Divergent series of Taylor coefficients on almost all slices

Piotr Kot Marek Karaś

Abstract

We show that there exists a holomorphic function, continuous to the boundary in a bounded, balanced, strictly pseudoconvex domain Ω with C^2 boundary such that almost every slice function has a series of Taylor coefficients divergent with every power $p \in (0, 2)$.

1 Introduction

1.1 Historical background.

In [10, 7.2] Rudin gives some examples of boundary behavior of holomorphic functions in the unit balls of dimensions 2 and 3. Ryll and Wojtaszczyk observed [8, Theorem 1.2 + Remark 1.10] that similar examples can be constructed in arbitrary dimension. The crucial tool used in reminded constructions is [8, Theorem 1.2]: there exist polynomials $\{p_n\}$ homogeneous of degree *n* on the unit ball B^d such that

$$||p_n||_2 = 1 \text{ and } ||p_n||_{\infty} \le \frac{2^d}{\sqrt{\pi}}.$$
 (1.1)

This tool can be used to convert some one dimensional examples into multidimensional cases. An interesting example of such an application is presented in paper [7].

It is known that there exists a holomorphic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ in the disk-algebra and such that $\sum_{n=0}^{\infty} |a_n|^p = \infty$ for all p < 2. Wojtaszczyk generalized this fact.

Communicated by H. De Bie.

Received by the editors in August 2017 - In revised form in February 2018.

²⁰¹⁰ *Mathematics Subject Classification* : Primary 32A40; Secondary 32A05, 32E35. *Key words and phrases* : Inner Function, Taylor coefficients,

1.2 Motivations.

Our inspiration is paper [7], where it was proven that there exists a function $f \in A(\mathbb{B}^d)$ such that almost every slice function of f has a series of Taylor coefficients divergent with every power p < 2.

We are going to strengthen the Wojtaszczyk's result [7] by showing that:

- 1. the unit ball \mathbb{B}^d can be replaced by Ω bounded, balanced, strictly pseudoconvex domain with C^2 boundary,
- 2. it is possible to construct *f* in the elementary way.

We use a fact [2, Theorem 3.2] about commonly bounded holomorphic functions which are big in each boundary point. Let us note that [2, Theorem 3.2] can be used in the construction of an inner function (see [2]).

Wojtaszczyk uses (1.1) in [7, Proposition] to describe surjectivity of the operator

$$T: A(\mathbb{B}^d) \ni f \to (\langle f, p_{2^n} \rangle)_{n=0}^{\infty} \in l_2$$

by duality theorem. In one variable, the constructive proof of such surjectivity can be found in [1]. As Wojtaszczyk mentioned it would be interesting to have such a constructive proof also in the case of the unit ball \mathbb{B}^d . We don't know if similar result can be obtained for other domains than \mathbb{B}^d . Wojtaszczyk uses also "scrambling lemma", which needs unitary mappings $A(\mathbb{B}^d)$. A lack either of the mentioned surjectivity or "scrambling lemma" does not enable to generalize the Wojtaszczyk's proof.

1.3 Notations.

Let Ω be a bounded, balanced, strictly pseudoconvex domain with the boundary of class C^2 . Now we denote σ as a standard circular invariant measure on $\partial \Omega$ with $\sigma(\partial \Omega) = 1$.

Given $f \in A(\Omega)$ we study the slice function $\mathbb{B}^1 \ni \lambda \to f(\lambda z)$ and the middle value $||f||_z := \sqrt{\int_0^1 |f(e^{2\pi i t}z)|^2 dt}$ of holomorphic function f on a circle given by the point $z \in \partial \Omega$.

We need the following fact:

Theorem 1. (see [2, Theorem 3.2], [5, Lemma 2.1]). Let $m \in \mathbb{N}$. There exists a natural number $N_0 = N_0(\partial\Omega)$ such that, if $\varepsilon \in (0,1)$, h is a continuous, strictly positive function on $\partial\Omega$, then there exist polynomials $f_1, ..., f_{N_0} \in A(\Omega)$ such that:

1. each nonzero term in the expansion of f_i (for all j) has a degree greater than m_i ,

- 2. $|f_i| < h \text{ on } \partial \Omega$,
- 3. $\frac{1}{2}h < \max_{j=1,...,N_0} |f_j|$ on $\partial \Omega$.

The theorem above is proved in a more general situation e.g. for a domain with Holomorphic Support Function but we consider here only a simplified version for a strictly pseudoconvex case.

1.4 Main result.

We obtain the following fact:

Theorem. Assume that Ω is a bounded, balanced, strictly pseudoconvex domain with the boundary of class C^2 . There exists a holomorphic function $f \in A(\Omega)$ such that almost every slice function has a series of Taylor coefficients divergent with every power $p \in (0, 2)$.

To obtain Taylor series of a function f it is sufficient to find a homogeneous expansion:

$$f(z) = \sum_{n=0}^{\infty} p_n(z)$$

where p_n is a homogeneous polynomial of a degree n. Now we have Taylor coefficients expansion for a slice function:

$$\lambda \to f(\lambda z) = \sum_{n=0}^{\infty} p_n(z) \lambda^n,$$

so we construct a holomorphic function $f \in A(\Omega)$ with:

$$\sum_{n=0}^{\infty} |p_n(z)|^s = \infty$$

for $s \in (0, 2)$ and σ -almost all $z \in \partial \Omega$. Note that if f is continuous to the boundary, then (for all $z \in \partial \Omega$):

$$\sum_{n=0}^{\infty} |p_n(z)|^2 < \infty$$

2 Holomorphic functions with divergent taylor series

Lemma 2. There exists a constant $\gamma > 0$ such that for $\kappa \in \mathbb{N}$, $\tilde{\varepsilon} > 0$, and a positive, continuous function h on $\partial \Omega$ we can choose a polynomial p and a compact subset K of $\partial \Omega$ such that:

- each nonzero monomial in p has a degree greater than κ ,
- |p| < h on $\partial \Omega$,
- $\|p\|_{z} \geq \gamma \|h\|_{z}$ for $z \in K$,
- $\sigma(K) > 1 \tilde{\epsilon}$.

Proof. Let $\gamma > 0$ be such that $\gamma = \frac{1}{2\sqrt{N_0}}(1-\gamma)$ where $N_0 \in \mathbb{N}$ is the constant from Theorem 1. We construct a sequence of polynomials p_n such that we have the following conditions fulfilled:

- 1. each nonzero term in the expansion of p_n has a degree greater than κ and less than the degree of each term in the expansion of p_{n+1} ,
- 2. $|\sum_{k=1}^{n} p_k| < h$ on $\partial \Omega$,
- 3. if n > 1 then the compact set $K_n := \{z \in \partial \Omega : \|\sum_{k=1}^n p_k\|_z \ge \gamma \|h\|_z\}$ has the following properties:
 - (a) $K_n \subset K_{n+1}$,
 - (b) $\sigma(K_{n+1} \setminus K_n) \geq \frac{1}{2N_0} \sigma(\partial \Omega \setminus K_n).$

Let $p_1 := 0$. Then $K_1 = \emptyset$ and the conditions (1)-(2) are fulfilled. Now suppose that we have chosen $p_1, ..., p_n$ according to (1)-(3). Due to the Theorem 1 there exist polynomials $g_1, ..., g_{N_0}$ such that:

- each monomial in g_j has a degree greater than monomials' degrees in $p_1, ..., p_n$,
- $|g_j| < h |\sum_{k=1}^n p_k|$ on $\partial \Omega$,
- $\frac{1}{2}(h-|\sum_{k=1}^{n}p_k|) < \max_{j=1,\dots,N_0}|g_j|$ on $\partial\Omega$.

If $z \in \partial \Omega$ then

$$\sum_{j=1}^{N_0} \|g_j\|_z^2 = \sum_{j=1}^{N_0} \int_0^1 \left|g_j\left(e^{2\pi i t}z\right)\right|^2 dt \ge \int_0^1 \max_{\substack{j=1,\dots,N_0}} \left|g_j\left(e^{2\pi i t}z\right)\right|^2 dt$$
$$\ge \int_0^1 \frac{1}{4} \left|\left(h - \left|\sum_{k=1}^n p_k\right|\right)\left(e^{2\pi i t}z\right)\right|^2 dt = \frac{1}{4} \left\|h - \left|\sum_{k=1}^n p_k\right|\right\|_z^2$$

In particular there exists $j_z \in \{1, ..., N_0\}$ such that

$$||g_{j_z}||_z^2 \ge \frac{1}{4N_0} \left||h - \left|\sum_{k=1}^n p_k\right|||_z^2$$

Now we can define

$$V_j := \left\{ z \in \partial \Omega \setminus K_n : \left\| g_j \right\|_z^2 \ge \frac{1}{4N_0} \left\| h - \left| \sum_{k=1}^n p_k \right| \right\|_z^2 \right\}.$$

and observe that $\partial \Omega \setminus K_n = \bigcup_{j=1}^{N_0} V_j$. In particular there exists $j \in \{1, ..., N_0\}$ such that $\sigma(V_j) \ge \frac{1}{N_0} \sigma(\partial \Omega \setminus K_n)$. We can choose a compact set $T \subset V_j$ such that $\sigma(T) \ge \frac{1}{2N_0} \sigma(\partial \Omega \setminus K_n)$.

We define $p_{n+1} = g_j$ and observe that p_{n+1} fulfills the properties (1)-(2).

Let us consider $K_{n+1} = \left\{ z \in \partial \Omega : \left\| \sum_{k=1}^{n+1} p_k \right\|_z \ge \gamma \left\| h \right\|_z \right\}$. Since $p_1, ..., p_n, p_{n+1}$ are orthogonal in an L^2 space on slices i.e. $\left\| \sum_{k=1}^{n+1} p_k \right\|_z^2 = \sum_{k=1}^{n+1} \left\| p_k \right\|_z^2$ for all

 $z \in \partial \Omega$, we can easily observe that $\left\|\sum_{k=1}^{n+1} p_k\right\|_z \geq \left\|\sum_{k=1}^n p_k\right\|_z$ for all $z \in \partial \Omega$, which implies that $K_n \subset K_{n+1}$.

Let $z \in T$. Since $T \subset \partial \Omega \setminus K_n$ we have $\|\sum_{k=1}^n p_k\|_z < \gamma \|h\|_z$ which implies

$$\begin{split} \|p_{n+1}\|_{z} &= \|g_{j}\|_{z} \geq \sqrt{\frac{1}{4N_{0}}} \left\|h - \left|\sum_{k=1}^{n} p_{k}\right|\right\|_{z} \geq \frac{1}{2\sqrt{N_{0}}} \left(\|h\|_{z} - \left\|\sum_{k=1}^{n} p_{k}\right\|_{z}\right) \\ &\geq \frac{1}{2\sqrt{N_{0}}} \left(\|h\|_{z} - \gamma \|h\|_{z}\right) \geq \frac{1}{2\sqrt{N_{0}}} \left(1 - \gamma\right) \|h\|_{z} = \gamma \|h\|_{z}, \end{split}$$

but $\left\|\sum_{k=1}^{n+1} p_k\right\|_z \ge \|p_{n+1}\|_z$, so $T \subset K_{n+1}$. In particular

$$\sigma(K_{n+1} \setminus K_n) \ge \sigma(T) \ge \frac{1}{2N_0} \sigma(\partial \Omega \setminus K_n).$$

We have constructed a sequence polynomials $\{p_k\}_{k \in \mathbb{N}}$ which fulfills the properties (1)-(3).

Since (for all $N \in \mathbb{N}$):

$$1 \ge \sum_{n=1}^{\infty} \sigma \left(K_{n+1} \setminus K_n \right) \ge \sum_{n=1}^{\infty} \frac{1}{2N_0} \sigma \left(\partial \Omega \setminus K_n \right) \ge \sum_{n=1}^{N} \frac{1}{2N_0} \sigma \left(\partial \Omega \setminus K_N \right)$$
$$= \frac{N}{2N_0} \sigma \left(\partial \Omega \setminus K_N \right)$$

there exists $N \in \mathbb{N}$ such that $\sigma(\partial \Omega \setminus K_N) < \tilde{\epsilon}$. In particular $\sigma(K_N) > 1 - \tilde{\epsilon}$ and we can define $K = K_N$ and $p = \sum_{k=1}^N p_k$, which now fulfills all the required properties.

Lemma 3. Let ε , $a \in (0,1)$ and $m \in \mathbb{N}$. There exists a natural number N and polynomials $p_1, ..., p_N$ such that:

- each nonzero term in the expansion of p_n has a degree greater than m and less than the degree of each term in the expansion of p_{n+1} ,
- $|p_n| < a \text{ on } \partial \Omega$,
- $\left|\sum_{k=1}^{N} p_k\right| < 1 \text{ on } \partial\Omega$,
- $\sigma\left(z\in\partial\Omega:\left\|\sum_{k=1}^{N}p_{k}\right\|_{z}\geq\frac{1}{2}\right)>1-\varepsilon$

Proof. Let $\gamma > 0$ be the number from Lemma 2. We define a sequence of polynomials $\{p_k\}_{k=1}^{\infty}$ with the following properties:

1. each nonzero term in the expansion of p_k has a degree greater than m and less than the degree of each term in the expansion of p_{k+1} ,

2.
$$\left|\sum_{j=1}^{k} p_{j}\right| < 1 \text{ on } \partial\Omega,$$

3. $\left|p_{k}\right| < \min\left\{a, 1 - \left|\sum_{j=1}^{k-1} p_{j}\right|\right\} \text{ on } \partial\Omega, (k > 1)$

4. if k > 1 then the circular, compact set:

$$T_k := \left\{ z \in \partial \Omega : \left\| p_k \right\|_z \ge \gamma \left\| \min \left\{ a, 1 - \left| \sum_{j=1}^{k-1} p_j \right| \right\} \right\|_z \right\}$$

has the property: $\sigma(T_k) > 1 - \varepsilon 2^{-k}$.

Let $p_1 = 0$. The properties (1)-(3) are fulfilled for k = 1. Now suppose that we have defined $p_1, ..., p_k$ with the properties (1)-(4). Due to Lemma 2 used for the data:

$$\kappa := \max_{j} \deg p_{j}, \tilde{\varepsilon} := \varepsilon 2^{-k-1}, h := \min \left\{ a, 1 - \left| \sum_{j=1}^{k} p_{j} \right| \right\}$$

there exists a polynomial p_{k+1} with the following properties:

- each nonzero monomial in p_{k+1} has a degree greater than κ ,
- $|p_{k+1}| < h$ on $\partial \Omega$,
- $\sigma\left(\left\{z \in \partial \Omega : \|p_{k+1}\|_z \ge \gamma \|h\|_z\right\}\right) > 1 \tilde{\varepsilon} = 1 \varepsilon 2^{-k-1}.$

Now we observe that the properties (1),(3),(4) are obvious. Since:

$$\left|\sum_{j=1}^{k+1} p_j\right| \le \left|\sum_{j=1}^{k} p_j\right| + |p_{k+1}| < \left|\sum_{j=1}^{k} p_j\right| + 1 - \left|\sum_{j=1}^{k} p_j\right| = 1,$$

we obtain the property (2), which finishes the construction of the sequence $\{p_k\}$.

Let us consider $\{p_k\}_{k=1}^{\infty}$ and $\{T_k\}_{k=2}^{\infty}$ with properties (1)-(4). We can define a compact, circular set $T := \bigcap_{i=2}^{\infty} T_i$ and calculate:

$$\sigma(\partial \Omega \setminus T) \leq \sum_{j=2}^{\infty} \sigma(\partial \Omega \setminus T_j) < \sum_{j=2}^{\infty} \varepsilon 2^{-j} < \varepsilon.$$

In particular $\sigma(T) > 1 - \varepsilon$. Let us consider a sequence of continuous functions: $g_k : T \ni z \mapsto \left\|\sum_{j=1}^k p_j\right\|_z$. Since $g_k < 1$ and $g_k \le g_{k+1}$ there exists $\lim_{k\to\infty} g_k(z) \le 1$. In particular $\sum_{j=1}^{\infty} \|p_j\|_z^2 \le 1$, which implies that $\lim_{k\to\infty} \|p_j\|_z = 0$ for $z \in T$. Since $\|p_k\|_z \ge \gamma \left\|\min\left\{a, 1 - \left|\sum_{j=1}^{k-1} p_j\right|\right\}\right\|_z$ we have $\lim_{k\to\infty} \left\|1 - \left|\sum_{j=1}^{k-1} p_j\right|\right\|_z = 0$, which gives us $\sum_{j=1}^{\infty} \|p_j\|_z^2 = 1$ for $z \in T$. Since $\{g_k\}$ is a bounded, increasing sequence of continuous functions with limits equal to 1 for all points $z \in T$ therefore the sequence $\{g_k\}$ is uniformly convergent to 1 on T and hence there exists a natural number N such that $g_N \ge \frac{1}{2}$ on T. In particular

$$T \subset \left\{ z \in \partial \Omega : \left\| \sum_{k=1}^N p_k \right\|_z \ge \frac{1}{2} \right\},$$

which finishes the proof:

$$\sigma\left(\left\{z\in\partial\Omega:\left\|\sum_{k=1}^N p_k\right\|_z\geq\frac{1}{2}\right\}\right)\geq\sigma(T)>1-\varepsilon.$$

Now we are able to prove the main **Theorem**:

Proof. Given $j \in \mathbb{N}$ due to Lemma 3 there exist a natural number N_j and nonzero polynomials $p_{j,1}, ..., p_{j,N_j}$ such that

- 1. each nonzero term in the expansion of $p_{j,i}$ has a degree less than the degree of each term in the expansion of $p_{j,i+1}$ or $p_{j+1,k}$ for all $1 \le k \le N_{j+1}$,
- 2. $|p_{j,i}| < 2^{-j}$ on $\partial \Omega$,
- 3. $\left|\sum_{i=1}^{N_j} p_{j,i}\right| < 1 \text{ on } \partial\Omega$,

4. if
$$T_j := \left\{ z \in \partial \Omega : \left\| \sum_{i=1}^{N_j} p_{j,i} \right\|_z \ge \frac{1}{2} \right\}$$
 then $\sigma(T_j) > 1 - 2^{-j}$.

Let us define

$$f = \sum_{j=1}^{\infty} \frac{1}{j^2} \sum_{i=1}^{N_j} p_{j,i}.$$

The property (3) guarantees that we have just defined a holomorphic function which is continuous to the boundary.

Given *j*, *i* let I(j, i) denotes all degrees of homogeneous polynomials in homogeneous expansion of $p_{j,i}$:

$$p_{j,i} = \sum_{m \in I(j,i)} p_{j,i,m}$$

where $p_{j,i,m}$ denotes a homogeneous polynomial of a degree *m*. Using these homogeneous polynomials we can obtain the expansion in Taylor coefficients for slice functions of *f*:

$$f(\lambda z) = \sum_{j=1}^{\infty} \frac{1}{j^2} \sum_{i=1}^{N_j} \sum_{m \in I(j,i)} p_{j,i,m}(z) \lambda^m.$$

Let $s \in (0, 2)$. We can observe $\sum_{m} ||p_{j,i,m}||_{z}^{2} = ||p_{j,i}||_{z}^{2}$. Since $0 < \frac{s}{2} < 1$ we can use a triangle inequality in the metric space $l^{\frac{s}{2}}$ to achieve:

$$\|p_{j,i}\|_{z}^{s} = \left(\|p_{j,i}\|_{z}^{2}\right)^{s/2} = \left(\sum_{m} \|p_{j,i,m}\|_{z}^{2}\right)^{s/2} \leq \sum_{m} \left(\|p_{j,i,m}\|_{z}^{2}\right)^{s/2} = \sum_{m} \|p_{j,i,m}\|_{z}^{s}.$$

The property (2) implies: $\|p_{j,i}\|_z 2^j < 1$ for $z \in \partial \Omega$. Now we can estimate:

$$\sum_{j,i,m} \left| j^{-2} p_{j,i,m}(z) \right|^{s} = \sum_{j,i,m} j^{-2s} \left\| p_{j,i,m} \right\|_{z}^{s} \ge \sum_{j,i} j^{-2s} \left\| p_{j,i} \right\|_{z}^{s}$$
$$\ge \sum_{j,i} j^{-2s} \left\| p_{j,i} \right\|_{z}^{s} \left(\left\| p_{j,i} \right\|_{z} 2^{j} \right)^{2-s} = \sum_{j,i} j^{-2s} \left\| p_{j,i} \right\|_{z}^{2} 2^{j(2-s)}$$

for $z \in \partial \Omega$.

Let $D := \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} T_j$. Since $\sigma\left(\bigcap_{j=k}^{\infty} T_j\right) \ge 1 - \sum_{j=k}^{\infty} 2^{-j} = 1 - 2^{-k+1}$ we have $\sigma(D) = 1$.

Now we can choose $z \in D$. There exists $k(z) \in \mathbb{N}$ such that $z \in \bigcap_{j=k(z)}^{\infty} T_j$. Using the property (4) we can estimate:

$$\begin{split} \sum_{j,i,m} \left| j^{-2} p_{j,i,m}(z) \right|^s &\geq \sum_{j,i} j^{-2s} \left\| p_{j,i} \right\|_z^2 2^{j(2-s)} \geq \sum_{j=k(z)}^{\infty} j^{-2s} 2^{j(2-s)} \sum_{i=1}^{N_j} \left\| p_{j,i} \right\|_z^2 \\ &\geq \frac{1}{4} \sum_{j=k(z)}^{\infty} j^{-2s} 2^{j(2-s)} = \infty, \end{split}$$

which finishes the proof.

References

- [1] J. Fournier, An interpolation problem for coefficients of H_{∞} function, Proc. Amer. Math. Soc. 42 (1972), 402-408.
- [2] P. Kot: A Holomorphic Function with Given Almost All Boundary Values on a Domain with Holomorphic Support Function, Journal of Convex Analysis 14, no. 4, 693-704 (2007).
- [3] P. Kot: Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc. 135 (2007) 3895-3903.
- [4] P. Kot: Bounded holomorphic functions with given maximal modulus on all circles, Proc. Amer. Math. Soc. 137 (2009) 179–187.
- [5] P. Kot: About boundary values in $A(\Omega)$. Trans. Amer. Math. Soc. 363 (2011), no. 8, 4063–4079.
- [6] A. Pełczyński, Banach spaces of analytic functions and absolutely summing operators, CBMS Regional Conference Series No. 30, Amer. Math. Soc., Providence, R. I. 1977.
- [7] P. Wojtaszczyk, On functions in the ball algebra. Proc. Amer. Math. Soc. 85 (1982), no. 2, 184–186.
- [8] J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), 107-116
- [9] P. Wojtaszczyk, On values of homogeneous polynomials in discrete sets of points, Studia Math. 84 (1986), 97-104.

[10] W. Rudin, Function theory in the unit ball of *C*^{*n*}, Springer-Verlag Berlin Heidelberg 2008.

Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicz Avenue 30, 30-059 Cracow, Poland emails : Piotr.Kot@agh.edu.pl, mkaras@mat.agh.edu.pl