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On the multiplication by a polynomial of

bounded continued fraction over a finite field

Khalil Ayadi∗ Awatef Azaza Iheb Elouaer

Abstract

In this paper, we will discuss the period length of the continued fraction
of the product of a polynomial with a quadratic power series over a finite
field. Furthermore, we will give the first example of bounded continued
fraction in characteristic 3 with not flat partial quotients.

1 Introduction

Let F be a finite field and let F((T−1)) denote the field of formal power series
over F. For a nonzero power series:

α = ∑
i≤n0

ciT
i ∈ F((T−1)), n0 ∈ Z, cn0 6= 0,

we define:
deg(α) = n0, |α| = |T|n0, [α] = ∑

0≤i

ciT
i

where |T| is a fixed real number greater than 1. Let deg(0) = −∞ and |0| = 0.
Recall that |α| for power series α defines a non- Archimedian absolute value on
F((T−1)) and [α] is called the polynomial part of α. Note that [α] is characterized
as the unique polynomial E such that |α − E| < 1.
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The general theory of continued fractions for power series are expounded by
Schmidt in [20]. Here we briefly review the basic facts and establish some
notations. The continued fraction expansion for power series α is defined as the
unique expression:

α = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0, a1, a2, . . . ]

where an ∈ F[T] for n ≥ 0 and deg an > 0 for n > 0. As usual the tail of
the expansion, [an, an+1, ...], called the complete quotient, is denoted by αn(α0 =
α). The numerator and the denominator of the convergent [a0, ..., an] are de-
noted by Pn and Qn. These polynomials, are both defined by the same recursive
relation: Kn = anKn−1 + Kn−2 for n ≥ 1, with the initial conditions P−1 = 1 and
P0 = a0 for the numerator, while the initial conditions are Q−1 = 0 and Q0 = 1
for the denominator. We can view Pn and Qn as a function in the n + 1 variables
a0, a1, ..., an. The recursion shows that this function is again a polynomial. We call
this polynomial the continuant. These polynomials will simply be denoted by
Pn = 〈a0, a1, ..., an〉 and Qn = 〈a1, a2, ..., an〉. For more information on continuants,
the reader may consult the introduction of [9]. The quotient Pn/Qn is a rational
approximation to α satisfying:

|Qnα − Pn| = |an+1|−1|Qn|−1.

Thus, if deg an+1 = s, the quotient Pn/Qn is said to be a convergent of accuracy s.
For any irrational α = [a0, a1, a2, . . . ] ∈ F((T−1)), we set

K(α) = lim sup
n

deg an ∈ N ∪ {∞}. (1.1)

We will say that α has bounded partial quotients if K(α) < ∞.
We will use a basic and technical Lemma concerning continued fractions. The
idea involved in this lemma seems to appear for the first time in the works of
Mendès France [14] on finite continued fraction in the context of real numbers.
First, we recall the following notation. Let Pn/Qn := [a1, a2, . . . , an]. For all
x ∈ Fp(T), we will note:

[
[a1, a2, . . . , an], x

]
:=

Pn

Qn
+

1

x
.

Lemma 1.1. Let a1, . . . , an, x ∈ Fp(T). We have the following equality:

[
[a1, a2, . . . , an], x

]
= [a1, a2, . . . , an, y], where y =

(−1)n−1

Q2
n

x − Qn−1

Qn
.

The proof of this lemma can be found in Lasjaunias’s article [9].
Throughout the paper, we have been dealing with finite sequences (or words).
Consequently, we recall the following notation on sequences in F[T]: let
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W = a0, a1, . . . , an be such a finite sequence, then we set |W| = n + 1 for the
length of the word W. If we have two words W1 and W2, then W1, W2 denotes the
word obtained by concatenation. Moreover, if λ ∈ F∗, then we define λ · W as
the following sequence:

λ ·W = λa0, λ−1a1, . . . , λ(−1)n
an.

We will also use the same notation of continued fraction where the ai are
constant and the resulting quantity is in F. However, in the last case, by
writing [a0, a1, . . . , an] we will assume that this quantity is well defined in F, i.e.
an 6= 0, [an−1, an] 6= 0, . . . , [a1, . . . , an] 6= 0.
We say that the formal power series α has a n-periodic continued fraction expan-
sion or the continued fraction expansion of α is ultimately periodic of period n if
the sequence (ai)i≥0 is ultimately periodic of period n. We denote by Per(α) = n
and write α = [a0, a1, ..., as, as+1, ..., as+n] for the continued fraction expansion of
α. We say that the formal power series α has a pure periodic continued fraction
expansion of period n if the sequence (ai)i≥0 is purely periodic of period n and
write α = [a0, ..., an−1]. Let α ∈ F((T−1)), then α is quadratic if and only if the
continued fraction expansion of α is periodic.
In 1974, Cohen [4] studied the function S(N, n) = sup

Per(x)=n

Per(Nx) where N is

a positive integer, x is a quadratic irrational and Per(Nx) is the length of the
period of the continued fraction expansion of Nx. He used an algorithm for com-
puting the continued fraction expansion of Nx and he defined a projective space

permitting to evaluate S(N, n) and to study the function R(N) = sup
n≥1

S(N, n)

n
.

Later, Cusick [6] studied the length of the period of the product of a positive in-
teger with a quadratic irrational by using Raney’s algorithm (see [18]). Note that
by the Cohen’s work [4], we know that the R(N) is always fini and its value is
already known for many N. Moreover, Cohen gave a conjecture for the value
of R(N) in all the remaining cases. For more details on this topic, the reader is
advised to consult the work of Mendès France [15], which summarizes the length
of periodic of quadratic irrationals problem.
The case of a finite base field is particularly important and the analogy between
these power series and the real numbers is striking. So it is natural to ask how
the behavior of Per(Nx) in the function field case becomes. Actually, by adapting
Mendès France’s result [14] to the polynomial case, Grisel gave in [8], an algo-
rithm for the continued fraction expansion of the product of a formal series by a
rational function. In this note, we will study this value for particular polynomial
N and for certain quadratic expansion x over a finite field. Our work is based on
two nonzero polynomials Pk and Qk introduced for the first time by Lasjaunias in
[9](see also [11]): Let p be an odd prime and r = pt with t ≥ 1, we introduce the
subset E(r) of integers k such that:

k = mpl + (pl − 1)/2 f or 1 ≤ m ≤ (p − 1)/2 and 1 ≤ l ≤ t − 1.

Note that E(r) ⊂ {1, . . . , (r − 1)/2} with equality if r = p. Also (r − 1)/2 ∈ E(r)

in all cases. Let Pk(T) = (T2 − 1)k and Qk(T) =
∫ T

0 (y2 − 1)k−1dy =
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∑0≤i≤k−1(−1)k−1−i(k−1
i )(2i + 1)−1T2i+1. Then there exists a 2k-tuple

(u1, u2, . . . , u2k) ∈ (F∗
p)

2k such that:

Pk/Qk = [u1T, u2T, . . . , u2kT]. (1.2)

Note that Qk is up to a constant factor, the remainder in the Euclidean division of
Tr by Pk: There exists A ∈ F

∗
p[T] such that

APk − Tr = 2kθkQk, (1.3)

where θk = (−Qk(1))
−1 = (−1)k21−2k(2k−1

k ) ∈ F
∗
p. Furthermore, we have:

2kθk[u1T, u2T, . . . , u2kT] = [u2kT, . . . , u2T, u1T]. (1.4)

Several works have been interested in studying the quantity Per(
√

d), where d is a
positive integer, not a perfect square. In [5], Cohn showed that

Per(
√

d) ≤ 7

2π2

√
d log(d) + O(

√
d). In the case of formal power series, Mkaouar

showed in [17] that the period of the square root of any polynomial Q ∈ Fp[T]

whose degree is even and which is not a perfect square is less than p2 deg Q. We
will give the exact value of period of the square root of a family of polynomials
in Fp[T].
In this note, we also consider continued fraction expansions for algebraic power
series of degree more than 2 over a finite field. Like quadratic real numbers, for
which the continued fraction expansion is well known, certain algebraic power
series have a continued fraction expansion which can be explicitly described.
Most of these power series belong to a particular subset of algebraic elements re-
lated to the existence of the Frobenius isomorphism in these power series fields.
These power series, now called hyperquadratic, are irrational elements α satisfy-
ing an equation α = f (αr) where r is a power of the characteristic of the base field
and f is a linear fractional transformation with integer (polynomials in T) coeffi-
cients. The origin of the study of continued fractions for hyperquadratic power
series is due to Baum and Sweet [3] who introduced the first example of power
series of degree 3 in even characteristic, with bounded partial quotients and oth-
ers examples with unbounded degree. This studies was been developed in the
1980’s by Mills and Robbins [16]. Mills and Robbins pointed out the existence
of hyperquadratic continued fractions with all partial quotients of degree one, in
odd characteristic with a prime base field. Later, further examples were studied
and several methods were introduced. In fact, by the use of computer screen,
many continued fractions with regular pattern can be observed which leads to
describing them and theoretically proving. The reader can consult [9], [11], [2],
[1], [19] and [20] to discover such examples of hyperquadratic continued fractions
with bounded and unbounded degree. We cite here a family of hyperquadratic
power series with flat continued fraction expansion introduced by Lasjaunias and
Ruch in [10]:

Theorem 1.1. Let p be an odd prime number and let s, t ≥ 1 be integers. We put
q := ps and r := qt. Let u ∈ F

∗
q and k ≥ 0 be an integer. We assume that u 6= 2 and
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put v := 2 − u. We define γ ∈ Fq((T−1)) by

γ = [0, T[k],
⊕

i≥1

(T, (uT, vT)[(r
i−1)/2])[k+1]]

Then γ satisfies the algebraic equation:

QkXr+1 − PkXr + (uv)(r−1)/2Qk+rX − (uv)(r−1)/2Pk+r = 0,

where (Pn/Qn)n≥0 is the sequence of convergent of γ.

We also recall that, in a recent paper [12], Lasjaunias and Yao could give a
description of a large family, including the historical examples due to Mills and
Robbins, of hyperquadratic continued fractions with all partial quotients of de-
gree one in the case of an arbitrary base field of odd characteristic. Although
many continued fractions in odd characteristic with flat continued fraction(i.,e all
partial quotients are of degree one) are described, until now, we haven’t known
any continued fraction with bounded and not flat partial quotients. In this work,
we will construct the first example of continued fraction, in characteristic 3, with
bounded and not flat partial quotients.

2 On the length of the period of the product of some periodic

continued fractions by Pk

Before giving our main result we note that if λ ∈ F
∗
p and s is an integer such that

[λ, λ, . . . , λ
︸ ︷︷ ︸

s

] = 0, then [λ, λ, . . . , λ
︸ ︷︷ ︸

s′

] is not well defined for all s′ > s. This is due to

the following property of continued fraction:

[λ, λ, . . . , λ
︸ ︷︷ ︸

s′

] = [λ, . . . , λ, [λ, λ, . . . , λ
︸ ︷︷ ︸

s

]].

This proves the uniqueness of s.

Theorem 2.1. Let α = [B, λTr], where B ∈ Fp[T], r = pt with t ≥ 1 and λ ∈ F
∗
p. Let

β be a quadratic power series such that

β = Pkα. (2.5)

where Pk(T) = (T2 − 1)k and k ∈ E(r). Let s ≥ 2 be an integer such that [λ, λ, . . . , λ
︸ ︷︷ ︸

s

] =

0. Then the length of the periodic of continued fraction expansion of β is equal to (2k +
1)(s − 1) + 2.

Proof: We have α0 = α and αn = α1 for all n ≥ 1. The equation (2.5) gives that

β = BPk +
Pk

α1
. So b0 = BPk and

β1 =
α1

Pk
(2.6)
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As α1 = λTr +
1

α2
, the equation (2.6) gives that β1 =

λTr

Pk
+

1

Pkα2
. Following (1.3)

and since α2 = α1 and by applying the Lemma 1.1, this becomes

β1 = λA − λ2kθkQk

Pk
+

1

Pkα1
= [[λA,−δ−1

1 u1T, . . . ,−δ1u2kT], Pkα1]

= [λA,−δ−1
1 u1T, . . . ,−δ1u2kT, β2k+2]

where

β2k+2 =
α1

Pk
+ Qk(δ1ωkPk)

−1, (2.7)

δ1 = λ2kθk and ωk = −(2kθk)
−2. Then b1 = λA, b2 = −δ−1

1 u1T, . . ., b2k+1 =
−δ1u2kT, and

β2k+2 = λA − λ2kθkQk

Pk
− 2kθkQk

λPk
+

1

Pkα1

= λA − δ2
Qk

Pk
+

1

Pkα1

where δ2 = 2kθk[λ, λ].
Let us define the sequence (δj)2≤j≤s recursively by:

δj = 2kθk[λ, . . . , λ
︸ ︷︷ ︸

j

] = 2kθkλ − (δj−1ωk)
−1,

and δ1 = λ2kθk. We have δs = 0 by hypothesis. We prove by induction for all
2 ≤ j ≤ s − 1 that

β(2k+1)(j−1)+1 =
α1

Pk
+ Qk(δj−1ωkPk)

−1. (2.8)

From (2.7), we have that (2.8) is true for j = 2. So we assume (2.8) for j = l then

β(2k+1)(l−1)+1 = λA − λ2kθkQk

Pk
+

Qk

δl−1ωkPk
+

1

Pkα1

= λA − δl
Qk

Pk
+

1

Pkα1

= [[λA,−δ−1
l u1T, . . . ,−δlu2kT], Pkα1]

= [λA,−δ−1
l u1T, . . . ,−δlu2kT, β(2k+1)l+1].

where

β(2k+1)l+1 =
α1

Pk
+ Qk(δlωkPk)

−1.

Thus (2.8) is true for j = l + 1. By induction, we see that (2.8) holds for all
1 ≤ j ≤ s − 1. Furthermore, we get that b(2k+1)(l−1)+1 = λA, b(2k+1)(l−1)+1+i =
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−δ
(−1)i

l uiT f or 1 ≤ i ≤ 2k.
So we iterate the process until j = s. In this step, the equality (2.8) gives that

β(2k+1)(s−1)+1 =
α1

Pk
+ Qk(δs−1ωkPk)

−1

= λA − δs
Qk

Pk
+

1

Pkα1
.

As δs = 0, we get that β(2k+1)(s−1)+1 = λA +
1

Pkα1
. So b(2k+1)(s−1)+1 = λA and

β(2k+1)(s−1)+2 = Pkα1 = λTrPk +
Pk

α1
.

Thus b(2k+1)(s−1)+2 = λTrPk and

β(2k+1)(s−1)+3 =
α1

Pk
(2.9)

We see that the equation (2.9) has the same shape as (2.6), i.e β1 = β(2k+1)(s−1)+3

so the length of period of β divides (2k + 1)(s − 1) + 2. Furthermore, as deg A =
r − 2k, it follows that deg bt ∈ {1, r − 2k} for all 1 ≤ t < (2k + 1)(s − 1) + 2. Since
deg b(2k+1)(s−1)+2 = r + 2k > deg bt for all 1 ≤ t < (2k + 1)(s − 1) + 2, then the

length of period of β is equal to (2k + 1)(s − 1) + 2.

Example 2.2. Let ω = [T] ∈ F3((T
−1)) and α = 1/ω. Let β = (T2 − 1)α3t

, with
t ≥ 1, then the periodic length of the continued fraction expansion of β is equal to 8. In
fact, we have here k = 1, λ = 1 and since [1, 1, 1] = 0 in F3 then s = 3.
Note that this element ω is actually the analogue, in the formal case, of the celebrated

quadratic real number [1, 1, . . . , 1, . . .] = (1 +
√

5)/2.

Theorem 2.3. Let α = [B, λ1Tr, λ2Tr, . . . , λnTr, C] periodic of length n + 1 with n ≥
2, where B ∈ Fp[T], C ∈ F

∗
p[T], r = pt with t ≥ 1 and λi ∈ F

∗
p. Let β be a quadratic

power series such that

β = Pkα. (2.10)

where Pk(T) = (T2 − 1)k and k ∈ E(r).

1. Suppose that there exist m + 1 integers n0, n1, . . . , nm be such that n0 = 1 <

n1 < n2 < . . . < nm = n with ni+1 − ni ≥ 3 for 0 ≤ i ≤ m − 1, sat-
isfying [λn1

, . . . , λ1] = 0, [λn2 , . . . , λn1+2] = 0, . . ., [λni
, . . . , λni−1+2] = 0, . . .,

[λn, . . . , λnm−1+2] = 0. Then the period length of β divides
(2k + 1)(n − 2(m − 1)− 1) + 2m, with equality if deg C > r.

2. Suppose that inf{i ≥ 0; [λi, . . . , λ1] = 0} = n, then the period length of β divides
(2k + 1)(n − 1) + 2, with equality if deg C > r − 4k.
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Proof: Let β = [b0, b1, . . . , bn, . . .]. The idea of the proof of the first part of this
theorem is similar to the proof of the previous one. So we resume its steps.
We have that α1 = αn+2. The equation (2.10) gives that:

β = BPk +
Pk

α1
. So b0 = BPk and

β1 =
α1

Pk
. (2.11)

Since α1 = λ1Tr +
1

α2
then β1 =

λ1Tr

Pk
+

1

Pkα2
. From (1.3) this becomes

β1 = λ1 A − λ12kθkQk

Pk
+

1

Pkα2
= [[λ1A,−δ−1

1 u1T, . . . ,−δ1u2kT], Pkα2]

= [λ1 A,−δ−1
1 u1T, . . . ,−δ1u2kT, β2k+2]

where
β2k+2 =

α2

Pk
+ Qk(δ1ωkPk)

−1,

and δ1 = λ12kθk and ωk = −(2kθk)
−2. Then b1 = λ1A, b2 = −δ−1

1 u1T, . . .,
b2k+1 = −δ1u2kT. Put δn1

= 2kθk[λn1
, . . . , λ1]. By iteration the processus, we get

that

β(2k+1)(n1−1)+1 =
αn1

Pk
+ Qk(δn1−1ωkPk)

−1 = λn1
A − δn1

Qk

Pk
+

1

Pkαn1+1

So since δn1
= 0, then b(2k+1)(n1−1)+1 = λn1

A and

β(2k+1)(n1−1)+2 = Pkαn1+1 = λn1+1TrPk +
Pk

αn1+2
.

This gives b(2k+1)(n1−1)+2 = λn1+1TrPk and β(2k+1)(n1−1)+3 =
αn1+2

Pk
. Consequently,

the continued fraction expansion of β begins with:

β =
[
BPk, λ1A,−δ−1

1 u1T, ..,−δ1u2kT, .., λn1−1 A,

− δ−1
n1−1u1T, ..,−δn1−1u2kT, λn1

A, λn1+1TrPk, . . .
]

This shows a ”part” of the period being equal to (2k + 1)(n1 − 1) + 2.
Put δni

= 2kθk[λni
, . . . , λni−1+2] for 2 ≤ i ≤ m. By recursion, for all i, the condition

δni
= 0 lead us to get a new bloc of partial quotients in the continued fraction

expansion of β of length (2k + 1)(ni − ni−1 − 2) + 2. So the number of partial

quotients until the last step is (2k + 1)(
m

∑
i=2

ni − ni−1 − 2) + n1 − 1) + 2(m − 1) =

(2k + 1)(n − 2(m − 1)− 1) + 2(m − 1). The final equation that we will get:

β(2k+1)(n−2(m−1)−2)+2(m−1)+1 =
αnm

Pk
+ Qk(δnm−1−1ωkPk)

−1

= λnm A − δnmQk

Pk
+

1

Pkαnm+1
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So since δnm = 0, then b(2k+1)(n−2(m−1)−1)+2(m−1)+1 = λnm A = λn A and

β(2k+1)(n−2(m−1)−1)+2(m−1)+2 = Pkαnm+1 = CPk +
Pk

αn+2
.

This gives b(2k+1)(n−2(m−1)−1)+2(m−1)+2 = CPk and

β(2k+1)(n−2(m−1)−1)+2(m−1)+3 =
αn+2

Pk
. (2.12)

As αn+2 = α1, we see that the equation (2.12) is of the same kind as the equa-
tion (2.11). So the period length of the continued fraction expansion of β divides
(2k + 1)(n − 2(m − 1)− 1) + 2m. Furthermore, if deg C > r, the degree of the last
partial quotient b(2k+1)(n−2(m−1)−1)+2(m−1)+2 of the block of the period will be the

greatest. In fact, we have that deg bt ∈ {1, r − 2k, r + 2k} for all
1 ≤ t < (2k + 1)(n − 2(m − 1) − 1) + 2(m − 1) + 2. So the period length of β
will be equal to (2k + 1)(n − 2(m − 1)− 1) + 2m.
The proof of the second part of the theorem can be deduced directly from the
first one. In fact, suppose that inf{i ≥ 0; [λi, . . . , λ1] = 0} = n is equivalent to
taking n1 = n in the first part. So m = 1 and the periodic length of the continued
fraction of β divides (2k + 1)(n − 1) + 2. For this case, since deg b(2k+1)(n−1)+2 =

deg C+ 2k, then deg bt ∈ {1, r− 2k, deg C+ 2k} for all 1 ≤ t ≤ (2k+ 1)(n− 1)+ 2.
So if we suppose that deg C + 2k > r − 2k then the period length of the continued
fraction of β will be equal to (2k + 1)(n − 1) + 2.

Let n ≥ 2. We will note by Λn the set of quadratic power series α of the form
[B, λ1Tr, λ2Tr, . . . , λnTr, C], where B ∈ Fp[T], C ∈ F

∗
p[T] such that the sequence

of integer λi ∈ F
∗
p satisfy the following condition: There exists 1 < i ≤ n such

that [λi, λ1] = 0 and [λn, λi+2] = 0. We note such λi by λnm and we will call m an
”intermediate integer”. Then we have the following result.

Corollary 2.4. Let k ∈ E(r). Then

S(Pk, n) = sup
α∈Λn

Per(Pkα) = (2k + 1)(n − 1) + 2

and

R(Pk) = sup
n≥3

S(Pk, n)

n
= 2k + 1.

Proof: Based the previous theorem, the periodic length of the continued frac-
tion expansion of a power series belonging to Λn, which equal to
(2k + 1)(n − 2(m − 1) − 1) + 2m, depends on the number of the ”intermediate
integer” m. It is easily checked that we have (2k + 1)(n − 2(m − 1)− 1) + 2m ≤
(2k + 1)(n − 1) + 2. So the greatest value of this period is obtained for m = 1.

Furthermore, R(Pk) = sup
n≥3

S(Pk, n)

n
= sup

n≥3

(2k + 1)(n − 1) + 2

n
= 2k + 1.

Remark 2.5. 1. This work gives us infinitely many values of Per(Pkα) for some given
periodic continued fraction α. We obtain that these values eventually depend on the
degree of Pk.
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2. Using Frobenius isomorphism, the equations (2.5) and (2.10) can be regarded as
β = Pkαr where α = [B, λT] and α = [B, λ1T, λ2T, . . . , λnT, C], and we have the
same result of periodicity, simply by replacing B by Br and C by Cr in the continued
fraction of β.

Corollary 2.6. Let α = [B, u1Tr, u2Tr, . . . , u2kTr, C] and β = Pkα. Then,

β = [BPk, u1 A,−δ−1
1 u1T, . . . ,−δ1u2kT, · · · , u2k−1A,−δ−1

2k−1T, . . . ,−δ2k−1u2kT, u2kA, CPk]

where the numbers δi ∈ F
∗
p are defined by

δi = 2kθk[ui, ui−1, . . . , u1] f or all 1 ≤ i ≤ 2k − 1.

Proof: From the equality (1.2) and since Pk(1) = 0 and Qk(1) 6= 0, we obtain
[u1, . . . , u2k] = 0 and [ui, . . . , u1] ∈ F

∗
p for 1 ≤ i ≤ 2k − 1. Then, the equality (1.4)

gives that [u2k, ui−1, . . . , u1] = 0. Hence δ2k = 0 and the result is deduced from
the previous Theorem.

We will see how it is possible to give explicitly, up to multiplicative constants,
infinitely many continuants of the continued fraction of β satisfying β = Pkα
where k ∈ E(r).

Theorem 2.7. Let α = [a0, a1, a2, . . . ] such that deg an > 2k for all n. Let β = Pkα =
[b0, b1, b2, . . . ]. Let (Un, Vn)n and (Rm, Sm)m be, respectively the continuants of α and
β.

1. If Vn(±1) 6= 0, then there exists m ∈ N, l ∈ F
∗
p such that

Rm(T) = lPkUn, Sm(T) = lVn(T)

and in this case deg bm+1 = deg an+1 − 2k.

2. If Vn(1)Vn+1(1) 6= 0 or Vn(−1)Vn+1(−1) 6= 0, then there exists m ∈ N, l ∈ F
∗
p

such that

Rm(T) = l(Un(T)Vn+1(1)− Un+1(T)Vn(1)),

Sm(T) =
l(Vn(T)Vn+1(1)− Vn+1(T)Vn(1))

T − 1

or

Rm(T) = l(Un(T)Vn+1(−1)− Un+1(T)Vn(−1)),

Sm(T) =
l(Vn(T)Vn+1(−1)− Vn+1(T)Vn(−1))

T + 1

and in this case deg bm+1 = 1.

3. If Pk divides Vn, then there exists m ∈ N, l ∈ F
∗
p such that

Rm(T) = lUn, Sm(T) = lVn(T)/Pk

and in this case deg bm+1 = deg an+1 + 2k.



✐

✐

✐

✐

✐

✐

✐

✐

On the multiplication by a polynomial of bounded continued fraction 787

Proof:

1. Let R = lPkUn and S = lVn with l ∈ F
∗
p, then R and S are relatively prime

polynomials. Moreover

|Sβ − R| = |PkVnα − PkUn| = |Pk||Vnα − Un| =
|Pk||an+1|−1|Vn|−1 = |Pk||an+1|−1|S|−1

As deg an+1 > 2k then R/S is a convergent to β of accuracy deg an+1 − 2k.

2. Suppose that Vn(1)Vn+1(1) 6= 0. Let R = l(Un(T)Vn+1(1)− Un+1(T)Vn(1))
and S = l(Vn(T)Vn+1(1)− Vn+1(T)Vn(1))/(T − 1). Then

|Sβ − R| = |(Vn(T)Vn+1(1)− Vn+1(T)Vn(1))α

−(Un(T)Vn+1(1)− Un+1(T)Vn(1)|
= |Vn+1(1)(Vn(T)α − Un(T))− Vn(1)(Vn+1(T)α − Un+1(T))|
= |Vn(T)α − Un(T)| = |Vn+1|−1 = |T|−1|S|−1.

As R and S are relatively prime, then R/S is a convergent to β of accuracy
1.

3. Let R = lUn and S = lVn/Pk with l ∈ F
∗
p. Then R and S are relatively prime

polynomials. Moreover

|Sβ − R| = |Vnα − Un| = |an+1|−1|Vn|−1 = |Pk|−1|an+1|−1|S|−1.

Then R/S is a convergent to β of accuracy deg an+1 + 2k.

3 On the periodic length of some square root of polynomials

Theorem 3.1. Let α ∈ Fp((T−1)) be the solution of strictly positive degree of the equa-
tion:

α2 = (λ2T2r + 1)P2k (3.13)

where λ ∈ F
∗
p, r = pt with t ≥ 1 and k ∈ E(r). Let s ≥ 2 be the integer such that

[2λ, 2λ, . . . , 2λ
︸ ︷︷ ︸

s

] = 0. Then the periodic length of the continued fraction expansion of α

is equal to (2k + 1)(s − 1) + 2, and its continued fraction is:

α = [λTrPk, 2λA,−δ−1
1 u1T, . . . ,−δ1u2kT, . . . , 2λA,−δ−1

s−1u1T, . . . ,−δs−1u2kT, 2λA, 2λTrPk],(3.14)

where δj = 2kθk[2λ, . . . , 2λ
︸ ︷︷ ︸

j

].
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Proof: Let γ = [0, 2λTr], then, γ =
1

2λTr + γ
. So γ satisfies the equation:

γ2 + 2λTrγ − 1 = 0. (3.15)

Let α = λTrPk + Pkγ. Then |α| > 1. By replacing γ by
α − λTrPk

Pk
in (3.15), we

get that α satisfies the equation (3.13). As |Pkγ| < 1, then the integer part of α
is λTrPk, so Per(α) = Per(Pkγ). According to the Theorem 2.1, we obtain the
desired result.

Example 3.1. Let α ∈ F5((T
−1)) be the solution of the equation:

α2 = (T10 + 1)(T2 − 1)2.

Then Per(α) = 5.

In fact, it suffices to apply the previous theorem with k = λ = 1 and r = 5.
We give now a result related to Polynomial analogue of McMullen’s Conjecture
(see Conjecture M p. 87 in [13]).

Corollary 3.2. Let λ ∈ F
∗
p and D = λ2T2r + 1 ∈ Fp[T] with r = pt with t ≥ 1. Then

for all l ∈ E(r), there exists P ∈ Fp[T] such that

K(P
√

D) = r + 2l.

Proof: From the previous Theorem, the formal power series α satisfying the

equation (3.13) can be read as α = Pk

√
D. The continued fraction expansion of α is

entirely described by (3.14). From the equality (1.3), we have that deg A = r − 2k.
So the largest degree of partial quotients of α is deg λTrPk = r + 2k. Since
k ∈ E(r), we deduce the desired result.

4 Bounded continued fraction expansion

In this paragraph, we let W∗ = an, an−1, . . . , a0, be the word W = a0, a1, . . . , an

written in reverse order. Further, for m ∈ N, we write (a0, a1, . . . , an)[m] for the
sequence obtained by repeating the sequence a0, a1, . . . , an m times if m ≥ 1 and
the empty sequence if m = 0. If a0, a1, . . . , an and b0, b1, . . . , bn are two such se-
quences we denote by a0, a1, . . . , an

⊕
b0, b1, . . . , bn the sequence obtained by jux-

taposition.

Theorem 4.1. Let α = [⊕i≥1(T
3, (uT3, (2− u)T3)[

ri−1
2 ])] ∈ F9((T

−1)), where u ∈ F9

such that −u2 + 2u + 1 = 0. Let β = (T2 − 1)α. Then then the continued fraction of β
is:

β = [⊕i≥1(T
3(T2 − 1), (W, uT3(T2 − 1), W∗,−u−1T3(T2 − 1), W)[(r

i−1)/8])],

where W = uT, u−1T,−uT,−u−1T.



✐

✐

✐

✐

✐

✐

✐

✐

On the multiplication by a polynomial of bounded continued fraction 789

Proof: We take k = 0 and q = r = 9 in Theorem 1.1. The finite field F9 elements
will be represented by means of a root u of the irreducible polynomial over F3:
P(X) = −X2 + 2X + 1, and then we have F9 = {0, ui, 1 ≤ i ≤ 8}.

Let γ = [⊕i≥1(T, (uT, (2 − u)T)[
ri−1

2 ])] ∈ F9((T
−1)). We will apply the equal-

ity (1.3) with k = 1 and r = 3 then we have T(T2 − 1) − T3 = −T. Let β =
(T2 − 1)γ(T3) = (T2 − 1)α. Then

β = (T2 − 1)[(T3, (uT3, (2 − u)T3, . . . , uT3, (2 − u)T3)
︸ ︷︷ ︸

r−1=8

)(1),

(T3, (uT3, (2 − u)T3, . . . , uT3, (2 − u)T3)
︸ ︷︷ ︸

r2−1=80

)(2), . . .].

We aim at computing the explicit continued fraction of β = [b0, b1, . . .].

β = T3(T2 − 1) +
(T2 − 1)

α1
. So b0 = T3(T2 − 1) and

β1 =
α1

(T2 − 1)
. (4.16)

Since α1 = uT3 +
1

α2
then β1 =

uT3

(T2 − 1)
+

1

(T2 − 1)α2
. So, from Lemma (1.1) we

obtain

β1 = uT +
uT

(T2 − 1)
+

1

(T2 − 1)α2
= [[uT, u−1T,−uT], (T2 − 1)α2]

= [uT, u−1T,−uT, β4]

where
β4 =

α2

(T2 − 1)
+ u−1T(T2 − 1)−1.

Then b1 = uT, b2 = u−1T, b3 = −uT, and

β4 = (2 − u)T +
(2 − u)T

(T2 − 1)
+ u−1T(T2 − 1)−1 +

1

(T2 − 1)α3

= (2 − u)T + δ1
T

T2 − 1
+

1

(T2 − 1)α3

where δ1 = [2 − u, u].
Since δ1 = 0 then b4 = (2 − u)T, b5 = u(T2 − 1)T3 and β6 = α4/(T2 − 1).

β6 =
a4

(T2 − 1)
+

1

(T2 − 1)α5

=
(2 − u)T3

(T2 − 1)
+

1

(T2 − 1)α5

= (2 − u)T +
(2 − u)T

(T2 − 1)
+

1

(T2 − 1)α5

= [[(2 − u)T, (2 − u)−1T,−(2 − u)T], (T2 − 1)α5]

= [(2 − u)T, (2 − u)−1T,−(2 − u)T, β9]
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where

β9 =
α5

(T2 − 1)
+

(2 − u)−1T

(T2 − 1)
.

So we get b6 = (2 − u)T, b7 = (2 − u)−1T, b8 = −(2 − u)T and we have

β9 =
a5

(T2 − 1)
+

1

(T2 − 1)α6
+

(2 − u)−1T

(T2 − 1)

=
uT3

(T2 − 1)
+

1

(T2 − 1)α6
+

(2 − u)−1T

(T2 − 1)

= uT +
uT

(T2 − 1)
+

(2 − u)−1T

(T2 − 1)
+

1

(T2 − 1)α6

= uT +
δ2T

(T2 − 1)
+

1

(T2 − 1)α6

where δ2 = [u, 2 − u] = 0.

This gives that b9 = uT and β10 = (T2 − 1)α6 = (T2 − 1)a6 +
(T2 − 1)

α7
. Hence

b10 = (2 − u)T3(T2 − 1),

β11 =
α7

(T2 − 1)
=

a7

(T2 − 1)
+

1

(T2 − 1)α8

=
uT3

(T2 − 1)
+

1

(T2 − 1)α8
= uT +

uT

(T2 − 1)
+

1

(T2 − 1)α8

= [[uT, u−1T,−uT], (T2 − 1)α8] = [uT, u−1T,−uT, β14]

where
β14 =

α8

(T2 − 1)
+ u−1T(T2 − 1)−1.

Then b11 = uT, b12 = u−1T, b13 = −uT, and

β14 = (2 − u)T +
(2 − u)T

(T2 − 1)
+ u−1T(T2 − 1)−1 +

1

(T2 − 1)α9

= (2 − u)T + δ1
T

T2 − 1
+

1

(T2 − 1)α9

Since δ1 = 0 then b14 = (2 − u)T and β15 = (T2 − 1)α9 which yields to
b15 = (T2 − 1)T3 and β16 = α10/(T2 − 1). So the continued fraction expansion of
β begin with the bloc

T3(T2 − 1), uT, u−1T,−uT, (2 − u)T, uT3(T2 − 1), (2 − u)T, (2 − u)−1T, (4.17)

−(2 − u)T, uT, (2 − u)T3(T2 − 1), uT, u−1T,−uT, (2 − u)T.
We note that this bloc of continued fraction of β is the image by product with
(T2 − 1) of the bloc (1) of α which is

T3, uT3, (2 − u)T3, uT3, (2 − u)T3, uT3, (2 − u)T3, uT3, (2 − u)T3
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We have that (2 − u) = 2u−1 so the bloc (4.17) can be written as

T3(T2 − 1), W, uT3(T2 − 1), W∗,−u−1T3(T2 − 1), W

where W = uT, u−1T,−uT,−u−1T. Note that the bloc W, uT3(T2 − 1), W∗,

−u−1T3(T2 − 1), W is the image of the bloc (uT3, (2 − u)T3)[4], then the image

of the bloc (uT3, (2 − u)T3)[40] is (W, uT3(T2 − 1), W∗,−u−1T3(T2 − 1), W)[10]

and then the image of the bloc (2) is equal to T3(T2 − 1), (W, uT3(T2 − 1), W∗,

−u−1T3(T2 − 1), W)[10= 92−1
8 ]. So by recursion, we prove that the image of the bloc

T, (uT3, (2 − u)T3)[(r
i−1)/2] is equal to T3(T2 − 1), (W, uT3(T2 − 1), W∗,

−u−1T3(T2 − 1), W)[(r
i−1)/8]. So we obtain the desired result.
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