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Abstract

In this paper we study a model of population which is described by
positive solutions to the nonlinear boundary value problem

{

−∆u = au − bu2 − c u2

1+u2 − ǫ, x ∈ Ω,

n.∇u + g(u) = 0, x ∈ ∂Ω.

Here Ω is a bounded smooth domain of R
N, ∆ is the Laplacian operator,

a, b, c, ǫ are positive parameters and g ∈ C1
(

[0, ∞), [θ, ∞)
)

is decreasing

for some θ > 0. This model describes the dynamics of the fish populations.
Our existence results are established via the well-known sub-super solution
method.

1 Introduction

In this paper we study the following population model with nonlinear bound-
ary conditions:

{

−∆u = au − bu2 − c u2

1+u2 − ǫ, x ∈ Ω,

n.∇u + g(u) = 0, x ∈ ∂Ω,
(1)

where Ω ⊂ R
N is a bounded domain with sufficiently smooth boundary and

N ≥ 1, ∆ is the Laplace operator, a, b, c, ǫ are positive parameters and
g ∈ C1([0, ∞), [θ, ∞)) is decreasing for some θ > 0.
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(1) arises from population biology of one species. Here u is the population
density and aubu2 represents logistics growth. This model describes a logistically
growing species with grazing of a fixed number of grazers and constant yield
harvesting ( see [10, 11]). The assumptions are that the ecosystem is spatially
homogeneous and the herbivore density is a constant. The rate of grazing is

given by u2

1+u2 . In addition, most ecological systems have some form of predation

or harvesting of the population. For example, hunting or fishing is often used as
an effective means of wildlife management. Here ǫ is the rate of the harvesting
distribution. This model has also been applied to describe the dynamics of fish

populations ( see [13, 14]). In such cases, the term u2

1+u2 corresponds to natural

predation.

In the literature, the homogeneous Dirichlet boundary condition, u = 0; ∂Ω,

Neumann boundary condition, ∂u
∂n ; ∂Ω, and linear combinations of the two afore-

mentioned boundary conditions (known as a Robin boundary condition) have
been employed almost exclusively in reaction diffusion population models. Use
of linear boundary conditions assumes that the behavior of the population on
the boundary is independent of the population density itself. However, ecolo-
gists have reported density dependent emigration rates from patches of habitat.
Empirical studies conducted by several ecologists have even shown a negative
correlation between density and emigration rates, in which animals have a ten-
dency to leave a patch when density is low and stay in the patch when it is high.
This fact brings into question a commonly made assumption in ecology, that ani-
mals unilaterally exhibit positive density dependent dispersal and patch emigra-
tion (see [12, 15, 16]).

The motivation for this study cames from the work in [2] where the authors
established the existence of positive solutions to such problems with Dirichlet
boundary conditions. Hence, the main purpose of this paper is to initiate exten-
sion of their results to the nonlinear boundary conditions. Here, g(u) represents
the population that remains on the boundary when reached. One can refer to
[4, 5, 6, 8, 9] for some recent existence results of population models.

2 Main results

In this section we give our main results. First we prove some nonexistence
results.

Theorem 2.1. Let η = infu∈[0,∞) g(u). Then there is a constant a∗, such that (1)
has no positive solution for a ≤ a∗.

Proof. Let µ1 > 0 and φ > 0 be the first eigenvalue and corresponding positive
eigenfunction of

{

−∆φ = µ1φ, x ∈ Ω,
n.∇φ = −φ, x ∈ ∂Ω.

(2)
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Define a∗ = min{µ1, ηb}. For a ≤ a∗, multiplying (1) by φ, and integrating
over Ω, we obtain

∫

Ω

(−∆u)φdx =
∫

Ω

(auφ − bu2φ − cφ
u2

1 + u2
− ǫφ)dx.

But by Green’s identity we have

∫

Ω

(−∆u)φdx =
∫

Ω

(−∆φ)udx +
∫

∂Ω

(
∂φ

∂n
u −

∂u

∂n
φ)ds

=
∫

Ω

µ1φudx +
∫

∂Ω

(φg(u) − φu)ds.

Thus we have

∫

∂Ω

(φg(u) − φu)ds =
∫

Ω

[

(a − µ1)uφ − bu2φ − cφ
u2

1 + u2
− ǫφ

]

dx. (3)

Since a < µ1, we can see that the right-hand side of (3) is negative. By the maxi-
mum principle, we know that ‖u‖∞ ≤ a

b < η which gives

∫

∂Ω

(φg(u) − φu)ds =
∫

∂Ω

(g(u) − u)φds > 0,

and by this contradiction Theorem 2.1 is proven.

Theorem 2.2. Let a > a∗, b > 0 and c > 0 be fixed. If

ǫ >
a(a − µ1)

b
,

then (1) has no nonnegative solution.

Proof. From (3) we obtain,

ǫ
∫

Ω

φdx ≤ (a − µ1)
∫

Ω

uφdx ≤
a(a − µ1)

b

∫

Ω

φdx,

a contradiction when (4) holds.

Next, we shall establish our existence results via the method of sub and super-
solutions. By a sub-solution of (1) we mean a function ψ : Ω̄ → R satisfying:

{

−∆ψ ≤ aψ − bψ2 − c
ψ2

1+ψ2 − ǫ, x ∈ Ω,

n.∇ψ + g(ψ) ≤ 0, x ∈ ∂Ω,
(4)

and by a super-solution of (1) we mean a function Z : Ω̄ → R satisfying:

{

−∆Z ≥ aZ − bZ2 − c Z2

1+Z2 − ǫ, x ∈ Ω,

n.∇Z + g(Z) ≥ 0, x ∈ ∂Ω.
(5)
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By strict sub and super-solutions we understand functions ψ and Z for which
strict inequalities (4) and (5) hold.

It is well known that if there exist sub and supersolutions ψ and Z respectively
of (1) such that ψ ≤ Z. Then (1) has a solution u such that u ∈ [ψ, Z] ( see [1, 7] ).

Theorem 2.3. Let b > 0 and c > 0 be fixed. Then there exist positive constant a∗
and ǫ∗ such that (1) has a positive solution for a > a∗ and ǫ < ǫ∗.

Proof. Let λ1 is the principle eigenvalue for Laplace’s equation with Dirichlet
boundary conditions. From an anti-maximum principle ( see [3] ), there exists a
σ > 0 such that the solution zλ of

{

−∆z − λz = −1, x ∈ Ω,
z = 0, x ∈ ∂Ω.

(6)

for λ ∈ I = (λ1, λ1 + σ), is positive for x ∈ Ω and is such that ∂zλ
∂n < 0 for x ∈ ∂Ω,

where n is outward normal vector at Ω. Let αλ = ‖zλ‖∞, mλ = inf{m : ∂(mzλ)
∂n ≤

−g(0) − 1}, and a∗ = infλ∈I max{2λ, 2(b + c)mλαλ}. For a > a∗, we can choose
λ∗ ∈ I such that a > max{2λ∗, 2(b + c)mλ∗αλ∗}. For γ ≥ 1, let

K =
(a − λ∗)γαλ∗ + (γ − 1)

(b + c)γ2α2
λ∗

.

First, we state and prove an important claim:

Claim. If a > max{2λ∗, 2(b + c)mλ∗αλ∗}, then

mλ∗

γ
< min{ǫ,

a

2γαλ∗(b + c)
}.

To prove the claim, we note that mλ∗

γ <
a

2γαλ∗(b+c)
follows from

a > 2(b + c)mλ∗αλ∗ . Now, since a > 2λ∗, a > 2(b + c)mλ∗αλ∗ , and γ ≥ 1, the
following are true:

a

2
− λ∗

> 0,

aαλ∗ − λ∗αλ∗ −
a

2
αλ∗ > 0,

aαλ∗ − λ∗αλ∗ − mλ∗(b + c)α2
λ∗ + 1 > 1,

(aαλ∗ − λ∗αλ∗ − mλ∗(b + c)α2
λ∗ + 1)γ > 1,

(a − λ∗)γαλ∗ + γ − 1 > mλ∗(b + c)α2
λ∗γ.

Hence

K =
(a − λ∗)γαλ∗ + (γ − 1)

(b + c)γ2α2
λ∗

>
mλ∗

γ
.

which prove the claim.
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Next, let ǫ∗ = min{ǫ, a
2γαλ∗(b+c)

}. Now for ǫ < ǫ∗ there exists a lc such that

max{ǫ,
mλ∗

γ
} < lc < ǫ∗.

Define ψ = γlczλ∗ . A calculation shows that

−∆ψ = −∆(γlczλ∗) = γlc(−∆zλ∗) = λ∗γlczλ∗ − γlc.

Hence, if we prove

(a − λ∗)γzλ∗ − (b + c)lc(γzλ∗)2 + (γ − 1) ≥ 0, (7)

then

−∆ψ = λ∗γlczλ∗ − γlc

≤ a(γlczλ∗)− (b + c)(γlczλ∗)2 − lc

≤ a(γlczλ∗)− b(γlczλ∗)2 − c(γlczλ∗)2 − ǫ

≤ a(γlczλ∗)− b(γlczλ∗)2 − c(γlczλ∗)2 +
(γlczλ∗)4

1 + (γlczλ∗)2
− ǫ

= a(γlczλ∗)− b(γlczλ∗)2 − c
(γlczλ∗)2

1 + (γlczλ∗)2
− ǫ

= aψ − bψ2 − c
ψ2

1 + ψ2
− ǫ,

and on ∂Ω,

∂ψ

∂n
= γlc

∂zλ∗

∂n
< mλ∗

∂zλ∗

∂n
≤ −g(0)− 1.

To establish (8) we consider G(t) = (a − λ∗)t − (b + c)lct2 + (γ − 1) ≥ 0

for all t ∈ [0, γαλ∗ ]. Notice that G(0) = γ − 1 ≥ 0, G
′
(0) = a − λ∗

> 0, and

G
′′
(0) = −2(b + c)lc < 0. Hence G(t) ≥ 0 for all t ∈ [0, γαλ∗ ] if G(γαλ∗) =

(a − λ∗)t − (b + c)lc(γαλ∗)2 + (γ − 1) ≥ 0. This easily follows from the fact that
lc < K.

To construct a subsolution ψ̂ > 0; Ω̄, let f̂ (u) = au − (b + c)u2 − lc. Then
f̂ is increasing on [0, a

2(b+c)
]. Since γlcαλ∗ <

a
2(b+c)

, there is an δ > 0 such that

γlcαλ∗ + δ <
a

2(b+c)
, and g(δ) ≤ g(0) + 1.

Now define ψ̂ = ψ + δ, then ‖ψ̂‖∞ = lcγαλ∗ + δ. Also,

−∆ψ̂ = −∆ψ ≤ f̂ (ψ) < f̂ (ψ + δ) = f̂ (ψ̂)

< aψ̂ − bψ̂2 − cψ̂2 − c
ψ̂4

1 + ψ̂2
− lc < aψ̂ − bψ̂2 − c

ψ̂2

1 + ψ̂2
− ǫ,

and on ∂Ω,

∂ψ̂

∂n
=

∂ψ

∂n
≤ −g(0)− 1 ≤ −g(δ) < −g(ψ + δ) = g(ψ̂).
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Thus ψ̂ is a subsolution to (1) and it is easy to see that ψ̂ > 0; Ω̄.

Next, we construct a supersolution. Choose a large constant M > 0 such that

aM − bM2 − c M2

1+M2 − ǫ ≤ 0 and M ≥ ψ̂ for x ∈ Ω̄. Let Z = M. Then

−∆Z = 0 > aZ − bZ2 − c
Z2

1 + Z2
− ǫ, x ∈ Ω,

and on ∂Ω

n.∇Z + g(Z) = n.∇(M) + g(M) ≥ 0.

Thus Z is a positive supersolution of (1) for a > a∗ and ǫ < ǫ∗ satisfying Z ≥ ψ̂
and Theorem 2.3 is proven.
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