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Abstract

We record various properties of twisted Becker-Gottlieb transfer maps
and study their multiplicative properties analogous to Becker-Gottlieb trans-
fer. We show these twisted transfer maps factor through Becker-Schultz-
Mann-Miller-Miller transfer; some of these might be well known. We apply
this to show that BSO(2n + 1)+ splits off MTO(2n), which after localisation
away from 2, refines to a homotopy equivalence MTO(2n) ≃ BO(2n)+ as
well as MTO(2n + 1) ≃ ∗ for all n > 0. This reduces the study of MTO(n) to
the 2-localized case. At the prime 2 our splitting allows us to identify some
algebraically independent classes in mod 2 cohomology of Ω

∞MTO(2n). We
also show that BG+ splits off MTK for some pairs (G, K) at appropriate set of
primes p, and investigate the consequences for characteristic classes, includ-
ing algebraic independence and non-divisibility of some universally defined
characteristic classes, generalizing results of Ebert and Randal-Williams.

1 Introduction and statement of results

For K = O, U, SO, SU, Sp, Pin, or Spin, the Madsen-Tillmann spectrum MTK(n)
([19]) is defined to be BK(n)−γn , the Thom spectrum of −γn where γn is the
canonical bundle the classifying space for n-dimensional K-vector bundles BK(n)
(see Appendix A for notes on classifying spaces). One can associate to a
fibre bundle M −→ E −→ B whose fibre M is a n-dimensional manifolds with
K-structure the Madsen-Tillmann-Weiss map M −→ Ω

∞MTK(n) (see e. g. [14]
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for a nice account). The cohomology ring H∗(Ω∞ MTK(n); R) then contains the
R-characteristic classes for such bundles, where R is some relevant ring. The de-
composition Ω

∞X ≃ Ω
∞

0 X × π0(X) (here π0(X) is equipped with the
discrete topology) reduces the study of any infinite loop space to that of its base-
point component. It is known that H∗(Ω∞

0 MTK(n); Q) is the free commuta-
tive algebra generated by H∗>0(MTK(n); Q). As the torsion-free quotient of
H∗>0(Ω∞

0 MTK(n); Z) injects to H∗>0(Ω∞

0 MTK(n); Q), this gives us a good
knowledge of the torsion-free quotient of H∗>0(Ω∞

0 MTK(n); Z). To understand
the remaining torsion part, we need to know the Z/p-coefficient case, which
seems rather difficult. In fact, for p = 2, the only existing computations in the
literature are due to Galatius and Randal-Williams; they have shown that there
exist short exact sequences of Hopf algebras

H∗(Ω
∞

0 MTK(n); Z/2) −→ H∗(Q0BK(n)+ ; Z/2) −→ H∗(Ω
∞

0 MTK(n− 1); Z/2)

where K = SO with n = 2 (equivalently with K = U and n = 1) [17, Theorem
1.3], and K = O with n = 1, 2 [41, Theorem A, Theorem B]. Here, Q denotes
Ω

∞
Σ

∞ and the subscript 0 indicates the base point component of the associated
infinite loop space. The maps are induced by maps in the cofibration of spectra
below: [19, Proposition 3.1] (see also Lemma 2.6)

MTK(n)
ωK(n)
−→ BK(n)+

t̃
−→ MTK(n− 1).

Here ωK(n) is the Thomification of the inclusion−γn→ (−γn)⊕γn, and t̃ denotes
the Becker-Schultz-Mann-Miller-Miller transfer discussed in Section 2.3. The case
for K = Spin with n = 2 has been treated in [18, Theorems 1.2, 1.3, 1.7], the results
don’t allow such a simple description.

At odd primes, as far as we are aware, aside from some degenerate cases, the
only computation is due to Galatius for the case of K = U, n = 1 [17, Theorem
1.4, Corollary 1.5]. It is therefore of interest for people working in the field to
proceed with further computations, or at least identify nontrivial torsion classes
in (co-)homology of Ω

∞MTK(n). We are interested in splitting these spectra, so
that some more familiar pieces could be identified which consequently tell us
about pieces of cohomology rings H∗(Ω∞MTK(n); Z/p). We shall use standard
methods of stable homotopy theory, which in this paper are mainly based on
using various transfer maps, and Steinberg idempotent as well as the Whitehead
conjecture in a sequel [25].

Now we summarize our main results. In many cases, we only sketch them,
the detailed statement can be found in the relevant sections.

We begin by recording an observation on the twisted Becker-Gottlieb transfer
map which are probably known to experts, but we don’t know of any published
account.

Theorem 1.1. 1. (Theorem C.4) For a fibre bundle π : E −→ B over a “nice space” B
with fibre a compact manifold F, and a vector bundle ζ over B, one can construct the

“twisted” Becker-Gottlieb transfer t
ζ
π : Bζ −→ Eπ∗ζ enjoying similar properties

as the usual Becker-Gottlieb transfer. Notably the composition

Bζ t
ζ
π−→ Eπ∗ζ Thζ (π)

−→ Bζ
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induces multiplication by χ(F) in ordinary homology.

2. (Proposition 2.3) For a compact Lie group G and a closed subgroup K ⊂ G, the
twisted Becker-Gottlieb transfer factors through the Becker-Schultz-Mann-Miller-
Miller transfer (see Subsection 2.3).

Before proceeding further, we fix one important terminology. For spaces, we
have two distinct notions of splitting. We say, when X ∼= Y× Z, that Y splits off X
(as a direct factor). As we identify a space with its suspension spectrum, we also
say, when Σ

∞X ∼= Σ
∞Y ∨ Σ

∞Z′, that Y splits off X (as a stable wedge summand).
It is easy to see that the first implies the second. Sometimes, we use the same
word splitting for two notions, the meaning being clear from the context.

Note that the infinite loop space functor Ω
∞ commutes with the localisation.

Thus as our main applications concern mod p (co)homology for given prime p,
there is no loss of information by localizing at p. Thus we mainly work with
spaces/spectra localized at a prime p, which we denote by the subscript (p). As
we work mainly in the category of spectra, we also identify a (pointed) space X
with its suspension spectrum.

Thus the above implies:

Corollary 1.2. 1. Let F −→ E −→ B be as above. If χ(F) is prime to p, then B
ζ
(p)

splits off E
π∗ζ
(p)

.

2. (Corollary 2.4) Let G be a compact Lie group, K a closed subgroup, and η a vector

bundle over BG. If χ(G/K) is prime to p, then BG
η

(p)
splits off BK

η|K⊕adK−adG|K

(p)
.

Corollary 1.2 (ii) is an important tool in proving some of our main splitting
results, upon various choices of K ⊂ G and η. Our results below provide a list of

such examples, where the main task is to identify BKη|K⊕adK−adG|K as a Madsen-
Tillmann spectrum.

Theorem 1.3. 1. (Theorems 3.1, 3.3) Let G, K, p be as in Theorems 3.1 (i), (ii), or
3.3. Then BG+(p) splits off the Madsen-Tillmann spectra MTK(p).

2. (Lemma 3.5) If the prime p is odd, then we have

MTO(2n)(p) ≃ BO(2n)+(p), MTO(2n− 1)(p) ≃ ∗.

Thus we have, at odd primes,

MTO(2n)(p) ≃ BSO(2n+ 1)+(p) ≃ BO(2n)+(p) ≃ BO(2n+ 1)+(p) ≃ BSp(n)+(p) ,

where the equivalences BSO(2n + 1)+(p) ≃ BO(2n)+(p) ≃ BO(2n + 1)+(p) ≃

BSp(n)+(p) are classic.
Splitting of a spectrum E into a wedge, say E1 ∨ E2, implies that the infinite

loop space Ω
∞E decomposes as a product of infinite loop spaces Ω

∞E1 ×Ω
∞E2.

Thus, we have the following:

Corollary 1.4. Let (G, K) and p be as in one of the above theorems. Then, as infinite loop
spaces, Ω

∞MTK(p) decomposes as a product of QBG+(p) and another factor.
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Next, notice that for any pointed space X, we have Σ
∞(X+) ∼= Σ

∞(X) ∨ S0.
Thus if BG+(p) splits off MTK(p), then so does S0

(p)
. At the level of infinite loop

spaces, this implies that QS0
(p)

splits off Ω
∞MTK(p). This splitting however,

can also be obtained by another method. That is, the Madsen-Tillmann-Weiss
map allows us to split S0

(p)
from slightly wider class of Madsen-Tillmann spectra,

including MTSp(n)(p) ’s. Thus:

Theorem 1.5 ((Theorem 2.2)). Suppose there exists a manifold M with K-structure.
Then S0

(p)
splits off MTK(p) at a prime p if p doesn’t divide χ(M).

Concrete examples are given in the statement of Theorem 2.2.

We note that by either method the map from MTK to S0 is obtained by the
composition

MTK
ωK−→ BK+

c
−→ S0,

where ωK is the Thomification of the inclusion −γ −→ (−γ)⊕ γ, γ denoting the
appropriate universal bundle over BK, c is the “collapse” map, that is the map
that sends the base point to the base point, all the rest to the other point in S0.

At the relevant primes, Theorem 1.5 implies that π∗MTK(p) contains π∗(S0
(p)

),

the stable homotopy groups of the sphere as a summand. It also implies that
H∗(Ω∞

0 MTK; Z/p) contains a copy of H∗(Q0S0; Z/p) as a tensor factor. Thus all
non-trivial characteristic classes in H∗(Q0S0; Z/p) are non-trivial in
H∗(Ω∞ MTK(n); Z/p). Thus we can generalize [41, Theorem 6.1], or rather [41,
Lemma 6.3], as we are not pulling back the characteristic classes to moduli spaces,
and show:

Corollary 1.6 ((Corollary 4.1)). Let K be as in Corollary 4.1. Then the composition

MTK
ωK−→ BK+

c
−→ S0 ι

−→ KO,

where ι is the unit map, induces an injection in mod 2 cohomology of infinite loop spaces

H∗(Z× BO; Z/2) →֒ H∗(Ω∞ MTK; Z/2).

Thus if we define the class ξi ∈ H∗(Ω∞

0 MTK; Z/2) by

ξi = (ωK ◦ c ◦ ι)∗(wi),

then they are algebraically independent.

Let F −→ E
π
−→ B be a manifold (with suitable structure) bundle with the

associated Madsen-Tillmann-Weiss map fπ : B −→ Ω
∞

0 MTK. One can define the
characteristic class ξi(E) of this bundle simply as the pull-back ξi(E) = f ∗π(ξi).
Note that as in [41, Theorem 6.2], one can give a more geometrical interpretation
of these characteristic classes, with the equality ξi(E) = wi(KO∗(tπ)(1)) where
tπ is the Becker-Gottlieb transfer, and KO∗(tπ)(1) is the virtual bundle given by
Σ(−1)i [Hi(Fb, R)] ([5, Theorem 6.1]).

Note that in the case of MTO(2), we have, τ(ξi) = χi where the τ is the
conjugation of the Hopf algebra H∗(Ω∞

0 MTO(2); Z/2), where χi’s are defined in
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[41, Theorem C]. This is because wi(V) and wi(−V) are related by the conjuga-
tion of the Hopf algebra H∗(BO; Z/2), and the maps of Hopf algebra respect the
conjugation.

The complex analogue of the above using the Chern classes also holds, that
is, if we use KU instead of KO and ci(p−1) instead of wi in the above to define ξC

i ,
then we have:

Corollary 1.7 ((Corollary 4.2)). Let K and p be as in Theorem 2.2. The classes
ξC

i ∈ H∗(Ω∞(MTK; Z/p))’s are algebraically independent.

Again we can interpret the characteristic class ξC
i geometrically as before, us-

ing appropriate Chern classes and KU-cohomology instead of Stiefel-Whitney
classes and KO-cohomology.

Another family of characteristic classes, arising from the cohomology of the
classifying space BG, are discussed in [41, Subsection 2.4].

Definition 1.8. A universally defined characteristic class is an element in the image of
the map

H∗(BK; R)
σ∞∗

−→ H∗(Q0(BK+); R)
ω∗K−→ H∗(Ω∞

0 MTK; R).

We write νc for the image of c ∈ H∗(BK; R) in H∗(Ω∞

0 MTK; R). For a manifold bundle

F −→ E
π
−→ B with K structure on F with the associated Madsen-Tillmann-Weiss map

fπ : B −→ Ω
∞

0 MTK, νc(E) is defined by

νc(E) = fπ
∗(νc) ∈ H∗(B; R).

This includes Wahl’s ζ classes, Randal-Williams’ µ-classes, and the Miller-
Morita-Mumford κ classes, we will come back to this later. The arguments as
in the proof of [41, Theorem 2.4] show that this definition agrees with the usual
one. The method of [41, Example 2.6] gives some relations among them. Our
splitting theorem can be used to show that, for classes arising from the summand

H∗(BSO(2n + 1); Z/2) ⊂ H∗(BO(2n); Z/2),

there can be no other relations as they live in a tensor factor

H∗(Q0BSO(2n + 1)+; Z/2) ⊂ H∗(Ω∞

0 MTO(2n)),

which is understood by [47]. In subsequent work [25], we will discuss relations
among other classes, and in particular establish a complete set of relations when
n = 1. In many cases, H∗(BK; R) is a polynomial algebra, and if not, it contains a
polynomial algebra generated by a family of characteristic classes (Theorem A.1).
So we will use following conventions for the ease of notation. If I = (i1, i2, · · · in),
and a1, · · · an’s are some cohomology classes indexed by integers, then aI will

denote the monomial ai1
1 · · · a

in
n . In the case of the Stiefel-Whitney classes or Chern

classes in the cohomology of BSO(n) or BSU(n) respectively, we simply skip the
index i1. Now we can state the following:
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Theorem 1.9 ((Theorem 4.6)). Let νI = νBj∗(wI) where j : O(2n) −→ SO(2n + 1)
will be defined in Section 3. Then the only relations among these classes are the ones
generated by

ν2
I = ν2I .

Thus the classes νi2,··· ,im+1
with at least one ik odd are algebraically independent.

Our method can also be applied to the cohomology with integer coefficient.
That is, if pI denotes the monomial in Pontryagin classes, then

Theorem 1.10 ((Theorem 4.10)). The classes ζ I = νpI are not divisible in

H∗(Ω∞

0 MTO(2m); Z).

The case m = 1, combined with the homological stability theorem of [46] is
Theorem A of [15]; the classes ζ I generalize Wahl classes (see Definition 4.9).

We conclude the paper with a ‘non-theorem’ which tells that computations
such as Galatius’ and Randal-Williams’ were somehow exceptional cases and
for an infinite family of Madsen-Tillmann spectra, such a description in terms
of short exact sequences is not available. We have the following.

Proposition 1.11 ((Proposition 4.11)). In many cases (a precise hypothesis is given in
Proposition 4.11), the sequence of Hopf algebras

H∗(Ω
∞

0 MTK(m + 1); Z/p) −→ H∗(Q0BK(m + 1)+; Z/p)

(Ω∞

0 t̃)∗
−→ H∗(Ω

∞

0 MTK(m); Z/p)

induced by the cofibration for Madsen-Tillmann spectra (Lemma 2.6) is not short exact.

However, in our subsequent work [25], we will exhibit summands of
MTO(n)’s for which such exact sequences exist. We simply mention that in
the case of MTO(2), we will have

Theorem 1.12 (([25])). Let D(n) be the cofibre of Sp2n−1
S0 −→ Sp2n

S0 induced by the
X −→ X×2 where Sp2n

S0 is the 2n-th symmetric power of S0. Then, completed at p = 2,
we have

MTO(2) ≃ BSO(3)+ ∨ Σ
−2D(2).

Besides the points made above, we use the following conventions. We denote
by X+ the space X with the disjoint basepoint added. We use the bold letter K
to denote a generic family of Lie groups, that can be specialized to K(n). For
instance for K = O. we have K(n) = O(n). On the other hand, the normal let-
ters K, G etc. will denote a particular Lie group. For a (virtual) vector bundle
α −→ B over some CW-complex B, we write Bα for the Thom (spectrum) space
of α. For a space B, we use Rk and B×Rk interchangeably for the k-dimensional
trivial vector bundle over B which will be clear from the context; the notation
Rk also denotes the k-dimensional Euclidean space as usual. The notation ≃
denotes weak homotopy equivalence of spectra. Since we work with CW-spectra,
by Whitehead theorem weak homotopy equivalence coincides with homotopy
equivalence. By abuse of notation,∼= is used to denote homeomorphism of spaces
or isomorphism of algebraic objects which will be clear from the context. We shall
write Z/p for the cyclic group of order p, and Z(p) for p-localisation of the ring
of integers. p will always denote a (positive) prime integer.



Splitting Madsen-Tillmann spectra I. Twisted transfer maps 269

2 Thom spectra and the transfers

2.1 Recollections on Thom spaces and Thom spectra

Here, we recall some facts about Thom spaces and Thom spectra; these are the
main objects of study in this paper for which [43] is a standard reference. We
refer the reader to [4] for details on the Becker-Gottlieb and Boardman transfer
maps, and to [12] for further material on umkehr maps. For the construction and
properties of Thom diagonals, as well as [43], we refer the reader to [13] for a
detailed study on the algebraic properties of this map.

Definition Let X be a space and ζ a vector bundle over X equipped with a Rie-
mannian metric. In our applications X will be a classifying space of a Lie
group and ζ will be a bundle obtained from a representation, but what fol-
lows here will be valid for any vector bundle over any (good) space. We
define the Thom space of ζ by Xζ = D(ζ)/S(ζ) where D(ζ) and S(ζ) are
the total spaces of disc and sphere bundles associated to ζ, respectively.

Functoriality Suppose ξ −→ E and ζ −→ B are vector bundles, and there is a
map of bundles ξ −→ ζ covering a map f : E −→ B which is injective on
the fibre. Then one can use the metric of f ∗(ζ) to induce one on ξ, thus it
induces a map of Thom (spectra) spaces. if ξ = f ∗ζ, we write Thζ( f ) for
this induced map.

Pontryagin-Thom construction Suppose for now that f : M −→ N is an em-
bedding of a compact manifold M in another manifold N. One can identify
its tubular neighbourhood with the total space of the disc bundle of the
normal bundle ν f . Thus one can define a map N to Mν f by collapsing the
points outside D(ν f ). As Mν f is compact, one can extend this to a map from

N+, its one point compactification. The procedure is called the Pontryagin-
Thom construction, and the resulting map f! : N+ −→ Mν f is the umkehr
map associated to f . Now, let ζ be a vector bundle over N. Then the
embedding D(ν f ) ⊂ N can be extended to D(ν f ⊕ ζ|M) ⊂ D(ζ). Thus by
collapsing the points outside, we get the twisted umkehr map [12], [6, (4.4)]

f
ζ
! : Nζ −→ Mν f⊕ζ|M.

Boardman transfer Let F −→ E
π
−→ B be a fibre bundle of compact mani-

folds. The compactness of E guarantees the existence of an embedding
ι : E −→ Rk by Whitney’s embedding theorem, which in turn allows us
to find an embedding j : E −→ B×Rk that extends π, that is, an embed-
ding j whose first component E −→ B is equal to π. For example, it suffices
to take j = (π, ι). The associated umkehr map

j! : (B×Rk)+ = BRk ∼= Σ
kB+ −→ Eνj

is called the Boardman transfer, and denoted by tπ (see also [4, Section 4]),
[7, Chapter V, Section 4]. As in the above, if ζ is a vector bundle over B, one
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can “twist” this construction with ζ to obtain

t
ζ
π : BRk⊕ζ −→ Eνj⊕π∗(ζ).

Becker-Gottlieb transfer Keep the notations as in the above, and write T(M)
for the tangent bundle of a manifold M. The embedding j induces a bundle
isomorphism over the identity

T(E)⊕ νj
∼= j∗T(B×Rk) ∼= π∗(T(B)) ⊕Rk.

As T(π) : T(E) −→ T(B) is surjective, we get a bundle map νj −→ Rk that
is injective on the fibre. Or, if we denote Tπ(E) the vertical tangent bundle
(also called fibrewise tangent bundle), the bundle given by the kernel of
T(π) : T(E) −→ T(B), then we have a direct sum decomposition

Tπ(E)⊕ νj
∼= Rk.

By Thomifying we get a map Eνj −→ ERk ∼= Σ
kE+. By composing with the

Boardman transfer, one gets the Becker-Gottlieb transfer Σ
kB+ −→ Σ

kE+

which we denote by tπ or t when π is understood. Again as in the above,
we can twist it with a vector bundle ζ over B to obtain

t
ζ
π : Σ

kBζ ∼= BRk⊕ζ −→ ERk⊕π∗(ζ) ∼= Σ
kEπ∗(ζ).

Note that by the above construction, t
ζ
π also factors through the Boardmann

transfer t
ζ
π.

Uniqueness First note that if we replace in the above j : E −→ B×Rk with

j′ : E −→ B× Rk = Rk ⊕ 0 ⊂ B× Rk ⊕Rm ∼= Rk+m

then the resulting transfer map is the m-th suspension of the original one.
Thus, if jl : E −→ B×Rkl , l = 1, 2 are two embeddings extending π, one
can easily construct an isotopy between the two embeddings

E
j1
−→ B×Rk1 = B× (Rk1 ⊕ 0) ⊂ B× (Rk1 ⊕Rk2),

E
j2
−→ B×Rk2 = B× (0⊕Rk2) ⊂ B× (Rk1 ⊕Rk2)

and the isotopy between two induces an homotopy between the (suspended)
transfer maps. Therefore, the stable homotopy class of the transfer maps
doesn’t depend on the choice of embedding. Furthermore, it is also known
that if two maps π and π′ are homotopic to each other, then the resulting
transfer is homotopic.

Extension to non-compact base space We need to deal with the transfer asso-
ciated to the fibre bundle whose base is not necessarily compact. For the
ease of notations, we only deal with untwisted case, but things generalize
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to twisted case without problem. Consider a fibre bundle F −→ E
π
−→ B

where F is a compact manifold, and B allows a filtration by compact man-
ifolds Bn. Let πn denote the restriction of π to Bn, and ιn the inclusion
π−1(Bn) ⊂ E. The paragraph above implies that ιn ◦ tπn defines an ele-
ment in lim

←−
[ΣkBn, Eνj ]. Thus the Milnor exact sequence provides us with an

element in [lim
−→

Σ
k(Bn)+, Eνj ], unique up to the image of lim

←−
1[Σk(Bn)+, Eνj ],

thus we have a well-defined weak homotopy class of the Boardman trans-
fer tπ : Σ

kB+ −→ Eνj . By composing with the Thomified map Eνj−→ Σ
kE+,

we get a well-defined weak homotopy class of the Becker-Gottlieb transfer
tπ : B+ −→ E+.

Thom spectra for virtual bundles If X is a finite complex then KO0(X) is finite
which implies that any virtual bundle ζ over X can be written as ζ′ −Rm

with ζ′ a genuine vector bundle. In this case Xζ is defined to be Σ
−mXζ ′ .

For general X admitting a filtration by finite subcomplexes {Xn} , we see
that we can define Thom spectrum of a (virtual) vector bundle ζ −→ X
using the naturality arguments. One first consider the restriction ζn = ζ|Xn .

The collection of stable complexes {Xζn
n } determine a spectrum which is the

desired Thom spectrum Xζ .

Thom isomorphism is stable in the sense that for bundles over finite com-

plexes, Thom isomorphism for Xζ ′ ∼= Σ
mXζ , where ζ′ = ζ ⊕Rm, is given by

the composition of Thom isomorphism for Xζ and the suspension isomor-
phism. Consequently, Thom isomorphism also holds for Thom spectrum
of a (virtual) vector bundle over arbitrary X admitting a filtration by finite
subcomplexes. Note that when the vector bundle has an extra structure, its
Thom space/spectrum only depends on the underlying real (unoriented)
vector bundle. Many notions, including that of the functoriality or that of
twisted umkehr map, can be generalized to the Thom spectra of virtual bun-
dles. Note that the use of Thom spectra for virtual bundles may lead to sim-
plification of notations even when we normally only need Thom spaces. For
example, the (twisted) Boardman transfer can be seen as a map of spectra

t
ζ
π : Bζ −→ Eπ∗(ζ)⊕νj−Rk ∼= Eπ∗(ζ)−Tπ(E).

Thom diagonal The Thom isomorphism, when it holds, allows us to consider
H∗(Xζ ; k) as a module over H∗(X+; k), free of rank 1. However, we would
like to do so without the orientability hypothesis. For this purpose, we have
the “generalized cup product” ([43, IV.5.36], [13, 2.0.1]) at hand. That is, if ζ
is a (genuine) vector bundle over X, then the diagonal X −→ X × X pulls
ζ × 0 back to ζ, thus induces a map of Thom spaces Xζ −→ (X × X)ζ×0 ∼=
Xζ ∧ X+, called the Thom diagonal. The induced map in the cohomology
H∗(X+; k) ⊗ H∗(Xζ ; k) −→ H∗(Xζ ; k) is called the generalized cup product
and turns H∗(Xζ ; k) into a H∗(X+; k)-module. This construction is “stable”
in the above sense, thus can be generalized to virtual bundles.
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2.2 The Becker-Gottlieb transfer and the splitting

Let’s start by recalling the following. Let B be a space that admits a filtration by
compact manifolds. This, of course, includes the case where B itself is a compact
manifold. Let π : E −→ B be a fibre bundle whose fibre F is a smooth compact
manifold.

Theorem 2.1. [4, Theorem 5.5] The composition

B+
tπ−→ E+

π
−→ B+

induces multiplication by χ(F) in H∗(−; Λ) for any Abelian group Λ.

This implies that if χ(F) is not divisible by p then B+(p) splits off E+(p). In
particular, if B is connected, B(p) splits off E(p).

Thus this theorem has been a source of various splitting results. For example,
let G be a compact Lie group, and K a closed subgroup. Note that the construction
by Grassmannian of BG (e.g. Appendix A.1 for the cases relevant to us) leads to a
filtration of BG by compact manifolds. Furthermore, by taking EG/K as a model
for BK we can apply the above theorem to the fibre bundle

G/K −→ BK
π
−→ BG

Thus if χ(G/K) is prime to p, then BG(p) splits off BK(p). Such phenomenon is
well known and has been used extensively to study the stable homotopy type of
the classifying space BG in the case where G is finite (e. g. [40]). In this case the
Becker-Gottlieb transfer agrees with the classical Kahn-Priddy transfer([24]). The
case when G is not finite is also well-known. For example, it has been shown
[49, Lemma 1] that BSO(2n + 1)(p) splits off BO(2n)(p) (this splitting actually

occurs without localisation) and BSU(n + 1)(p) splits off BU(n)(p) unless p
divides n + 1. Later we will show that in some cases we can refine this splitting
to split classifying spaces off appropriate Thom spectra. For now, let’s consider
the case where B is a single point. This particular case is known as Hopf’s vector
field Theorem ([4, Theorem 2.4]). Note that in [4], they deal with an equivari-
ant version, and what is relevant for us is the particular case where we have the
action of the trivial group. Of course, in this case, the splitting of B+(p) off E+(p)
is uninteresting. However, by considering the factorisation of the Becker-Gottlieb
transfer through the Boardman transfer, we obtain Theorem 1.5.

Theorem 2.2. (Theorem 1.5) Suppose there exists a manifold M with K-structure. Then
S0 splits off MTK at a prime p if p doesn’t divide χ(M). In particular,

1. S0 splits off MTK when K = O(2n), Pin+(4n) or Pin−(4n + 2).

2. S0
(p)

splits off MTK(p) when K = SO(2n) if p is odd.

3. S0
(p)

splits off MTK(p) when K = U(n) or Sp(n) if p doesn’t divide n + 1.
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Proof. Suppose that M is a manifold with reduction of the structure group of the
tangent bundle to K. Note that the vertical tangent bundle for the fibre bundle
M −→ pt is nothing but the tangent bundle of M. Thus the Madsen-Tillmann-
Weiss map associated to it is given by the composition

S0 −→ M−T(M) −→ MTK = BK−γ

where the first map is the Boardman transfer, the second is the Thomification of
the classifying map of T(M), f : M −→ BK, and γ is the universal vector bundle.
Consider the following diagram where the arrows named c are the collapse maps.

S0 M−T(M) MT(M)−T(M) M+ S0

MTK = BK−γ BKγ−γ BK+ S0

// //

�� ��

f+

//
c

//
ωK

//
c

Clearly it is commutative, and the composition of the left horizontal arrows in
the top row is the Becker-Gottlieb transfer. Thus the composition of the entire top
row is a map of degree χ(M) by Theorem 2.1 with E = M, B = pt. Therefore, if
χ(M) is prime to p, we obtain a splitting of S0

(p)
off MTK(p) using the Madsen-

Tillmann-Weiss map.
Noting that RP2n has the tangent bundle with structure group O(2n), that

can be lifted to Pin±(2n) according to the parity of n and χ(RP2n) = 1 , we
get (i). Noting that S2n has the tangent bundle with structure group SO(2n)
and χ(SO(2n)) = 2, we get (ii). Finally, noting that RPn, CPn and HPn have
the tangent bundle with structure group O(n), U(n) and Sp(n) respectively, and
χ(CPn) = χ(HPn) = n + 1, we get (iii).

2.3 Becker-Schultz-Mann-Miller-Miller transfer

As promised, we will now refine the splitting of classifying spaces of compact Lie
groups. Again, the Becker-Gottlieb transfer factors through the Boardman trans-
fer. In the situation at hand, the Boardman transfer can be identified with the
Becker-Schultz-Mann-Miller-Miller transfer (BSMMM transfer for short) up to a
self homotopy equivalence of the target. So we start from recalling the construc-
tion of BSMMM transfer for which [6], [33], [35] are our main references.

Let G be a compact Lie group and M a smooth compact manifold with free G
action. Consider g, the Lie algebra of G, with the adjoint G-action. Let

µG(M) = M×G g −→ M/G

be the adjoint bundle associated to the fibre bundle M −→ M/G. By compactness
of M, we may assume that M/G has a Riemannian metric. Note that G acts on the
tangent bundle T(M). By the existence of Riemannian metric on M/G, it appears
that there is a decomposition of bundles over M/G [6, (3.1)], [33, Lemma 2.1]

T(M)/G ∼= µG(M)⊕ T(M/G).
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Now, suppose K < G is a closed subgroup and consider the fibre bundle
π : M/K −→ M/G. Choose an embedding j0 : M/K −→ Rk and let
j = (j0, π) : M/K −→ Rk × M/G. For a (virtual) vector bundle ζ −→ M/G,
we have a twisted Boardman transfer

(M/G)Rk⊕ζ −→ (M/K)νj⊕π∗ζ .

Now, we have the following commutative diagram.

T(M/K) ⊕ νj

T(Rk ×M/G) M/K T(M/G) ⊕Rk

Rk ×M/G M/G

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

��
✤
✤
✤
✤
✤
✤
✤

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

��
✤
✤
✤
✤
✤
✤

//

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

j
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

π
��
✤
✤
✤
✤
✤
✤
✤

//
π2

Here π2 denotes the projection to the second factor, and all parallelograms are
pull-back squares. Thus we have

T(M/K) ⊕ νj
∼= j∗T(M/G ×Rk)∼=π∗(T(M/G) ⊕Rk).

Now, by plugging in the above decomposition for T(M)/G as well as T(M)/K,
we get a “relative framing”

π∗µG(M)⊕ νj = µK(M)⊕Rk.

Hence, replacing ζ with µG(M) ⊕ α for an arbitrary virtual bundle α −→ M/G,
together with the above relative framing, we obtain a transfer map as in [6, (3.7)],
[33, Section 2]

(M/G)µG(M)⊕α −→ (M/K)µK (M)⊕π∗α.

This is the BSMMM transfer associated to π twisted by α. Denote by
adG = EG ×G g the vector bundle associated to the adjoint representation of G
over BG. We can approximate/filter EG by compact free G-manifolds, and adG

restricts to µG(M) over each compact manifold M ⊂ EG. Thus we get a transfer
map

t̃ = t̃α
K,G : BGadG⊕α −→ BKadK⊕α|K

where α|K = π∗α. As the BSMMM transfer is just a special case of the Boardman
transfer composed with an automorphism of the target Thom spectrum, we get
the following factorisation of the Becker-Gottlieb transfer through the BSMMM
transfer, which is presumably well-known, but we record it for the sake of refer-
ence.
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Proposition 2.3. Suppose G and K are as above. Then the Becker-Gottlieb transfer
BG+ −→ BK+ admits a factorisation through the BSMMM transfer as

BG+
t̃
−→ BKadK−adG |K −→ BK+.

Similarly, for arbitrary η −→ BG, the twisted Becker-Gottlieb admits a factorisation as

BGη −→ BKη|K⊕adK−adG|K −→ BKη|K .

Proof. First, note that for K < G, π : BK −→ BG, and 0 −→ BG, the twisted
Becker-Gottlieb transfer

t0
π : BG0 ∼= BG+ −→ BKπ∗0 = BK0 ∼= BK+

where 0 denotes the 0-dimensional trivial bundle, agrees with the Becker-Gottlieb
transfer. Second, recall that the twisted Becker-Gottlieb transfer admits a factori-
sation as

Σ
kBζ = BRk⊕ζ −→ Eπ∗ζ⊕νj −→ ERk⊕π∗ζ = Σ

kEπ∗ζ

for any fibre bundle π : E −→ B over some B admitting a filtration by compact
manifolds, where ζ −→ B is some (virtual) vector bundle. By choosing M a
compact manifold on which G acts freely, taking π : E −→ B to be the fibre
bundle π : M/K −→ M/G, and replacing ζ with µG(M) ⊕ α and using the
relative framing π∗µG(M)⊕ νj = µK(M)⊕Rk, we have a factorisation

Σ
k(M/G)µG(M)⊕α = BRk⊕µG(M)⊕α −→

(M/K)Rk⊕α|K⊕µK(M) −→ (M/K)Rk⊕µG(M)|K⊕α|K .

By allowing M to approximate EG, hence eventually taking M = EG, we obtain
a factorisation of the twisted Becker-Gottlieb transfer as

BGRk⊕adG⊕α −→ BKRk⊕adK⊕α|K −→ BKRk⊕adG |K⊕α|K

which upon choosing α = −adG yields the first factorisation. For the second
factorisation, it follows if we simply replace α by η − adG.

The above proposition combined with Theorem C.4 (Theorem 2.1 in the un-
twisted case) leads to the following:

Corollary 2.4. (Corollary 1.2 (ii)) Let G be a compact Lie group, K a closed subgroup,
such that χ(G/K) is prime to p, and η a vector bundle over BG. Then BG

η

(p)
splits off

BK
η|K⊕adK−adG|K

(p)
. In particular, BG+(p) splits off BK

adK−adG|K

(p)
.

2.4 The cofibre of transfer maps

Suppose that we have a fibre bundle F −→ E −→ B with χ(F) prime to p. Then
the Becker-Gottlieb transfer t : B+ −→ E+ provides a stable splitting of E+(p)
off B+(p). The other summand is just the cofibre of t, that is, we have a homo-
topy equivalence E+(p) ≃ B+(p) ∨ Ct(p). A similar statement holds for a twisted
BSMMM transfer. Morisugi’s cofibration [38, Theorem 1.3] allows us to identify
this cofibre in favorable cases. By setting E = EG in loc.cit. Theorem 1.3, we
obtain:
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Theorem 2.5. ([38, Theorem 1.3]) Let G be a compact Lie group, K a closed subgroup,
such that there exists a G-representation V with G/K = S(V) as G-spaces, where S(V)
is the sphere in V with a certain G-invariant metric. Let α be a vector bundle over BG.
Denote by λ the vector bundle over BG induced by the representation V, EG×G V −→
BG. Then, there exists a cofibration of spectra:

BGadG⊕α−λ −→ BGadG⊕α t̃
−→ BKadK⊕α|K −→ BGR⊕adG⊕α−λ ∼= ΣBGadG⊕α−λ

The following lemma provides an application of the above theorem.

Lemma 2.6. Let K = O, SO, Pin+, Pin−, Spin, U, or Sp. Then there is a cofibration
sequence of spectra

MTK(n + 1)
ωK(n+1)
−→ BK(n + 1)+

t̃
−→ Σ

1−dMTK(n)
j
−→ ΣMTK(n + 1)

where d = 1 if K = O, SO, Pin+, Pin− or Spin, d = 2 if K = U or SU, and d = 4 if
K = Sp.

Proof. First we deal with the case K = O, SO, U and Sp. Let F = R if K = O, SO,
C if K = U, H if K = Sp. Thus F is d-dimensional vector space over R. The
group K(k) admits a canonical representation γF

k on Fk, and the correspond-

ing group action preserves the metric. Thus the K(k) action on Fk restricts to
a transitive K(k) action on the sphere SV where V is Fk viewed as K(k)-space.
Now, set k = n + 1. The isotropy subgroup of any unit vector is isomorphic to
K(n), so we have K(n + 1)/K(n) ∼= S(V). Thus we can apply Theorem 2.5 with
G = K(n + 1), K = K(n), λ = γF

n+1. Set α = −adG for the twisting bundle. It
now remains to identify its restriction α|K or its inverse adG|K. We have

(
X

1

)(
A B

−B∗ D

)(
X−1

1

)
=

(
XAX−1 XB
−(XB)∗ D

)
,

where X, A are n × n matrices, B is a 1× n matrix, and D is 1× 1 matrix with

coefficients in F. Furthermore, for the matrix

(
A B

−B∗ D

)
to lie in the appro-

priate Lie algebra, we must have A∗ = −A, D∗ = −D. Thus A is an element of
the Lie algebra of K. The block XB corresponds to the canonical representation
γF

n whereas the block D corresponds to a trivial representation of appropriate
dimension. D ∈ F with D∗ = −D, so the dimension over R is d− 1. Thus we see
that adG|K = adK ⊕ γF

n ⊕Rd−1. This concludes the proof in the cases considered.
The cases K = (S)Pin± follow from the case K = (S)O noting that the canon-

ical and adjoint representations factors through those of the latter. Finally, the
case K = SU can be handled as in the above, noting that u(n) = su(n)⊕ u(1) as
SU(n)-representation, the splitting map u(1) −→ u(n) being given by the diago-
nal divided by n.

We note that when K = SO, Spin or SU and n = 0, our definition of BK(0)
makes the sequence Sd −→ BK(n) −→ BK(n + 1) a fibre bundle. Thus we can
modify the proof of [38, Theorem 1.3] to fit our case.
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Remark 2.7. We note that the cofibre sequences above specialises to those of [19, Propo-
sition 3.1] when K = O or SO, and give rise to the fibration of infinite loop spaces as in
[18, (1.3)] when K = Spin and n = 1. This can be seen noting the fact that all these
cofibrations are obtained as special cases of the cofibration [23]

S(V)p∗W −→ BW −→ BV⊕W −→ ΣS(V)p∗W (1)

where B is a space, p : V −→ B is a genuine vector bundle over B and q : W −→ B a
vector bundle (that may be virtual) over B, S(V) −→ B is the sphere bundle of V, and
the map BW −→ BV⊕W is the Thomification of the embedding W −→ V ⊕W.

As a non-example, where Morisugi’s result does not apply, at least integrally,
consider embedding of K = O(n) in G = SO(n + 1) by X 7→ (det X)(X ⊕ 1)
with n > 1. We have G/K = RPn which cannot be identified as a sphere in some
vector space as π1RPn ≃ Z/2 for n > 1.

2.5 Cohomology of Madsen-Tillmann spectra

Let K = SU, U or Sp and k be an arbitrary field, or K = O and k a field of
characteristic 2, and d be as in Lemma 2.6. Then we have the following.

Lemma 2.8. The cofibration

Σ
−dMTK(n− 1) −→ MTK(n) −→ Σ

∞BK(n)+

gives rise to a short exact sequence in cohomology

H∗(Σ∞BK(n)+ ; k) −→ H∗(MTK(n); k) −→ H∗(Σ−dMTK(n− 1); k),

and dually to a short exact sequence in homology

H∗(Σ
−dMTK(n− 1); k) −→ H∗(MTK(n); k) −→ H∗(Σ

∞BK(n)+ ; k).

Therefore we have isomorphisms of graded k-vector spaces:

H∗(MTK(n); k) ∼= ⊕n
j=0Σ

−djH∗(BK(j); k), H∗(MTK(n); k) ∼=

⊕n
j=0 Σ

−djH∗(BK(j); k).

Proof. We have H∗(BK(n); k) ∼= k[zi , · · · , zn] where i = 2 if K = SU and i = 1
otherwise, with degree of polynomial generators zm being equal to dm (Theo-
rem A.1). By the Thom isomorphism, we have

H∗(MTK(n); k) ∼= z−1
n k[z1, · · · , zn].

Here the notation means the free k[z1, · · · , zn] module generated by one element
z−1

n , and we can consider that this is included in an appropriate localisation of
H∗(BK(n); k). Similarly we have

H∗(MTK(n− 1); k) ∼= z−1
n−1k[z1, · · · , zn−1].
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Since the canonical representation γn of K(n) pulls back to γn−1 ⊕ R over
K(n− 1), the map

H∗(MTK(n); k) −→ H∗(Σ−1MTK(n− 1); k)

is given by

z−1
n f (z1, · · · , zn−1, zn) 7→ σ−1z−1

n−1 f (z1, · · · ,zn−1, 0)

where f (z1, · · · ,zn−1, zn) ∈ k[z1, · · · , zn]. Thus it is surjective, and we get the
desired short exact sequences in cohomology from the long exact sequence for
the cofibration. By dualizing we get the result in homology. The last statement
follows by induction on n.

3 Splitting Madsen-Tillmann spectra

In this section we deduce the splitting of Madsen-Tillmann spectra from the
general theory of splitting of Thom spectra. First, we have:

Theorem 3.1. 1. Suppose (K, G) is one of the pairs

(O(2n), SO(2n+ 1)), (Pin+(4n), Spin(4n+ 1)), (Pin−(4n+ 2), Spin(4n+ 3)).

Then BG+ stably splits off MTK.

2. Let p be an odd prime. Let (K, G) be one of the pairs (SO(2n), SO(2n + 1)),
equivalently (Spin(2n), Spin(2n + 1)), or (O(2n), O(2n + 1)). Then we have
MTK(p) ≃ BG+(p) ∨ ΣMTG(p). Furthermore, the splitting of MTO(n)(p)
reduces to

MTO(2n)(p) ≃ BO(2n)+(p), MTO(2n− 1)(p) ≃ ∗.

First, we record the following.

Lemma 3.2. Let j : O(2n) −→ SO(2n + 1) be as above. Then we have

Bj∗(w2) = w2 + nw2
1

in mod 2 cohomology.

Proof. Consider the following commutative diagram where all unnamed arrows
are the obvious inclusions, and ϕ is given by ϕ(a1, . . . , a2n) = (aa1 , . . . , aa2n, a)
with a = Π

2n
i=1ai .

O(1)2n O(1)2n+1

O(2n) SO(2n + 1) O(2n + 1)
��

//
ϕ

��

//
j

//
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Thus to determine Bj∗(w2), it suffices to compute Bϕ∗(σ2(t1, . . . , t2n+1)) by Theo-
rems A.1 and A.2. Now, let’s note that in general, we have

σ2(α + x1, . . . , α + x2n) = Σ1≤i<k≤2n(α
2 + (xi + xk)α + xixk)

= n(2n− 1)α2 + (2n− 1)ασ1(x1, . . . , x2n) + σ2(x1, . . . , x2n)

Thus we get, noting that we are working modulo 2,

Bϕ∗(σ2(t1, . . . , t2n+1)) = Bϕ∗(σ2(t1, . . . , t2n) + t2n+1Σ
2n
i=1ti)

= σ2(Bϕ∗(t1), . . . , Bϕ∗(t2n)) + Bϕ∗(t2n+1)Σ
2n
i=1(Bϕ∗(ti))

= σ2(t + t1, . . . , t + t2n) + t · Σ2n
i=1(t + ti)

= n(2n− 1)t2 + t · (2n− 1)t + σ2(t1, . . . , t2n) + t2

= nt2 + σ2(t1, . . . , t2n)
= nσ1(t1, . . . , t2n)

2 + σ2(t1, . . . , t2n)

as required, where t = Σ
2n
i=1ti = σ1(t1, . . . , t2n).

of Theorem 3.1. (i) Consider the embedding

O(2n) ∋ X 7→ j(X) = (det X)(X ⊕ 1) ∈ SO(2n + 1).

One sees that the fibre of Bj is

SO(2n + 1)/O(2n) ∼= RP2n

with χ(RP2n) = 1 (with any coefficient). Furthermore, we have

(
X

W

)(
A B

−B∗ D

)(
X−1

W−1

)
=

(
XAX−1 W−1XB

−(W−1XB)∗ D

)
,

where X and A are 2n× 2n matrices, W and D are 1× 1 matrices and B is a 1× 2n
matrix. Replacing X and W with det(X) · X and det(X) respectively, we see that

adSO(2n+1)|O(2n) =j∗adSO(2n+1) = adO(2n) ⊕ γ2n i.e.,

− γ2n = adO(2n) − adSO(2n+1)|O(2n).

Applying Corollary 2.4 to the embedding j : O(2n) −→ SO(2n + 1) proves
Theorem 3.1(i) for the pair (O(2n), SO(2n + 1)).
For the remaining two pairs we proceed as follows. The definition of Pin±()
groups (see Appendix A.2) together with Lemma 3.2 implies that j induces a map
of double covers Pin±(2n) −→ Spin(2n + 1), where the sign ± is + if n is even,
− if n is odd. Thus with the choice of appropriate sign, we get the following
commutative square

Pin±(2n) Spin(2n + 1)

O(2n) SO(2n + 1)

//
j̃

�� ��

//
j
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where the vertical arrows are the canonical projections. Thus we get a diffeomor-
phism

Spin(2n + 1)/ j̃(Pin±(2n)) ∼= SO(2n + 1)/j(O(2n)) ∼= RP2n+1.

On the other hand, by definition the canonical representations of Pin±(2n) and
Spin(2n + 1) are the pull-back of the canonical representations of O(2n) and
SO(2n + 1) by the canonical projection. Furthermore, the adjoint representations
of Pin±(2n) and Spin(2n + 1) are the pull-back of the adjoint representations of
O(2n) and SO(2n + 1) by the canonical projection, since the kernel of the canoni-
cal projection is the centre. Thus we can apply Proposition 2.4 to prove Theorem
3.1(i) for the other two pairs.

(ii) Through the usual embeddings O(2n) ⊂ O(2n + 1) and SO(2n) ⊂
SO(2n + 1) we have diffeomorphisms

O(2n + 1)/O(2n) ∼= SO(2n + 1)/SO(2n) ∼= S2n.

Moreover, by passing to the Z/2-central extension, we see that

Spin(2n + 1)/Spin(2n) ∼= S2n.

Since χ(S2n) = 2 and p is odd, by Corollary 2.4 BG+(p) splits off BK
(adK−adG|K

)

(p)

by the transfer. The cofibre of transfer maps associated to these embeddings is
identified in Lemma 2.6. The result then follows by the discussion of Section 2.4.
The identification of MTO(n) at odd primes is postponed to the end of the section
(Lemma 3.5). This completes the proof.

For the unitary and special unitary groups, we need somewhat odd looking
condition on p, and we have

Theorem 3.3. Let K = U(n), G = SU(n + 1). Suppose that p doesn’t divide n + 1.
Then BG+(p) splits off MTK(p).

We begin with a lemma.

Lemma 3.4. Let p ∤ n + 1. Then the homomorphism ϕ : A 7→ det(A)A induces a self
homotopy equivalence of BU(n), as well as a homotopy equivalence

BU(n)
− det⊗γn

(p)
≃ BU(n)

−γn

(p)
= MTU(n)(p) .

Proof. It suffices to show that it induces an automorphism on H∗(BU(n); Z/p),
as BU(n) is of finite type. Consider the following commutative diagram

U(1)n U(1)n

U(n) U(n)
��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

//
ϕ

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

//
ϕ
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where the vertical arrows are the inclusions of the diagonal matrices with entries
in U(1), ϕ is given by

ϕ(eiθ1 , · · · , eiθn) = (ei(θ1+θ), · · · ei(θn+θ)) where θ = θ1 + · · ·+ θn.

Now we see that H∗(Bϕ) on H∗(BU(1)n; Z(p))
∼= Z(p)[x1, · · · , xn] is given by

H∗(Bϕ)(xi) = xi + c1 with c1 = x1 + · · ·+ xn.

Thus by restricting to H∗(BU(n); Z(p))
∼= Z(p)[c1, · · · , cn], we see that

H∗(Bϕ)(c1) = (1 + n)c1, H∗(Bϕ)(ci) ≡ ci mod (c1) for i > 1.

Thus H∗(Bϕ) is an automorphism if and only if p doesn’t divide n + 1. Now, we
note that the pull-back by ϕ of the canonical representation γn is just det⊗γn, so
using the same notation for the bundle and representation, we get a bundle map
det⊗γn −→ γn over the map ϕ, and thus − det⊗γn −→ −γn as well. Since
ϕ is a homotopy equivalence, we see that the map between the Thom spectra
BU(n)− det⊗γn −→ BU(n)−γn = MTU(n) is also a homotopy equivalence.

of Theorem 3.3. Consider the embedding

U(n) ∋ X 7→ X⊕ (det X)−1 ∈ SU(n + 1).

The fibre of the map of classifying spaces BU(n) −→ BSU(n + 1) is given by the
diffeomorphism

SU(n + 1)/U(n) ∼= CPn.

As in the above,

(
X

W

)(
A B

B∗ D

)(
X−1

W−1

)
=

(
XAX−1 W−1XB

(W−1XB)∗ D

)
,

where X, A are m×m matrices, W, D are 1× 1 matrices and B is a 1×m matrix. By
setting W = det(X)−1 we see that the representation adG|K− adK is isomorphic to
the tensor product (over C) of the canonical representation with the determinant
representation. The proof is complete by Lemma 3.4.

We conclude the section by identifying the MTO(n) spectra at odd primes.
The following generalizes the known cases of MTO(1) and MTO(2), c. f. [41,
subsection 5.1]. The standard equivalences BO(2n)+(p) ≃ BSO(2n + 1)+(p) ≃

BSp(n)+(p) is included here for the convenience of possible reference.

Lemma 3.5. Suppose that p is odd. For all n > 0, there are homotopy equivalences

MTO(2n)(p) ≃ BO(2n)+(p) ≃ BSO(2n + 1)+(p) ≃

BSp(n)+(p) , MTO(2n + 1)(p) ≃ ∗.
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Proof. The proof is by strong induction. Note that the induction starts since

MTO(0) ≃ S0 ≃ BO(0)+.

Suppose now we have MTO(2n)(p) ≃ BO(2n)+(p) and consider the commutative
square

BO(2n + 1)+ MTO(2n)

BO(2n + 1)+ BO(2n)+

��

=

//

��

ωO(2n)

//
tBι

corresponding to the factorisation of the Becker-Gottlieb transfer through the
BSMMM transfer (Corollary 2.4). By the induction hypothesis, the right verti-
cal arrow is a p-local homotopy equivalence. Since the inclusion ι : O(2n) ⊂
O(2n + 1) induces an equivalence

Bι(p) : BO(2n)(p) ≃ BO(2n + 1)(p)

by [45, Theorem 1.6], and the composition

BO(2n + 1)+
tBι−→ BO(2n)+

Bι
−→ BO(2n + 1)+

induces the multiplication by χ(S2n) = 2 in homology (Theorem 2.1), we see that
the bottom horizontal arrow is a p-local homotopy equivalence. Thus the top
horizontal row is also a p-local homotopy equivalence. However, by Lemma 2.6,
MTO(2n + 1) is its fibre, thus p-locally contractible.

Next, the cofibration (Lemma 2.6)

MTO(2(n + 1)) BO(2(n + 1))+ MTO(2n + 1)//
ωO(2(n+1))

//

together with MTO(2n + 1)(p) ≃ ∗ will show that

ωO(2(n+1)) : MTO(2(n + 1)) −→ BO(2(n + 1))+

is a p-local homotopy equivalence. This finishes the induction.
The standard maps BO(2n+ 1) −→ BSO(2n+ 1) and BSp(n) −→ BO(2n) are

well-known to be p-local homotopy equivalences. This complete the proof.

4 Cohomology of infinite loop spaces associated to the Madsen-

Tillmann spectra

The splitting of Madsen-Tillmann spectra discussed previously (Theorems 2.2, 3.1
and 3.3) implies the splitting of associated infinite loop space. Thus we can de-
rive some information on their (co)homology, including information on various
characteristic classes that live in their cohomology rings. In this section we see
some examples.
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4.1 Polynomial families in H∗(Ω∞ MTK; Z/p)

We start with the following corollary of Theorem 2.2, identifying a polynomial
family in the cohomology ring of Ω

∞MTK for numerous groups K.

Corollary 4.1. ( Corollary 1.6) Let K be O(2n), U(2n), Sp(2n), Pin+(4n) or
Pin−(4n + 2). The composition

MTK
ωK−→ BK+

c
−→ S0 ι

−→ KO,

where ι is the unit map, induces an injection in mod 2 cohomology of infinite loop spaces

H∗(Z× BO; Z/2) →֒ H∗(Ω∞ MTK; Z/2).

Thus if we define the class ξi ∈ H∗(Ω∞

0 MTK; Z/2) by

ξi = (ωK ◦ c ◦ ι)∗(wi),

then we have
Z/2[ξ1 , . . . , ξk, . . .] ⊂ H∗(Ω∞

0 MTG; Z/2).

Proof. Consider the composition

Ω
∞MTK

Ω
∞ωK−→ QBK+

Qc
−→ QS0 −→ Z× BO.

We first show that this composition induces an injection in cohomology. By
Lemma B.1 the map

H∗(QS0; Z/2) −→ H∗(Z× BO; Z/2)

is surjective in homology. By the hypothesis and Corollary 2.2 the map

Ω
∞MTK −→ QBK+

Qc
−→ QS0

splits, so it is also surjective in homology. Thus by composing and dualising, we
see that

H∗(BO; Z/2) ∼= Z/2[w1, . . . , wk, . . .]

injects to H∗(MTK; Z/2). Noting that the image of wk is ξk, we get the desired
result.

In the special case K = O(2), the family discussed above agrees with the one
defined in [41, Section 6] up to conjugation, and generates the same subalgebra.
We now discuss its complex analogue. That is:

Corollary 4.2. (Corollary 1.7) Let K and p be as in Theorem 2.2. The composition

MTK
ωK−→ BK+

c
−→ S0

ιKU(p)
−→ KU(p)

where ιKU(p)
is the unit for KU(p) factors through the Adams summand E(1), and induces

an injection in mod p cohomology of infinite loop spaces

H∗(Ω∞E(1); Z/p) ∼= Z/p[cp−1, c2(p−1), . . .] →֒ H∗(Ω∞ MTK; Z/p).
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Thus if we define the class ξi ∈ H∗(Ω∞

0 MTK; Z/p) by

ξC
i = (ωK ◦ c ◦ ιKU(p)

)∗(ci(p−1)),

then we have
Z/p[ξC

1 , . . . , ξC
k , . . .] ⊂ H∗(Ω∞

0 MTK; Z/p).

Proof. Note that the unit map of KU(p) factors through that of E(1), for degree

reasons, as π0(Σ
2iE(1)) = 0 if 0 ≤ i ≤ p− 2. Thus the result follows by Lemma

B.2, Proposition B.3 and Corollary 2.2 as in the proof of Theorem 4.1.

4.2 Recollections on homology suspension

We use our splitting results to obtain information on the universally defined
characteristic classes. An important ingredient in defining these classes is the
(co)homology of the evaluation map Σ

∞
Ω

∞E −→ E, where E is a suitable spec-
trum, known as the (co)homology suspension. For this reason, we record some
useful properties of the (co)homology suspension maps.

Let E be a spectrum in the sense of [1], that is, a sequence of pointed spaces
Ej, with maps ΣEj −→ Ej+1. Its homology with coefficients in k is defined to
be H∗(E; k) = colim jH∗+j(Ej; k). Note that inside the colimit, the homology
of the basepoint suspending trivially, one can use interchangeably unreduced or
reduced homology, although it is customary to use the reduced homology. When

E = Σ
∞X for a pointed space X, we get the isomorphism H∗(Σ∞X; k) ∼= H̃∗(X; k),

the reduced homology of the space X. The elementary decomposition of unre-
duced homology to the direct sum of reduced homology and the coefficient ring,
from our point of view, reflects the splitting of spectra Σ

∞X+ ≃ Σ
∞X ∨ S0, and

we have

H∗(Σ
∞X+; k) ∼= H̃∗(X+; k) ∼= H∗(X; k) ∼= H̃∗(X)⊕ H∗(pt).

The stable homology suspension homomorphism σ∞
∗ : H∗(Ω

∞E; k) −→ H∗(E; k)
is the standard map to the colimit above obtained by replacing E by an equivalent
Ω-spectrum. It can also be defined by the map induced by the evaluation map
Σ

∞
Ω

∞E −→ E with the latter being adjoint to the identity map Ω
∞E −→ Ω

∞E.
When X is a suspension spectrum, the generalities of adjoint functors ( [32, Chap-
ter IV, Theorem 1(8)]) imply the following:

Lemma 4.3. For a pointed topological space X, the composition Σ
∞X −→ Σ

∞QX −→
Σ

∞X is the identity, i.e., Σ
∞X splits off Σ

∞QX. Thus stable homology suspension

σ∞
∗ : H∗(QX; k) −→ H∗(Σ

∞X; k) ∼= H̃∗(X; k)

is an epimorphism.

However, this is not sufficient for our purpose, since we often have to deal
with the map from H∗(Q0X; k) which is slightly smaller if X is not connected
because of the decomposition

QX ≃ Q0(X)× π0(QX), π0(QX) ∼= lim π0(Ω
n
Σ

nX) ∼= πS
0 (X).
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Fortunately, the spaces X we deal with have the form Y+ with Y connected. Thus
we have the decomposition

QX = QY+ ≃ QY×QS0 = Q0Y× QS0.

Noting that H∗(QS0) suspends to H̃∗(S0) ∼= H∗(pt), we deduce the following:

Lemma 4.4. For a connected topological space Y, the composition

σ∞
∗ : H∗(Q0Y+; k) −→ H̃∗(Y+; k) −→ H̃∗(Y; k)

is onto.

It is known that homology suspension kills decomposable elements; this for
example follows from [48, Corollary 3.4] applied to the path-loop fibration. An
immediate corollary of this observation is the following well-known fact about
the homology suspension

Lemma 4.5. Let k be a field. The homology suspension

σ∗ : H∗(ΩX; k) −→ H∗+1(X; k)

factors through the module of indecomposables (with respect to the Pontryagin product)
QH∗(ΩX; k). In particular,

σ∞
∗ : H∗(QX; k) −→ H∗(Σ

∞X; k)

factors through QH∗(QX; k). Dually,

σ∞∗ : H̃∗(X; k) −→ H∗(QX; k)

factors through the set of primitives PH∗(QX; k).

Finally, we note that if f : E −→ F is a map of spectra then there is a commu-
tative diagram as

H∗(Ω
∞E; k) H∗(Ω

∞F; k)

H∗(E; k) H∗(F; k)

//
Ω

∞ f

��

σ∞
∗

��

σ∞
∗

//
f

that is σ∞
∗ (Ω

∞ f )∗ = f∗σ
∞
∗ .

4.3 The universally defined characteristic classes in modulo p cohomo-

logy

We will now discuss how our splitting results can be used to analyse the uni-
versally defined characteristic classes (Definition 1.8) in modulo p cohomology.
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We will restrict ourselves to the case of H∗(Ω∞

0 MTO(m); Z/2) for the sake of
concreteness.

The composition

H∗(BSO(m + 1); Z/2)
σ∞∗

−→ H∗(Q0BSO(m + 1)+; Z/2) −→

H∗(Ω∞

0 MTO(m); Z/2)

is injective because the first map is injective by dualising Lemma 4.4, and the
second is so by Corollary 1.4. Of course, it is not a ring map as σ∞∗ is not, but
σ∞∗’s natural right inverse is, being induced by a map of spaces BSO(m + 1) −→
QBSO(m + 1). Thus the universally defined characteristic classes that are images
of the standard polynomial generators of H∗(BSO(m + 1); Z/2) are algebraically
independent. Unfortunately the standard polynomial generators of H∗(BSO(m+
1); Z/2) do not map to polynomial generators of H∗(BO(m); Z/2), which makes
things a little bit complicated.

For example, let’s take the case of Ω
∞

0 MTO(2), p = 2. Then we have

H∗(BSO(3); Z/2) ∼= Z/2[w2, w3], H∗(BO(2); Z/2) ∼= Z/2[w1, w2],

and the map BO(2) −→ BSO(3) induces a map w2 7→ w2 +w2
1 by Lemma 3.2, and

by similar arguments we get w3 7→ w1w2. One can derive from this the classes
µ0,1 + µ2

1,0 = νw2+w2
1

and µ1,1 = νw1w2 as defined in [41] (see also Remark 4.7) are

algebraically independent. A more detailed analysis of the homology suspension
map leads to the following:

Theorem 4.6. (Theorem 1.9) Let νI be the image of wI ∈ H∗(BSO(2m + 1); Z/2) in
H∗(Ω∞

0 MTO(2m); Z/2) under the composition

H∗(BSO(2m + 1); Z/2) −→ H∗(BO(2m); Z/2) −→

H∗(Q0(BO(2m)); Z/2) −→ H∗(Ω∞

0 MTO(2m); Z/2).

In other words, νI = νBj∗wI where j : O(2m) −→ SO(2m + 1) was defined in Section
3. Then the only relations among these classes are the ones generated by

ν2
I = ν2I .

Thus the classes νI , I = (i2, . . . , i2m+1) with at least one ik odd are algebraically inde-
pendent.

Proof. Consider the following diagram, which commutes by the naturality of the
homology suspension.

H∗(BSO(2m + 1); Z/2) H∗(BO(2m); Z/2) H∗(MTO(2m); Z/2)

H∗(Q0BSO(2m + 1)+; Z/2) H∗(Ω∞

0 MTO(2m); Z/2)
��

σ∞∗

//
Bj∗

//
ω∗

��

σ∞∗

//
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The bottom horizontal map is injective by Corollary 1.4, thus it suffices
to show the corresponding results, with νI replaced with σ∞∗(wI) in
H∗(Q0BSO(2m + 1)+; Z/2).

Now, let X be any space. Consider the following diagram.

Hd(X; Z/2) Hd(Q0X; Z/2) Hd(X; Z/2)

H2d(X; Z/2) H2d(Q0X; Z/2) H2d(X; Z/2)

//
σ∞∗

��
✤
✤
✤
✤
✤
✤
✤

Sqd=(−)2

//

��
✤
✤
✤
✤
✤
✤
✤

Sqd=(−)2

��
✤
✤
✤
✤
✤
✤
✤

Sqd=(−)2

//
σ∞∗

//

By the properties of the Steenrod squares, this diagram is commutative. More-
over, by Lemmata 4.3 and 4.4 the horizontal compositions are the identities. There-
fore, an element of H∗(X; Z/2) is a square if and only if its image in H∗(Q0X; Z/2)
is a square. Furthermore, Lemma 4.5 provides the factorisation of the map σ∞∗

as

PH∗(Q0X; Z/2)

H∗(X; Z/2) H∗(Q0X; Z/2)

� _

��
✤
✤
✤
✤
✤
✤
✤

//
σ∞∗

77

and by [36, Proposition 4.21], the only elements in the kernel of the map

PH∗(Q0X; Z/2) −→ QH∗(Q0X; Z/2)

are squares. From now on, suppose that H∗(X; Z/2) is polynomial. Then so is
H∗(Q0X; Z/2) by [47, Theorem 3.11] (see also [17, Lemma 7.2]). Now, consider
the dotted arrow in the following diagram.

H∗(X; Z/2) H∗(Q0X; Z/2)

Sym(H∗(X; Z/2))

//
σ∞∗

� _

��
✤
✤
✤
✤
✤
✤
✤ 77

By the above arguments, its kernel is the ideal generated by the elements [x2]−
[x]2 where x ∈ H∗(X; Z/2), [x] is the corresponding element in Sym(H∗(X; Z/2)).
Theorem now follows noting that H∗(BSO(m + 1); Z/2) is polynomial.

Remark 4.7. 1. We denote µI = νwI for H∗(BO(n); Z/2) ∼= Z/2[w1, . . . , wn].
This generalises the classes µi,j’s defined in [41, Example 2.6]. It is easy to see that

once we express ν’s in terms of µ’s, the relations ν2
I = ν2I follow from the ones

µ2
J = µ2J and the latter relations were essentially found in [41].

2. The arguments above also apply to other pairs G, K and at any prime satisfying the
hypothesis of Corollary 1.4, as long as H∗(BK; Z/p) is polynomial. The proof is
completely similar, and at odd primes, we remark that we only have to work with
the subalgebras of H∗(Q0BK+; Z/p) generated by the elements dual to that of
H∗(BK; Z/p), which is polynomial by [47, Theorem 3.11].
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Example 4.8. Let’s consider the case n = 1.
As Bj∗ : H∗(BSO(3); Z/2) −→ H∗(BO(2); Z/2) is a ring homomorphism, we have

(w2)
i 7→ (w2 + w2

1)
i, w

j
3 7→ w

j
1w

j
2. Thus in low degrees, we have following algebraically

independent elements in degrees less than or equal to 9. We show the detail of computation
for first few elements.

degree elements in terms of ν elements in terms of µ

2 ν1,0 = νw2 µ0,1 + µ2
1,0 = µ0,1 + µ2,0 = νw2+w2

1

1

3 ν0,1 = νw3 µ1,1 = νw1w2

4 N.A. N.A.
5 ν1,1 = νw2w3 µ1,2 + µ3,1 = νw1w2

2+w3
1w2

6 ν3,0 µ0,3 + µ2
1,1 + µ4,1 + µ2

3,0

7 ν1,2 µ2,3 + µ2
2,1

8 ν2,1 µ2,3 + µ2
2,1

9 ν3,1, ν0,3 µ1,4 + µ3,3 + µ5,2 + µ7,1, µ3,3 (resp.)

4.4 Cohomology with integer coefficients

In this section, we discuss the implication of our splitting theorems to the coho-
mology of the infinite loop spaces associated to MTK spectra with p-local integer
coefficients or integer coefficients. Let (K, G) be a pair satisfying hypotheses of
Theorems 3.1 or 3.3, and choose p accordingly. Then p-locally BG+ splits off
MTK, so QBG+(p) is a retract of Ω

∞MTK(p) and H∗(QBG+; Z(p)) is a summand

of H∗(Ω∞ MTK; Z(p)) even in the absence of the Künneth isomorphism. Since

H∗(QBG+; Z(p)) can be described completely in terms of H∗(BG+; Z(p)), which

is completely known in all cases (H∗(BSpin(n); Z) which we have not discussed
in Appendix A is known by [30]) we have a complete knowledge of this sum-
mand. Unfortunately H∗(QBG+; Z(p)) as well as H∗(Ω∞ MTK; Z(p)) only have
the structure of algebras, and not coalgebras, because of the lack of the Künneth
isomorphism caused by the presence of torsion, which makes it rather difficult to
work with them concretely. However, we can still get some information on them.
For example, it follows immediately from [34, Theorem 4.13] that they contain a
summand of order pi for any i.

Without localisation, even less can be said. Still, we can assert the splitting of
H∗(BG; Z) off H∗(Ω∞ MTK; Z) under the hypotheses of Theorem 3.1(i).
As a matter of fact, a similar statement holds for any generalised cohomology.
We show that in the case of ordinary cohomology with integer coefficients, this
implies that the non-divisibility of generalised Wahl classes (Theorem 4.10). Let’s
start with a definition.

Definition 4.9. ζ I ∈ H∗(MTO(2m); Z) is the universally defined characteristic class
associated to the monomial in the Pontryagin classes pI , νpI .

Thus given a 2m-dimensional manifold bundle E −→ B with associated
Madsen-Tillmann-Weiss map f : B −→ Ω

∞

0 MTO(2m), one can define

1In [25] we will show that µ1,0 = 0, thus this class is equal to µ0,1.
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ζ I(E) = f ∗(ζ I) ∈ H∗(B; Z). When m = 1, by writing i1 = i, we recover Wahl’s
classes ζi. Given a surface bundle E −→ B, Wahl defines ζi ∈ H4i(B; Z) to be the
image of p1(Tπ(E))i by the transfer H∗(E; Z) −→ H∗((B; Z) where Tπ(E) −→ E
is the vertical tangent bundle ([46, p.391]). Although our definition differs from
hers, as in [41, Theorem 2.4] one can prove that the both definitions agree [41,
Example 2.5].

Theorem 4.10. (Theorem 1.10) The classes ζ I ∈ H∗(MTO(2m); Z) are not divisible in
H∗(Ω∞

0 MTO(2m); Z).

Proof. By the naturality of the cohomology suspension, the following square com-
mutes.

H∗(BSO(2m + 1); Z) H∗(BO(2m); Z) H∗(MTO(2m); Z)

H∗(Q0BSO(2m + 1); Z) H∗(Ω∞

0 MTO(2m); Z)
��

// //

��

//

Note that by Theorem 3.1, BSO(2m + 1)+ splits off MTO(2m), thus
QBSO(2m + 1)+ splits off Ω

∞MTO(2m). By Lemma 4.3 Σ
∞BSO(2m + 1)+ splits

off Σ
∞QBSO(2m + 1)+. Combining these we see that Σ

∞BSO(2m + 1)+ splits off
Σ

∞
Ω

∞ MTO(2m).
Thus the composition H∗(BSO(2m + 1); Z) −→ H∗(Ω∞ MTO(2m); Z) is a split
monomorphism of abelian groups.

On the other hand, H∗(BSO(2m + 1); Z) is also a direct summand of
H∗(BO(2m); Z), with the quotient group consisting only of torsion elements.
Thus we have a sequence of maps

Z[p1, . . . , pm] ⊂ H∗(BSO(2m + 1); Z) −→ H∗(BO(2m); Z) ∼=

Z[p′1, . . . , p′m]⊕ T −→ Z[p1, . . . , pm]

where the composition is an isomorphism. Here we used the notation p′i to distin-
guish the Pontryagin classes in H∗(BO(2m); Z) from those in
H∗(BSO(2m + 1); Z). In other words, a monomial in p′’s is, up to torsion
elements, the image of a non-divisible element in H∗(BSO(2m + 1); Z). But by
definition the ζ-classes are the images of monomials in p′’s, thus up to torsion el-
ements, they are images of non-divisible element in H∗(BSO(2m + 1); Z). Since

H∗(BSO(2m + 1); Z) −→ H∗(Ω∞ MTO(2m); Z)

is a split mono, a non-divisible element in the former maps to a non-divisible ele-
ment in the latter. Now, as in the proof of Lemma 4.3, we can replace Ω

∞MTO(2m)
with Ω

∞

0 MTO(2m) which completes the proof.

We remark that in general, there is no reason to expect that a monomial in p′’s
in H∗(BO(2m); Z) is actually the image of an element in H∗(BSO(2m + 1); Z).
As a matter of fact, Chern classes in H∗(BSO(2m + 1); Z) map to Chern classes in
H∗(BO(2m); Z), but c2i can pull back to a polynomial involving c2j+1 with j < i.
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We also note that in the above, we started with non-divisible elements in
H∗(BG; Z). In some cases, it may happen that the characteristic class is already
divisible in H∗(BG; Z), in which case its image in H∗(Ω∞ MTK; Z) will have
the same divisibility. Thus if we take the pair (K, G) to be (Pin−(2), Spin(3)),
we get the first part of [42, Proposition 5.3], modulo the homological stability
[42, Theorem 4.19].

To conclude the subsection, let’s remark that as is noted in [46], if the fibre
of the surface bundle E −→ B is orientable, ζi(E) agrees with κ2i(E), where κ2i

is the well-known 2i-th Mumford-Miller-Morita class. As a matter of fact p′1 ∈
H∗(BO(2); Z) restricts to p1 ∈ H∗(BSO(2); Z), and if we let c1 denote the first
Chern class of the standard representation of SO(2) considered as 1-dimensional
complex representation, then we have

c1 = χ ∈ H∗(BSO(2); Z),

thus we have

p1 = c2
1 ∈ H∗(BSO(2); Z).

Therefore ν
p
′ i
1
= νc2i

1
. In other words, ζi(E) is the transfer of c2i

1 ∈ H∗(E; Z) to

H∗(B; Z). Usually the classes κi’s are defined to be the push-forward of

c2i+1
1 ∈ H∗(E; Z) to H∗(B; Z), but as is mentioned in [16, Section 3], by Theo-

rem C.1, the push-forward of c2i+1
1 agrees with the transfer of c2i

1 . Thus we have
ζi(E) = κ2i(E).

4.5 The failure of the exactness

We now proceed to prove the following:

Proposition 4.11. (Proposition 1.11) Suppose the pair of groups (K(m), G), and the
prime p satisfies hypotheses of Theorem 3.1 or Theorem 3.3, so that BG+(p) splits off

MTK(m)(p) , and that G is non-trivial. Suppose further if K = O, then p = 2. Then,
the sequence of Hopf algebras

H∗(Ω
∞

0 MTK(m + 1); Z/p) −→ H∗(Q0BK(m + 1)+; Z/p)
(Ω∞

0 t̃)∗
−→

H∗(Ω
∞

0 MTK(m); Z/p)

induced by the cofibration for Madsen-Tillmann spectra (Lemma 2.6) is not short exact.

Proof. Let K, m, G and p be as in hypothesis of Proposition. We show that the
sequence of Hopf algebras induced by the cofibre sequence MTK(m + 1) −→
Σ

∞BK(m)+ −→ MTK(m)

H∗(Ω
∞

0 MTK(m + 1); Z/p) −→ H∗(Q0BK(m + 1)+; Z/p)
(Ω∞

0 t̃)∗
−→

H∗(Ω
∞

0 MTK(m); Z/p)
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is not short exact. More precisely, we will show that (Ω∞

0 t̃)∗ is not surjective.
By naturality of the homology suspension, the following square is commutative,

H∗(Q0BK(m + 1)+; Z/p) H∗(Ω
∞

0 MTK(m); Z/p)

H∗(Σ
∞BK(m + 1)+; Z/p) H∗(MTK(m); Z/p).

//
(Ω∞

0 t̃)∗

��
✤
✤
✤
✤
✤
✤
✤

σ∞
∗

��
✤
✤
✤
✤
✤
✤
✤

σ∞
∗

//
t̃∗

Suppose that (Ω∞

0 t̃)∗ is onto. By Lemma 4.4. the left vertical map is onto. On the
other hand, Lemma 2.8 implies that t̃∗ = 0. Combining these, we see that the right
vertical map is trivial. However, our splitting results imply that H∗(Ω∞

0 MTK(m);
Z/p)) contains a tensor factor isomorphic to H∗(Q0BG+; Z/p), on which the
homology suspension is nontrivial again by Lemma 4.4, which is a contradiction.

A Recollection on Lie groups, and characteristic classes

In this section, we collect some preliminary materials on classical Lie groups, their
cohomology, their extension. We mostly intend to fix our notation.

A.1 Cohomology of classifying spaces and characteristic classes

For a moment, let’s write GrG(d,+∞) for the classifying space of G(d)-vector
bundles. Often, the notation BG(d) = EG(d)/G(d) denotes the classifying space

of a G(d) which most of the time coincides GrG(d,+∞). However, for some
choices of G, in the case of d = 0, there are a few exceptions. For instance, for

G = SO, GrSO(d,+∞) = ∪kG+(k, d + k) where G+(k, d + k) is the Grassmann
manifold of oriented d-codimensional linear subspaces of Rd+k, yields

GrG(d,+∞) = S0 which is not homotopy equivalent to BSO(0) ≃ B1 ≃ ∗.
This occurs because of existence of + and − orientations for a point. Similarly,

GrSpin(0,+∞) = BZ/2× S0 and GrSU(0,+∞) = S1, do not agree with BSpin(0)
and BSU(0), respectively. By abuse of notation, we keep writing BG(d) for the
classifying space of G(d)-vector bundles as we declared in Section 1.

The following is well-known: the ring structure is given by [9, Proposition
23.2] for K = SO, Theorem 19.1 loc.cit in other cases. The computation for
K = SO, O with integral coefficient is [45, Theorem A, Theorem 12.1]. The identi-
fication of generators with characteristic classes follow, for example, from
[8, Section 9].

Theorem A.1. Let k be any ring if K = U, Sp or SU, an algebra over Z/2 if K = O
or SO, k′ be a ring in which 2 is invertible. Then, for n > 1, H∗(BK(n); k) is given as
follows: for n ≥ 0 we have

H∗(BO(n); k) ∼= k[w1, w2, . . . , wn]
H∗(BU(n); k) ∼= k[c1, c2, . . . , cn]
H∗(BSp(n); k) ∼= k[p1, p2, . . . , pn]
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and for n ≥ 1 we have

H∗(BSO(n); k) ∼= k[w2, . . . , wn]
H∗(BSU(n); k) ∼= k[c2, . . . , cn]

and further for m ≥ 1 we have

H∗(BSO(2m); Z) ∼= Z[p1, · · · , pm, χ]/(χ2 − pm)⊕ T
H∗(BSO(2m); k′) ∼= k′[p1, · · · , pm, χ]/(χ2 − pm)

H∗(BSO(2m + 1); Z) ∼= H∗(BO(2m + 1); Z) ∼= H∗(BO(2m); Z)
∼= Z[p1, · · · , pm]⊕ T

H∗(BSO(2m + 1); k′) ∼= H∗(BO(2m + 1); k′) ∼= H∗(BO(2m); k′)
∼= k′[p1, · · · , pm]

where wi, the i-th Stiefel-Whitney class, has degree i, ci, the i-th Chern class, has degree 2i,
and pi ∈ H4i(BSp(n); k), the i-th symplectic Pontryagin class, pi ∈ H4i(BSO(n); k′),
the i-th Pontryagin class, T is an elementary abelian 2-group. Furthermore, the standard
inclusions SO(n) ⊂ O(n) induce the obvious projections sending w1 to 0 and other
wi’s to wi’s with k coefficients, and similar statement holds for the standard inclusions
SU(n) ⊂ U(n). The inclusions O(n) ⊂ U(n), sends ci to w2

i when the characteristic of
k is 2, otherwise c2i to pi.

This can be stated in a more economical way by saying that for K = O, U or
Sp, H∗(BK(n); k) ∼= k[x1, . . . , xn] with the degree of xi equal to di, where d = 1, 2
or 4 depending on whether K = O, U or Sp, similarly for H∗(BSG(n); k). Then
the standard inclusions K(n− 1) ⊂ K(n) induce the obvious projections sending
xn to 0, and other xi’s to xi.

As the names suggest, these polynomial generators are characteristic classes,
more precisely the characteristic classes for universal bundles, or the universal
characteristic classes. That is, for example, if V is a real n-dimensional vector
bundle over the base space X with classifying map f : X −→ BO(n), that is, V
is the pull-back of the universal n-dimensional vector bundle over BO(n) via f ,
then the i-th Stiefel-Whitney class of V is given by wi(V) = f ∗(wi).

We will need the following property of these classes (the injectivity is given
by [9, Proposition 29.2], the image of characteristic classes in [8, 9.1, 9.2, and 9.6]):

Theorem A.2. Let K = O, U or Sp, k be any ring if K = U or Sp, a Z/2-algebra if
K = O, d as above. The usual inclusion j : K(1)n −→ K(n) induces an injection in
cohomology, such that we have

Bj∗(xi) = σi(t1, . . . , tn) ∈ H∗(BK(1)n) ∼= k[t1, . . . , tn]

where ti’s have degree d, and σi denotes the i-th elementary symmetric polynomial.



Splitting Madsen-Tillmann spectra I. Twisted transfer maps 293

A.2 Pin groups, Pin-bundles, and Pin-structures

The orthogonal group O(n) admits several double covers, notably we have cen-
tral extensions Z/2 −→ Pin+(n) −→ O(n) corresponding to w2 and Z/2 −→
Pin−(n) −→ O(n) corresponding to w2 + w2

1 in H2(BO(n); Z/2). Similarly the
special orthogonal group SO(n) admits a central extension Z/2 −→ Spin(n) −→
SO(n) corresponding to w2 ([26, p.434]). These groups can also be defined di-
rectly using Clifford algebras [3, 27, 31].

Given a real vector bundle V over X, one can ask whether the structure map
can be lifted through the canonical projection Pin±(n) −→ O(n). Such a lift is
called Pin±(n)-bundle structure. V admits a Pin+ ( Pin− respectively) structure
if and only if w2(V) (w2(V) + w1(V)2 resp.) vanishes ([27, Lemma 1.3]). For a
n-dimensional manifold M, we say that M admits a Pin±(n) structure if its tan-
gent bundle admits a Pin±(n) structure. Here we note that this is about a fac-
torisation through particular maps Pin±(n) −→ O(n). Thus although as abstract
Lie groups, Pin+(4n) and Pin−(4n) are isomorphic (c.f. [11, example 3 in 1.7,
pp. 25-27], (communicated to us by Theo Johnson-Freyd,) where they are called
Pin(4n, 0) and Pin(0, 4n)), they are not isomorphic as double covers of O(4n),
thus the notion of Pin+(4n) bundle structure and that of Pin−(4n) structure don’t
agree.

The following is well-known (e.g. [26] p.434):

Proposition A.3. RP4k has a Pin+ structure and RP4k+2 has a Pin− structure.

The proof is left as an exercise to the interested reader. One can use, for
example, the relationship between the tangent bundle and the canonical line
bundle c. f. [22, Chapter 2, Example 4.8].

B Homology of infinite loop spaces

For an infinite loop space X, since X ≃ Ω
2X2, where X2 is the second space

of the associated omega-spectrum, the homology H∗(X; Z/p) is a graded com-
mutative ring under the Pontryagin product. Moreover, there are Kudo-Araki-
Dyer-Lashof homology operations that we will call Dyer-Lashof operations, βǫQi

which act on H∗(X; Z/p). The operation Qi is a group homomorphism, is natural
with respect to infinite loop maps, and raises degrees by 2(p− 1)i − ǫ [34, Theo-
rem 1.1]. These operations satisfy Adem relations, various Cartan formulae, and
Nishida relations [34, Theorem 1.1]. The algebra wherein these operations live is
the Dyer-Lashof algebra R; it is the free algebra generated by these operations,
modulo Adem relations and excess relations. The homology of H∗(X; Z/p) then
becomes an R-module. In some cases, these operations allow a neat description
of H∗(X; Z/p). For instance, if X = QY with Y some path connected space, then
H∗(X; Z/p) is a free algebra generated by Dyer-Lashof allowable operations on

H̃∗(Y; Z/p) ([34, Chapter 1, Lemma 4.10]). Furthermore, when Y = S0, the Dyer-

Lashof operations act on the fundamental class of H̃0(S
0; Z/p) in such a way

that {βǫQi[1]; i ∈ N, ǫ = 0, 1} is precisely the image of H∗(BΣp) by the “standard

inclusion” H∗(BΣp; Z/p) −→ H∗(QS0; Z/p). This latter also coincides with the
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map induced by the adjoint of the transfer associated to the inclusion of the trivial
group in Σp.

The other cases that we shall consider in this paper, are the spaces Z × BO
and Z × BU which are infinite loop spaces under Bott periodicity; the monoid
structure coming from the Whitney sum is compatible with Bott periodicity. They
correspond to ring spectra KO and KU, thus there are maps QS0 −→ Z× BO and
QS0 −→ Z× BU.

We have the following isomorphisms.

H∗(BO; Z/2) ∼= Z/2[w1, w2, . . . , wn, . . .] ∼= lim
←−

H∗(BO(n); Z/2)
H∗(BO; Z/2) ∼= Z/2[a1, a2, . . . , an, . . .] ∼= lim

−→
H∗(BO(n); Z/2)

H∗(BU; Z) ∼= Z[c1, c2, . . . , cn, . . .] ∼= lim
←−

H∗(BU(n); Z)
H∗(BU; Z) ∼= Z[b1, b2, . . . , bn, . . .] ∼= lim

−→
H∗(BU(n); Z)

The elements wi’s and ci’s are as in Theorem A.1. As BO classifies stable
virtual bundles, this means that we can define the Stiefel-Whitney class wi(V)
for a stable virtual bundle over X with classifying map f : X −→ BO by wi(V) =
f ∗(wi). We note that the multiplication by (−1) on the set of virtual bundles cor-
responds to the “multiplication by (−1)” self-map on BO, thus the conjugation τ
on H∗(BO; Z/2) satisfies f ∗τ(wi) = wi(−V). Similar statements hold for BU. As
for the homology computations, we will use the fact that the elements ai’s and bi’s
are respectively the image of a generator of Hi(BO(1); Z/2) and H2i(BU(1); Z).

The map induced in homology by the unit map was determined in [39], in
particular, we have

Lemma B.1. [39, Proposition 4.10, n = 1 case] The map

H∗(QS0; Z/2) −→ H∗(Z× BO; Z/2)

is an epimorphism.

Basically this is because H∗(BO; Z/2) is generated by H∗(BO(1); Z/2),
H∗(BO(1); Z/2) is “contained” in H∗(Q0S0; Z/2), and the inclusions
H∗(BO(1); Z/2) ⊂ H∗(Z × BO; Z/2) and H∗(BO(1); Z/2) ⊂ H∗(Q0S0; Z/2)
are compatible.

Now we would like to generalise to the “complex” case. Although it is still
true that the homology of BU is generated by that of BU(1), for odd prime p the
homology of BU(1) contains elements that are unrelated to the Dyer-Lashof oper-
ations. That is, the homology of BU(1) is the even degree part of the homology of
BZ/p, which is much larger than that of BΣp for an odd prime p, which is related
to the Dyer-Lashof operations. However, as is well-known, (stably) BΣp(p) splits

off BZ/p (e.g. [40, Example 2]), and it turns out that we can also split BU(1)(p)
in a compatible way. That is ([37])

CP∞

(p)
∧ ∼= ∨

p−2
i=0 X(i)

where X(i)’s are spectra with H∗(X(i)) = 0 unless ∗ ≡ 2i mod 2(p− 1).

As a matter of fact, the method can be applied to split BZ/p into p − 2 pieces,
one of which is BΣp(p) , refining the above-mentioned splitting. The piece X(0)
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corresponds to the piece BΣp(p) . Thus, X(0) will be the spectrum “representing”

the Dyer-Lashof operations of length 1 surviving in H∗(BU), i.e., the ones without
Bocksteins, and it will play the role of BO(1).

Now, as X(0) being sensibly smaller than BU(1), we see that BU certainly
can’t play the role of BO. But the space BU also admits a similar splitting. Denote
by KU the complex K-theory spectrum. After localising at p, KU splits as ([1,
Lecture 4])

KU(p) ≃ ∨
p−2
i=0 Σ

2iE(1)

where π∗(E(1)) ∼= Z(p)[v1, v−1
1 ] with the degree of v1 equal to 2(p− 1).

Denote jE the resulting splitting map E(1) −→ KU(p).
Since BU(p) ×Z(p) is the infinite loop space associated to KU(p), it also splits

as a product of spaces

BU(p) ×Z(p) ≃ Π
p−2
i=0 Ω

∞
Σ

2iE(1).

Thus Ω
∞E(1) is a direct factor of BU(p) ×Z(p), and it will be the correct analog

of BO. Its cohomology can be described as follows:

Lemma B.2. Let k = Z(p), Q or Z/p.

H∗(Ω∞E(1), k) ∼= k[cp−1, c2(p−1), . . . , cm(p−1), . . .],

and j∗E sends cm(p−1) ∈ H2m(p−1)(BU; k) to cm(p−1) and other ci’s to 0.

Proof. This can be shown using [20], but here we follow rather the arguments in
[21]. Let’s start with the case k = Q. For k-vector spaces V, denote by Symk(V)
the symmetric algebra generated by V, i.e.,⊕qV⊗kq/Σq with the product induced
by the concatenation. It is well known that for any spectrum X with πodd(X) = 0,
we have natural isomorphisms

H∗(Ω
∞

0 X; Q) ∼= H∗((Ω
∞

0 X)Q; Q) ∼= H∗(Ω
∞

0 (XQ); Q) ∼= SymQ(π∗>0(X)⊗Q).

Since π∗(jE) is bijective for ∗ = 2m(p − 1) and 0 otherwise, we get the desired
result in this case. As Ω

∞E(1) is a direct factor of BU(p)×Z(p), H∗(Ω∞E(1); Z(p))

is torsion-free. Therefore H∗(Ω∞E(1); Z(p)) injects to H∗(Ω∞E(1); Q). Similarly
for BU(p) ×Z(p). Thus we get the result when k = Z(p). Finally, one can derive
the case k = Z/p follows from this by the universal coefficient theorem.

There is another splitting involving CP∞ and BU, namely Segal’s splitting.
Consider the orientation map for the KU-theory CP∞ −→ BU. Since the target is
an infinite loop space, by the adjointness, it factors through s : QCP∞ −→ BU.
Then it splits as a map of spaces, that is, there is a space F such that
QCP∞ ≃ BU × F [44, Theorem]. It turns out that the Adams’ splittings of KU
and CP∞ interacts nicely enough with Segal’s, so that the last splitting can be
refined to the splitting of corresponding Adams’ pieces [29, Theorem 1.1]. We
have



296 T. Kashiwabara – H. Zare

Proposition B.3. The map Ω
∞X(0) −→ Ω

∞E(1) splits, that is we have a space F′

such that Ω
∞X(0) ≃ Ω

∞E(1)× F′. In particular, it induces a surjection in homology
with any coefficient.

Now we are ready to prove the following.

Lemma B.4. The unit map of the ring spectrum E(1) induces a surjection
H∗(QS0; Z/p) −→ H∗(Ω∞E(1); Z/p).

This can be proved in many different ways. However, any reasonable proof
would consist in two steps. First, we show that H∗(Ω∞E(1); Z/p) is “generated
by the image of” H∗(X(0); Z/p). To make sense of this notion, we will consider
the composition BΣp −→ X(0) −→ E(1) and the corresponding map of spaces
BΣp −→ Ω

∞E(1), which induces a map in homology

H∗(BΣp ; Z/p) −→ H∗(Ω
∞E(1); Z/p).

As H∗(Ω∞E(1); Z/p) is concentrated in even degrees and H2i(BΣp ; Z/p) van-
ishes unless i is a multiple of p− 1, this map factors through H∗(X(0); Z/p), so
it makes sense to talk about the image of H∗(X(0); Z/p) in H∗(Ω∞E(1); Z/p).
Second, we show that this image is contained in the image of H∗(QS0; Z/p). By
combining the two, we see that H∗(QS0; Z/p) surjects to H∗(Ω∞E(1); Z/p).
The proof we will present here is neither the shortest or the easiest. However, it
makes most use of transfers, which is one of the main subjects of this paper.

Proof. Consider the composition

H∗(QBZ/p; Z/p) −→ H∗(QCP∞; Z/p) −→

H∗(Ω
∞X(0); Z/p) −→ H∗(Ω

∞E(1); Z/p).

The leftmost arrow is surjective because BZ/p −→ CP∞ induces a surjection
in mod p homology. The middle arrow is also surjective since X(0) is a retract
of CP∞. Finally, Proposition B.3 implies the surjectivity of the rightmost arrow.
Thus the composition is surjective. However, we have the following commutative
diagram.

BZ/p CP∞

BΣp X(0)

//

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

//

Thus the surjection H∗(QBZ/p; Z/p) −→ H∗(Ω∞E(1); Z/p) factors through
another surjection

H∗(QBΣp) −→ H∗(Ω
∞E(1); Z/p).

This is the first part. For readers familiar with the homology of infinite loop
spaces, we remark that this implies that H∗(Ω

∞

0 E(1); Z/p) is generated by the
image of H∗(X(0); Z/p) as an algebra over Dyer-Lashof algebra. We also note
that a much stronger result, that is the former is generated by the latter as an
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algebra, can be proved just by degree consideration combined with the fact that
H∗(BU) is generated as an algebra by H∗(BU(1)).

The proof will be complete once we achieve the second part by proving that
the map QBΣp −→ Ω

∞E(1) factors through the unit map QS0 −→ Ω
∞E(1).

By the properties of adjoint functors, it suffices to prove that the composition
BΣp −→ QBΣp −→ Ω

∞E(1) factors through the unit map QS0 −→ Ω
∞E(1).

Let’s consider the following diagram of spaces.

BΣp Ω
∞X(0) Ω

∞E(1)

QBZ/p QCP∞

(p) BU(p)

//

��

t

��

//

// //

OO

Here, the two left vertical arrows are the right inverse to the corresponding
arrows in the previous diagram, in particular, t is the transfer associated to the
inclusion Z/p ⊂ Σp. We actually defined the transfer as a map from BΣp+ to
BZ/p+ , but of course, we can consider the composition

BΣp −→ BΣp+ −→ BZ/p+ −→ BZ/p.

The left square is easily seen to commute, the right one does by the construction
of the map Ω

∞X(0) −→ Ω
∞E(1) in [29, Theorem 3.2]. We also note the horizon-

tal arrows in the bottom row are defined before the p-localisation. Thus it only
remains to show that this composition from BΣp to BU extends to the unit map

QS0 −→ BU ×Z (composed with the projection BU ×Z −→ BU). For this it
suffices to prove that it factors as BΣp −→ BU(p) −→ BU where both maps are
the standard ones. Now, consider the following diagram of map of spaces

BZ/p BΣp QBZ/p QCP∞

BU(p) BU

// //

��

ρ

//

��

s

//

where ρ denotes the standard permutation representation of Σp, s is Segal’s map.
Now, it is well-known that the composition BZ/p −→ BΣp(p) −→ QBZ/p is

the adjoint to the self map of BZ/p given by Σ
p−1
i=1 B(i × (−)) e.g. [40, Example

2]. Note that [40, Example 2] is proved using Theorem 1 loc.cit. which in turn
depends on Corollary 4 loc.cit., where the equality only takes place after taking
(co)homology. However, as the only proper subgroup of Z/p is the trivial group,
the terms that appear in the double coset formula [40, Proposition 3 (4)] which
don’t contribute to the homology factors through the classifying space of the
trivial group, so they are actually trivial. The decomposition of the regular repre-
sentation of Z/p into one-dimensional representations allows us to write down
the other composition as a similar sum, so the two compositions from BZ/p to
BU agree. As BΣp is a summand of BZ/p, the square is commutative. In par-

ticular, the composition BΣp −→ BU factors through the unit map QS0 −→ BU,
which concludes the proof.
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For readers familiar to homology of infinite loop spaces, let’s remark that the
above implies that the image of fundamental classes of BΣp in H∗(Ω∞E(1); Z/p)

agrees with Qi[1]’s. This second step can also be proven using the fact that com-
pleted at p, the E(1) cohomology of BΣp is free of rank 1. Alternatively, noting
that we only need to know an equivalent fact after passing to the homology, we
can prove this step using [28, Theorem 3].

To conclude the section, let’s note that the splitting of BZ/p above is the sim-
plest case of the splitting of (BZ/p)n via the Steinberg idempotents, one of the
main subjects of [25].

C Twisted Becker-Gottlieb transfer maps

We presented various transfer maps, among which the twisted Becker-Gottlieb
transfer. It appears that this particular family of transfers is not quite well-docu-
mented in the literature, so we use this occasion to record some of its properties.
The first example is the relationship between the Gysin homomorphisms (also

known as the integration along the fibre) and the transfer. Let F −→ E
π
−→

B and ζ be as in Subsection 2.1, the paragraph on the Boardman transfer. We
keep the notations there. Then assuming that F is n-dimensional, νj is (k − n)-
dimensional. suppose that π is R-orientable for a ring spectrum R, that is, if the
vertical tangent bundle TπE is R-orientable in the usual sense. Then using the

Thom isomorphism Th : R∗E−Tπ(E) −→ R∗+nE+ and the Boardman transfer tπ :

B+ −→ E−Tπ(E) we can define the Gysin homomorphism
∫

F : R∗+nE+ −→ R∗B+

by the composition

R∗+nE+ R∗E−Tπ(E) R∗B+
//

Th−1
//

R∗(tπ)

(see also [2, Section 4]). Furthermore, if ζ is an R-orientable m-dimensional vector

bundle, then we can twist the above to get
∫ ζ

F :

R∗+nEπ∗ζ R∗+n−mE+ R∗Eπ∗ζ−Tπ(E) R∗B
ζ
+

//
Th1

//
(Th2)

−1

//
R∗(t

ζ
π)

where Th1 is the Thom isomorphism for π∗ζ and Th2 the one for π∗ζ − Tπ(E).
Let e = e(TπE) ∈ RnE+ denote the Euler class of TπE and eζ ∈ Rn+dim ζEπ∗ζ

its image under the Thom isomorphism RnE+ −→ Rn+dim ζEζ . We then have the
following.

Theorem C.1. 1. ([4, Theorem 4.3]) For the Becker-Gottlieb transfer tπ we have
t∗π(x) =

∫
F(x ∪ e).

2. Suppose ζ −→ B is a vector bundle for which Thom isomorphism in R-homology

holds. Then, for the twisted Becker-Gottlieb transfer t
ζ
π : Bζ −→ Eπ∗ζ we have

t
ζ
π

∗
(x) =

∫ ζ

F
(x ∪ eζ)
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This can be proved using the factorisation of the twisted Becker-Gottlieb trans-
fer through the Boardman transfer, and noting that the inverse of the Thom iso-
morphism is essentially the multiplication by the Euler class. The details are left
to the reader.

Example C.2. Let G be a compact Lie group, K ⊂ G a closed subgroup, V a (virtual)

representation of G. Then, BGV
(p)

splits off BK
V|K
(p)

if p ∤ χ(G/K). In particular, if

we denote by NG(T) the normaliser of a maximal torus T, one has χ(G/NG(T)) = 1

[4, Section 6]. Thus BGV splits off BNG(T)
V|NG(T) .

Next, we record some multiplicative properties of twisted transfer maps, anal-
ogous to those of the usual Becker-Gottlieb transfer ( [4, Sections 3,5]). They
follow immediately from the construction.

1. Suppose πi : Ei −→ Bi, i = 1, 2 are fibre bundles as above, with ζi (virtual)
vector bundles over Bi. Suppose further that we have a map of fibre bundles
given by the following commutative square

E1 E2

B1 B2

//
hE

��
✤
✤
✤
✤
✤
✤
✤

π1

��
✤
✤
✤
✤
✤
✤
✤

π2

//
hB

so that the maps hE and hB are covered by bundle maps π∗1 ζ1 −→ π∗2 ζ2 and
ζ1 −→ ζ2. This yields a commutative square as

B
ζ1
1 B

ζ2
2

E
π∗1 ζ1

1 E
π∗2 ζ2

2

//
hB

��
✤
✤
✤
✤
✤
✤
✤
✤
✤

t
ζ1
π1

��
✤
✤
✤
✤
✤
✤
✤
✤
✤

t
ζ2
π2

//
hE

where we have retained hE and hB for the Thomified maps. This is analo-
gous to [4, (3.2)].

2. Next, note that for a fibre bundle π : E −→ B and a CW complex X ad-
mitting a filtration by finite subcomplexes (compact subspaces), we may
consider the fibre bundle π × 1X : E× X −→ B× X, as well as the vector
bundle ζ × 0 −→ B× X. We then have

t
ζ×0
π×1X

= t
ζ
π ∧ 1 : Bζ ∧ X+ −→ Eπ∗ζ ∧ X+.

This generalises to t
ζ1×ζ2
π1×π2

= t
ζ1
π1
∧ t

ζ2
π2

as [10, (2.2)], but we only use the

special case of t
ζ×0
π×1X

.
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3. Finally, for the trivial bundle π : F −→ {0}, identifying {0}+ = S0, the
composition π ◦ tπ : S0 −→ S0 has degree χ(F) [4, (3.4)]. Note that this is
just Hopf’s vector field theorem [4, Theorem 2.4]

As an application, properties (1) and (2) can be used to prove a multiplicative
formula for the (co)homology of twisted transfer maps. We have the following.

Lemma C.3. Suppose π : E −→ B and ζ −→ B are as above. For x ∈ H∗Bζ and
y ∈ H∗E, we have

t
ζ
π

∗
(Thζ(π)∗(x) ∪ y) = x ∪ tπ

∗(y).

Here ∪ on the left is a ‘generalised’ cup product

H∗(Eπ∗ζ)⊗ H∗(E) −→ H∗(Eπ∗ζ)

whereas the ∪ on the right is the usual cup product on H∗Bζ induced by the usual
diagonal.

Proof. For a fibre bundle π : E −→ B, and a twisting vector bundle ζ −→ B,
consider 1B × π : B× E −→ B× B. Note that the diagonal map dB : B −→ B× B
and (π × 1E) ◦ dE induce a map of fibre bundles

E E× E B× E

B B× B

//
dE

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

π

//
π×1E

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

1B×π

//
dB

covered by bundle maps

π∗ζ π∗ζ × 0 ζ × 0.

ζ ζ × 0.

//

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

//

��
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤

//

Thus by applying properties (1) and (2) we get a commutative diagram.

Bζ Bζ ∧ B+

Eπ∗ζ Eπ∗ζ ∧ E+ Bζ ∧ E+

//
dB

��

t
ζ
π

��

1
Bζ∧tπ=t

ζ×0
1B×π

//
dE

//
Thζ (π)∧1E

The lemma follows by comparing the images of x⊗ y ∈ H∗(Bζ ∧ E+) by the two
compositions of induced maps, noting that dB and dE are the Thom diagonals
(Subsection 2.1).

As an application of the above, we show the following generalisation of
Theorem 2.1.
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Theorem C.4. (Theorem 1.1 (i)) The composition

Bζ t
ζ
π−→ Eπ∗ζ Thζ (π)

−→ Bζ

induces multiplication by χ(F) in H∗(−; Λ) for any Abelian group Λ where Thζ(π)
denotes the induced map among Thom spectra. Consequently, if χ(F) is prime to p, Bζ

splits off Eπ∗ζ .

Proof. By Lemma C.3

t
ζ
π

∗
(Thζ(π)∗(x) ∪ y) = x ∪ t∗π(y)

for all x ∈ H∗Bζ and y ∈ H∗E where ∪ on the left side of the equation denotes the
generalised cup product H∗(Eπ∗ζ) ⊗ H∗(E) −→ H∗(Eπ∗ζ) (c.f. Subsection 2.1).
The rest follows by setting y = 1, and noting that t∗π(1) = χ(F) as in the proof of
[4, Theorem 5.5].
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