an orbit picture of the dual space of
G. The unitary dual space of Euclidean motion groups is homeomorphic to the
admissible coadjoint orbits [7]. This result was generalized in [4], for a class of
Cartan motion groups.
According to [5, Definition 0.1], we introduce the following Definition.

Definition 1.1. Let G be a (real) Lie group, g its Lie algebra and exp : g −→ G its
exponential map. We say that G is exponential if exp(g) = G.

In this paper, we consider the semidirect product G = K ⋉ V where K is a
connected compact Lie group acting by automorphisms on a finite dimensional
real vector space V equipped with an inner product 〈, 〉. In the spirit of the or-
bit method due to Kirillov, R. Lipsman established a bijection between a class of

coadjoint orbits of G and the unitary dual Ĝ. For every admissible linear form ψ
of the Lie algebra g of G, we can construct an irreducible unitary representation
πψ by holomorphic induction and according to Lipsman (see [6, p. 23]) (com-
pare [17]), every irreducible representation of G arises in this manner. Then we

get a map from the set g‡ of the admissible linear forms onto the dual space Ĝ

of G. Note that πψ is equivalent to π
ψ
′ if and only if ψ and ψ

′
are in the same

G-orbit, finally we obtain a bijection between the space g‡/G of admissible coad-

joint orbits and the unitary dual Ĝ.
The preceding discussion motivates our main result:

Theorem 1.2. We assume that G is exponential. Then the Lipsman mapping

Θ : g‡/G −→ Ĝ

O 7−→ πO

is a homeomorphism.

The present work is organized as follows: Section 2 is devoted to the descrip-

tion of the unitary dual Ĝ of G. Section 3 deals with the space of admissible
coadjoint orbits g‡/G of G. Theorem 1.2 is proved below in Section 4.

2 Dual spaces of semidirect product

Throughout this paper, K will denote a connected compact Lie group acting by
automorphisms on a finite dimensional real vector space (V, 〈, 〉). We write k.v
and A.v (resp. k.ℓ and A.ℓ) for the result of applying elements k ∈ K and A ∈ k :=
Lie(K) to v ∈ V (resp. to ℓ ∈ V∗).
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Now, one can form the semidirect product G := K ⋉ V which is a so-called gen-
eralized motion group. As a set G = K × V and the multiplication in this group
is given by

(k, v)(h, u) = (kh, v + k.u), ∀(k, v), (h, u) ∈ G.

The Lie algebra of G is g = k⊕ V (as a vector space) and the Lie algebra structure
is given by the bracket

[(A, a), (B, b)] = ([A, B], A.b − B.a), ∀(A, a), (B, b) ∈ g.

Under the identification of the dual g∗ of g with k∗ ⊕ V∗, we can express the
duality between g and g∗ as F(A, a) = f (A) + ℓ(a), for all F = ( f , ℓ) ∈ g∗ and
(A, a) ∈ g. The adjoint representation AdG and coadjoint representation Ad∗G of
G are given respectively, by the following relations

AdG(k, v)(A, a) = (AdK(k)A, k.a − AdK(k)A.v), ∀(k, v) ∈ G, (A, a) ∈ g,

Ad∗G(k, v)( f , ℓ) = (Ad∗K(k) f + k.ℓ⊙ v, k.ℓ), ∀(k, v) ∈ G, ( f , ℓ) ∈ g∗,

where ℓ⊙ v is the element of k∗ defined by

ℓ⊙ v(A) = ℓ(A.v) = −(A.ℓ)(v), ∀A ∈ k, ℓ ∈ V∗, v ∈ V.

Note that the map ⊙ : V∗ × V −→ k∗ defined by (ℓ ⊙ v)(A) = ℓ(A.v), v ∈ V,
A ∈ k satisfies a fundamental equivariance property:

Ad∗K(k)(ℓ ⊙ v) = (k.ℓ) ⊙ (k.v), k ∈ K.

Therefore, the coadjoint orbit of G passing through ( f , ℓ) ∈ g∗ is given by

OG
( f ,ℓ) =

{(
Ad∗K(k) f + k.ℓ⊙ v, k.ℓ

)
, k ∈ K, v ∈ V

}
. (2.1)

For ℓ ∈ V∗, we define Kℓ := {k ∈ K; k.ℓ = ℓ} the isotropy subgroup of ℓ in K
and the Lie algebra of Kℓ is given by the vector space kℓ = {A ∈ k; A.ℓ = 0}. Let
ıℓ : kℓ →֒ k be the injection map, then ı∗

ℓ
: k∗ −→ k∗

ℓ
is the projection map and we

have

k◦
ℓ

= Ker(ı∗
ℓ
) (2.2)

where k◦
ℓ

is the annihilator of kℓ. If we define the linear map hℓ : k −→ V∗ by

hℓ(A) := −A.ℓ, ∀A ∈ k,

then we have kℓ = Ker(hℓ). The dual h∗
ℓ

: V −→ k∗ of hℓ is given by the relation
h∗
ℓ
(v)(A) = hℓ(A)(v) = −(A.ℓ)(v), and so h∗

ℓ
(v) = ℓ ⊙ v, ∀ℓ ∈ V∗, ∀v ∈ V.

(for more details see [3, p. 2-6 ]).
The following is a useful lemma from [3, p. 2-6], giving a characterization of the
annihilator k◦

ℓ
in terms of the linear map hℓ.
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Lemma 2.1. Using the previous notations, then we have the equality

k◦
ℓ
= Im(h∗

ℓ
).

Here we recall briefly the description of the unitary dual of G via Mackey’s
little group theory (see [18]). For every non-zero linear form ℓ on V, we denote
by χℓ the unitary character of the vector Lie group V given by χℓ = eiℓ. Let ρ be
an irreducible unitary representation of Kℓ on some Hilbert space Hρ. The map

ρ ⊗ χℓ : (k, v) 7−→ eiℓ(v)ρ(k)

is a representation of the Lie group Kℓ ⋉ V such that one induce up so as to get
a unitary representation of G. We denote by H(ρ,ℓ) := L2(K,Hρ)ρ the subspace of

L2(K,Hρ) consisting of all the maps ξ which satisfy the covariance condition

ξ(kh) = ρ(h−1)ξ(k), ∀k ∈ K, h ∈ Kℓ.

The induced representation

π(ρ,ℓ) := IndK⋉V
Kℓ⋉V(ρ ⊗ χℓ)

is defined on H(ρ,ℓ) by

π(ρ,ℓ)(k, v)ξ(h) = eiℓ(h−1.v)ξ(k−1h)

where (k, v) ∈ G, h ∈ K and ξ ∈ H(ρ,ℓ). By Mackey’s theory we can say that the
induced representation π(ρ,ℓ) is irreducible and every infinite dimensional irre-
ducible unitary representation of G is equivalent to one of π(ρ,ℓ). Moreover, the

representations π(ρ,ℓ) and π(ρ′,ℓ′ ) are equivalent if and only if ℓ and ℓ
′

are con-

tained in the same K-orbit and the representation ρ and ρ
′

are equivalent under
the identification of the conjugate subgroups Kℓ and K

ℓ
′ . All irreducible represen-

tations of G which are not trivial on the normal subgroup V, are obtained by this
manner. On the other hand, we denote also by τ the extension of every unitary
irreducible representation τ of K on G, which is simply defined by τ(k, v) := τ(k)
for k ∈ K and v ∈ V. Let Ω be a K-orbit in V∗. We fix ℓ ∈ Ω and we define the
subset Ĝ(Ω) of Ĝ by

Ĝ(Ω) =
{

IndK⋉V
Kℓ⋉V(ρ ⊗ χℓ); ρ ∈ K̂ℓ

}
.

Then we conclude that
Ĝ = K̂

⋃ ( ⋃

Ω∈Λ

Ĝ(Ω)
)

where Λ is the set of the non-trivial orbits in V∗/K.
In the remainder of this paper, we shall assume that G is exponential, i.e., Kℓ is
connected for all ℓ ∈ V∗ (see [5, Proposition 5.1]). Let ρµ be an irreducible repre-
sentation of Kℓ with highest weight µ. For simplicity, we shall write π(µ,ℓ) instead
of π(ρµ,ℓ) and H(µ,ℓ) instead of H(ρµ,ℓ).
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We close this section by presenting two results which are being used in the
description of the dual topology of G. These are required for our proof of
Theorem 1.2.
We denote respectively by C(K) and Y the space of all closed subgroups of K
equipped with the compact-open topology and the set of all pairs (L, k), where
L ∈ C(K) and k ∈ L. It is easily seen that Y is a closed subset of C(K) × K and
the subspace of continuous functions with compact support C0(Y) is a normed*-
algebra with the supremum norm (|| f ∗|| = || f || := supL∈C(K) ‖ΦL( f )‖), where

ΦL is defined below. The completion As(K) of C0(Y) with respect to this norm is
a Banach *-algebra called the subgroup algebra of K.
For each L ∈ C(K), the mapping f 7−→ fL defined on C0(Y) by

fL(k) = f (L, k)

extends to a continuous *-homomorphism, which we shall call ΦL : As(K) −→
L1(L). The map ΦL has a dense image.
Every unitary representation T of L can be lifted to a *-representation WL,T of
As(K) (WL,T := T ◦ ΦL). Let A(K) be the set of all pairs (L, T), where L is a
closed subgroup of K and T is an unitary representation of L. Note that ImΦL

is dense, hence the map (L, T) 7−→ WL,T is one-to-one. By the inner hull-kernel
topology of A(K) we mean that topology which makes the one-to-one mapping
(L, T) 7−→ WL,T a homeomorphism with respect to the inner hull-kernel topol-
ogy of the space of unitary representations of As(K). This is the only topology of
A(K) which we shall use. An important fact worth mentioning here is that C(K)
and A(K) are compact spaces (equipped with their topology) (for more details
see [8, p. 429-440]).

If ρ is an element of K̂ℓ, then the triple (ℓ, (Kℓ , ρ)) is called a cataloguing triple.
From the notations of [2], we denote by π(ℓ, Kℓ, ρ) the induced representation

IndK⋉V
Kℓ⋉V(ρ ⊗ χℓ).

Referring to [2, p. 187], we have

Proposition 1. The mapping (ℓ, (Kℓ, ρ)) 7−→ π(ℓ, Kℓ, ρ) is onto K̂ ⋉ V.

Therefore, every element in K̂ ⋉ V can be catalogued by elements in the topo-

logical space V̂ × A(K). Larry Baggett has given an abstract description of the
topology of the dual space of a semidirect product of a compact group with an
abelian group in terms of the Mackey parameters of the dual space (see [2, The-
orem 6.2-A]). The following result provides a precise and neat description of the

topology of K̂ ⋉ V.

Theorem 2.2. Let B be a subset of K̂ ⋉ V and π an element of K̂ ⋉ V. Then π is weakly
contained in B if and only if there exist: a cataloguing triple (ℓ, (Kℓ, ρ)) for π, an element
(L, T) of A(K), and a net {(χn, (Kℓn

, ρn))} of cataloguing triples such that:

(i) for each n, the irreducible unitary representation π(ℓn, Kℓn
, ρn) of K ⋉ V is an

element of B;

(ii) the net {(ℓn, (Kℓn
, ρn))} converges to (ℓ, (L, T)) in V̂ ×A(K);

(iii) Kℓ contains L, and the restriction representation Res
Kℓ

L (ρ) contains T.
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3 Admissible coadjoint orbits of semidirect products

We keep the notations of section 2. Fix a non-zero linear form ℓ ∈ V∗, and we
consider an irreducible representation ρµ of Kℓ with highest weight µ. Then the
stabilizer Gψ of ψ = (µ, ℓ) in G is given by

Gψ =
{
(k, v) ∈ G; (Ad∗K(k)µ + k.ℓ⊙ v, k.ℓ) = (µ, ℓ)

}

=
{
(k, v) ∈ G; k ∈ Kℓ, Ad∗K(k)µ + ℓ⊙ v = µ

}

=
{
(k, v) ∈ G; k ∈ Kℓ, ı∗

ℓ
(Ad∗K(k)µ + ℓ⊙ v) = µ

}

=
{
(k, v) ∈ G; k ∈ Kℓ, Ad∗K(k)µ = µ

}

since ı∗
ℓ
(ℓ ⊙ v) = 0 (see Lemma 2.1). Thus, we have Gψ = Kψ ⋉ Vψ, then ψ is

aligned (see [6, p. 23]). A linear form ψ ∈ g∗ is called admissible if there ex-
ists a unitary character χ of the identity component of Gψ such that dχ = iψ|gψ

.

According to Lipsman (by [6, p. 23]) (compare [17]), the representation of G ob-
tained by holomorphic induction from (µ, ℓ) is equivalent to the representation
π(µ,ℓ). Let τλ be an irreducible representation of K with highest weight λ, then the

representation of G obtained by holomorphic induction from (λ, 0) is equivalent
to τλ. The coadjoint orbit of G through (λ, 0) ∈ g∗ is denoted by OG

λ . It is clear

that OG
λ is an admissible coadjoint orbit of G. We denote by g‡ ⊂ g∗ the set of

all admissible linear forms on g. The quotient space g‡/G is called the space of
admissible coadjoint orbits of G. Moreover, one can check that g‡/G is the union
of the set of all orbits OG

(µ,ℓ)
and the set of all orbits OG

λ .

We conclude this section by recalling needed results. Let L be a closed subgroup
of Kℓ ⊂ K with Lie algebra l. Let TK, TKℓ

and TL be maximal tori respectively in K,
Kℓ and L such that TL ⊂ TKℓ

⊂ TK. Their corresponding Lie algebras are denoted
by tk, tℓ and tl. We denote by WK, WKℓ

and WL the Weyl groups of K, Kℓ and L as-
sociated respectively to the tori TK, TKℓ

and TL. Notice that every element λ ∈ PK

takes pure imaginary values on tk, where PK is the integral weight lattice of TK.
Hence such an element λ ∈ PK can be considered as an element of (itk)

∗. Let C+
K

be a positive Weyl chamber in (itk)
∗, and we define the set P+

K of dominant inte-

gral weights of TK by P+
K := PK ∩ C+

K . For λ ∈ P+
K , denote by OK

λ the K-coadjoint
orbit passing through the vector −iλ. It was proved by Kostant in [15], that the
projection of OK

λ on t∗k is a convex polytope with vertices −i(w.λ) for w ∈ WK,
and that is the convex hull of −i(WK.λ). For the same manner, we fix a positive
Weyl chamber C+

L in t∗l and we define the set P+
L of dominant integral weights of

TL.
Also we denote by ı∗l the C-linear extension of both the natural projection of k∗

onto l∗ and the natural projection of t∗k onto t∗l . Consider the irreducible represen-

tations ρµ ∈ K̂ℓ and πν ∈ L̂ with respective highest weights µ ∈ P+
Kℓ

and ν ∈ P+
L .

Let q be the restriction of ı∗l to k∗
ℓ
. We have the following results.



Lipsman mapping and dual topology of semidirect products 155

Lemma 3.1. If ν = q(s.µ) with s ∈ WKℓ
, then πν occurs in the restriction representation

ResKℓ

L (ρµ).

We refer to [1], for the proof of this Lemma.

Let OKℓ
µ and OL

ν be the coadjoint orbits of K and L passing through −iµ and −iν,
respectively. According to Guillemin and Sternberg (see, [9, 10]) (compare [11]),
we have the following result.

Lemma 3.2. If the restriction representation Res
Kℓ

L (ρµ) contains πν, then the orbit OL
ν

is contained in q(OKℓ
µ ).

4 Main results

Let us now return to the context and notations of the previous sections. Now, for
each irreducible representation ρµ of Kℓ with highest weight µ and a non-zero lin-
ear form ℓ on V, we associate the representation π(µ,ℓ) of G and its corresponding

cataloguing triple (ℓ, (Kℓ , ρµ)). Also for an irreducible representation τλ of K with
highest weight λ, we denote by (0, (K, τλ)) the cataloguing of the trivial extension
of τλ to G.

We easily find the following remark:

Remark 4.1. If we have the following convergence

ℓn −→ ℓ (4.1)

Kℓn
−→ L (4.2)

where L is a subgroup of K, then Kℓ contains L.

To study the convergence in the quotient space g‡/G, we need to the following
result.

Lemma 4.2. Let G be a unimodular Lie group with Lie algebra g and let g∗ be the vector
dual space of g. We denote g∗/G the space of coadjoint orbits and by p

G
: g∗ −→ g∗/G

the canonical projection. We equip this space with the quotient topology, i.e., a subset
V in g∗/G is open if and only if p−1

G
(V) is open in g∗. Therefore, a sequence (OG

n )n of

elements in g∗/G converges to the orbit OG in g∗/G if and only if for any l ∈ OG, there
exist ln ∈ OG

n , n ∈ N, such that l = lim
n−→+∞

ln.

A proof of this Lemma can be found in [6, p. 17].

Now, we may prove the following propositions.

Proposition 4.3. Let
(
OG

(µn,ℓn)

)
n

be a sequence in g‡/G.

If
(
OG

(µn,ℓn)

)
n

converges to OG
(µ,ℓ)

in g‡/G, then (π(µn,ℓn))n converges to π(µ,ℓ) in Ĝ.
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Proof. Referring to [3, Theorem 10.1], we show that the coadjoint orbit OG
(µ,ℓ)

is

always obtained by symplectic induction from the coadjoint orbit M = OH
(µ,ℓ)

of

H := Kℓ ⋉ V passing through (µ, ℓ) ∈ k∗
ℓ
⊕ V∗ (kℓ ⋉ V := Lie(H)), i.e.,

OG
(µ,ℓ) = Mind := J−1

M̃
(0)/H, (4.3)

where JM̃ : M̃ = M × T∗G −→ k∗
ℓ
⋉ V∗ is the momentum map of M̃ and the zero

level set J−1
M̃

(0) is given by

J−1
M̃

(0) =
{(

(Ad∗K(k)µ, ℓ), g, (Ad∗K (k)µ + ℓ⊙ v, ℓ)
)

, k ∈ Kℓ, g ∈ G, v ∈ V
}

.

Let ϕM be the action of H on M, hence H acts on M̃ = M × T∗G by ϕM̃ as follows

ϕM̃(h)(m, g, f ) =
(

ϕM(h)(m), gh−1 , Ad∗H(h) f
)

, (4.4)

for all h ∈ H, (m, g, f ) ∈ M × T∗G. By identifying g∗ with the left-invariant 1-
forms on G, we can write T∗G ∼= G × g∗.
Let us assume that the sequence of admissible coadjoint orbits

(
OG

(µn,ℓn)

)
n

con-

verges to OG
(µ,ℓ)

in g‡/G. By compactness of A(K) there exists a subsequence of

subgroup representations {(Kℓnm
, ρµnm )}m, which converges to (L, πν) in A(K)

(where ν is the highest weight of πν). Now, using Lemma 4.2 and by combin-
ing (4.3) with (4.4), then we deduce that there exist sequences km, hm ∈ Kℓnm

,
vm, wm ∈ V, and gm ∈ G such that the sequence (φm)m defined by

φm = ϕM̃(km, vm)
(
(Ad∗K(hm)µ

nm , ℓnm), gm, (Ad∗K(hm)µ
nm

+ ℓnm ⊙ wm, ℓnm)
)

=
(

Ad∗K(kmhm)µ
nm + ı∗

ℓnm
(ℓnm ⊙ vm), ℓnm

)
, gm(km, vm)

−1,

(Ad∗K(kmhm)µ
nm + Ad∗K(km)(ℓnm ⊙ wm) + ℓnm ⊙ vm, ℓnm)

)

converges to
(
(µ, ℓ), eG, (µ, ℓ)

)
. It follows that

ℓnm −→ ℓ (4.5)

and

Ad∗K(kmhm)µ
nm + ı∗

ℓnm
(ℓnm ⊙ vm) −→ µ (4.6)

as n −→ +∞. By compactness of K we may assume that (kmhm)m converges to an
element k ∈ Kℓ. Using the fact that ı∗

ℓnm
(ℓnm ⊙ vm) = 0, we obtain from (4.6) that

µnm = Ad∗K(k
−1)µ (4.7)

for m large enough. On the other hand, we have Ad∗K(k
−1)µ = s.µ for some s in

the Weyl group WKℓ
(see [12, p. 285]). Hence µnm = s.µ for m large enough. From

the fact that the mapping (Kℓ, ρµ) 7−→ ρµ is continuous (see, [8, p. 429-440]), we

get that ν = s.µ. By Lemma 3.1, it follows that πν ∈ Res
Kℓ

L (ρµ). Comparing to
Theorem 2.2 we obtain the desired result.



Lipsman mapping and dual topology of semidirect products 157

Proposition 4.4. If the sequence
(
OG

(µn,ℓn)

)
n

converges to OG
λ in g‡/G, then (π(µn,ℓn))n

converges to τλ in Ĝ.

Proof. We use the same arguments and proceedings as in the proof of Proposi-
tion 4.3.

Proposition 4.5. We have (OG
λn)n converges to OG

λ in g‡/G if and only if (τλn)n con-

verges to τλ in Ĝ.

Proof. Suppose that (OG
λn)n converges to OG

λ in g‡/G, then there exists (kn)n ⊂ K
such that

Ad∗K(kn)λ
n −→ λ as n −→ +∞. (4.8)

By compactness of K we may assume that (kn)n converges to k ∈ K. Then we
obtain λn = Ad∗K(k

−1)λ for n large enough. Hence there exists w ∈ WK such that
Ad∗K(k

−1) = w.λ for n large enough. It follows that λn = w.λ for n large enough.
Since the weights λn and λ are contained in the set iC+

K and since each WK-orbit

in k∗ intersects the closure iC+
K in exactly one point, it follows that λn = λ for n

large enough and this means that (τλn)n converges to τλ.

Conversely, assume that (τλn)n converges to τλ. Since K is compact, then K̂ is a
discrete space and we obtain τλn = τλ for n large enough. Hence λn = λ for n
large enough. Applying Lemma 4.2, it follows that (OG

λn)n converges to OG
λ in

g‡/G.
We summarize the above results into.

Theorem 4.6. The Lipsman mapping

Θ : g‡/G −→ Ĝ

O 7−→ πO

is continuous.

It remains to prove:

Theorem 4.7. The inverse of the Lipsman mapping

Θ
−1 : Ĝ −→ g‡/G

π 7−→ Oπ

is continuous.

Proof. Let (πµn,ℓn
)n be a sequence in Ĝ, such that (π(µn,ℓn))n converges to π(µ,ℓ).

According to Baggett’s result (Theorem 2.2), then there exist a cataloguing triple
(ℓ, (Kℓ, ρµ)) for π(µ,ℓ), an element (L, πν) of A(K) and a sequence {(ℓn, (Kℓn

, ρµn))}n

for which we have:
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1. The sequence {(ℓn, (Kℓn
, ρµn))}n converges to {(ℓ, (L, πν))} in V∗ ×A(K);

2. Kℓ contains the subgroup L;

3. The representation πν occurs in the restriction Res
Kℓ

L (ρµ).

From (3), we can write also

lim
n−→+∞

ρµn ∈ Res
Kℓ

L (ρµ). (4.9)

Using (4.9), we deduce by Lemma 3.2 that there exists p ∈ Kℓ such that

µn = q(Ad∗K(p))µ

for n large enough. On the other hand we use the fact that the mapping(
L, (Kℓ, ρµ)

)
7−→ Res

Kℓ

L (ρµ) is continuous (see, [8, Theorem 3.2]), then (4.9) im-
plies that

lim
n−→+∞

ρµn ∈ lim
n−→+∞

Res
Kℓ

Kℓn
(ρµ) (4.10)

Applying Lemma 3.2 to (4.10), then there exists hn ∈ Kℓ such that

lim
n−→+∞

µn = lim
n−→+∞

ı∗
ℓn
(Ad∗K(hn)µ).

Let βn := ı∗
ℓn
(Ad∗K(hn))µ, (n ∈ N). In view of Lemma 2.1, there exists wn ∈ V

such that

βn + ℓn ⊙ wn = Ad∗K(hn)µ. (4.11)

Then

lim
n−→+∞

µn = lim
n−→+∞

(Ad∗K(hn)µ − ℓn ⊙ wn) (4.12)

= q(Ad∗K(p))µ. (4.13)

By assuming that (hn)n converges to h ∈ Kℓ, we check that the sequence
(ℓn ⊙ wn)n converges in k∗. Hence (4.12) becomes as follows

lim
n−→+∞

(Ad∗K(h
−1)µn + h−1.ℓn ⊙ h−1.wn) = µ (4.14)

Now, we fix (k, v) in G and for each n ∈ N, we put

(kn, vn) := (kh−1, kh−1.wn + v) ∈ G.

We can easily see that (kn.ℓn)n converges to k.ℓ and according to (4.14) we see that
the sequence (αn)n defined by

αn = Ad∗K(kn)µ
n + kn.ℓn ⊙ vn = Ad∗K(k)µ + kh−1.ℓn ⊙ v

converges to the element Ad∗K(k)µ + k.ℓ⊙ v. We conclude by Lemma 4.2, that the

sequence of the admissible coadjoint orbits OG
(µn,ℓn)

converges to OG
(µ,ℓ)

in g‡/G.

If (π(µn,ℓn))n converges to τλ, then it is very similar to see that OG
(µn,ℓn)

converges

to OG
λ . This completes the proof of the Theorem.

We have finished the proof of the main result (Theorem 1.2).
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