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Abstract

We introduce the concept of a generic Euclidean triangle τ and study the
group Gτ generated by the reflection across the edges of τ. In particular, we
prove that the subgroup Tτ of all translations in Gτ is free abelian of infinite
rank, while the index 2 subgroup Hτ of all orientation preserving transforma-
tions in Gτ is free metabelian of rank 2, with Tτ as the commutator subgroup.
As a consequence, the group Gτ cannot be finitely presented and we provide
explicit minimal infinite presentations of both Hτ and Gτ. This answers in
the affirmative the problem of the existence of a minimal presentation for
the free metabelian group of rank 2. Moreover, we discuss some examples of
non-trivial relations in Tτ holding for given non-generic triangles τ.

1 Introduction

The term triangle group is generally reserved in the literature to the group Gτ

generated by the reflections r1, r2, r3 across the sides of an Euclidean, spherical or
hyperbolic triangle τ with internal angles αi = π/ni , where the specific geom-
etry depends on 1/n1 + 1/n2 + 1/n3 being = 1, > 1 or < 1, respectively. The
structure of these groups is well understood since the seminal works by Fricke
and Klein [6] and Coxeter [4] (see also [5] and [9]). In particular, based on the
fact that the triangle τ tiles the plane or the sphere, we have the finite presen-
tation Gτ = 〈x1, x2, x3 | x2

1, x2
2, x2

3, (x2x3)
n1 , (x3x1)

n2 , (x1x2)
n3〉 with the symbol xi

corresponding to the reflection ri.
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The hyperbolic case has been widely studied, with a special focus on its com-
plex version, and several notions of generalized triangle groups have been con-
sidered, in terms of finite presentation independently on the original geometric
setting.

But little seems to be known about the group Gτ for more general triangles
τ, even if the strong hypothesis on the angles αi is just mildly relaxed to include
rational multiples of π, that is in the case of τ a rational triangle with αi = miπ/ni .

In this note we study the group Gτ for an arbitrary Euclidean triangle τ, start-
ing from the case of generic triangles. These are introduced in Section 2 as the
triangles whose edge lengths are algebraically independent over the rationals (up
to a common factor), and can be considered as the opposite to the rational trian-
gles in the spectrum of all Euclidean triangles. In particular, we show that generic
triangles include typical triangles, the ones whose angles are linearly independent
over the rationals.

Our main results on the structure of the triangle group Gτ for a generic trian-
gle τ, are presented in Sections 4 and 5, after a brief discussion of some gener-
alities about Gτ and its linearization Sτ ⊂ O(2) in Section 3. They concern the
translation subgroup Tτ , consisting of all translations in Gτ, and the rotation sub-
group Hτ, the index 2 subgroup of all orientation preserving transformations in
Gτ. Namely, we show that Tτ is free abelian of infinite rank generated by the
translation t1 = (r1r2r3)

2 and its conjugates in Gτ (Theorem 4.1), while Hτ is free
metabelian of rank 2 generated by the rotations r2r1 and r1r3 (Theorem 5.1), with
[Hτ, Hτ] = Tτ. As a consequence, Gτ cannot be finitely presented. Moreover, we
provide explicit presentations for Hτ (Theorem 5.2) and Gτ (Theorem 5.3), which
are minimal in the sense that no relation can be removed without changing the
group (Theorem 5.4). From the purely group theoretical viewpoint, this solves the
problem of finding a minimal presentation for the free metabelian group of rank
2 (cf. [2]).

Finally, in Section 6 we discuss some examples of non-trivial relations in Tτ,
holding for continuous families of non-generic but typical triangles τ and for
certain isolated such triangles, respectively.

2 Generic triangles

Given an Euclidean triangle τ = A1A2A3, let ℓi > 0 denote the length of the edge
ei = Aj Ak and αi > 0 denote the measure in radians of the (non-oriented) interior
angle Aj Ai Ak, with {i, j, k} = {1, 2, 3}.

Definition 2.1. We call τ a generic triangle if for some k > 0 (hence for almost
every k ∈ R) the real numbers kℓ1, kℓ2 and kℓ3 are algebraically independent (over
the rationals), namely it does not exist any non-trivial polynomial p(x1, x2, x3) ∈
Z[x1, x2, x3] such that p(kℓ1 , kℓ2, kℓ3) = 0.

A different formulation of the above condition is that for every non-trivial
polynomial p(x1, x2, x3) ∈ Z[x1, x2, x3] the polynomial q(x) = p(ℓ1x, ℓ2x, ℓ3x)
is non-trivial in R[x], or equivalently the field Q(ℓ1x, ℓ2x, ℓ3x) has transcendence
degree 3 over Q (see [10, Sec. 6.4]). Then, a straightforward argument on
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cardinalities explains why “some k” could be replaced by “almost every k” in
the definition. Moreover, as a consequence of this reformulation of genericity, we
have the following proposition.

Proposition 2.2. The set of generic triangles is a dense Gδ-subset in the space of all
Euclidean triangles.

Proof. Due to the apparent invariance of genericity, we can argue on the space of
triangles up to similitude, considered as a subspace of the real projective plane
P2, by identifying any Euclidean triangle τ as above with [ℓ1: ℓ2: ℓ3] ∈ P2. In this
context, for any given non-null polynomial p(x1, x2, x3) ∈ Z[x1, x2, x3], the set of
(ℓ1, ℓ2, ℓ3) ∈ R3 such that q(x) = p(ℓ1x, ℓ2x, ℓ3x) is null in R[x], is characterized
by a non-trivial system of homogeneous algebraic equations (expressing that all
the coefficients of q(x) vanish). Therefore, the corresponding subset of P2 is a
proper analytic subset, hence its complement is open and dense in P2. Then, one
can easily conclude by applying Baire’s theorem.

The next proposition just translates Definition 2.1 in terms of trigonometric
functions of the interior angles of the triangle τ.

Proposition 2.3. An Euclidean triangle τ as above is a generic triangle if and only if one
of the following equivalent properties holds:

(s) for some (hence almost every) k ∈ R the real numbers k sin α1, k sin α2 and k sin α3

are algebraically independent over the rationals;

(c) for some (hence almost every) k ∈ R the real numbers k cos α1, k cos α2 and k cos α3

are algebraically independent over the rationals.

Proof. The equivalence of the condition in Definition 2.1 with property (s)
immediately follows by the law of sines, while some work is needed to verify the
equivalence between (s) and (c). Once these properties are reformulated in terms
of extensions of Q involving the indeterminate x as above, we are reduced to
proving that Q(x sin α1, x sin α2, x sin α3) and Q(x cos α1, x cos α2, x cos α3) have the
same transcendence degree over Q. By elementary trigonometry, from α1 + α2 +
α3 = π we get the equations

cos2 α1 + cos2 α2 + cos2 α3 + 2 cos α1 cos α2 cos α3 = 1 , (1)

sin4 α1 + sin4 α2 + sin4 α3 + 4 sin2 α1 sin2 α2 sin2 α3 +

− 2 sin2 α1 sin2 α2 − 2 sin2 α1 sin2 α3 − 2 sin2 α2 sin2 α3 = 0 .
(2)

Multiplying (1) by x3, we see that x is algebraic over Q(x cos α1, x cos α2, x cos α3),
hence the possibly larger extension Q(x cos α1, x cos α2, x cos α3, x) has the same
transcendence degree as Q(x cos α1, x cos α2, x cos α3) over Q. Similarly, multiply-
ing (2) by x6, we see that x is algebraic over Q(x sin α1, x sin α2, x sin α3) as well,
hence the transcendence degree of Q(x sin α1, x sin α2, x sin α3, x) over Q is the
same as that of Q(x sin α1, x sin α2, x sin α3). Now, the relations x2 sin2 αi +
x2 cos2 αi = x2 allow us to conclude that Q(x cos α1, x cos α2, x cos α3, x) and
Q(x sin α1, x sin α2, x sin α3, x) have the same transcendence degree over Q.
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As noticed in the above proof, due to the relation α1 + α2 + α3 = π we cannot
have k = 1 (or any rational number) in points (s ) and (c) of Proposition 2.3.
However, if τ is a generic triangle then ℓ1, ℓ2, ℓ3, as well as sin α1, sin α2, sin α3 and
cos α1, cos α2, cos α3, form linearly independent triples over the rationals, since
linear independence is a homogeneous condition where the factor r > 0 can be
canceled.

Lemma 2.4. If an algebraic relation p(sin α1, sin α2, sin α3, cos α1, cos α2, cos α3) = 0,
with p(x1, x2, x3, x4, x5, x6) ∈ Z[x1, x2, x3, x4, x5, x6], holds for a generic triangle, then
it holds for every triangle.

Proof. This is a direct consequence of Proposition 2.2.

A deeper analysis of the algebraic dependence of cos α1, cos α2 and cos α3,
shows that generic triangles are typical, in the sense of the following definition
(see [7, Sec. 6.B]).

Definition 2.5. An Euclidean triangle τ as above is called a typical triangle if the
real numbers α1, α2 and α3 are linearly independent over the rationals.

Proposition 2.6. Generic Euclidean triangles are typical.

Proof. Let τ a generic triangle. We want to prove that equation (1) is essentially
the only algebraic relation between the cosines of the interior angles of τ, that
is any polynomial p(x1, x2, x3) ∈ Z[x1, x2, x3] with p(cos α1, cos α2, cos α3) = 0 is
divisible by

x2
1 + x2

2 + x2
3 + 2x1x2x3 − 1 . (3)

Assume that the identity p(cos α1, cos α2, cos α3) = 0 holds for τ. Then,
according to Lemma 2.4, it must hold for any triangle, and by using once again
the relation α1 + α2 + α3 = π we have p(− cos(α2 + α3), cos α2, cos α3) = 0 for
every α2, α3 ≥ 0 such that α2 + α3 < π. Therefore, p(x1, x2, x3) is divisible by

both the linear binomials x1 + x2x3 ±
√

(1 − x2
2)(1 − x2

3) in the indeterminate x1

with coefficients in the quadratic closure of the field of fractions Q(x2, x3), hence
it is divisible by x2

1 + x2
2 + x2

3 + 2x1x2x3 − 1 in Z[x1, x2, x3] (notice that the last
polynomial is monic with respect to x1).

Now, by contradiction, let n1α1 + n2α2 + n3α3 = 0 be a non-trivial vanishing
linear combination of the interior angles α1, α2 and α3 of a generic triangle, with
integral coefficients n1, n2 and n3, which can be assumed coprime without loss of
generality. By elementary trigonometry, we have

cos(n1α1)− cos(n2α2) cos(n3α3) = sin(n2α2) sin(n3α3) .

Squaring and using the Pythagorean identity, we readily obtain

T2
n1
(cos α1) + T2

n2
(cos α2) + T2

n3
(cos α3)− 2 Tn1

(cos α1)Tn2(cos α2)Tn3(cos α3) = 1 ,

where Tn(x) ∈ Z[x] denotes the n-th Chebyshev polynomial defined by the iden-
tity Tn(cos α) = cos(nα). By the above, the polynomial

T2
n1
(x1) + T2

n2
(x2) + T2

n3
(x3)− 2 Tn1

(x1)Tn2(x2)Tn3(x3)− 1 (4)



On the generic triangle group and the free metabelian group of rank 2 657

must be divisible by (3). Since Tn(1) = 1 for all n, setting x2 = x3 = 1 both
in (3) and (4), we get (x1 + 1)2 = 0 and (Tn1

(x1) − 1)2 = 0, respectively. Thus,
Tn1

(x1) − 1 must be divisible by x1 + 1 in Z[x1]. This implies that n1 is even,
because Tn(x) has same parity of n. By the symmetry of (3) and (4), the same ar-
gument shows that n2 and n3 must be even as well, contradicting the coprimality
assumption.

In the light of Proposition 2.6, generic triangles can be somewhat thought of
as the opposite end in the spectrum of all Euclidean triangles with respect to the
rational ones.

3 The triangle group

For any Euclidean triangle τ we denote by Gτ = 〈r1, r2, r3〉 ⊂ E(2) the subgroup
of the group E(2) of the Euclidean isometries of the plane generated by the reflec-
tions r1, r2 and r3 across the edges e1, e2 and e3 of τ, respectively. We call Gτ the
triangle group of τ.

The standard exact sequence

1 −→ R2 ι−→ E(2)
λ−→ O(2) −→ 1 ,

where ι is the inclusion of R2 in E(2) as the subgroup of translations and λ is the
linearization homomorphism, induces by restriction the exact sequence

1 −→ Tτ
ιτ−→ Gτ

λτ−→ Sτ −→ 1 , (5)

where Tτ ⊂ Gτ is the translation subgroup consisting of all translations in Gτ, while
Sτ = λ(Gτ) = 〈s1, s2, s3〉 ⊂ O(2) with si = λ(ri) the linearization of ri.

We observe that the structure of the group Gτ (including the latter exact
sequence) is invariant under similarities. Hence, without loss of generality we
can assume that the incircle of the triangle τ is coincides with the unit circle
centered at the origin. Under this assumption, we have

(x)ri = (x)si + 2vi (6)

for every x ∈ R2 (here and in the following we use the right notation for the
action of Gτ), where vi is the unit vector from the origin to the tangency point of
the edge ei and the incircle of τ, as shown in Figure 1.

We want to determine a minimal presentation of the group Sτ in the case when
τ is a typical, and hence Sτ is a dense subgroup of O(2). In order to do that, we
first recall from [7, Sec. 6.A] the definition of a stable sequence and the stability
criterion for a product of generators of Sτ to be trivial.

Definition 3.1. A sequence i1i2 . . . in of symbols from {1, 2, . . . , N} is called a stable
sequence if its terms can be paired into disjoint pairs of identical symbols, one
located at an odd and the other at an even position. Differently said, the length n
of the sequence is even and the symbolic alternating sum i1 − i2 + · · ·+ in−1 − in

vanish (as an algebraic sum of symbols, not of integers).
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Figure 1: The unit vectors v1, v2 and v3.

The motivation for the term “stable” is that a stable sequence as above rep-
resents the sequence of sides of a polygonal billiard (whose N sides are arbi-
trarily numbered) visited by a n-periodic trajectory, which is stable in the sense
that it survives to small perturbations of the polygon (see [7, Sec. 6.A]). Actually,
also Lemma 3.3 below and its proof are essentially translated from the context of
stable trajectories in polygonal billiards, focusing on the case N = 3.

Before going on, let us give an operational characterization of stability.

Lemma 3.2. A sequence i1i2 . . . in is stable if and only if one can reduce it to the empty
sequence by a finite number of operation of the following types:

(a) transposition of two adjacent subsequences both consisting of two symbols;

(b) deletion of a subsequence consisting of two identical symbols.

Proof. First of all, we note that both operations and the inverse of the second
one, that is the insertion of two adjacent identical symbols in a sequence, all pre-
serve the parity of the position of each term in the sequence, hence they preserve
stability. This immediately gives the “if” part of the statement, since the empty
sequence is stable.

The “only if” part can be proved by induction on the length of the sequence,
starting once again from the empty sequence. For the inductive step, assume
we are given any non-empty stable sequence i1i2 . . . in. The stability implies that
i2k−1 = i2 for some 1 ≤ k ≤ n/2. If k = 1, we can reduce the length of the se-
quence by deleting the subsequence i1i2. Otherwise, by k − 2 transpositions of
pairs, we get a sequence starting with the four symbols i1i2i2k−1i2k, then we can
reduce the length of the word by deleting the subsequence i2i2k−1.

Lemma 3.3. If a sequence i1i2 . . . in of symbols from {1, 2, 3} is stable, then the product
si1 si2 . . . sin

is the identity in Sτ. Moreover, for a typical triangle τ the stability of the
sequence i1i2 . . . in is also necessary in order si1 si2 . . . sin

to be the identity.

Proof. We proceed in the same spirit as in [7, Sec. 6.B]. We first orient the edges
e1, e2 and e3 in the counterclockwise way along the boundary of the triangle τ, and
denote by βi the oriented angle from e1 (fixed as reference vector) to ei. Then, we
have β1 = 0, β2 = π − α3 and β3 = π + α2 mod 2π. Moreover, any composition
sjsk gives the linear rotation of angle 2(βk − β j) mod 2π, and hence any product
si1 si2 . . . sin

with n even gives the linear rotation of angle

φ = 2(βi2 − βi1) + · · ·+ 2(βin
− βin−1

) mod 2π . (7)
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Now, the stability of the sequence i1i2 . . . in implies that φ = 0 mod 2π and
thus si1 si2 . . . sin

is the identity in Sτ .
In the opposite direction, start with a product si1 si2 . . . sin

that gives the iden-
tity. Then, n must be even and (7) can be rewritten in terms of the αi’s by using
the above identities. If the sequence i1i2 . . . in is not stable, this yields a non-trivial
rational linear relation among the angles α2, α3 and π, which implies that τ is not
typical.

At this point, we are in position to obtain the wanted presentation of Sτ .

Proposition 3.4. For a typical triangle τ the group Sτ admits the finite presentation

〈x1, x2, x3 | x2
1, x2

2, x2
3, (x1x2x3)

2 〉 ,

with the symbols x1, x2, x3 corresponding to s1, s2, s3, respectively.

Proof. According to Lemma 3.3, all the four relations of the presentation hold in
Sτ , because the corresponding sequences of indices are stable.

Viceversa, Lemmas 3.2 and 3.3 say that any word xi1 xi2 . . . xin
representing the

identity in Sτ can be reduced to the empty word by canceling squared terms x2
i

and commuting products xixj and xkxl. So, to conclude the proof it is enough to

show that any commutator [xixj, xkxl] = (xixj)
−1(xkxl)

−1(xixj)(xkxl) is the iden-
tity modulo the given four relations. Up to inversions, the only non-trivial cases
are [x1x2, x1x3] , [x1x2, x2x3] and [x1x3, x2x3]. For these we have:

[x1x2, x1x3] = x3(x1x2x3)
−2x3, [x1x2, x2x3] = x2x1(x1x2x3)

−2x1x2

and [x1x3, x2x3] = x3x1(x1x2x3)
−2x1x3.

4 The translation subgroup

Due to Lemma 3.3 and the exact sequence (5), for any Euclidean triangle τ the
product ri1ri2 . . . rin

gives a translation in Tτ if the sequence i1i2 . . . in is stable. On
the other hand, when the triangle τ is typical we obtain in this way all the trans-
lations in Tτ , and it is clear from Proposition 3.4 that a special role is played by
the minimal stable product t1 = (r1r2r3)

2, coming from the code-word of the Fag-
nano trajectory, the simplest stable periodic trajectory in any acute triangle (see
[7, Sec. 2.A]). Notice that the translation t1 is non-trivial for any (non-degenerate)
triangle τ, as it easily follows by elementary geometry.

We denote the conjugation class of t1 in Gτ by

C(t1) = {((t1))g = g−1t1g | g ∈ Gτ} ⊂ Tτ .

Notational warning. We are aware that the adopted notation for the conjugates is not
the standard one, but we believe that it makes more readable the equations displayed in the
sequel, where the conjugating element is in most cases a long product. For simplicity sake,
we avoid the use of brackets to enclose such products. To resolve the possible ambiguity
in the interpretation of the expression ((a))bc, we specify that this will always mean the
conjugate of a by bc, that is (bc)−1a(bc), and not instead the product (b−1ab)c, which
will be written as ((a))b · c.
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According to equation (6), by identifying translations in Tτ with the corre-
sponding vectors in R2 and considering the natural action of Sτ ⊂ O(2) on them,
for g = ri1ri2 . . . rin

∈ Gτ the conjugate ((t1))g is given by

((t1))ri1 ri2 . . . rin
= ((t1))si1 si2 . . . sin

. (8)

In the case when τ is a typical triangle, the density of the subgroup Sτ ⊂ O(2)
implies that C(t1) forms a dense subset of the circle ρS1 ⊂ R2 of radius

ρ = ‖t1‖ = 4(sin α1 + sin α2 + sin α3) .

The translation t1 and its conjugates t2 = (r2r3r1)
2 = ((t1))r1 and t3 = (r3r1r2)

2

= ((t1))r3, are represented in Figure 2 (here we assume the same numbering as in
the previous Figure 1 for the edges of the triangle τ).

Figure 2: The translations t1, t2 and t3

Theorem 4.1. For a typical triangle τ the translation subgroup Tτ ⊂ Gτ is normally
generated by the translation t1 = (r1r2r3)

2. Moreover, if τ is generic then Tτ is a free
abelian group having as a basis the conjugation class C(t1).

Proof. Given any t ∈ Tτ with τ a typical triangle, we can express it as a product
ri1ri2 . . . rin

of generators of Gτ. In view of the exact sequence (5), the correspond-
ing product si1 si2 . . . sin

gives the identity in Sτ , hence the sequence i1i2 . . . in is
stable by Lemma 3.3. Then, arguing as in the proof of Proposition 3.4, we can
rewrite ri1ri2 . . . rin

as a product of conjugates of r2
1, r2

2, r2
3 and (r1r2r3)

2. Since the

r2
i ’s are trivial in Gτ, we can conclude that t is a product of conjugates of t1, which

gives the first part of the theorem.
Now, assume that τ is a generic triangle. We have to show that C(t1) is linearly

independent over Z, that is the only vanishing linear combination of pairwise
distinct elements of C(t1) with integral coefficients is the trivial one.
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Consider any vanishing linear combination

∑
m
j=1 kj ((t1))rij,1

rij,2
. . . rij,nj

= 0 (9)

of pairwise distinct conjugates ((t1))rij,1
rij,2

. . . rij,nj
of t1, with coefficients

k1, . . . , km ∈ Z. Since ((t1))r1r2r3 = t1, without loss of generality we assume that
all the nj are even. Then, equation (7) tells us that the oriented angle from t1 to
((t1))rij,1

rij,2
. . . rij,nj

equals

2(βij,2
− βij,1

) + · · ·+ 2(βij,nj
− βij,nj−1

) mod 2π , (10)

where βi denotes the oriented angle from e1 to ei, namely β1 = 0, β2 = π − α3

and β3 = π + α2 mod 2π. This can also be written in the form

mj,2α2 + mj,3α3 mod 2π , (11)

with mj,2 and mj,3 even integers, hence the scalar product of (9) with t1 gives

∑
m
j=1 kj cos(mj,2α2 + mj,3α3) = 0 , (12)

where ρ2, the squared norm of t1 (and all its conjugates), has been collected as a
common factor and canceled. Similarly, the scalar product of (9) with the vector
obtained by rotating t1 of π/2 radians gives

∑
m
j=1 kj sin(mj,2α2 + mj,3α3) = 0 . (13)

Notice that in the above equations the pairs (mj,2, mj,3) are different from each
other, in that the conjugates in (9) are pairwise distinct. Moreover, possibly after
suitable changes of signs in order to have either mj,2 > 0 or mj,2 = 0 and mj,3 ≥ 0,
we can collect the (at most two) terms corresponding to opposite pairs.

According to Lemma 2.4, the identities (12) and (13) hold for every triangle,
that is for every α2, α3 > 0 such that α2 + α3 < π. Therefore, the linear indepen-
dence over the reals of the complex functions (x1, x2) 7→ exp(i(m1x1 + m2x2))
with m1 > 0 or m1 = 0 and m2 ≥ 0, allows us to conclude that kj = 0 for every
j = 1, . . . , m.

In view of the above proof, if τ is a generic triangle then any conjugate
t ∈ C(t1) can be obtained from t1 by a rotation of 2mα2 − 2nα3 radians for some
(uniquely determined, as τ is typical) integers m and n, hence
t = ((t1))(r1r2)

n(r1r3)
m according to equations (7) and (8). Therefore, for a generic

triangle τ we can write

C(t1) = {tn,m = ((t1))(r1r2)
n(r1r3)

m , n, m ∈ Z} . (14)

Based on Theorem 4.1, Theorems 4.2 and 5.1 provide an infinite presentation
of Gτ for a generic triangle τ and show that no such a finite presentation can exist.
A minimal presentation of Gτ will be given in Section 5.
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Theorem 4.2. For a generic triangle τ the group Gτ admits the presentation

〈x1, x2, x3 | x2
1, x2

2, x2
3, [w, ((w))(x1x2)

n(x1x3)
m], n, m ∈ Z , (n, m) 6= (0, 0)〉 ,

with w = (x1x2x3)
2 and the symbols x1, x2, x3 corresponding to r1, r2, r3, respectively.

Proof. By a standard argument (see [8, Sec. 10.2]), a presentation of Gτ can be
derived from presentations of the groups Tτ and Sτ involved in the exact
sequence (5). In view of Proposition 2.6 a presentation of Sτ is given by Proposi-
tion 3.4, while Tτ is free abelian on the set of generators (14), according to Theo-
rem 4.1.

Pulling back the generators si of Sτ to the generators ri of Gτ, the relations
s2

i = 1 still hold in the same form r2
i = 1, while the relation (s1s2s3)

2 = 1 turns

into the identity (r1r2r3)
2 = t1 = t0,0. Moreover, based on (14), for the generators

of Tτ we have

tn,m = ((t0,0))(r1r2)
n(r1r3)

m = (((r1r2r3)
2))(r1r2)

n(r1r3)
m . (15)

At this point, to complete the set of relations for Gτ it remains to rewrite in
the generators ri, by using equation (15), the commutators [tn,m, tn′,m′ ] and the
equations

((tn,m))r1 = t−n+1,−m−1 , ((tn,m))r2 = t−n+2,−m−1 , ((tn,m))r3 = t−n+1,−m , (16)

which express in terms of the tn,m’s their conjugates by the ri’s. The latter equa-
tions could be easily shown to hold, by taking into account equation (8) and the
commutativity of SO(2), and by using the relations r2

i and the trivial identity

(((r1r2r3)
2))r1r2r3 = (r1r2r3)

2. However, we are going to validate them in a differ-
ent way.

In fact, the rest of the proof is aimed to see how the rewriting of equations (16)
in the ri’s, as well as the rewriting of the commutators [tn,m, tn′,m′ ] with (n′, m′)
6= (n, m), can be derived from the relations r2

i and the relations

[(r1r2r3)
2, (((r1r2r3)

2))(r1r2)
n(r1r3)

m] (17)

with n, m ∈ Z and (n, m) 6= (0, 0), which represent the special commutators
[t0,0, tn,m].

We start by observing that the relations r2
i imply

[r1r3, r1r2] = r1r3r1r2r3r1r2r1 = (((r1r2r3)
2))(r1r3)

−1 , (18)

which in turn, together with the relation [(r1r2r3)
2, (((r1r2r3)

2))(r1r2)
n(r1r3)

m] con-
jugated by (r1r3)

−1, implies

(((r1r2r3)
2))(r1r2)

n(r1r3)
mr1r2 = (((r1r2r3)

2))(r1r2)
n(r1r3)

m∓1r1r2(r1r3)
±1 .

Hence, by increasing/decreasing induction on m, based on the trivial case of
m = 0,

(((r1r2r3)
2))(r1r2)

n(r1r3)
m(r1r2)

±1 = (((r1r2r3)
2))(r1r2)

n±1(r1r3)
m
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for every m ∈ Z. Finally, by increasing/decreasing induction on n, based on the
trivial case of n = 0, we get

(((r1r2r3)
2))(r1r3)

m(r1r2)
n = (((r1r2r3)

2))(r1r2)
n(r1r3)

m (19)

for every n, m ∈ Z.
As a consequence of (19), the rewriting of any commutator [tn,m, tn′,m′ ] is equiv-

alent up to conjugation to that of [t0,0, tn′−n,m′−m]. In fact,

[(((r1r2r3)
2))(r1r2)

n(r1r3)
m, (((r1r2r3)

2))(r1r2)
n′
(r1r3)

m′
]

once conjugated by (r1r3)
−m(r1r2)

−n becomes

[(r1r2r3)
2, (((r1r2r3)

2))(r1r2)
n′
(r1r3)

m′−m(r1r2)
−n] ,

and this is equivalent to

[(r1r2r3)
2, (((r1r2r3)

2))(r1r2)
n′−n(r1r3)

m′−m]

by equation (19).
Moreover, we obtain the rewriting of the relations (16) from the relations r2

i
and the relations (17), by the following chains of equalities, whose last step is
based on two applications of equation (19):

(((r1r2r3)
2))(r1r2)

n(r1r3)
mr1 = (((r1r2r3)

2))r1(r1r2)
−n(r1r3)

−m

= (((r1r2r3)
2))r1r2r3r1(r1r2)

−n(r1r3)
−m

= (((r1r2r3)
2))(r1r2)

−n+1(r1r3)
−m−1 ;

(((r1r2r3)
2))(r1r2)

n(r1r3)
mr2 = (((r1r2r3)

2))r1(r1r2)
−n(r1r3)

−mr1r2

= (((r1r2r3)
2))r1r2r3r1(r1r2)

−n(r1r3)
−mr1r2

= (((r1r2r3)
2))(r1r2)

−n+2(r1r3)
−m−1 ;

(((r1r2r3)
2))(r1r2)

n(r1r3)
mr3 = (((r1r2r3)

2))r1(r1r2)
−n(r1r3)

−mr1r3

= (((r1r2r3)
2))r1r2r3r1(r1r2)

−n(r1r3)
−mr1r3

= (((r1r2r3)
2))(r1r2)

−n+1(r1r3)
−m .

This concludes the proof.

5 The rotation subgroup

By intersecting the exact sequence (5) with the group SE(2) of orientation pre-
serving Euclidean isometries, we get the new exact sequence

1 −→ Tτ
ιτ|−→ Hτ

λτ|−→ Rτ −→ 1 , (20)
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where Hτ = Gτ ∩ SE(2) is a subgroup of index 2 in Gτ, which we call the rotation
subgroup, while Rτ = Sτ ∩ SE(2) ⊂ SO(2) is the abelian subgroup of linear rota-
tions in Sτ . As an extension of an abelian group by another abelian group, Hτ is
metabelian, hence Gτ is virtually metabelian.

If τ is a typical triangle, then Rτ is a dense free abelian subgroup of SO(2)
generated by the two rotations s1s2 and s1s3 (cf. proof of Lemma 3.3). Moreover,
in the light of the first part of Theorem 4.1, equations (14) and (18) imply that Tτ

coincides with the commutator subgroup [Hτ, Hτ] when τ is typical.

Theorem 5.1. For a generic triangle τ the rotation subgroup Hτ ⊂ Gτ is a free metabelian
group of rank 2 generated by the rotations r1r2 and r1r3, meaning that it is isomorphic to
the metabelianization F2/[[F2, F2], [F2, F2]] of the free group F2 on two generators corre-
sponding to those rotations. As a consequence, Gτ does not admit any finite presentation.

Proof. Since F2/[[F2, F2], [F2, F2]] is known not to admit any finite presentation [11]
(cf. also [1]) and Hτ is a finite index subgroup of Gτ, the second part of the state-
ment follows (see [8, Sec. 9.1]) once we know that Hτ

∼= F2/[[F2, F2], [F2, F2]].
The above observation that [Hτ, Hτ] = Tτ together with the second part of

Theorem 4.1 and the fact that Sτ is free abelian of rank 2, would suffice to prove
that Hτ is free metabelian of rank 2. However, for future reference, we give an
explicit isomorphism Hτ

∼= F2/[[F2, F2], [F2, F2]] by way of a presentation of Hτ.
Starting from the presentation of Gτ given in Theorem 4.2 and applying the

Reidemeister-Schreier method (see [8, Sec. 9.1]) to the subgroup Hτ with Schreier
transversal {1, x1}, we get the following presentation for Hτ

〈y2, y3, z1, z2, z3 | z1, y2z2, y3z3, an,m, z2y2, z3y3, a′n,m, n, m ∈ Z , (n, m) 6= (0, 0)〉 ,

where the generators are given by y2 = x2x−1
1 , y3 = x3x−1

1 , z1 = x2
1, z2 = x1x2, z3 =

x1x3, and the relations an,m and a′n,m are the transcriptions in terms of such gener-
ators of the commutator [w, ((w))(x1x2)

n(x1x3)
m] and its conjugate

(([w, ((w))(x1 x2)
n(x1x3)

m]))x−1
1 = [((w))x1z−1

1 , ((w))x1(x2x1)
n(x3x1)

mz−1
1 ] ,

respectively, that is

an,m = [z2y3z1y2z3, ((z2y3z1y2z3))z
n
2 zm

3 ] ,

a′n,m = [((y2z3z2y3z1))z
−1
1 , ((y2z3z2y3z1))(y2z1)

n(y3z1)
mz−1

1 ] .

Now, we eliminate the generators z1, z2 and z3, by using the relations z1, y2z2

and y3z3, and then replace y3 by y−1
3 to obtain the new presentation for Hτ

〈y2, y3 | [[y2, y3], (([y2, y3]))y
n
2 ym

3 ], [[y−1
2 , y−1

3 ], (([y−1
2 , y−1

3 ]))yn
2 ym

3 ],

n, m ∈ Z , (n, m) 6= (0, 0)〉 .

Finally, since Hτ is metabelian and all the relations in the above presentation
of Hτ belong to [[F2, F2], [F2, F2]], we can conclude that Hτ

∼= F2/[[F2, F2], [F2, F2]]
with the rotations r1r2 and r1r3 corresponding to the free generators y−1

2 and y3

of F2, respectively.
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In the following, we provide presentations of the groups Hτ and Gτ, which are
minimal in the sense that no relation can be removed without changing the group.
According to Theorem 5.1, this solves in the affirmative the problem of the exis-
tence of a minimal presentation of the free metabelian group F2/[[F2, F2], [F2, F2]]
of rank 2 (cf. [2]).

The two presentations are given in Theorems 5.2 and 5.3, respectively, while
their minimality is proved in Theorem 5.4. For Hτ we just refine the presenta-
tion considered in the proof of Theorem 5.1 to make it minimal. On the contrary,
the minimal presentation of Gτ is derived from that of Hτ, and it has different
relations with respect to the one given in Theorem 4.2. We denote by <lex the
lexicographic order.

Theorem 5.2. For a generic triangle τ the group Hτ admits the presentation

〈y2, y3 | [[y2, y3], (([y2, y3]))y
n
2 ym

3 ] , n, m ∈ Z , (n, m) >lex (0, 0)〉 ,

with the symbols y2, y3 corresponding to the rotations r2r1 and r1r3, respectively.

Proof. The relations in the statement imply that

(([y2, y3]))y
n
2 ym

3 y2 = (([y2, y3]))y
n
2 ym∓1

3 y2y±1
3

for every (n, m) >lex (0, 0). From this family of equalities, arguing as in the proof
of Theorem 5.1 when obtaining equation (19), by increasing/decreasing induction
on m, based on the trivial case of m = 0, and then by induction on n ≥ 0, based
on the trivial case of n = 0, we get

(([y2, y3]))y
m
3 yn

2 = (([y2, y3]))y
n
2 ym

3 (21)

for every (n, m) >lex (0, 0). By using such equation, we can rewrite

[[y2, y3], (([y2, y3]))y
n
2 ym

3 ]

as
[[y2, y3], (([y2, y3]))y

m
3 yn

2 ] ,

which once conjugated by y−n
2 y−m

3 and inverted becomes

[[y2, y3], (([y2, y3]))y
−n
2 y−m

3 ] .

This means that the relation [[y2, y3], (([y2, y3]))y
n
2 ym

3 ], assumed to hold for every
(n, m) >lex (0, 0), actually holds for every (n, m) 6= (0, 0).

Now, taking into account the identity [y−1
2 , y−1

3 ] = (([y2, y3]))y2y3, from (21)
we get

(([y−1
2 , y−1

3 ]))ym
3 yn

2 = (([y−1
2 , y−1

3 ]))yn
2 ym

3 (22)

for every (n, m) >lex (0, 0), and we can write the commutator

[[y−1
2 , y−1

3 ], (([y−1
2 , y−1

3 ]))yn
2 ym

3 ]

as
[(([y2, y3]))y2y3, (([y2, y3]))y2y3yn

2 ym
3 ] .
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By using equation (21) once again, we immediately have the validity of the

relation [[y−1
2 , y−1

3 ], (([y−1
2 , y−1

3 ]))yn
2 ym

3 ] for every (n, m) >lex (0, 0), and then we
can extend such validity to every (n, m) 6= (0, 0), as we did above for the relation
[[y2, y3], (([y2, y3]))y

n
2 ym

3 ], but using equation (22) instead of (21).
In conclusion, the presentation in the statement is equivalent to the last pre-

sentation of Hτ given in the proof of Theorem 5.1 (after the replacement of y3

by y−1
3 ), whose generators y2 = x2x−1

1 and y3 = (x3x−1
1 )−1 correspond to the

rotations r2r1 and r1r3, respectively.

Theorem 5.3. For a generic triangle τ the group Gτ admits the presentation

〈x1, x2, x3 | x2
1, x2

2, x2
3, [v, ((v))(x2x1)

n(x1x3)
m] , n, m ∈ Z , (n, m) >lex (0, 0)〉 ,

with v = [x2x1, x1x3] and the symbols x1, x2, x3 corresponding to r1, r2, r3, respectively.

Proof. We think of Gτ as an extension of Hτ by Z2 and deduce the presentation
of it from that of Hτ given by Theorem 5.2 and the obvious one of Z2 in the usual
way (see [8, Sec. 10.2]).

As the generators we have x1, corresponding to the reflection r1 (a lifting to
Gτ of the generator of Z2), and the generators y2 and y3 in the presentation of Hτ,
corresponding to the rotations r2r1 and r1r3, respectively.

As the relations, besides the ones in the presentation of Hτ, we have

x2
1 , x1y2x−1

1 = y−1
2 , x1y3x−1

1 = y−1
3 , (23)

the first of which comes from the relation of Z2, while the others express in terms
of the generators y2 and y3 their conjugates by x1.

In the new generators x1, x2, x3, with x2 = y2x1 and x3 = x1y3 corresponding
to the reflection r2 and r3, respectively, the relations (23) reduce to x2

1, x2
2, x2

3 , and
up to such relations those in the presentation of Hτ read as

[[x2x1, x1x3], (([x2x1, x1x3]))(x2x1)
n(x1x3)

m]

for every (n, m) >lex (0, 0).

Theorem 5.4. The presentations given in Theorems 5.2 and 5.3 are minimal.

Proof. We first prove the minimality of the presentation of Hτ, then we see how
the argument can be adapted to prove the minimality of the presentation of Gτ.
In both cases, the idea is to apply the Reidemeister-Schreier method
(see [8, Sec. 9.1]) to obtain a presentation of the subgroup Tτ induced by the pre-
sentation of Hτ (resp. Gτ), and show that if any single relation were removed
from this last presentation, then the presentation induced on Tτ would give a
non commutative group.

We start with the presentation of Hτ in Theorem 5.2, and we choose as a

Schreier transversal for Tτ ⊂ Hτ the set {yi
2y

j
3 , i, j ∈ Z}, where yi

2y
j
3 corresponds

to the lifting (r2r1)
i(r1r3)

j ∈ Hτ of the generic rotation (s2s1)
i(s1s3)

j ∈ Rτ in the
exact sequence (20).
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According to this choice, taking into account that λτ(yi
2y

j
3y2) = λτ(y

i+1
2 y

j
3),

since Rτ ⊂ SO(2) is abelian, and that yi
2y

j
3y3 = yi

2y
j+1
3 , a set of generators for Tτ

is

{bi,j = yi
2y

j
3y2y

−j
3 y−i−1

2 = [yi
2y

j
3, y2] , i, j ∈ Z , j 6= 0} . (24)

Moreover, the relations are the transcription in the bi,j’s of the words

cn,m,k,ℓ = [(([y2, y3]))y
ℓ
3yk

2, (([y2, y3]))y
n
2 ym

3 yℓ3yk
2 ] , (25)

with n, m, k, ℓ ∈ Z and (n, m) >lex (0, 0).
In order to carry out the transcription, we observe that

[yi
2, y

j
3] =

{

bi,jbi+1,j . . . b−1,j if i ≤ 0

(b0,jb1,j . . . bi−1,j)
−1 if i ≥ 0 ,

(26)

where we put bi,0 = 1 for every i ∈ Z . In fact, apart from the trivial case of

i = 0, for i = ±1 we immediately have [y2, y
j
3] = b−1

0,j and [y−1
2 , y

j
3] = b−1,j. Then,

decreasing induction on i ≤ −1 gives

[yi
2, y

j
3] = yi

2y
j
3y2y

−j
3 y−i

2 y−1
2 yi+1

2 y
j
3y−i−1

2 y
−j
3

= bi,j[y
i+1
2 , y

j
3] = bi,jbi+1,j . . . b−1,j ,

while increasing induction on i ≥ 1 gives

[yi
2, y

j
3] = y2yi−1

2 y
j
3y−1

2 y
−j
3 y−i+1

2 yi−1
2 y

j
3y−i+1

2 y
−j
3

= b−1
i−1,j[y

i−1
2 , y

j
3] = b−1

i−1,jb
−1
i−2,j . . . b−1

0,j .

Now, direct inspection shows that

(([y2, y3]))y
ℓ
3yk

2 = [y−k
2 , y−ℓ

3 ][y−ℓ

3 , y−k+1
2 ][y−k+1

2 , y−ℓ+1
3 ][y−ℓ+1

3 , y−k
2 ] ,

and after performing the replacements (26), separately for the two cases k ≤ 0
and k ≥ 1, we get in both cases

(([y2, y3]))y
ℓ
3yk

2 = b−k,−ℓb
−1
−k,−ℓ+1 . (27)

Analogously, direct inspection shows that

(([y2, y3]))y
n
2 ym

3 yℓ3yk
2 = [y−k

2 , y−m−ℓ

3 ][y−m−ℓ

3 , y−k−n+1
2 ][y−k−n+1

2 , y−m−ℓ+1
3 ]

· [y−m−ℓ+1
3 , y−k−n

2 ][y−k−n
2 , y−m−ℓ

3 ][y−m−ℓ

3 , y−k
2 ] ,

and after performing the replacements (26), separately for the two cases k ≤ 0
and k ≥ 1 if n = 0 and for the three cases k ≤ −n ,−n < k < 0 and k ≥ 0 if n > 0,
we get in all cases

(([y2, y3]))y
n
2 ym

3 yℓ3yk
2 = ((b−n−k,−m−ℓb

−1
−n−k,−m−ℓ+1))Π

n−1
i=0 b−n−k+i,−m−ℓ . (28)
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Based on (27) and (28), we have the transcription

cn,m,k,ℓ = [ c−k,−ℓc
−1
−k,−ℓ+1 , ((b−n−k,−m−ℓb

−1
−n−k,−m−ℓ+1))Π

n−1
i=0 b−n−k+i,−m−ℓ ] ,

(29)
for every n, m, k, ℓ ∈ Z and (n, m) >lex (0, 0).

At this point, we consider the new set of generators for Tτ

{di,j = b−i,−jb
−1
−i,−j+1 , i, j ∈ Z} , (30)

where bi,0 = 1 for every i ∈ Z, and hence di,1 = b−i,−1 and di,0 = b−1
−i,1. Starting

from the last two equalities, and proceeding by decreasing induction on j ≤ −1
and by increasing induction on j ≥ 1, we obtain

bi,j =

{

d−i,−jd−i,−j−1 . . . d−i,1 if j ≤ 0

(d−i,0d−i,−1 . . . d−i,−j+1)
−1 if j ≥ 0 ,

with bi,0 corresponding to the empty word in the di,j’s in both cases.

Then, by performing these replacements in the equation (29), we obtain as the
set of relations for Tτ in the generators di,j

{en,m,k,ℓ = [dk,ℓ, ((dn+k,m+ℓ))un,m,k,ℓ] , n, m, k, ℓ ∈ Z , (n, m) >lex (0, 0)} , (31)

where un,m,k,ℓ is a certain word in the di,j’s.

Now, assume by contradiction that a single relation [[y2, y3], (([y2, y3]))y
n0
2 ym0

3 ]
with (m0, n0) >lex (0, 0) can be removed from the presentation of Hτ, in such
a way that we still have a presentation of Hτ. Then, in the set of relations (31)
for the induced presentation of Tτ with generators di,j, all the relations en0,m0,k,ℓ

with k, ℓ ∈ Z are omitted. This allows us to define a homomorphism Tτ → Σ3

that sends d0,0 and dn0,m0 to the transpositions (1 2) and (2 3), respectively, and
any other di,j to the identity, in contrast with the fact that Tτ is abelian. Indeed,
by replacing the generators by the corresponding transpositions in the relation
en,m,k,ℓ, we always get the identity if at least one of (k, ℓ) and (n + k, m + ℓ) does
not coincide with (0, 0) or (n0, m0) . Therefore, since (n, m), (n0 , m0) >lex (0, 0) ,
the only possibility for not having the identity is (k, ℓ) = (0, 0) and (n, m) =
(n0, m0). But this cannot happen since the relation en0,m0,0,0 is missing.

In order to prove the minimality of the presentation of Gτ in Theorem 5.3,
we first apply the Reidemeister-Schreier method to derive from it a presenta-
tion of the subgroup Hτ ⊂ Gτ with Schreier transversal {1, x1}. Arguing as
in the proof of Theorem 5.1, with v and ((v))(x2x1)

n(x1x3)
m in place of w and

((w))(x1x2)
n(x1x3)

m, respectively, we obtain for Hτ the presentation

〈y2, y3 | [[y2, y3], (([y2, y3]))y
n
2 ym

3 ], [[y−1
2 , y−1

3 ], (([y−1
2 , y−1

3 ]))yn
2 ym

3 ],

n, m ∈ Z , (n, m)>lex (0, 0)〉.

Then, we perform once again the Reidemeister-Schreier method on this presen-
tation to get a presentation of the subgroup Tτ ⊂ Hτ with Schreier transversal



On the generic triangle group and the free metabelian group of rank 2 669

{yi
2y

j
3 , i, j ∈ Z}. Similar computations as in the first part of this proof leads to a

presentation having the same set of generators (30) and relations

en,m,k,ℓ = [dk,ℓ, ((dn+k,m+ℓ))un,m,k,ℓ ] ,

e′n,m,k,ℓ = [((dk+1,ℓ+1))u
′
k,ℓ, ((d−n+k+1,−m+ℓ+1))u

′′
n,m,k,ℓ ] ,

(32)

where en,m,k,ℓ is as in (31), while u′
k,ℓ and u′′

n,m,k,ℓ are suitable words in the di,j’s.
At this point the minimality of the presentation of Gτ can be deduced by the

same argument used above for Hτ, based on the equality between the differences
of indices (k + 1, ℓ+ 1)− (−n + k + 1,−m + ℓ + 1) = (n + k, m + ℓ) − (k, ℓ) =
(n, m) in (32).

6 Examples of non-generic relations

As we have seen in the previous sections, apart from the obvious involutive prop-
erty of the ri’s, the only generic relations in Gτ, that is the ones holding for τ a
generic triangle or equivalently for every triangle τ (by Lemma 2.4), are the com-
mutators of the translations in the free abelian subgroup Tτ generated by the
conjugates of t1.

Here, we briefly discuss the existence of extra non-generic relations for the
subgroup Tτ, and hence for the group Gτ, in the case when the triangle τ is
typical but not generic. In this respect, typical triangles are expected to present
a rich unexplored structure, in some sense complementary to the one encoded by
the relations (r1r2)

n3 , (r2r3)
n1 and (r3r1)

n2 for a rational triangle τ having angles
miπ/ni with (mi, ni) = 1, which has been widely considered in the literature after
the pioneering work of Coxeter [4].

In Figure 3 two relations of Gτ are represented in terms of the corresponding
chain of triangles generated by each next reflection in the word, starting from τ
and ending back to τ. Namely, on the left side there is the generic relation given
by the commutator

[t1, ((t1))r1r3] = t1r3r1t1r1r3t−1
1 r3r1t−1

1 r1r3

= r1r2r3r1r3r1r2r3r1r2r1r3r2r1r3r1r3r2r1r3r2r3 ,

where some r2
i has been canceled in the last expression, while on the right side

there is the non-generic relation

t1 · ((t−1
1 ))r1 · ((t1))r1r3r2 · ((t−1

1 ))r1r3r1 · ((t−1
1 ))r3

= r1r2r3r1r2r3r1r3r2r1r2r3r1r2r3r1r3r2r1r3r1r3r2r1r3r2r3r1r2r1r3r2r1r3 ,

which holds only for the triangles τ whose angles αi satisfy a specific condition
(in particular for all the triangles such that 2 cos(2α2 + 2α3)− 2 cos 2α2 = 1).

The big vectors superposed to the chains of triangles in the figure correspond
to the expression of the relation as a word in the set C(t1) of generators of the
translation subgroup Tτ , while the small vectors indicate the displacement of the
incenter of the triangle under the action of each next reflection in the expression of
the relation as a word in the generators r1, r2 and r3 of Gτ. The lengths of these two
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Figure 3: Generic and non-generic relations

word representations of a relation, in the generators of Tτ and Gτ respectively,
provide relatively independent measures of its complexity.

The following table reports the number of stable words in the generators r1, r2

and r3 of Gτ up to length 24, which are cyclically reduced with respect to the
cancellation of the r2

i ’s, and pairwise distinct up to permutation of indices, inver-
sion, conjugation and commutation of stable words. These have been obtained
by a computer procedure in three steps: first, the generation of a complete list
of all the cyclically reduced stable words of a given length; then, the elimination
of duplicates up to permutation of indices, inversion and cyclic permutations of
the word; finally, the detection of the remaining pairs of words (even of differ-
ent lengths) equivalent up to conjugation and commutation of stable words, by
comparing their expressions as linear combinations of vectors in C(t1).

The total number of words of each length from 6 to 24 with respect to the
generators r1, r2 and r3 of Gτ in the last column, is subdivided in the previous
columns according to the length from 1 to 12 with respect to the set C(t1) of
generators of Tτ.
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Now, in order to determine when a cyclically reduced stable word ri1ri2 . . . rin

represents the identity in Tτ, one could directly observe that, according to Lemma
3.3 and equation (6), this happens if and only if

∑
n
j=1(vij

)sij+1
. . . sin

= 0 . (33)

Notice that the j-th term of this summation coincides with half the displacement
vector of the incenter of the triangle under the action of the j-th reflection in
ri1ri2 . . . rin

. Taking into account that all these vectors have the same norm, equa-
tion (7) could be applied to rewrite equation (33) as a condition on the angles α2

and α3 of τ under which ri1ri2 . . . rin is a relation for Tτ .
A more convenient approach to the same condition on the angles of Tτ is

provided by the proof of Theorem 4.1. Once the translation vector correspond-
ing to the word ri1ri2 . . . rin

has been expressed as a linear combination of vectors
in C(t1), equation (33) can be put in the form

∑
m
j=1 kj ((t1))rij,1

rij,2
. . . rij,nj

= 0 .

Then, according to equations (10) and (11), we get the equivalent system

{

∑
m
j=1 kj cos(mj,2α2 + mj,3α3) = 0

∑
m
j=1 kj sin(mj,2α2 + mj,3α3) = 0

, (34)

where mj,2α2 + mj,3α3 is the oriented angle from t1 to (t1)rij,1
rij,2

. . . rij,nj
.

By a systematic computer search among the stable words up to length 24
generated as said above, we found that the shortest words in the ri’s giving non-
generic relations for some typical triangle have length 18. Up to permutation of
indices, inversion, conjugation and commutation of stable words, there are two of
such words of length 18. As discussed in the Examples 6.1 and 6.2 below, both the
relations hold for a continuous family of triangles, forming a curve in the space
of parameters

T = {(α2, α3) | α2, α3 > 0 and α2 + α3 < π} ,

and almost all the triangles in that family are typical. Moreover, the relation pre-
sented in Example 6.1 has minimal length also with respect to the set of genera-
tors C(t1). Indeed it is not difficult to see that, apart from commutators, any extra
relation holding in Tτ for a typical triangle τ must have length at least 5 in terms
of conjugates of t1.

Example 6.1. Consider the stable word of length 18

(r1r2r3r2r3r1r2r1r3)
2 = ((t1))r1r3r2r1 · t1 · ((t1))r3r1r3r2r3 · ((t1))r1r3 · ((t1))r3r1r3 .

The corresponding translation vector is

t1 + ((t1))r1r3 + ((t1))r1r3r2r1 + ((t1))r3r1r3 + ((t1))r3r1r3r2r3

= t1 + ((t1))r1r3 + ((t1))r2r3 + ((t1))r1r2r1r3 + ((t1))r1r3r1r3 ,
(35)
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where the simplification is based on the equation (8), the commutativity of the
rotations sisj and sksl, and the identities ((t1))r1r2r3 = t1 and s2

i = 1. Now, the ori-
ented angles from t1 to the five vectors in (35) are respectively given by
0, 2(α2 + α3), 2α2,−2(α2 − α3) and 4α2, and by replacing in (34) we get the sys-
tem

{

cos 2(α2 + α3) + cos 2α2 + cos 2(α2 − α3) + cos 4α2 = −1

sin 2(α2 + α3) + sin 2α2 − sin 2(α2 − α3) + sin 4α2 = 0
.

By standard trigonometric identities, this system is equivalent to

{

(1 + 2 cos 2α2 + 2 cos 2α3) cos 2α2 = 0

(1 + 2 cos 2α2 + 2 cos 2α3) sin 2α2 = 0
,

hence to the equation

1 + 2 cos 2α2 + 2 cos 2α3 = 0 .

The curve solutions of this equation in the space of parameters T is plotted
on the left side of Figure 4. Since non-typical triangles form a dense countable
union of straight lines in T , it is clear that only countably many triangles along
the curve are non-typical. A very special case is represented by the triangle d in
the figure, whose angles are all rational multiples of π. Hence, we can conclude
that the considered word is a relation in Tτ for uncountably many typical non-
generic triangles τ, which form a dense subset of the curve. A sample of them is
given by the five triangles a, b, c, e, f depicted in the figure.

Figure 4: The non-generic relation of Example 6.1
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Example 6.2. Arguing as above, we see that the stable word of length 18

(r1r2r3r2r3r1r3r1r2)
2

= ((t1))r1r3r2r1 · t1 · ((t1))r1r3r2r3 · ((t1))r3r1r3r2r3 · ((t1))r1r3 · ((t1))r3·
((t1))r1r3r1r2

corresponds to the translation vector

t1 + ((t1))r3 + ((t1))r1r3 + ((t1))r1r3r2r1 + ((t1))r1r3r1r2+
((t1))r1r3r2r3 + ((t1))r3r1r3r2r3

= t1 + ((t1))r1r2 + ((t1))r1r3 + ((t1))r2r3 + ((t1))r1r3r1r2+
((t1))r1r3r2r3 + ((t1))r1r3r1r3 .

This leads to the system

{

(1 + 2 cos 2α2 + 2 cos 2α3 + 2 cos 2(α2 + α3)) cos 2α2 = 0

(1 + 2 cos 2α2 + 2 cos 2α3 + 2 cos 2(α2 + α3)) sin 2α2 = 0
,

hence to the equation

1 + 2 cos 2α2 + 2 cos 2α3 + 2 cos 2(α2 + α3) = 0 .

Hence, also in this case we can conclude that the considered word is a relation
in Tτ for uncountably many typical non-generic triangles τ, which form a dense
subset of the curve represented by the equation.

Besides the two relations of length 18 given in the previous examples, our
computer search also detected other non-generic relations holding for all the tri-
angles along a curve in the parameter space T , hence for uncountably many typ-
ical triangles. Namely, there are 6 such relations of length 22 and 5 of length 24,
but none of length 20.

Moreover, we found a certain number of non-generic relations holding only
for isolated typical triangles. One of such relations is discussed in Example 6.3.

Actually, systematic search produced even shorter relations holding in
isolated triangles, which present strong evidence of being typical. But we were
not able to prove that such triangles are really typical. The shortest one has length
22, and it is the unique one of that length, up to permutation of indices, inversion,
conjugation and commutation of stable words. Up to the same equivalence, there
are also 20 similar relations of length 24, some of which have the minimal length
5 with respect to C(t1). Such further relations in conjecturally typical triangles are
illustrated by Example 6.4.

Example 6.3. Consider the stable word of length 32

r1r3r1r2r3r2r3r1r2r3r2r3r1r2r3r1r2r3r1r2r3r2r3r1r3r1r2r1r2r3r1r3

= ((t1))r3r1 · ((t1))r2r1 · ((t2
1))r3r1 · ((t1))r2r1 · ((t1))r1r3r2r1 · t1 · ((t1))r1r3 ,

whose corresponding translation vector is

t1 + ((t1))r1r3 + 2((t1))r2r1 + 3((t1))r3r1 + ((t1))r2r3 .
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Proceeding as in the previous examples, we see that this word represents the
identity in Tτ if and only if the angles α2 and α3 satisfy the system

{

4 cos 2α2 + 2 cos 2α3 + cos 2(α2 + α3) = −1

2 cos(α2 + α3)
(

sin(α2 + α3)− 2 sin(α2 − α3)
)

= 0
.

Apart from the rational (mod π) solution α2 = α3 = π/4, the only other
acceptable solution is

{

α2 = arctan
√

2

α3 = arctan

√
2

3

.

According to Theorem 2 of [3], this solution can be written in the form
{

α2 = qπ ± 〈3〉2

α3 = q′π ± 〈11〉2
,

for certain rational numbers q and q′, and certain angles 〈3〉2 and 〈11〉2 that are
rationally independent together with π. This implies that the triangle is typi-
cal. The chains of reflections realizing the relation for such triangle is shown in
Figure 5.

Figure 5: The non-generic relation of Example 6.3

Example 6.4. The stable word of length 22

r1r2r1r2r3r1r3r1r3r2r3r1r2r3r2r3r2r3r2r3r1r2 =

= ((t1))r2r1 · ((t1))r1r3r2r1 · t1 · ((t1))r1r3 · ((t1))r2r3r1r3 · ((t1))r2r3r2r3r1r3 · ((t1))r3

represents the identity in Tτ if and only if
{

cos 2α2 + 2 cos 2α3 + cos 2(α2 + α3) + cos 2(2α2 + α3) cos 2(3α2 + 2α3) = −1

sin 2α2 + sin 2(α2 + α3) + sin 2(2α2 + α3) sin 2(3α2 + 2α3) = 0
.

The only two acceptable approximate solutions of the system are
{

α2 = 0.3675592642 π

α3 = 0.1932064551 π
and

{

α2 = 0.5971477967 π

α3 = 0.2299624978 π
.
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Analogously, the stable word of length 24

r1r2r1r2r1r3r1r3r2r1r3r1r2r1r3r2r3r2r3r1r2r3r2r3

= ((t−1
1 ))r3r1 · ((t−1

1 ))r2r1r3r1 · ((t−1
1 ))r3r1r2r1r3r1 · t1 · ((t1))r2r3

represents the identity in Tτ if and only if

{

cos 2α2 − cos 2(α2 + α3) + cos 2(α2 − α3) + cos 2(2α2 − α3) = 1

sin 2α2 + sin 2(α2 + α3) + sin 2(α2 − α3) sin 2(2α2 − α3) = 0
.

The only acceptable approximate solution of the system is

{

α2 = 0.2961623095 π

α3 = 0.4392394514 π
.

The chains of reflections realizing both the non-generic relations above are shown
in Figure 6, on the left side for the two triangles where the former relation holds
and on the right side for the unique triangle where the latter holds.

Figure 6: The non-generic relations of Example 6.4
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