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Abstract

Let G be a finite group. We say that an element g in G is a vanishing
element if there exists some irreducible character χ of G such that χ(g) = 0.
In this paper, we prove that if the set of vanishing elements of G is the union
of at most three conjugacy classes, then G is solvable.

1 Introduction

Let G be a finite group. We say that an element g in G is a vanishing element if
there exists some irreducible character χ of G such that χ(g) = 0. We denote by
Van(G) the set of vanishing elements of G, in other words,

Van(G) = {g ∈ G|χ(g) = 0 for some χ ∈ Irr(G)}

in which Irr(G) is the set of irreducible characters of G. It is clear that Van(G) is
the union of some conjugacy classes. A result of Burnside (see [6, Theorem 3.15])
assert that Van(G) = ∅ if and only if G is an abelian group.

Many results show that the structure of Van(G) has an strong influence on
the algebraic structure of G. Let p be a prime number. In [4] Dolfi, Pacifici, and
Sanus proved that if the size of every conjugacy class of G contained in Van(G)
is not divisible by p, then G has a normal p-complement and abelian Sylow
p-subgroups. Moreover, Brough in [2] show that if the size of every conjugacy
class of G contained in Van(G) is square free, then G is a supersolvable group.
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In this paper, we provide a relatively short proof for the solvability of finite
groups whose set of vanishing elements is the union of at most three conjugacy
classes, using the Classification of the Finite Simple Groups.

2 Main Theorem

Let p and q be distinct prime numbers. An irreducible character χ of G is said to
be of q-defect zero if q does not divide |G|/χ(1). By Theorem 8.17 of [6], if χ is an
irreducible character of q-defect zero of G, then χ(g) = 0 whenever q divides the
order of g in G.

Lemma 2.1 ([2], Lemma 2.2). Let G be a group, and N a normal subgroup of G. If N
has an irreducible character of q-defect zero, then every element of N of order divisible by
q is a vanishing element in G.

The following result finds non-abelian simple groups which do not have an
irreducible character of q-defect zero for some prime number q.

Corollary 2.2 ([5], Corollary 2). Every finite simple group G has a p-block of defect 0,
for every prime p, except in the following special cases:

• G has no 2-block of defect 0 if it is isomorphic to M12, M22, M24, J2, HS, Suz, Ru,
Co1, Co3, BM, or Alt(n) where n 6= 2m2 + m nor 2m2 + m + 2 for any integer
m.

• G has no 3-block of defect 0 if it is isomorphic to Suz, Co3, or Alt(n) with 3n+ 1 =
m2r where r is squarefree and divisible by some prime q ≡ 2 mod 3.

It follows from Corollary 2.2 that Alt(5) and Alt(6) both have p-blocks of
defect 0 for all primes p.

Lemma 2.3. Let S be a non-abelian simple group and assume there exists a prime q such
that S does not have an irreducible character of q-defect zero. Then there exist irreducible
characters θ1, ..., θ4 of S which extends to Aut(S) and elements x1, ..., x4 of distinct orders
such that θi vanishes on cl(xi) for 1 ≤ i ≤ 4.

Proof. By Corollary 2.2, the group S is either a sporadic group, or Alt(n) for some
n ≥ 7. In the former case, using the Atlas [3], we obtain the following table
containing pairs {θi, xi} for 1 ≤ i ≤ 4, in which characters θ1, ..., θ4 and conjugacy
classes cl(x1), ..., cl(x4) satisfying the required condition.

Group θ1 x1 θ2 x2 θ3 x3 θ4 x4

M12 χ7 6A χ7 8A χ7 3B χ6 5A
M22 χ7 8A χ7 11A χ2 7A χ3 6A
M24 χ3 6A χ7 3B χ7 4C χ5 7A

J2 χ6 2B χ6 3B χ6 6B χ10 5C
HS χ16 4C χ16 2B χ7 5C χ7 7A
Suz χ3 8B χ3 2B χ9 3C χ9 5A
Ru χ2 6A χ11 3A χ11 4D χ9 5B
Co1 χ2 4F χ2 3D χ2 9B χ2 6H
Co3 χ9 6E χ6 7A χ6 4B χ10 5B
BM χ2 10D χ20 5B χ20 4J χ27 9B
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Now, consider the case where S is an Alternating group Alt(n) for n ≥ 7.
We know that

χ(g) = |Fix(g)| − 1, (2.1)

where |Fix(g)| is the number of fixed points of g, is an irreducible character of
Alt(n) and Sym(n). If n is an even number, we set

x1 = (1, ..., n − 1)(n),

x2 = (1, ..., n − 5)(n − 4, n − 3)(n − 2, n − 1)(n),

x3 = (1, ..., n − 6)(n − 5, n − 4, n − 3)(n − 2, n − 1)(n),

x4 = (1, ..., n − 7)(n − 6, n − 5, n − 4)(n − 3, n − 2, n − 1)(n),

and we set

x1 = (1, ..., n − 4)(n − 3, n − 2, n − 1)(n),

x2 = (1, ..., n − 7)(n − 6, ..., n − 1)(n),

x3 = (1, ..., n − 5)(n − 4, ..., n − 1)(n),

x4 = (1, ..., n − 3)(n − 2, n − 1)(n),

if n is an odd number. We can check that χ(xi) = 0 and in each case the
order of xi’s are distinct for n ≥ 10. Moreover, since Aut(Alt(n)) ∼= Sym(n) for
n ≥ 7, then the character χ and conjugacy classes of xi’s satisfying the required
condition for n ≥ 10 and i = 1, ..., 4. Using [3], for 7 ≤ n ≤ 9 we can easily find
irreducible characters θ1, ..., θ4 of Alt(n) which extends to Sym(n) and elements
x1, ..., x4 of distinct orders such that θi vanishes on cl(xi) for 1 ≤ i ≤ 4.

Proposition 2.4 ([1], Lemma 5). Let G be a group, and M = S1 × ... × Sk a minimal
normal subgroup of G, where every Si is isomorphic to a non-abelian simple group S.
If θ ∈ Irr(S) extends to Aut(S), then θ × ... × θ ∈ Irr(M) extends to G.

In the following results, normal subgroups which are the union of at most four
conjugacy classes are characterized.

Theorem 2.5 ([8], Theorem 8 and Proposition 1, 2). Let G be a finite group and H be
a normal subgroup of G which is the union of three conjugacy classes in G. Then one of
the following holds:

(1) H is an elementary abelian p-group of odd order.

(2) H is a metabelian p-group.

(3) H is a Frobenius group with complement Zp.

Theorem 2.6 ([7], Theorem 1). Let G be a finite group and let H be the union of four
conjugacy classes in G. Then the number of characteristic subgroups of H is at most 4,
and one of the following holds:

(1) H is a p-group and H′′ = 1.

(2) H ∼= Alt(5), the alternating group of degree 5, and G/CG(H) ∼= Sym(5).

(3) H is a (solvable) group of order |H| = paqb, where a, b are positive integers.
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Lemma 2.7. Let G be a finite group and H be a non-trivial normal subgroup of G which
is the union of at most four conjugacy classes in G. Then either H is solvable or the set of
vanishing elements of G are the union of at least 6 conjugacy classes.

Proof. If H is the union two conjugacy classes, then H is an elementary abelian
p-group and so solvable. Otherwise, By Theorem 2.5 and 2.6, G is solvable except
case (2) of Theorem 2.6. In this case, since each non-trivial elements of Sym(5) is
a vanishing element and G/CG(H) ∼= Sym(5), then the set of vanishing elements
of G are the union of at least 6 conjugacy classes.

Now, we are ready to prove Main Theorem.

Theorem 2.8. Let G be a finite group. If the set of vanishing elements of G are the union
of at most three conjugacy classes of G, then G is solvable.

Proof. We shall prove by induction on the order of the group. Let M be a minimal
normal subgroup of G. If M is non-abelian, then M = S1 × ... × Sn in which Si

is isomorphic to a non-abelian simple group S. If S has an irreducible character
of q-defect zero θq for each prime number q, then θq × ... × θq is an irreducible
character of q-defect zero of M for each prime number q. By Lemma 2.1, we
deduce that every non-trivial element of M is a vanishing element of G and M is
the union of at most four conjugacy classes of G. Therefore, by Lemma 2.7 M is
solvable which is a contradiction.

Now, we can assume that S does not have any irreducible character of
q-defect zero for some prime number q, thus by Corollary 2.2 and Lemma 2.3,
there exist elements x1, ..., x4 ∈ S of distinct orders and θ1, ..., θ4 ∈ Irr(S) which
extends to Aut(S), such that θi(xi) = 0 for 1 ≤ i ≤ 4. Therefore, by Proposition
2.4, irreducible characters θi × ... × θi of M extends to G and vanishes on xi for
1 ≤ i ≤ 4. Since xi’s are of distinct orders, then xi’s lie in distinct conjugacy
classes of G for 1 ≤ i ≤ 4 and so the conjugacy class of each xi is vanishing in G
which is a contradiction.

Thus M must be abelian and since G/M is solvable by the inductive hypoth-
esis, then G is solvable.

Example 1. Let Alt(5) be a Alternating group of order 60. We can easily check that
the set of vanishing elements of Alt(5) are the union of four conjugacy classes.
Thus, Theorem 2.8 may not remain true if the set of vanishing elements of G are
the union of at least four conjugacy classes.

Example 2. Let G be a Dihedral group D2n of order 2n, where n is odd. We can
check that the set of vanishing elements of G is a conjugacy class and G satisfies
Theorem 2.8.

On the other hand, let k be a finite field of order q. The affine group
G = k ⋊ k∗ is metabelian, and has at least q − 1 conjugacy classes of vanishing
elements. Thus, numerous finite soluble groups fail to satisfy the hypothesis of
Theorem 2.8.
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