Divergent series of Taylor coefficients on almost all slices

Piotr Kot Marek Karaś

Abstract

We show that there exists a holomorphic function, continuous to the boundary in a bounded, balanced, strictly pseudoconvex domain Ω with C^{2} boundary such that almost every slice function has a series of Taylor coefficients divergent with every power $p \in(0,2)$.

1 Introduction

1.1 Historical background.

In [10, 7.2] Rudin gives some examples of boundary behavior of holomorphic functions in the unit balls of dimensions 2 and 3. Ryll and Wojtaszczyk observed [8, Theorem $1.2+$ Remark 1.10] that similar examples can be constructed in arbitrary dimension. The crucial tool used in reminded constructions is [8, Theorem 1.2]: there exist polynomials $\left\{p_{n}\right\}$ homogeneous of degree n on the unit ball B^{d} such that

$$
\begin{equation*}
\left\|p_{n}\right\|_{2}=1 \text { and }\left\|p_{n}\right\|_{\infty} \leq \frac{2^{d}}{\sqrt{\pi}} \tag{1.1}
\end{equation*}
$$

This tool can be used to convert some one dimensional examples into multidimensional cases. An interesting example of such an application is presented in paper [7].

It is known that there exists a holomorphic function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in the disk-algebra and such that $\sum_{n=0}^{\infty}\left|a_{n}\right|^{p}=\infty$ for all $p<2$. Wojtaszczyk generalized this fact.

[^0]
1.2 Motivations.

Our inspiration is paper [7], where it was proven that there exists a function $f \in A\left(\mathbb{B}^{d}\right)$ such that almost every slice function of f has a series of Taylor coefficients divergent with every power $p<2$.

We are going to strengthen the Wojtaszczyk's result [7] by showing that:

1. the unit ball \mathbb{B}^{d} can be replaced by Ω bounded, balanced, strictly pseudoconvex domain with C^{2} boundary,
2. it is possible to construct f in the elementary way.

We use a fact [2, Theorem 3.2] about commonly bounded holomorphic functions which are big in each boundary point. Let us note that [2, Theorem 3.2] can be used in the construction of an inner function (see [2]).

Wojtaszczyk uses (1.1) in [7, Proposition] to describe surjectivity of the operator

$$
T: A\left(\mathbb{B}^{d}\right) \ni f \rightarrow\left(\left\langle f, p_{2^{n}}\right\rangle\right)_{n=0}^{\infty} \in l_{2}
$$

by duality theorem. In one variable, the constructive proof of such surjectivity can be found in [1]. As Wojtaszczyk mentioned it would be interesting to have such a constructive proof also in the case of the unit ball \mathbb{B}^{d}. We don't know if similar result can be obtained for other domains than \mathbb{B}^{d}. Wojtaszczyk uses also "scrambling lemma", which needs unitary mappings $A\left(\mathbb{B}^{d}\right)$. A lack either of the mentioned surjectivity or "scrambling lemma" does not enable to generalize the Wojtaszczyk's proof.

1.3 Notations.

Let Ω be a bounded, balanced, strictly pseudoconvex domain with the boundary of class C^{2}. Now we denote σ as a standard circular invariant measure on $\partial \Omega$ with $\sigma(\partial \Omega)=1$.

Given $f \in A(\Omega)$ we study the slice function $\mathbb{B}^{1} \ni \lambda \rightarrow f(\lambda z)$ and the middle value $\|f\|_{z}:=\sqrt{\int_{0}^{1}\left|f\left(e^{2 \pi i t} z\right)\right|^{2} d t}$ of holomorphic function f on a circle given by the point $z \in \partial \Omega$.

We need the following fact:
Theorem 1. (see [2, Theorem 3.2], [5, Lemma 2.1]). Let $m \in \mathbb{N}$. There exists a natural number $N_{0}=N_{0}(\partial \Omega)$ such that, if $\varepsilon \in(0,1), h$ is a continuous, strictly positive function on $\partial \Omega$, then there exist polynomials $f_{1}, \ldots, f_{N_{0}} \in A(\Omega)$ such that:

1. each nonzero term in the expansion of $f_{j}(f o r ~ a l l ~ j)$ has a degree greater than m,
2. $\left|f_{j}\right|<h$ on $\partial \Omega$,
3. $\frac{1}{2} h<\max _{j=1, \ldots, N_{0}}\left|f_{j}\right|$ on $\partial \Omega$.

The theorem above is proved in a more general situation e.g. for a domain with Holomorphic Support Function but we consider here only a simplified version for a strictly pseudoconvex case.

1.4 Main result.

We obtain the following fact:
Theorem. Assume that Ω is a bounded, balanced, strictly pseudoconvex domain with the boundary of class C^{2}. There exists a holomorphic function $f \in A(\Omega)$ such that almost every slice function has a series of Taylor coefficients divergent with every power $p \in(0,2)$.

To obtain Taylor series of a function f it is sufficient to find a homogeneous expansion:

$$
f(z)=\sum_{n=0}^{\infty} p_{n}(z)
$$

where p_{n} is a homogeneous polynomial of a degree n. Now we have Taylor coefficients expansion for a slice function:

$$
\lambda \rightarrow f(\lambda z)=\sum_{n=0}^{\infty} p_{n}(z) \lambda^{n}
$$

so we construct a holomorphic function $f \in A(\Omega)$ with:

$$
\sum_{n=0}^{\infty}\left|p_{n}(z)\right|^{s}=\infty
$$

for $s \in(0,2)$ and σ-almost all $z \in \partial \Omega$. Note that if f is continuous to the boundary, then (for all $z \in \partial \Omega$):

$$
\sum_{n=0}^{\infty}\left|p_{n}(z)\right|^{2}<\infty
$$

2 Holomorphic functions with divergent taylor series

Lemma 2. There exists a constant $\gamma>0$ such that for $\kappa \in \mathbb{N}, \tilde{\varepsilon}>0$, and a positive, continuous function h on $\partial \Omega$ we can choose a polynomial p and a compact subset K of $\partial \Omega$ such that:

- each nonzero monomial in p has a degree greater than κ,
- $|p|<h$ on $\partial \Omega$,
- $\|p\|_{z} \geq \gamma\|h\|_{z}$ for $z \in K$,
- $\sigma(K)>1-\tilde{\varepsilon}$.

Proof. Let $\gamma>0$ be such that $\gamma=\frac{1}{2 \sqrt{N_{0}}}(1-\gamma)$ where $N_{0} \in \mathbb{N}$ is the constant from Theorem 1. We construct a sequence of polynomials p_{n} such that we have the following conditions fulfilled:

1. each nonzero term in the expansion of p_{n} has a degree greater than κ and less than the degree of each term in the expansion of p_{n+1},
2. $\left|\sum_{k=1}^{n} p_{k}\right|<h$ on $\partial \Omega$,
3. if $n>1$ then the compact set $K_{n}:=\left\{z \in \partial \Omega:\left\|\sum_{k=1}^{n} p_{k}\right\|_{z} \geq \gamma\|h\|_{z}\right\}$ has the following properties:
(a) $K_{n} \subset K_{n+1}$,
(b) $\sigma\left(K_{n+1} \backslash K_{n}\right) \geq \frac{1}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{n}\right)$.

Let $p_{1}:=0$. Then $K_{1}=\varnothing$ and the conditions (1)-(2) are fulfilled. Now suppose that we have chosen p_{1}, \ldots, p_{n} according to (1)-(3). Due to the Theorem 1 there exist polynomials $g_{1}, \ldots, g_{N_{0}}$ such that:

- each monomial in g_{j} has a degree greater than monomials' degrees in p_{1}, \ldots, p_{n},
- $\left|g_{j}\right|<h-\left|\sum_{k=1}^{n} p_{k}\right|$ on $\partial \Omega$,
- $\frac{1}{2}\left(h-\left|\sum_{k=1}^{n} p_{k}\right|\right)<\max _{j=1, \ldots, N_{0}}\left|g_{j}\right|$ on $\partial \Omega$.

If $z \in \partial \Omega$ then

$$
\begin{aligned}
\sum_{j=1}^{N_{0}}\left\|g_{j}\right\|_{z}^{2} & =\sum_{j=1}^{N_{0}} \int_{0}^{1}\left|g_{j}\left(e^{2 \pi i t} z\right)\right|^{2} d t \geq \int_{0}^{1} \max _{j=1, \ldots, N_{0}}\left|g_{j}\left(e^{2 \pi i t} z\right)\right|^{2} d t \\
& \geq \int_{0}^{1} \frac{1}{4}\left|\left(h-\left|\sum_{k=1}^{n} p_{k}\right|\right)\left(e^{2 \pi i t} z\right)\right|^{2} d t=\frac{1}{4}\left\|h-\left|\sum_{k=1}^{n} p_{k}\right|\right\|_{z}^{2}
\end{aligned}
$$

In particular there exists $j_{z} \in\left\{1, \ldots, N_{0}\right\}$ such that

$$
\left\|g_{j_{z}}\right\|_{z}^{2} \geq \frac{1}{4 N_{0}}\left\|h-\left|\sum_{k=1}^{n} p_{k}\right|\right\|_{z}^{2}
$$

Now we can define

$$
V_{j}:=\left\{z \in \partial \Omega \backslash K_{n}:\left\|g_{j}\right\|_{z}^{2} \geq \frac{1}{4 N_{0}}\left\|h-\left|\sum_{k=1}^{n} p_{k}\right|\right\|_{z}^{2}\right\}
$$

and observe that $\partial \Omega \backslash K_{n}=\bigcup_{j=1}^{N_{0}} V_{j}$. In particular there exists $j \in\left\{1, \ldots, N_{0}\right\}$ such that $\sigma\left(V_{j}\right) \geq \frac{1}{N_{0}} \sigma\left(\partial \Omega \backslash K_{n}\right)$. We can choose a compact set $T \subset V_{j}$ such that $\sigma(T) \geq \frac{1}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{n}\right)$.

We define $p_{n+1}=g_{j}$ and observe that p_{n+1} fulfills the properties (1)-(2).
Let us consider $K_{n+1}=\left\{z \in \partial \Omega:\left\|\sum_{k=1}^{n+1} p_{k}\right\|_{z} \geq \gamma\|h\|_{z}\right\}$. Since $p_{1}, \ldots, p_{n}, p_{n+1}$ are orthogonal in an L^{2} space on slices i.e. $\left\|\sum_{k=1}^{n+1} p_{k}\right\|_{z}^{2}=\sum_{k=1}^{n+1}\left\|p_{k}\right\|_{z}^{2}$ for all
$z \in \partial \Omega$, we can easily observe that $\left\|\sum_{k=1}^{n+1} p_{k}\right\|_{z} \geq\left\|\sum_{k=1}^{n} p_{k}\right\|_{z}$ for all $z \in \partial \Omega$, which implies that $K_{n} \subset K_{n+1}$.

Let $z \in T$. Since $T \subset \partial \Omega \backslash K_{n}$ we have $\left\|\sum_{k=1}^{n} p_{k}\right\|_{z}<\gamma\|h\|_{z}$ which implies

$$
\begin{aligned}
\left\|p_{n+1}\right\|_{z} & =\left\|g_{j}\right\|_{z} \geq \sqrt{\frac{1}{4 N_{0}}}\left\|h-\left|\sum_{k=1}^{n} p_{k}\right|\right\|_{z} \geq \frac{1}{2 \sqrt{N_{0}}}\left(\|h\|_{z}-\left\|\sum_{k=1}^{n} p_{k}\right\|_{z}\right) \\
& \geq \frac{1}{2 \sqrt{N_{0}}}\left(\|h\|_{z}-\gamma\|h\|_{z}\right) \geq \frac{1}{2 \sqrt{N_{0}}}(1-\gamma)\|h\|_{z}=\gamma\|h\|_{z}
\end{aligned}
$$

but $\left\|\sum_{k=1}^{n+1} p_{k}\right\|_{z} \geq\left\|p_{n+1}\right\|_{z}$, so $T \subset K_{n+1}$. In particular

$$
\sigma\left(K_{n+1} \backslash K_{n}\right) \geq \sigma(T) \geq \frac{1}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{n}\right)
$$

We have constructed a sequence polynomials $\left\{p_{k}\right\}_{k \in \mathbb{N}}$ which fulfills the properties (1)-(3).

Since (for all $N \in \mathbb{N}$):

$$
\begin{aligned}
1 & \geq \sum_{n=1}^{\infty} \sigma\left(K_{n+1} \backslash K_{n}\right) \geq \sum_{n=1}^{\infty} \frac{1}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{n}\right) \geq \sum_{n=1}^{N} \frac{1}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{N}\right) \\
& =\frac{N}{2 N_{0}} \sigma\left(\partial \Omega \backslash K_{N}\right)
\end{aligned}
$$

there exists $N \in \mathbb{N}$ such that $\sigma\left(\partial \Omega \backslash K_{N}\right)<\tilde{\varepsilon}$. In particular $\sigma\left(K_{N}\right)>1-\tilde{\varepsilon}$ and we can define $K=K_{N}$ and $p=\sum_{k=1}^{N} p_{k}$, which now fulfills all the required properties.
Lemma 3. Let $\varepsilon, a \in(0,1)$ and $m \in \mathbb{N}$. There exists a natural number N and polynomials p_{1}, \ldots, p_{N} such that:

- each nonzero term in the expansion of p_{n} has a degree greater than m and less than the degree of each term in the expansion of p_{n+1},
- $\left|p_{n}\right|<a$ on $\partial \Omega$,
- $\left|\sum_{k=1}^{N} p_{k}\right|<1$ on $\partial \Omega$,
- $\sigma\left(z \in \partial \Omega:\left\|\sum_{k=1}^{N} p_{k}\right\|_{z} \geq \frac{1}{2}\right)>1-\varepsilon$

Proof. Let $\gamma>0$ be the number from Lemma 2. We define a sequence of polynomials $\left\{p_{k}\right\}_{k=1}^{\infty}$ with the following properties:

1. each nonzero term in the expansion of p_{k} has a degree greater than m and less than the degree of each term in the expansion of p_{k+1},
2. $\left|\sum_{j=1}^{k} p_{j}\right|<1$ on $\partial \Omega$,
3. $\left|p_{k}\right|<\min \left\{a, 1-\left|\sum_{j=1}^{k-1} p_{j}\right|\right\}$ on $\partial \Omega,(k>1)$,
4. if $k>1$ then the circular, compact set:

$$
T_{k}:=\left\{z \in \partial \Omega:\left\|p_{k}\right\|_{z} \geq \gamma\left\|\min \left\{a, 1-\left|\sum_{j=1}^{k-1} p_{j}\right|\right\}\right\|_{z}\right\}
$$

has the property: $\sigma\left(T_{k}\right)>1-\varepsilon 2^{-k}$.
Let $p_{1}=0$. The properties (1)-(3) are fulfilled for $k=1$. Now suppose that we have defined p_{1}, \ldots, p_{k} with the properties (1)-(4). Due to Lemma 2 used for the data:

$$
\kappa:=\max _{j} \operatorname{deg} p_{j}, \tilde{\varepsilon}:=\varepsilon 2^{-k-1}, h:=\min \left\{a, 1-\left|\sum_{j=1}^{k} p_{j}\right|\right\}
$$

there exists a polynomial p_{k+1} with the following properties:

- each nonzero monomial in p_{k+1} has a degree greater than κ,
- $\left|p_{k+1}\right|<h$ on $\partial \Omega$,
- $\sigma\left(\left\{z \in \partial \Omega:\left\|p_{k+1}\right\|_{z} \geq \gamma\|h\|_{z}\right\}\right)>1-\tilde{\varepsilon}=1-\varepsilon 2^{-k-1}$.

Now we observe that the properties (1),(3),(4) are obvious. Since:

$$
\left|\sum_{j=1}^{k+1} p_{j}\right| \leq\left|\sum_{j=1}^{k} p_{j}\right|+\left|p_{k+1}\right|<\left|\sum_{j=1}^{k} p_{j}\right|+1-\left|\sum_{j=1}^{k} p_{j}\right|=1
$$

we obtain the property (2), which finishes the construction of the sequence $\left\{p_{k}\right\}$.
Let us consider $\left\{p_{k}\right\}_{k=1}^{\infty}$ and $\left\{T_{k}\right\}_{k=2}^{\infty}$ with properties (1)-(4). We can define a compact, circular set $T:=\bigcap_{j=2}^{\infty} T_{j}$ and calculate:

$$
\sigma(\partial \Omega \backslash T) \leq \sum_{j=2}^{\infty} \sigma\left(\partial \Omega \backslash T_{j}\right)<\sum_{j=2}^{\infty} \varepsilon 2^{-j}<\varepsilon
$$

In particular $\sigma(T)>1-\varepsilon$. Let us consider a sequence of continuous functions: $g_{k}: T \ni z \mapsto\left\|\sum_{j=1}^{k} p_{j}\right\|_{z}$. Since $g_{k}<1$ and $g_{k} \leq g_{k+1}$ there exists $\lim _{k \rightarrow \infty} g_{k}(z) \leq$ 1. In particular $\sum_{j=1}^{\infty}\left\|p_{j}\right\|_{z}^{2} \leq 1$, which implies that $\lim _{k \rightarrow \infty}\left\|p_{j}\right\|_{z}=0$ for $z \in T$. Since $\left\|p_{k}\right\|_{z} \geq \gamma\left\|\min \left\{a, 1-\left|\sum_{j=1}^{k-1} p_{j}\right|\right\}\right\|_{z}$ we have $\lim _{k \rightarrow \infty}\left\|1-\left|\sum_{j=1}^{k-1} p_{j}\right|\right\|_{z}=0$, which gives us $\sum_{j=1}^{\infty}\left\|p_{j}\right\|_{z}^{2}=1$ for $z \in T$. Since $\left\{g_{k}\right\}$ is a bounded, increasing sequence of continuous functions with limits equal to 1 for all points $z \in T$ therefore the sequence $\left\{g_{k}\right\}$ is uniformly convergent to 1 on T and hence there exists a natural number N such that $g_{N} \geq \frac{1}{2}$ on T. In particular

$$
T \subset\left\{z \in \partial \Omega:\left\|\sum_{k=1}^{N} p_{k}\right\|_{z} \geq \frac{1}{2}\right\}
$$

which finishes the proof:

$$
\sigma\left(\left\{z \in \partial \Omega:\left\|\sum_{k=1}^{N} p_{k}\right\|_{z} \geq \frac{1}{2}\right\}\right) \geq \sigma(T)>1-\varepsilon
$$

Now we are able to prove the main Theorem:
Proof. Given $j \in \mathbb{N}$ due to Lemma 3 there exist a natural number N_{j} and nonzero polynomials $p_{j, 1}, \ldots, p_{j, N_{j}}$ such that

1. each nonzero term in the expansion of $p_{j, i}$ has a degree less than the degree of each term in the expansion of $p_{j, i+1}$ or $p_{j+1, k}$ for all $1 \leq k \leq N_{j+1}$,
2. $\left|p_{j, i}\right|<2^{-j}$ on $\partial \Omega$,
3. $\left|\sum_{i=1}^{N_{j}} p_{j, i}\right|<1$ on $\partial \Omega$,
4. if $T_{j}:=\left\{z \in \partial \Omega:\left\|\sum_{i=1}^{N_{j}} p_{j, i}\right\|_{z} \geq \frac{1}{2}\right\}$ then $\sigma\left(T_{j}\right)>1-2^{-j}$.

Let us define

$$
f=\sum_{j=1}^{\infty} \frac{1}{j^{2}} \sum_{i=1}^{N_{j}} p_{j, i}
$$

The property (3) guarantees that we have just defined a holomorphic function which is continuous to the boundary.

Given j, i let $I(j, i)$ denotes all degrees of homogeneous polynomials in homogeneous expansion of $p_{j, i}$:

$$
p_{j, i}=\sum_{m \in I(j, i)} p_{j, i, m}
$$

where $p_{j, i, m}$ denotes a homogeneous polynomial of a degree m. Using these homogeneous polynomials we can obtain the expansion in Taylor coefficients for slice functions of f :

$$
f(\lambda z)=\sum_{j=1}^{\infty} \frac{1}{j^{2}} \sum_{i=1}^{N_{j}} \sum_{m \in I(j, i)} p_{j, i, m}(z) \lambda^{m}
$$

Let $s \in(0,2)$. We can observe $\sum_{m}\left\|p_{j, i, m}\right\|_{z}^{2}=\left\|p_{j, i}\right\|_{z}^{2}$. Since $0<\frac{s}{2}<1$ we can use a triangle inequality in the metric space $l^{\frac{s}{2}}$ to achieve:

$$
\left\|p_{j, i}\right\|_{z}^{s}=\left(\left\|p_{j, i}\right\|_{z}^{2}\right)^{s / 2}=\left(\sum_{m}\left\|p_{j, i, m}\right\|_{z}^{2}\right)^{s / 2} \leq \sum_{m}\left(\left\|p_{j, i, m}\right\|_{z}^{2}\right)^{s / 2}=\sum_{m}\left\|p_{j, i, m}\right\|_{z}^{s}
$$

The property (2) implies: $\left\|p_{j, i}\right\|_{z} 2^{j}<1$ for $z \in \partial \Omega$. Now we can estimate:

$$
\begin{aligned}
\sum_{j, i, m}\left|j^{-2} p_{j, i, m}(z)\right|^{s} & =\sum_{j, i, m} j^{-2 s}\left\|p_{j, i, m}\right\|_{z}^{s} \geq \sum_{j, i} j^{-2 s}\left\|p_{j, i}\right\|_{z}^{s} \\
& \geq \sum_{j, i} j^{-2 s}\left\|p_{j, i}\right\|_{z}^{s}\left(\left\|p_{j, i}\right\|_{z} 2^{j}\right)^{2-s}=\sum_{j, i} j^{-2 s}\left\|p_{j, i}\right\|_{z}^{2} 2^{j(2-s)}
\end{aligned}
$$

for $z \in \partial \Omega$.

Let $D:=\bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} T_{j}$. Since $\sigma\left(\bigcap_{j=k}^{\infty} T_{j}\right) \geq 1-\sum_{j=k}^{\infty} 2^{-j}=1-2^{-k+1}$ we have $\sigma(D)=1$.

Now we can choose $z \in D$. There exists $k(z) \in \mathbb{N}$ such that $z \in \bigcap_{j=k(z)}^{\infty} T_{j}$. Using the property (4) we can estimate:

$$
\begin{aligned}
\sum_{j, i, m}\left|j^{-2} p_{j, i, m}(z)\right|^{s} & \geq \sum_{j, i} j^{-2 s}\left\|p_{j, i}\right\|_{z}^{2} 2^{j(2-s)} \geq \sum_{j=k(z)}^{\infty} j^{-2 s} 2^{j(2-s)} \sum_{i=1}^{N_{j}}\left\|p_{j, i}\right\|_{z}^{2} \\
& \geq \frac{1}{4} \sum_{j=k(z)}^{\infty} j^{-2 s} 2^{j(2-s)}=\infty
\end{aligned}
$$

which finishes the proof.

References

[1] J. Fournier, An interpolation problem for coefficients of H_{∞} function, Proc. Amer. Math. Soc. 42 (1972), 402-408.
[2] P. Kot: A Holomorphic Function with Given Almost All Boundary Values on a Domain with Holomorphic Support Function, Journal of Convex Analysis 14, no. 4, 693-704 (2007).
[3] P. Kot: Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc. 135 (2007) 3895-3903.
[4] P. Kot: Bounded holomorphic functions with given maximal modulus on all circles, Proc. Amer. Math. Soc. 137 (2009) 179-187.
[5] P. Kot: About boundary values in $A(\Omega)$. Trans. Amer. Math. Soc. 363 (2011), no. 8, 4063-4079.
[6] A. Pełczyński, Banach spaces of analytic functions and absolutely summing operators, CBMS Regional Conference Series No. 30, Amer. Math. Soc., Providence, R. I. 1977.
[7] P. Wojtaszczyk, On functions in the ball algebra. Proc. Amer. Math. Soc. 85 (1982), no. 2, 184-186.
[8] J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107-116
[9] P. Wojtaszczyk, On values of homogeneous polynomials in discrete sets of points, Studia Math. 84 (1986), 97-104.
[10] W. Rudin, Function theory in the unit ball of C^{n}, Springer-Verlag Berlin Heidelberg 2008.

Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicz Avenue 30, 30-059 Cracow, Poland
emails : Piotr.Kot@agh.edu.pl, mkaras@mat.agh.edu.pl

[^0]: Received by the editors in August 2017 - In revised form in February 2018.
 Communicated by H. De Bie.
 2010 Mathematics Subject Classification : Primary 32A40; Secondary 32A05, 32E35.
 Key words and phrases: Inner Function, Taylor coefficients,

