Growth on Meromorphic Solutions of Non-linear Delay Differential Equations*

Pei-Chu Hu
Qiong-Yan Wang ${ }^{\dagger}$

Abstract

By using Nevanlinna theory and linear algebra, we show that the number one is a lower bound of the hyper-order of any meromorphic solution of a non-linear delay differential equation under certain conditions.

1 Introduction

Nevanlinna theory is the value distribution theory established by R. Nevanlinna, it is a very useful tool for studying both the growth of meromorphic functions in the complex plane \mathbb{C} and meromorphic solutions of differential equations. The well-known mathematician K. Yoshida [18] applied the Nevanlinna theory to extend Malmquist's celebrated work [14] in showing that a first order algebraic differential equation of the form $y^{\prime}=R(z, y)$, where R is a rational function in y with polynomial coefficients in z, admits a meromorphic (i.e., global) solution, then it must reduce to a Riccati equation. N.Steinmitz [15], Bank and Kaufman [1] independently extended earlier works of Hermite and Painlevé on first order algebraic differential equations $\left(y^{\prime}\right)^{m}=P(y)$ when the corresponding algebraic curves have genus 0 or 1 by using Nevanlinna theory.

The classification of $y^{\prime \prime}=R\left(z, y, y^{\prime}\right)$ that would yield Painlevé's (I-V) equations has yet to be completed. Recently, A. Eremenko and A. Gabrielov [6],

[^0]Conte, Ng and Wong [4], etc have successfully derived meromorphic solutions out of a set of nonlinear PDE with wide range of physical applications by combining Nevanlinna theory and local series analysis. On the other hand, also recently, Halburd and Korhonen [8] showed, again using Nevanlinna theory, that if the difference equation $y(z+1)+y(z-1)=R(z, y)$ (e.g. R rational in both arguments) admits a finite order meromorphic solution, then the equations must reduce to one of the known discrete-Painlevé equations. In this paper, we study the growth of any meromorphic solution of a non-linear delay differential (or differential difference) equation under certain conditions.

2 Main Results

Take positive integers t and k. For $t+1$ complex numbers $c_{0}(=0), c_{1}, \ldots, c_{t}$, it is an interesting question to study properties of entire (or meromorphic) solutions of differential (or difference, or differential-difference) equations in the complex plane \mathbb{C},

$$
\begin{equation*}
P(f)=\sum_{\mathbf{I} \in \mathcal{I}} a_{\mathbf{I}}\left(\mathbf{f}^{(\mathbf{k})}\right)^{\mathbf{I}}=\sum_{\mathbf{I}} a_{\mathbf{I}} \prod_{l=0}^{t}\left(f_{\mathcal{c}_{l}}^{(\mathbf{k})}\right)^{I_{l}}=0 \tag{2.1}
\end{equation*}
$$

where $\mathbf{k}=(0,1, \ldots, k) ; \mathbf{I}=\left(I_{0}, \ldots, I_{t}\right), I_{l}=\left(i_{l 0}, i_{l 1}, \ldots, i_{l k}\right)$ are multi-indices of nonnegative integers $\mathbb{Z}_{+} ; \mathcal{I}$ is a finite set of $\mathbb{Z}_{+}^{(t+1)(k+1)} ; \mathbf{f}=\left(f_{c_{0}}, \ldots, f_{c_{t}}\right)$ in which $f_{c_{l}}$ is defined by $f_{c_{l}}(z)=f\left(z+c_{l}\right) ; f_{c_{l}}^{(\mathbf{k})}=\left(f_{c_{l}}, f_{c_{l}}^{\prime}, \ldots, f_{c_{l}}^{(k)}\right) ; a_{\mathrm{I}}$ are non-zero meromorphic functions in \mathbb{C}; and where

$$
\left(f_{c_{l}}^{(\mathbf{k})}\right)^{I_{l}}=f_{c_{l}}^{i_{l_{0}}}\left(f_{c_{l}}^{\prime}\right)^{i_{l 1}} \cdots\left(f_{c_{l}}^{(k)}\right)^{i_{l k}}
$$

Obviously, this kind of problems are closely related to those of delay differential equations. For example, some authors (cf. [7]) are concerned with an investigation of the asymptotic behavior, as $t \rightarrow \infty$ of positive nonconstant solutions of the autonomous delay differential equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=x(t)\left\{a-\sum_{j=1}^{n} b_{j} x\left(t-\tau_{j}\right)\right\} ; \quad t \geq 0 \tag{2.2}
\end{equation*}
$$

and several of its variants where $a, b_{j}, \tau_{j}(j=1, \ldots, n)$ are positive constants, or the stability and fundamental theory of delay (or functional) differential equations (see, e.g., [5], [10]).

Many complex analysts have investigated some special cases of the question (2.1) by using value distribution theory of Nevanlinna (see e.g. [2], [3]). In particular, fixed a polynomial $p(\not \equiv 0)$ and considered

$$
\begin{equation*}
f^{n}(z)+p(z) f(z+c)=\sum_{l=1}^{s} \beta_{l} e^{\alpha_{l} z} \tag{2.3}
\end{equation*}
$$

which is also called a difference equation of f by some complex analysts, under the following assumptions:
(A) Fix $c \in \mathbb{C}$. Take positive integers n, s with $n \geq s+2$. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ be nonzero constants and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ be distinct non-zero constants satisfying $\frac{\alpha_{i}}{\alpha_{j}} \neq n$ for all $i, j \in\{1,2, \ldots, s\}$. When $s \geq 5$, one further assumes that $n \alpha_{l}(5 \leq l \leq s)$ are not linear combinations of $\alpha_{1}, \ldots, \alpha_{s}$ with the weight n over $\{0,1, \ldots, n-1\}$, that is,

$$
n \alpha_{l} \neq\langle\widehat{\mathbf{m}}, \alpha\rangle=\sum_{j=1}^{s} m_{j} \alpha_{j}, l=5, \cdots, s,
$$

where $\widehat{\mathbf{m}}=\left(m_{1}, m_{2}, \cdots, m_{s}\right) \in\{0,1, \ldots, n-1\}^{s}$ and $|\widehat{\mathbf{m}}|=n$.
Zhang and Huang [19] proved that any meromorphic solution f on \mathbb{C} of the functional equation (2.3) must satisfy $\sigma_{2}(f) \geq 1$, where $\sigma_{2}(f)$ is the hyper-order of f defined by the Nevanlinna characteristic function $T(r, f)$

$$
\sigma_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

In this paper, we will extend the result of Zhang and Huang mentioned above to the following delay differential equation on f

$$
\begin{equation*}
f^{n}(z) f^{(k)}(z)+p(z) f(z+c)=\sum_{l=1}^{s} \beta_{l} e^{\alpha_{l} z} \tag{2.4}
\end{equation*}
$$

which also is called a differential-difference equation of f by some complex analysts, under the following assumptions:
(B) Fix $c \in \mathbb{C}$. Take positive integers n, s, k with $n \geq s+2$. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ be nonzero constants and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ be distinct non-zero constants satisfying $\frac{\alpha_{i}}{\alpha_{j}} \neq n+1$ for all $i, j \in\{1,2, \ldots, s\}$. When $s \geq 5$, one further assumes that $(n+1) \alpha_{l}(5 \leq l \leq s)$ are not linear combinations of $\alpha_{1}, \ldots, \alpha_{s}$ with the weight $n+1$ over $\{0,1, \ldots, n\}$, that is,

$$
(n+1) \alpha_{l} \neq\langle\mathbf{m}, \alpha\rangle=\sum_{j=1}^{s} m_{j} \alpha_{j}, l=5, \cdots, s,
$$

where $\mathbf{m}=\left(m_{1}, m_{2}, \cdots, m_{s}\right) \in\{0,1, \ldots, n\}^{s}$ and $|\mathbf{m}|=n+1$.
In this paper, we prove the following theorem:
Theorem 2.1. If $p(\not \equiv 0)$ is a polynomial, then any meromorphic solution f on \mathbb{C} of the delay differential equation (2.4) under the assumptions (B) must satisfy $\sigma_{2}(f) \geq 1$.

If $n<1+s$, the following example shows Theorem 2.1 is not true.

Example 2.2. The delay differential equation

$$
f^{4}(z) f^{\prime}(z)-2 f\left(z+\frac{\pi}{2}\right)=i e^{5 i z}+3 i e^{3 i z}-3 i e^{-3 i z}-i e^{-5 i z}
$$

has an entire solution

$$
f(z)=e^{i z}+e^{-i z}
$$

with $\sigma_{2}(f)=0$. For this case, we have $4=n<s+1=5$.

The following example 2.3 shows that the condition $\frac{\alpha_{i}}{\alpha_{j}} \neq n+1$ for all $i, j \in\{1,2, \ldots, s\}$ is necessary.

Example 2.3. For $k \geq 1$, the delay differential equation

$$
f^{4}(z) f^{(k)}(z)-f(z+6 \pi i)=3^{-k} e^{\frac{5}{3} z}-e^{\frac{z}{3}}
$$

has an entire function with $\sigma_{2}(f)=0$,

$$
f(z)=e^{\frac{1}{3} z}
$$

3 Preliminaries

We assume that the reader is familiar with the standard notations and fundamental results in Nevanlinna theory (see, e.g., [11], [17]). The hyper-exponent of convergence of poles of f is defined by

$$
\lambda_{2}\left(\frac{1}{f}\right)=\limsup _{r \rightarrow \infty} \frac{\log \log N(r, f)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log \log n(r, f)}{\log r} .
$$

We denote by $S(r, f)$ any real function of growth $o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite logarithmic measure. A meromorphic function α on \mathbb{C} is said to be a small function of f if $T(r, \alpha)=S(r, f)$. The function $P(f)$ defined by left side of (2.1) is called a differential-difference polynomial of f if the coefficients a_{I} are small functions of f.

The first Lemma is referred to [13, Lemma2.2].
Lemma 3.1. Let f be a non-constant meromorphic function, let c, h be two complex numbers such that $c \neq h$. If $\sigma_{2}(f)<1$, then

$$
m\left(r, \frac{f_{h}}{f_{c}}\right)=S(r, f),
$$

for all r outside a set of finite logarithmic measure, where $f_{h}(z)=f(z+h), f_{c}(z)=$ $f(z+c)$.

Take complex numbers $d_{0}(=0), d_{1}, \ldots, d_{t}$. Let $R(f)$ be a differential-difference polynomial of f defined by

$$
\begin{equation*}
R(f)=\sum_{\mathbf{J} \in \mathcal{J}} b_{\mathbf{J}} \prod_{l=0}^{t}\left(f_{d_{l}}^{(\mathbf{k})}\right)^{J_{l}} \tag{3.1}
\end{equation*}
$$

where $\mathbf{k}=(0,1, \ldots, k) ; \mathbf{J}=\left(J_{0}, \ldots, J_{t}\right), J_{l}=\left(j_{l 0}, j_{l 1}, \ldots, j_{l k}\right)$ are multi-indices of nonnegative integers $\mathbb{Z}_{+} ; \mathcal{J}$ is a finite set of $\mathbb{Z}_{+}^{(t+1)(k+1)}$, and where $b_{\mathbf{J}}$ are non-zero small functions of f. For complex numbers $e_{0}(=0), e_{1}, \ldots, e_{t}$, we use $Q(f)$ to denote a difference polynomial of f as follows:

$$
\begin{equation*}
Q(f)=\sum_{\mathbf{K} \in \mathcal{K}} C_{\mathbf{K}} f_{e_{0}}^{K_{0}} \cdots f_{e_{t}}^{K_{t}} \tag{3.2}
\end{equation*}
$$

where $\mathbf{K}=\left(K_{0}, \ldots, K_{t}\right)$ are multi-indices of non-negative integers $\mathbb{Z}_{+} ; \mathcal{K}$ is a finite set of \mathbb{Z}_{+}^{t+1}, and where C_{K} are non-zero small functions of f. Next we consider the following equation

$$
\begin{equation*}
R(f) Q(f)=P(f), \tag{3.3}
\end{equation*}
$$

$P(f)$ is a differential-difference polynomial defined by the left side of (2.1).
The second lemma is a variant of the result due to Laine and Yang [12].
Lemma 3.2. Let f be a transcendental meromorphic solution of hyper-order $\sigma_{2}(f)<1$ of the equation (3.3) with $\operatorname{deg} P(f) \leq \operatorname{deg} Q(f)$. Assume that there is only unique monomial of degree $\operatorname{deg} Q(f)$ in $Q(f)$. Then,

$$
m(r, R(f))=S(r, f)
$$

holds possibly outside an exceptional set of finite logarithmic measure.
Proof. Set $n=\operatorname{deg} Q(f)$ and put

$$
|\mathbf{I}|=\left|I_{0}\right|+\cdots+\left|I_{t}\right|,\left|I_{l}\right|=i_{l 0}+\cdots+i_{l k}
$$

Note that

$$
\begin{equation*}
\operatorname{deg} P(f)=\max _{\mathbf{I} \in \mathcal{I}}|\mathbf{I}| \leq \operatorname{deg} Q(f)=\max _{\mathbf{K} \in \mathcal{K}}|\mathbf{K}| . \tag{3.4}
\end{equation*}
$$

Rewrite $Q(f)$ into the following form

$$
\begin{equation*}
Q(f)=\sum_{\eta=0}^{n} \widetilde{C}_{\eta} f^{\eta} \tag{3.5}
\end{equation*}
$$

where

$$
\widetilde{C}_{\eta}=\sum_{|\mathbf{K}|=\eta} C_{\mathbf{K}}\left(\frac{f_{e_{0}}}{f}\right)^{K_{0}} \cdots\left(\frac{f_{e_{t}}}{f}\right)^{K_{t}}
$$

In particular, by the assumption, we have

$$
\widetilde{C}_{n}=C_{\mathbf{K}}\left(\frac{f_{e_{0}}}{f}\right)^{K_{0}} \cdots\left(\frac{f_{e_{t}}}{f}\right)^{K_{t}}
$$

with $|\mathbf{K}|=n$. By Lemma 3.1, we obtain

$$
\begin{equation*}
m\left(r, \widetilde{C}_{\eta}\right)=S(r, f), \eta=0, \ldots, n \tag{3.6}
\end{equation*}
$$

for $\varepsilon>0$ small enough, as well as

$$
\begin{equation*}
m\left(r, \frac{1}{\widetilde{C}_{n}}\right)=S(r, f) \tag{3.7}
\end{equation*}
$$

for all r outside a set of finite logarithmic measure.
Making use of the reasoning in [16], we first define

$$
\begin{equation*}
\widetilde{c}(z):=\max _{1 \leq \eta \leq n}\left(1,2\left|\frac{\widetilde{C}_{n-\eta}}{\widetilde{C}_{\eta}}\right|^{\frac{1}{\eta}}\right) \tag{3.8}
\end{equation*}
$$

Although \widetilde{c} is not meromorphic, however we may estimate $m(r, \widetilde{c})$,

$$
m(r, \widetilde{c}) \leq \sum_{\eta=0}^{n} m\left(r, \widetilde{C}_{\eta}\right)+m\left(r, \frac{1}{\widetilde{C}_{n}}\right)+O(1)=S(r, f)
$$

Take $z \in \mathbb{C}$ and write $z=r e^{i \theta}$. Set

$$
\begin{equation*}
E_{1}:=\left\{\theta \in[0,2 \pi):\left|f\left(r e^{i \theta}\right)\right| \leq \widetilde{c}\left(r e^{i \theta}\right)\right\}, E_{2}:=[0,2 \pi) \backslash E_{1} . \tag{3.9}
\end{equation*}
$$

In the set E_{1}, we have the following estimate

$$
\begin{align*}
|R(f)| & \leq \sum_{\mathbf{J} \in \mathcal{J}}\left|b_{\mathbf{J}}\right||f|^{\mathbf{J} \mid} \prod_{l=0}^{t}\left|\frac{f_{d_{l}}}{f}\right|^{j_{l 0}} \cdots\left|\frac{f_{d_{l}}^{(k)}}{f}\right|^{j_{l k}} \\
& \leq \sum_{\mathbf{J} \in \mathcal{J}}\left|b_{\mathbf{J}}\right||\widetilde{c}|^{|\mathbf{J}|} \prod_{l=0}^{t}\left|\frac{f_{d_{l}}}{f}\right|^{j_{l 0}} \cdots\left|\frac{f_{d_{l}}^{(k)}}{f}\right|^{j_{l k}} \tag{3.10}\\
& \leq|\widetilde{c}|^{\varsigma} \sum_{\mathbf{J} \in \mathcal{J}}\left|b_{\mathbf{J}}\right| \prod_{l=0}^{t}\left|\frac{f_{d_{l}}}{f}\right|^{j_{l 0}} \cdots\left|\frac{f_{d_{l}}^{(k)}}{f}\right|^{j_{l k}},
\end{align*}
$$

where

$$
\varsigma=\operatorname{deg} R(f)=\max _{\mathbf{J} \in \mathcal{J}}|\mathbf{J}|
$$

In the set E_{2}, noting that

$$
|f|>\widetilde{c} \geq 2\left|\frac{\widetilde{C}_{n-\eta}}{\widetilde{C}_{n}}\right|^{\frac{1}{\eta}},
$$

and hence

$$
\left|\frac{\widetilde{C}_{n-\eta}}{\widetilde{C}_{n}}\right| \leq \frac{|f|^{\eta}}{2^{\eta}}
$$

for $\eta=1, \ldots, n$, which means

$$
|Q(f)|=\left|\sum_{\eta=0}^{n} \widetilde{C}_{\eta} f^{\eta}\right| \geq\left|\widetilde{C}_{n} f^{n}\right|\left(1-\sum_{\eta=1}^{n} \frac{\left|\widetilde{C}_{n-\eta}\right|}{\left|\widetilde{C}_{n} f^{\eta}\right|}\right) \geq \frac{\left|\widetilde{C}_{n}\right||f|^{n}}{2^{n}}
$$

we also obtain an estimate

$$
\begin{align*}
|R(f)| & =\left|\frac{P(f)}{Q(f)}\right| \leq \frac{2^{n}}{\left|\widetilde{C}_{n}\right||f|^{n}} \sum_{\mathbf{I} \in \mathcal{I}}\left|a_{\mathbf{I}}\right||f|^{|\mathbf{I}|} \prod_{l=0}^{t}\left|\frac{f_{c_{l}}}{f}\right|^{i_{l 0}} \cdots\left|\frac{f_{c_{l}}^{(k)}}{f}\right|^{i_{l k}} \\
& =\frac{2^{n}}{\left|\widetilde{C}_{n}\right|} \sum_{\mathbf{I} \in \mathcal{I}}\left|a_{\mathbf{I}}\right||f|^{\mathbf{I} \mid-n} \prod_{l=0}^{t}\left|\frac{f_{c_{l}}}{f}\right|^{i_{l 0}} \cdots\left|\frac{f_{c_{l}}^{(k)}}{f}\right|^{i_{l k}} \tag{3.11}\\
& \leq \frac{2^{n}}{\left|\widetilde{C}_{n}\right|} \sum_{\mathbf{I} \in \mathcal{I}}\left|a_{\mathbf{I}}\right| \prod_{l=0}^{t}\left|\frac{f_{c_{l}}}{f}\right|^{i_{l_{0} 0}} \cdots\left|\frac{f_{c_{l}}^{(k)}}{f}\right|^{i_{l k}},
\end{align*}
$$

since $|\mathbf{I}| \leq \operatorname{deg}(P(f)) \leq n$ and $|f| \geq 1$.
Combing (3.10) and (3.11), we obtain a complete estimate

$$
\begin{aligned}
|R(f)| \leq & \leq|\widetilde{c}|^{\varsigma} \sum_{\mathbf{J} \in \mathcal{J}}\left|b_{\mathbf{J}}\right| \prod_{l=0}^{t}\left|\frac{f_{d_{l}}}{f}\right|^{j_{l 0}} \cdots\left|\frac{f_{d_{l}}^{(k)}}{f}\right|^{j_{l k}} \\
& +\frac{2^{n}}{\left|\widetilde{C}_{n}\right|} \sum_{\mathbf{I} \in \mathcal{I}}\left|a_{\mathbf{I}}\right| \prod_{l=0}^{t}\left|\frac{f_{c_{l}}}{f}\right|^{i_{l 0}} \cdots\left|\frac{f_{c_{l}}^{(k)}}{f}\right|^{i_{l k}}
\end{aligned}
$$

which yields immediately

\[

\]

Note that

$$
m\left(r, \frac{f_{\delta}^{(v)}}{f}\right) \leq m\left(r, \frac{f_{\delta}^{(v)}}{f^{(v)}}\right)+m\left(r, \frac{f^{(v)}}{f}\right), \delta \in \mathbb{C}, v=1,2, \cdots, k
$$

Applying (3.7), (3.9), Lemma 2.1 and logarithmic derivative lemma to the inequality on $m(r, R(f))$, it follows that

$$
m(r, R(f))=S(r, f)
$$

since $a_{\mathbf{I}}, b_{\mathbf{J}}$ are small functions of f. Hence Lemma 3.2 is proved.
To state next lemma, we introduce some notations. The determinant

$$
V_{n 0}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
d_{1} & d_{2} & \cdots & d_{n} \\
\cdots & \cdots & \cdots & \cdots \\
d_{1}^{n-1} & d_{2}^{n-1} & \cdots & d_{n}^{n-1}
\end{array}\right|
$$

is called the principal Vandermondian, which is determined by

$$
V_{n 0}=\prod_{1 \leq j<i \leq n}\left(d_{i}-d_{j}\right)
$$

For every $k=1,2, \ldots, n-1$, the determinant

$$
V_{n k}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
d_{1} & d_{2} & \cdots & d_{n} \\
\cdots & \cdots & \cdots & \cdots \\
d_{1}^{n-k-1} & d_{2}^{n-k-1} & \cdots & d_{n}^{n-k-1} \\
d_{1}^{n-k+1} & d_{2}^{n-k+1} & \cdots & d_{n}^{n-k+1} \\
\cdots & \cdots & \cdots & \cdots \\
d_{1}^{n} & d_{2}^{n} & \cdots & d_{n}^{n}
\end{array}\right|
$$

is called the secondary Vandermondian. The coefficients G_{k} defined by

$$
\left(x-d_{1}\right) \cdots\left(x-d_{n}\right)=x^{n}+\sum_{k=1}^{n}(-1)^{k} G_{k} x^{n-k}
$$

are called elementary (or fundamental) symmetric functions (or polynomials) of d_{1}, \ldots, d_{n}. The following lemma establishes a relationship between $V_{n 0}$ and $V_{n k}$, which is referred to [9].

Lemma 3.3. The k-th elementary symmetric function G_{k} of the n variables $d_{1}, d_{2}, \ldots, d_{n}$ is equal to the quotient of the secondary Vandermondian $V_{n k}$ by the principal Vandermondian $V_{n 0}$.

In the final lemma, the elementary row transformations consist of the following three cases: (i) switch two rows; (ii) multiply a row by a non-zero number; (iii) add to a row by a multiple of another row.

Lemma 3.4. Take positive integers n, k and s with $n \geq 2$. Let $c_{l}(1 \leq l \leq s)$ be constants and let $b_{j}(1 \leq j \leq 4)$ be rational functions. If there exist distinct nonzero constants $\alpha_{l}(1 \leq l \leq s)$ satisfying $(n+1) \alpha_{j} \neq \alpha_{l}(1 \leq j \leq 4,1 \leq l \leq s)$ such that

$$
\begin{equation*}
\left(\sum_{j=1}^{4} b_{j}(z) e^{\alpha_{j}} z\right)^{n} \sum_{j=1}^{4} \alpha_{j}^{k} b_{j}(z) e^{\alpha_{j} z}=\sum_{l=1}^{s} c_{l} e^{\alpha_{l} z} \tag{3.12}
\end{equation*}
$$

holds, then we have $b_{j}=0(1 \leq j \leq 4)$.
Proof. It follows from (3.12) that

$$
\begin{equation*}
\sum_{l=1}^{s} c_{l} e^{\alpha_{l} z}=\sum_{j=1}^{4} \alpha_{j}^{k} b_{j}^{n+1}(z) e^{(n+1) \alpha_{j} z}+\sum_{|\widetilde{\mathbf{m}}|=n+1} c_{\widetilde{\mathbf{m}}}(z) e^{\langle\tilde{\mathbf{m}}, \widetilde{\alpha}\rangle z} \tag{3.13}
\end{equation*}
$$

where $\widetilde{\mathbf{m}}=\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \in\{0,1, \ldots, n\}^{4}, c_{\widetilde{\mathbf{m}}}$ are rational functions, and

$$
\langle\widetilde{\mathbf{m}}, \widetilde{\alpha}\rangle=\sum_{j=1}^{4} m_{j} \alpha_{j} .
$$

Now we claim that there is some $i \in\{1,2,3,4\}$ such that $(n+1) \alpha_{i}$ is not a linear combination of $\alpha_{1}, \ldots, \alpha_{4}$ with the weight $n+1$ over $\{0,1, \ldots, n\}$. Otherwise, for each $i \in\{1,2,3,4\}$ there exist non-negative integers $d_{i j} \in\{0,1, \ldots, n\}(j=1,2,3,4)$ with $d_{i 1}+d_{i 2}+d_{i 3}+d_{i 4}=n+1$, such that

$$
\left\{\begin{array}{l}
(n+1) \alpha_{1}=d_{11} \alpha_{1}+d_{12} \alpha_{2}+d_{13} \alpha_{3}+d_{14} \alpha_{4} \tag{3.14}\\
(n+1) \alpha_{2}=d_{21} \alpha_{1}+d_{22} \alpha_{2}+d_{23} \alpha_{3}+d_{24} \alpha_{4} \\
(n+1) \alpha_{3}=d_{31} \alpha_{1}+d_{32} \alpha_{2}+d_{33} \alpha_{3}+d_{34} \alpha_{4} \\
(n+1) \alpha_{4}=d_{41} \alpha_{1}+d_{42} \alpha_{2}+d_{43} \alpha_{3}+d_{44} \alpha_{4}
\end{array}\right.
$$

Next we will deduce a contradiction from the system (3.14).

If there is some $i \in\{1,2,3,4\}$ such that only one of three integers $d_{i j}(j \neq i)$ is greater than zero, say $d_{21}>0$, so that $d_{2 j}=0(j \neq 2)$, then from the second equation of system (3.14), we see $\left(n+1-d_{22}\right) \alpha_{2}=d_{21} \alpha_{1}$. Since $d_{21}+d_{22}=n+1$ and $d_{21} \neq 0$, we obtain $\alpha_{1}=\alpha_{2}$. This is a contradiction.

Hence for each $i \in\{1,2,3,4\}$, at least two of three integers $d_{i j}(j \neq i)$ are greater than zero, so that when $j \neq i$, we have $d_{i j}<n+1-d_{i i}$. We rewrite the system (3.14) as follows:

$$
\left\{\begin{array}{l}
\left(d_{11}-n-1\right) \alpha_{1}+d_{12} \alpha_{2}+d_{13} \alpha_{3}+d_{14} \alpha_{4}=0 \tag{3.15}\\
d_{21} \alpha_{1}+\left(d_{22}-n-1\right) \alpha_{2}+d_{23} \alpha_{3}+d_{24} \alpha_{4}=0 \\
d_{31} \alpha_{1}+d_{32} \alpha_{2}+\left(d_{33}-n-1\right) \alpha_{3}+d_{34} \alpha_{4}=0 \\
d_{41} \alpha_{1}+d_{42} \alpha_{2}+d_{43} \alpha_{3}+\left(d_{44}-n-1\right) \alpha_{4}=0
\end{array}\right.
$$

and denote the matrix of coefficients of system (3.15) by

$$
B=\left(\begin{array}{cccc}
d_{11}-n-1 & d_{12} & d_{13} & d_{14} \\
d_{21} & d_{22}-n-1 & d_{23} & d_{24} \\
d_{31} & d_{32} & d_{33}-n-1 & d_{34} \\
d_{41} & d_{42} & d_{43} & d_{44}-n-1
\end{array}\right) .
$$

Then we claim that the rank of B is 3 .
Adding columns 2, 3 and 4 to column 1, and noting that $d_{i 1}+d_{i 2}+d_{i 3}+d_{i 4}=$ $n+1(i=1,2,3,4)$, we find $\operatorname{det}(B)=0$. Next we discuss minor determinants of order 3 in B by distinguishing two cases.

Case 1. $d_{13}=d_{23}=d_{43}=0$.
This case implies $d_{12}>0, d_{14}>0, d_{21}>0, d_{24}>0, d_{41}>0, d_{42}>0$. For the 3×3 submatrix

$$
B_{1}=\left(\begin{array}{ccc}
d_{11}-n-1 & d_{12} & d_{14} \\
d_{31} & d_{32} & d_{34} \\
d_{41} & d_{42} & d_{44}-n-1
\end{array}\right)
$$

of the matrix B, we have

$$
\begin{aligned}
\operatorname{det}\left(B_{1}\right)= & \left(d_{11}-n-1\right) d_{32}\left(d_{44}-n-1\right)+d_{12} d_{34} d_{41}+d_{14} d_{31} d_{42} \\
& -d_{14} d_{32} d_{41}-d_{12} d_{31}\left(d_{44}-n-1\right)-\left(d_{11}-n-1\right) d_{34} d_{42}
\end{aligned}
$$

Hence when $d_{32}>0$, it follows that

$$
\operatorname{det}\left(B_{1}\right)>d_{12} d_{34} d_{41}+d_{14} d_{31} d_{42}+d_{12} d_{31} d_{41}+d_{14} d_{34} d_{42} \geq 0
$$

since $d_{14}<n+1-d_{11}$ and $d_{41}<n+1-d_{44}$.
If $d_{32}=0$, we have $d_{31}>0, d_{34}>0$, and hence

$$
\operatorname{det}\left(B_{1}\right)>d_{12} d_{34} d_{41}+d_{14} d_{31} d_{42}+d_{12} d_{31} d_{41}+d_{14} d_{34} d_{42}>0
$$

Thus, we proved $\operatorname{det}\left(B_{1}\right)>0$ in this case.
Case 2. At least one of d_{13}, d_{23}, d_{43} is greater than zero.

Now we consider the 3×3 submatrix

$$
B_{2}=\left(\begin{array}{ccc}
d_{11}-n-1 & d_{12} & d_{13} \\
d_{21} & d_{22}-n-1 & d_{23} \\
d_{41} & d_{42} & d_{43}
\end{array}\right)
$$

of the matrix B with

$$
\begin{aligned}
\operatorname{det}\left(B_{2}\right)= & \left(d_{11}-n-1\right)\left(d_{22}-n-1\right) d_{43}+d_{12} d_{23} d_{41}+d_{13} d_{21} d_{42} \\
& -d_{13}\left(d_{22}-n-1\right) d_{41}-d_{12} d_{21} d_{43}-\left(d_{11}-n-1\right) d_{23} d_{42}
\end{aligned}
$$

Hence when $d_{43}>0$, it follows that

$$
\operatorname{det}\left(B_{2}\right)>d_{12} d_{23} d_{41}+d_{13} d_{21} d_{42}+d_{13} d_{21} d_{41}+d_{12} d_{23} d_{42} \geq 0
$$

since $d_{12}<n+1-d_{11}$ and $d_{21}<n+1-d_{22}$. However, if $d_{43}=0$, we have $d_{41}>0, d_{42}>0$, and hence

$$
\operatorname{det}\left(B_{2}\right)>d_{12} d_{23} d_{41}+d_{13} d_{21} d_{42}+d_{13} d_{21} d_{41}+d_{12} d_{23} d_{42}>0
$$

because at least one of d_{13}, d_{23} is greater than zero.
Therefore, we proved $\operatorname{rank}(B)=3$. By using elementary row transformations, we can deduce the matrix B into the form

$$
D=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \tag{3.16}\\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Then (3.15) and (3.16) yield $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}$. This is a contradiction. Hence (3.14) does not hold.

Without loss of generality, we may assume that $(n+1) \alpha_{4}$ is not a linear combination of $\alpha_{1}, \ldots, \alpha_{4}$ with the weight $n+1$ over $\{0,1, \ldots, n\}$, that is,

$$
\begin{equation*}
(n+1) \alpha_{4} \neq m_{1} \alpha_{1}+m_{2} \alpha_{2}+m_{3} \alpha_{3}+m_{4} \alpha_{4} \tag{3.17}
\end{equation*}
$$

for all $m_{1}, m_{2}, m_{3}, m_{4} \in\{0,1, \ldots, n\}$ such that $m_{1}+m_{2}+m_{3}+m_{4}=n+1$. Noting that $(n+1) \alpha_{4} \neq \alpha_{l}(l=1,2, \ldots, s), \alpha_{4} \neq \alpha_{l}(l=1,2,3)$ and (3.17), then multiplying (3.13) by $e^{-(n+1) \alpha_{4} z}$, we see that $\alpha_{4}^{k} b_{4}^{n+1}$ is a linear combination of exponential functions, thus $b_{4}=0$ by comparing its growth.

Thus, equation (3.12) becomes

$$
\left(\sum_{j=1}^{3} b_{j}(z) e^{\alpha_{j} z}\right)^{n} \sum_{j=1}^{3} \alpha_{j}^{k} b_{j}(z) e^{\alpha_{j} z}=\sum_{l=1}^{s} c_{l} e^{\alpha_{l} z} .
$$

Repeating above arguments, it is same to show one of $\left\{b_{1}, b_{2}, b_{3}\right\}$, say b_{3}, is zero, so that the equation (3.12) further becomes

$$
\left(\sum_{j=1}^{2} b_{j}(z) e^{\alpha_{j} z}\right)^{n} \sum_{j=1}^{2} \alpha_{j}^{k} b_{j}(z) e^{\alpha_{j} z}=\sum_{l=1}^{s} c_{l} e^{\alpha_{l} z}
$$

We can deduce $b_{2}=b_{1}=0$ similarly. Hence Lemma 3.4 follows.

4 Proof of Theorem 2.1

Suppose that the equation (2.4) has a meromorphic solution f with $\sigma_{2}(f)<1$. We will deduce contradictions by distinguishing two cases.

Case 1. f has at least one pole.
Let z_{0} be a pole of f with multiplicity $q(\geq 1)$. For the case $c=0$, we get a contradiction by comparing the multiplicities of the pole z_{0} at both sides of (2.4). If $c \neq 0$, it follows from (2.4) that $z_{0}+c$ is also a pole of f with multiplicity $\geq(n+1) q+k$. Substituting $z+c$ into (2.4), we get

$$
\begin{equation*}
f^{n}(z+c) f^{(k)}(z+c)+p(z+c) f(z+2 c)=\sum_{l=1}^{s} \beta_{l} e^{\alpha_{l}(z+c)} \tag{4.1}
\end{equation*}
$$

It follows from (4.1) that $z_{0}+2 c$ also is a pole of f with a multiplicity $\geq(n+1)^{2} q+k(n+1)+k$ since $z_{0}+c$ is a pole of $f^{n} f^{(k)}$ with a multiplicity $\geq(n+1)^{2} q+k(n+1)+k$. By using induction, we know that for each integer $j \geq 1$, the point $z_{0}+j c$ is a pole of f with a multiplicity $\geq(n+1)^{j} q+$ $k\left[(n+1)^{j-1}+(n+1)^{j-2}+\cdots+1\right]$. Hence for each integer $m \geq 1$, we get an estimate on the number $n(r, f)$ of poles of f in the disc $|z| \leq r$ as follows:

$$
n\left(r_{m}, f\right) \geq q+\sum_{j=1}^{m}(n+1)^{j} q+k\left[(n+1)^{j-1}+(n+1)^{j-2}+\cdots+1\right]
$$

where $r_{m}=m|c|+\left|z_{0}\right|+1$. Thus, we have

$$
\begin{aligned}
\sigma_{2}(f) \geq \lambda_{2}\left(\frac{1}{f}\right) & =\limsup _{r \rightarrow \infty} \frac{\log \log n(r, f)}{\log r} \\
& \geq \limsup _{m \rightarrow \infty} \frac{\log \log n\left(r_{m}, f\right)}{\log r_{m}} \\
& \geq \limsup _{m \rightarrow \infty} \frac{\log \log (n+1)^{m}}{\log m}=1
\end{aligned}
$$

since $n \geq 2+s \geq 3$. It contradicts with $\sigma_{2}(f)<1$.
Case 2. f is an entire function.
If f is a polynomial, by comparing the growth at both sides of the equation (2.4), we find the order of the function at left side of (2.4) is 0 , but the order of the function at right side of (2.4) is 1 . It is a contradiction. Hence f is transcendental. Further, we divide our discussion into two subcases:

Subcase 2.1. $s=1$. Now the equation (2.4) becomes

$$
\begin{equation*}
f(z)^{n} f^{(k)}(z)+p(z) f_{c}(z)=\beta_{1} e^{\alpha_{1} z} . \tag{4.2}
\end{equation*}
$$

Differentiating both sides of (4.2), we get

$$
n f(z)^{n-1} f^{\prime}(z) f^{(k)}(z)+f(z)^{n} f^{(k+1)}(z)+\left(p(z) f_{c}(z)\right)^{\prime}=\alpha_{1} \beta_{1} e^{\alpha_{1} z} .
$$

Combining this equation with (4.2), we get

$$
\begin{equation*}
f^{n-1} F=\alpha_{1} p f_{c}-\left(p f_{c}\right)^{\prime} \tag{4.3}
\end{equation*}
$$

where $F=n f^{\prime} f^{(k)}-\alpha_{1} f f^{(k)}+f f^{(k+1)}$.
If $F \neq 0$, it follow from (4.3) and Lemma 3.2 that

$$
\begin{gather*}
T(r, F)=m(r, F)=m\left(r, \frac{\alpha_{1} p f_{c}-\left(p f_{c}\right)^{\prime}}{f^{n-1}}\right)=S(r, f) \tag{4.4}\\
T(r, f F)=m(r, f F)=m\left(r, \frac{\alpha_{1} p f_{c}-\left(p f_{c}\right)^{\prime}}{f^{n-2}}\right)=S(r, f) \tag{4.5}
\end{gather*}
$$

since $n \geq 2+s=3$. Combining (4.4) with (4.5), we get

$$
T(r, f) \leq T(r, f F)+T\left(r, \frac{1}{F}\right)=T(r, f F)+T(r, F)+O(1)=S(r, f)
$$

This is a contradiction.
When $F=0$, or equivalently $n \frac{f^{\prime}}{f}+\frac{f^{(k+1)}}{f^{(k)}}=\alpha_{1}$, then by integrating, it follows that $f^{n}(z) f^{(k)}(z)=\tau_{1} e^{\alpha_{1} z}$, where τ_{1} is a nonzero constant. Combining this equation with equation (4.2), we get

$$
\begin{equation*}
f_{c}(z)=\frac{\beta_{1}-\tau_{1}}{p(z)} e^{\alpha_{1} z} \tag{4.6}
\end{equation*}
$$

which means that $\beta_{1} \neq \tau_{1}$ and $p(z)$ is a nonzero constant, say τ_{2}, since f is a transcendental entire function. Thus we obtain

$$
f(z)=\frac{\beta_{1}-\tau_{1}}{\tau_{2}} e^{\alpha_{1}(z-c)}=\tau e^{\alpha_{1} z}
$$

where $\tau=\frac{\beta_{1}-\tau_{1}}{\tau_{2}} e^{-\alpha_{1} c}$ is a nonzero constant. It contradicts with $f^{n}(z) f^{(k)}(z)=$ $\tau_{1} e^{\alpha_{1} z}$ since $k \geq 1, n \geq s+2 \geq 3$.

Subcase 2.2. $s>1$. Differentiating both sides of the equation (2.4), we obtain

$$
G^{\prime}(z)=\sum_{l=1}^{s} \alpha_{l} \beta_{l} e^{\alpha_{l} z}, \cdots, G^{(s-1)}(z)=\sum_{l=1}^{s} \alpha_{l}^{s-1} \beta_{l} e^{\alpha_{l} z}
$$

where $G=f^{n} f^{(k)}+p f_{c}$. Combining these equations with (2.4) and using Cramer's Rule, we find

$$
\beta_{1} e^{\alpha_{1} z}=\frac{E_{1}(z)}{E}
$$

where

$$
\begin{gather*}
E_{1}(z)=\left|\begin{array}{cccc}
G(z) & 1 & \cdots & 1 \\
G^{\prime}(z) & \alpha_{2} & \cdots & \alpha_{s} \\
G^{\prime \prime}(z) & \alpha_{2}^{2} & \cdots & \alpha_{s}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
G^{(s-1)}(z) & \alpha_{2}^{s-1} & \cdots & \alpha_{s}^{s-1}
\end{array}\right|, \tag{4.7}\\
E=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{s} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{s}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{1}^{s-1} & \alpha_{2}^{s-1} & \cdots & \alpha_{s}^{s-1}
\end{array}\right|=\prod_{1 \leq j<i \leq s}\left(\alpha_{i}-\alpha_{j}\right) \neq 0 . \tag{4.8}
\end{gather*}
$$

By expanding determinant (4.7) along the first column, we get a relation

$$
\begin{equation*}
\beta_{1} e^{\alpha_{1} z}=\frac{1}{E} \sum_{j=0}^{s-1}(-1)^{s-j+1} M_{s-j, 1} G^{(s-j-1)}(z) \tag{4.9}
\end{equation*}
$$

where $M_{s-j, 1}(j=0,1, \ldots, s-1)$ is the determinant formed by throwing away the first column and $(s-j)$-th row from the determinant (4.7), that is,

$$
\begin{gather*}
M_{s, 1}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{2} & \alpha_{3} & \cdots & \alpha_{s} \\
\alpha_{2}^{2} & \alpha_{3}^{2} & \cdots & \alpha_{s}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{2}^{s-2} & \alpha_{3}^{s-2} & \cdots & \alpha_{s}^{s-2}
\end{array}\right|, \tag{4.10}\\
M_{s-j, 1}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{2} & \alpha_{3} & \cdots & \alpha_{s} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{2}^{s-j-2} & \alpha_{3}^{s-j-2} & \cdots & \alpha_{s}^{s-j-2} \\
\alpha_{2}^{s-j} & \alpha_{3}^{s-j} & \cdots & \alpha_{s}^{s-j} \\
\cdots & \cdots & \cdots & \cdots \\
\alpha_{2}^{s-1} & \alpha_{3}^{s-1} & \cdots & \alpha_{s}^{s-1}
\end{array}\right|, j=1,2, \ldots, s-1 . \tag{4.11}
\end{gather*}
$$

From (4.10) and (4.11), we see that $M_{s, 1}$ is the principal Vandermondian with variables $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s}$. Let μ_{j} be the elementary symmetric function of $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{s}$ defined by

$$
\begin{equation*}
\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{s}\right)=x^{s-1}+\sum_{j=1}^{s-1}(-1)^{j} \mu_{j} x^{s-1-j} \tag{4.12}
\end{equation*}
$$

By (4.10), (4.11) and Lemma 3.3, we get

$$
\begin{equation*}
\mu_{j} \equiv \frac{M_{s-j, 1}}{M_{s, 1}}, j=1,2, \ldots, s-1 \tag{4.13}
\end{equation*}
$$

Differentiating both sides of (4.9), we get

$$
\begin{equation*}
\alpha_{1} \beta_{1} e^{\alpha_{1} z}=\frac{1}{E} \sum_{j=0}^{s-1}(-1)^{s-j+1} M_{s-j, 1} G^{(s-j)}(z) \tag{4.14}
\end{equation*}
$$

Eliminating $e^{\alpha_{1} z}$ from (4.9) and (4.14), we have

$$
\begin{equation*}
M_{s, 1} G^{(s)}+\sum_{j=1}^{s-1}(-1)^{j}\left(M_{s-j, 1}+\alpha_{1} M_{s-j+1,1}\right) G^{(s-j)}=(-1)^{s+1} \alpha_{1} M_{1,1} G \tag{4.15}
\end{equation*}
$$

Let $L(w)$ be a linear differential operator defined by

$$
\begin{equation*}
L(w)=w^{(s)}+\sum_{j=1}^{s-1} \frac{(-1)^{j}\left(M_{s-j, 1}+\alpha_{1} M_{s-j+1,1}\right)}{M_{s, 1}} w^{(s-j)}+\frac{(-1)^{s} \alpha_{1} M_{1,1}}{M_{s, 1}} w \tag{4.16}
\end{equation*}
$$

It follows from (4.15) and (4.16) that

$$
\begin{equation*}
L\left(f^{n} f^{(k)}\right)=-L\left(p f_{c}\right) \tag{4.17}
\end{equation*}
$$

Let v_{j} be the elementary symmetric function of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ defined by

$$
\begin{equation*}
\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{s}\right)=x^{s}+\sum_{j=1}^{s}(-1)^{j} v_{j} x^{s-j} . \tag{4.18}
\end{equation*}
$$

It follow from (4.12), (4.13) and (4.18) that

$$
\begin{gathered}
-\frac{M_{s-1,1}+\alpha_{1} M_{s, 1}}{M_{s, 1}}=-\left(\mu_{1}+\alpha_{1}\right)=-\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{s}\right)=-v_{1} \\
\frac{(-1)^{j}\left(M_{s-j, 1}+\alpha_{1} M_{s-j+1,1}\right)}{M_{s, 1}}=(-1)^{j}\left(\mu_{j}+\alpha_{1} \mu_{j-1}\right)=(-1)^{j} v_{j}
\end{gathered}
$$

for $j=2,3, \ldots, s-1$, and

$$
\frac{(-1)^{s} \alpha_{1} M_{1,1}}{M_{s, 1}}=(-1)^{s} \alpha_{1} \mu_{s-1}=(-1)^{s}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{s}\right)=(-1)^{s} v_{s}
$$

Hence $L(w)$ becomes

$$
\begin{equation*}
L(w)=w^{(s)}-v_{1} w^{(s-1)}+\cdots+(-1)^{j} v_{j} w^{(s-j)}+\cdots+(-1)^{s} v_{s} w \tag{4.19}
\end{equation*}
$$

We deduce inductively

$$
\begin{align*}
\left(f^{n} f^{(k)}\right)^{(m)} & =\sum_{i=0}^{m}\binom{m}{i}\left(f^{n}\right)^{(i)}\left(f^{(k)}\right)^{(m-i)}=\sum_{i=1}^{m}\binom{m}{i}\left(f^{(k)}\right)^{(m-i)} \\
& \cdot\left[n f^{n-1} f^{(i)}+\sum_{j=2}^{i-1} \sum_{\lambda} \gamma_{j \lambda} f^{n-j}\left(f^{\prime}\right)^{\lambda_{j 1}}\left(f^{\prime \prime}\right)^{\lambda_{j 2}} \cdots\left(f^{(i-1)}\right)^{\lambda_{j, i-1}}\right. \tag{4.20}\\
& \left.+n(n-1) \cdots(n-(i-1)) f^{n-i}\left(f^{\prime}\right)^{i}\right]+f^{n} f^{(k+m)}
\end{align*}
$$

for $m=1,2, \ldots, s$, where $\gamma_{j \lambda}$ are positive integers, $\lambda_{j 1}, \lambda_{j 2}, \ldots, \lambda_{j, i-1}$ are non-negative integers and sum \sum_{λ} is carried out such that $\lambda_{j 1}+\lambda_{j 2}+\cdots+\lambda_{j, i-1}=j$ and $\lambda_{j 1}+2 \lambda_{j 2}+\cdots+(i-1) \lambda_{j, i-1}=i$. By (4.19) and (4.20), we get

$$
\begin{equation*}
L\left(f^{n} f^{(k)}\right)=f^{n-s} \psi \tag{4.21}
\end{equation*}
$$

where ψ is a differential polynomial in f of degree $s+1$ with constant coefficients. From (4.17), (4.19) and (4.21), we obtain

$$
\begin{equation*}
f^{n-s} \psi=-L\left(p f_{c}\right) \tag{4.22}
\end{equation*}
$$

where $L\left(p f_{c}\right)$ is a differential-difference polynomial in f of degree 1 with polynomial coefficients.

If $\psi \neq 0$, then by (4.22) and Lemma 3.2, we get

$$
\begin{align*}
T(r, \psi) & =m(r, \psi)=S(r, f) \\
T(r, f \psi) & =m(r, f \psi)=S(r, f) \tag{4.23}
\end{align*}
$$

The above two equalities give

$$
T(r, f) \leq T(r, f \psi)+T\left(r, \frac{1}{\psi}\right)=S(r, f)
$$

This is a contradiction.
If $\psi=0$, we have $L\left(f^{n} f^{(k)}\right)=0$ and $L\left(p f_{c}\right)=0$. Using (4.19), we get

$$
L\left(p f_{c}\right)=\left(p f_{c}\right)^{(s)}+\sum_{l=1}^{s}(-1)^{l} v_{l}\left(p f_{c}\right)^{(s-l)}=0
$$

The characteristic equation of this equation is

$$
\begin{equation*}
\lambda^{s}-v_{1} \lambda^{s-1}+\cdots+(-1)^{j} v_{j} \lambda^{s-j}+\cdots+(-1)^{s} v_{s}=0 \tag{4.24}
\end{equation*}
$$

Since (4.24) has s distinct roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$, we get that $p f_{c}$ has the form

$$
p(z) f(z+c)=\widetilde{b}_{1} e^{\alpha_{1} z}+\widetilde{b}_{2} e^{\alpha_{2} z}+\cdots+\widetilde{b}_{s} e^{\alpha_{s} z}
$$

where $\widetilde{b}_{j}(j=1,2, \ldots, s)$ are constants. So

$$
\begin{equation*}
f(z)=\widehat{b}_{1}(z) e^{\alpha_{1} z}+\widehat{b}_{2}(z) e^{\alpha_{2} z}+\cdots+\widehat{b}_{s}(z) e^{\alpha_{s} z} \tag{4.25}
\end{equation*}
$$

where $\widehat{b}_{j}(z)=\frac{\widetilde{b}_{j} e^{-\alpha_{j} c}}{p(z-c)}(j=1,2, \ldots, s)$ are rational functions.
Similarly, we deduce from $L\left(f^{n} f^{(k)}\right)=0$ that

$$
\begin{equation*}
f(z)^{n} f^{(k)}(z)=\widetilde{c}_{1} e^{\alpha_{1} z}+\widetilde{c}_{2} e^{\alpha_{2} z}+\cdots+\widetilde{c}_{s} e^{\alpha_{s} z} \tag{4.26}
\end{equation*}
$$

where $\widetilde{c}_{j}(j=1,2, \ldots, s)$ are constants. From (4.25) and (4.26), we obtain

$$
\begin{equation*}
\sum_{l=1}^{s} \widetilde{c}_{l} e^{\alpha_{l} z}=\sum_{l=1}^{s} \alpha_{l}^{k} \widehat{b}_{l}^{n+1}(z) e^{(n+1) \alpha_{l} z}+\sum_{|\mathbf{m}|=n+1} c_{\mathbf{m}}(z) e^{\langle\mathbf{m}, \alpha\rangle z} \tag{4.27}
\end{equation*}
$$

where $\mathbf{m}=\left(m_{1}, m_{2}, \cdots, m_{s}\right) \in\{0,1, \ldots, n\}^{s}, c_{\mathbf{m}}$ are rational functions, and

$$
\langle\mathbf{m}, \alpha\rangle=\sum_{j=1}^{s} m_{j} \alpha_{j} .
$$

Since $(n+1) \alpha_{s} \neq\langle\mathbf{m}, \alpha\rangle, \quad(n+1) \alpha_{s} \neq \alpha_{l}(l=1,2, \ldots$, $s)$ and $\alpha_{s} \neq \alpha_{l}(l=1,2, \ldots, s-1)$, then multiplying (4.27) by $e^{-(n+1) \alpha_{s} z}$, we see that $\alpha_{s}^{k} \widehat{b}_{s}^{n+1}$ is a linear combination of exponential functions, and hence $\widehat{b}_{s}=0$ by comparing its growth. Repeating above arguments, it is same to show that

$$
\widehat{b}_{5}=\widehat{b}_{6}=\cdots=\widehat{b}_{s-1}=0
$$

Then f becomes

$$
\begin{equation*}
f(z)=\widehat{b}_{1}(z) e^{\alpha_{1} z}+\widehat{b}_{2}(z) e^{\alpha_{2} z}+\widehat{b}_{3}(z) e^{\alpha_{3} z}+\widehat{b}_{4}(z) e^{\alpha_{4} z} \tag{4.28}
\end{equation*}
$$

From (4.26), (4.28) and Lemma 3.4, we obtain that $\widehat{b}_{1}=\widehat{b}_{2}=\widehat{b}_{3}=\widehat{b}_{4}=0$, which implies $f=0$. This is a contradiction. Therefore, the equation (2.4) does not have any entire solution of hyper-order less than one when $s>1$.

According to the arguments above, we see that any meromorphic solution f of the equation (2.4) must satisfy $\sigma_{2}(f) \geq 1$. Thus we complete the proof.

5 Acknowledgment

The authors would like to thank the referee for a careful reading of the manuscript and for valuable comments and suggestions.

References

[1] Bank, S. B. and Kaufman, R. P., On the growth of meromorphic solutions of the differential equation $\left(y^{\prime}\right)^{m}=R(z, y)$, Acta Math. 144 (1980), 223-248.
[2] Bellman, R. and Cooke, K. L., Differential-difference equations, New-York, London, Academic Press, 1963.
[3] Chang, Y. M. and Feng, S. J., On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16(2008), 105129.
[4] Conte, R., Ng, T.-W. and Wong, K.-K., Exact meromorphic stationary solutions of the real cubic Swift-Hohenberg equation, Stud. Appl. Math. 129 (2012), 117-131.
[5] Driver, R. D., Ordinary and delay differential equations, New-York, Springer, 1977.
[6] Eremenko, A., Meromorphic traveling wave solutions of the KuramotoSivashinsky equation. Zh. Mat. Fiz. Anal. Geom. 2(2006), 278-286.
[7] Gopalsamy, K., Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic, Dordrecht, 2010.
[8] Halburd, R. G., Korhonen, R. J., Finite-order meromorphic solutions and the discrete Painlevé equations. Proc. Lond. Math. Soc. 94(2007), 443-474.
[9] Heineman, R. E., Generalized Vandermonde determinants, Trans. Amer. Math. Soc. 31(1929), 464-476.
[10] Kolmanovskii, V. B. and Nosov, V. R., Stability of functional differential equations, Academic Press, London, 1986.
[11] Laine, I., Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics 15, Walter de Gruyter \& Co., Berlin, 1993.
[12] Laine, I. and Yang, C. C., Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. 76(2007), 556-566.
[13] Li, N. and Yang, L. Z., Solutions of nonlinear difference equations, J. Math. Anal. Appl. 452(2017), 1128-1144.
[14] Malmquist, J., Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre, Acta Math. 36(1913), 297-343.
[15] Steinmetz, N., Eigenschaften eindeutiger Lösungen gewöhnlicher Differentialgleichungen im Komplexen, Dissertation, Karlsruhe, 1978.
[16] Yang, C. C. and Ye, Z., Estimates of the proximate function of differential polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83(2007), 50-55.
[17] Yang, C. C. and Yi, H. X., Uniqueness Theory of Meromorphic Functions, Kluwer Academic, Dordrecht, 2003.
[18] Yosida, K., A generalization of a Malmquist's theorem, Jpn. J. Math. 9(1933), 253-256.
[19] Zhang, R. R. and Huang Z. B., On meromorphic solutions of non-linear difference equations, Comput. Methods Funct. Theory. 18(2018), 389-408.

Department of Mathematics, Shandong University, Jinan 250100, Shandong, P. R. China
e-mails: pchu@sdu.edu.cn, qiongyanwang@aliyun.com

[^0]: *This work was partially supported by NSFC of Shandong (No. ZR2018MA014), PCSIRT (no.IRT1264) and Fundamental Research Funds of Shandong University(no. 2017JC019).
 ${ }^{\dagger}$ Corresponding author
 Received by the editors in January 2018 - In revised form in July 2018. Communicated by H. De Bie. 2010 Mathematics Subject Classification : Primary 30D35; Secondary 39 B32.
 Key words and phrases : Delay differential equation; Hyper-order; Meromorphic solution; Nevanlinna theory.

