
Dynamics of multidimensional Cesàro operators
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Abstract

We study the dynamics of the multi-dimensional Cesàro integral operator
on Lp(In), for I the unit interval, 1 < p < ∞, and n ≥ 2, that is defined as

C( f )(x1, . . . , xn) =
1

x1x2 · · · xn

∫ x1

0
. . .

∫ xn

0
f (u1, . . . , un)du1 . . . dun

for f ∈ Lp(In).

This operator is already known to be bounded. As a consequence of the
Eigenvalue Criterion, we show that it is hypercyclic as well. Moreover, we
also prove that it is Devaney chaotic and frequently hypercyclic.

1 Introduction

A Cesàro integral operator is a particular case of a Volterra type operator on function
spaces that is defined as the average:

(C f )(x) :=
1

x

∫ x

0
f (s)ds (1.1)

In this line, the discrete version of this operator considered on sequence spaces
is defined as

(x1, x2, . . .) →

(

x1,
x1 + x2

2
,

x1 + x2 + x3

3
, . . . ,

x1 + . . . + xn

n
, . . .

)

. (1.2)
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Volterra type operators (and, in particular, Cesàro operators) have been widely
studied in linear dynamics. We recall that an operator T ∈ L(X) is hypercyclic ei-
ther if or as long as there is some x ∈ X such that {Tnx : n ∈ N} is dense in
X, and T is supercyclic if {λTnx : λ ∈ C, n ∈ N} is dense in X, too. Related to
this, Cesàro hypercyclicity consists on the density of the Cesàro means of a given
operator T ∈ L(X) for some element in the space X, i.e. there exists some x ∈ X
such that {n−1(∑n

k=0 Tkx) : n ∈ N} is dense in X. We recall that T ∈ L(X) is said
to be Devaney chaotic if it is hypercyclic and it has a dense set of periodic points,
and T ∈ L(X) is said to be frequently hypercyclic if there exists some x ∈ X such
that the set N(x, U) := {n ∈ N : Tnx ∈ U} has positive lower density, c.f. [13].
Further information concerning linear dynamics can be found in [1, 21, 27].

The study of the dynamics of the Cesàro means was considered by León-
Saavedra in [36]. Its study is motivated by some questions coming from
ergodic theory [25, 38, 40, 42]. Cesàro hypercyclicity is equivalent to the density
of {n−1Tnx : n ∈ N} for some x ∈ X, which yields that Cesàro hypercyclicity is
a special kind of supercyclicity. The classes of Cesáro-hypercyclic operators and
of hypercyclic operators have nonempty intersection but neither is contained in
the other [36], see also [22, 23]. Cesàro hypercyclicity for weighted shifts was
considered in [36]. The existence of common Cesàro hypercyclic vectors has been
analyzed in [24].

Let I = [0, 1]. The dynamics of the Cesàro integral operator has been con-
sidered on the spaces Lp(I), with 1 < p < ∞, and on C(I), the space of con-
tinuous functions on I endowed with the supremum norm. More precisely, it is
known to be hypercyclic on Lp(I), with 1 < p < ∞, as a consequence of the Full
Müntz-Szász theorem [26] and of the Eigenvalue Criterion, see below. Moreover,
it is Devaney chaotic, it contains hypercyclic subspaces, but it is not hyponormal.
In contrast, on C(I) it is not even supercyclic [37]. This last statement can be com-
pared with a previous result of González & León-Saavedra who showed that,
despite being cyclic, the Cesáro integral operator is not supercyclic, nor weakly
supercyclic on L2(R+) [30].

Power bounded and mean ergodic properties of the Cesàro integral opera-
tor and their connection with hypercyclicity have been recently considered by
Albanese et al in [3, 5], as well as the hypercyclicity of discrete Cesàro operator
[4, 6, 8, 7, 8].

We study the dynamics of the multi-dimensional Cesáro integral operator on
Lp(In), for 1 < p < ∞ and n ≥ 2, that is defined as

C( f )(x1, . . . , xn) =
1

x1x2 · · · xn

∫ x1

0
. . .

∫ xn

0
f (u1, . . . , un)du1 . . . dun, f ∈ Lp(In).

(1.3)

This operator is already known to be bounded, cf. [20]. As a consequence of
the Eigenvalue Criterion, we will show that it is hypercyclic. Besides, we also
prove that it is Devaney chaotic and even frequently hypercyclic.
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2 Main results

Let Ω := {z ∈ C : ℜ(z) > −1/p} for 1 < p < ∞. We first observe that if C acts
on Lp(In), n > 2, then

C(xα1
1 · · · xαn

n ) =
1

(α1 + 1)(α2 + 1) · · · (αn + 1)
xα1

1 · · · xαn
n , (2.1)

for every (α1, . . . , αn) ∈ Ωn.
The spectrum of this operator was known thanks to Leibowitz [34, 35], see

also [19]. The abundance of these eigenvectors will permit us to determine the
dynamics of the Cesàro integral operator. The following result is inspired in the
Hypercyclicity Criterion. Its formulation is expressed in terms of the abundance
of eigenvectors of C [11, 33].

Theorem 2.1. (Eigenvalue Criterion) Let T ∈ L(X) be a bounded operator on a complex
Banach space X. If the sets

span
⋃

|λ|<1

ker(T − λI) and span
⋃

|λ|>1

ker(T − λI) (2.2)

are dense in X, then T is hypercyclic.

This result was later improved by Grivaux, just restricting to the part of the
spectrum contained in the unit circle S1 [32], see also [14].

Theorem 2.2. (Eigenvalue Criterion for Frequent Hypercyclicity) Let T ∈ L(X) be a
bounded operator on a complex Banach space X. If the set

span
⋃

λ∈S1\D

ker(T − λI), (2.3)

is dense in X for every countable subset D ⊂ S1, then T is frequently hypercyclic.

In order to apply the previous results to C, we will take into account the
following facts:

Theorem 2.3. [41, p. 32]. The zero set of an analytic function in n ≥ 2 variables is
never discrete if it is non-empty. In particular, it has a limit point.

The lack of analyticity can permit the existence of an abundance of surprising
everywhere surjective functions where the zero set can have nearly any admissi-
ble description [9].

Theorem 2.4. If g ∈ Lp(I) and
∫ 1

0 g(x)xλdx = 0 for all λ in a set with an accumulation
point, then g = 0 identically.

Let ϕ : Ωn → C be the analytic map

ϕ(z1, . . . , zn) =
1

(z1 + 1)(z2 + 1) · · · (zn + 1)
. (2.4)

The next lemma is based on the nice surjective properties of this function on
several complex variables and is a generalization of Theorem 2.4.
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Lemma 2.5. Let n ≥ 1. If Γ ⊂ ϕ(Ωn) with an accumulation point, then

span{xα1
1 xα2

2 · · · xαn
n : (α1, . . . , αn) ∈ ϕ−1(Γ)} (2.5)

is dense in Lp(In), where 1 < p < ∞.

Proof. We can assume n ≥ 2, since the result is essentially known for n = 1. We
will prove that if f ∈ Lp(In) where 1/p + 1/q = 1 and

∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (x1, x2, . . . , xn)x

α1
1 xα2

2 · · · xαn
n dxn . . . dx1 = 0 (2.6)

for all (α1, . . . , αn) ∈ ϕ−1(Γ), then f (x1, . . . , xn) = 0.
Fix λ ∈ Γ. We first point out the symmetry of the sets ϕ−1(λ). Take

(α1, . . . , αn) ∈ Ωn enjoying

1

(α1 + 1)(α2 + 1) · · · (αn + 1)
= λ. (2.7)

By symmetry, if we take any permutation over a set of n elements, σ ∈ Σn,
we have (α1, . . . , αn) ∈ ϕ−1(λ) if and only if (ασ−1(1), . . . , ασ−1(n)) ∈ ϕ−1(λ).
Combining this with Theorem 2.3, we can certainly find a set Θ1 ⊂ Ω having
a limit point, and numbers α1j ∈ Ω, 2 ≤ j ≤ n, such that

1

(z1 + 1)(α12 + 1) . . . (α1n + 1)
= λ for all z1 ∈ Θ1. (2.8)

This can be done by considering the projections onto each coordinate, and
taking into account that if there is a limit point, then at least, this can be seen
through one of the projections.

Now fix z1 ∈ Θ1. From (2.8), we have an analytic function in n − 1 variables
and hence, using the same argument as above, we find a set Θ2 ⊆ Ω with a limit
point such that

1

(z1 + 1)(z2 + 1)(α23 + 1) . . . (α2n + 1)
= λ for all z2 ∈ Θ2, (2.9)

for some α2j ∈ Ω, 3 ≤ j ≤ n. Note that Θ2 depends on z1. Fixing z2 ∈ Θ2, we
repeat the process in order to get Θ3, . . . , Θn−1 ⊆ Ω with accumulation points.
We cannot go further with the previous argument to find Θn, since the zero set of
a certain nonzero one variable analytic map is always discrete.

For finding such a set Θn ⊂ Ω with a limit point, we will use the fact that
our given set Γ is having a limit point in ϕ(Ωn). Our recursively chosen element
(z1, . . . , zn−1) verifies

1

(z1 + 1)(z2 + 1) . . . (zn−1 + 1)(αnn + 1)
= λ, (2.10)

for some αnn ∈ Ω. Consider the open set

1

(z1 + 1)(z2 + 1) . . . (zn−1 + 1)(Ω + 1)
,
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which contains λ as an accumulation point. Hence there exists a subset Γ′ ⊆ Γ,
with also λ as a limit point, such that

Γ′ ⊂
1

(z1 + 1)(z2 + 1) . . . (zn−1 + 1)(Ω + 1)
.

As λ is non-zero, we find Θn with limit points such that, for each zn ∈ Θn, we
have

1

(z1 + 1)(z2 + 1) . . . (zn−1 + 1)(zn + 1)
∈ Γ′ ⊆ Γ. (2.11)

Indeed, one can define Θn as

Θn =
1

(z1 + 1) . . . (zn−1 + 1)Γ′
− 1, (2.12)

and it has limit points as λ 6= 0.
Consider the recursively chosen points z1, . . . , zn with zn varying in Θn and

rewrite equation (2.6) as

∫ 1

0

(

∫ 1

0
...

∫ 1

0
f (x1, x2, ..., xn)x

z1
1 xz2

2 ...x
zn−1
n−1 dx1...dxn−1

)

xzn
n dxn = 0. (2.13)

By Theorem 2.4 , the integral inside brackets vanishes for all xn ∈ I. Rewrite
this n − 1 multiple integral in the same fashion as before and vary zn−1. Contin-
uing in this way, we get

∫ x1

0
f (x1, x2, . . . , xn)x

z1
1 dx1 = 0 for all x2, x3, ..., xn. (2.14)

Again, as z1 is an arbitrary point in Θ1, which has limit points in Ω, we con-
clude f (x1, . . . , xn) = 0 in all coordinates.

From the above lemma, our main result follows:

Theorem 2.6. The operator C is frequently hypercyclic and Devaney chaotic on Lp(In),
for 1 < p < ∞.

Proof. To prove the frequent hypercyclicity, we show that the span of all eigen-
vectors corresponding to the eigenvalues in a set S1 \ D is dense in Lp(In) for
all countable subsets D ⊆ S1. Recall that the eigenvalues of C are of the form
ϕ(z1, . . . , zn), with (z1, . . . , zn) ∈ Ωn. There is some arc S ⊂ S1 with S ⊂ σp(C) ∩
ϕ(Ωn). The set S \ D is uncountable, and then it contains some of its limit points.
Thus, by Lemma 2.5 the operator C satisfies the Eigenvalue Criterion.

To show the Devaney chaos, we only have to check that the periodic points of
C form a dense subspace of Lp(In). Indeed, choose some rational sequence {θk}k

with distinct terms in [0, 1] so that {e2πiθk}k converges to 1. Setting Γ = {e2πiθk :
k ≥ 1}, we see that C is Devaney chaotic.
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The quest for infinite-dimensional closed subspaces all of whose non-zero vec-
tors are hypercyclic was raised in [17]. Since then, it has been one of the main
topics of lineability theory [1, 2, 18]. In order to prove the existence of sub-
spaces of frequently hypercyclic vectors for C, we will make use of the follow-
ing result, which is inspired in the criterion for subspaces of hypercyclic vectors
stated by Montes [39], see also [31], and in the Frequent Hypercyclicity Criterion
[12, 13, 15].

Theorem 2.7. [16] Suppose that T satisfies the Eigenvalue Criterion on a complex
Banach space X. Let E ⊂ X be a closed infinite dimensional subspace E such that
limk→∞ Tkx = 0 for all x ∈ E. Then T has a frequently hypercyclic subspace.

In particular this is so if ker(T − µI) is infinite dimensional for some |µ| < 1.

Theorem 2.8. The operator C admits frequently hypercyclic subspaces on Lp(In), with
1 < p < ∞.

Proof. Note that C satisfies the Eigenvalue Criterion in Lp(In). We first consider
the case n ≥ 2 and prove that ker(C −µI) is infinite dimensional for some |µ| < 1.
Indeed, as the function ϕ is analytic on Ωn, it is an open map. As 1 ∈ ϕ(Ωn), there
exists (a1, . . . , an) and |µ| < 1 such that ϕ(α1, . . . , αn) = µ.

1

(α1 + 1) · · · (αn + 1)
= µ. (2.15)

Again, by Theorem 2.3, the solution set of the above equation (i.e. the zero set
of the analytic function ϕ − µ) is never discrete and so, it is an infinite set. Now,
if (α1, . . . , αn) 6= (β1, . . . , βn) satisfying (2.15), then the eigenfunctions xα1

1 · · · xαn
n

and x
β1
1 · · · x

βn
n are linearly independent. Hence ker(C − µI) is infinite dimen-

sional.
Next, we consider the case n = 1. Let (ak)k be an infinite sequence such that

Ma := span
{

xak : k ≥ 1
}

(2.16)

is a proper subspace of Lp(I), where the closure is taken in the || · ||p norm. Such
a space is called a Müntz space; see [29] for details. By [29, Cor. 6.2.4], if (ak)k

is an strictly increasing sequence of positive numbers with ∑
∞
k=1

1
ak

< ∞ and

infk(ak+1 − ak) > 0, then every element f ∈ Mα has an analytic expansion

f (x) =
∞

∑
k=1

ckxak (2.17)

in [0, 1) and in particular, f is continuous on [0, 1). (For example, one can choose
ak := k2). Observe that f (0) = 0 for all f ∈ Ma. Now consider the subspace

Ya =
{

χ[0,1/2] f : f ∈ Ma

}

, (2.18)

which is an infinite dimensional, closed subspace in Lp[0, 1]. Moreover, we have

C(Ya) ⊂ C[0, 1]. By a result of Galaz-Fontes and & Solı́s [28], we have that Ck(C f )
converges to the constant function C f (0) in supremum norm for all f ∈ C[0, 1].
But, for all f ∈ Ya, we have that C f is continuous and vanishes at 0. Thus, the
sequence (Ck( f ))k converges to 0 in the p-norm for all f ∈ Ya. The conclusion is
obtained by an application of Theorem 2.7.
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We conclude with some remarks:

Remark 2.9. The Cesàro operator acting on Lp(In) is also Devaney chaotic and
frequently hypercyclic for all 0 < p ≤ 1, which follows as the embedding of
L2(In) into Lp(In) is continuous.

Remark 2.10. The Cesàro operator satisfies the Eigenvalue Criterion in Lp(In),
1 < p < ∞. Hence it is topologically mixing on all Lp(In). Moreover, for any
strictly increasing sequence of natural numbers (mk)k, the family {Cmk : k ≥ 1} is
hypercyclic on these spaces.

Remark 2.11. In the same way as in [3, Th. 4.2], by using [10, Th.2.1], the re-
sults obtained in Lp(In) can be extended to the Fréchet spaces L

p
loc(R

+) with
1 < p < ∞, consisting of all complex valued measurable functions on positive
real semi-axis which are p-th power integrable on each interval [0, j], for all j ∈ N.
Extensions to multidimensional Fréchet spaces could also be considered.
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[25] N. Dunford. Spectral theory. I. Convergence to projections. Trans. Amer.
Math. Soc., 54:185–217, 1943.
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