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Abstract

Let Ω be a Jordan domain in the complex plane whose boundary is piece-
wise analytic, and let A(Ω) be the algebra of all holomorphic functions on Ω

that are continuous up to the boundary. We prove the existence of dense lin-
ear subspaces and of infinitely generated subalgebras in A(Ω) all of whose
nonzero members are, in a strong sense, not differentiable at almost any point
of the boundary. We also obtain infinite-dimensional closed subspaces con-
sisting of functions that are not differentiable at any point of a dense subset
of the boundary. In the case of the unit disc, those dense linear subspaces can
be found with their functions being nowhere differentiable in the unit circle.

1 Introduction, Notation and Preliminaries

In 1872 K. Weierstrass [44] exhibited an example of a function f : R → R that
was continuous everywhere but differentiable nowhere. The particular example
was defined as

f (x) =
∞

∑
n=0

an cos(bnπx),

where 0 < a < 1, b is any odd integer and ab > 1 + 3π/2.

Functions with the property described above are called Weierstrass monsters.
As a nice application of the Baire category theorem, S. Banach [7] and indepen-
dently S. Mazurkiewicz [37] obtained in 1931 that the set of continuous func-
tions that are nowhere differentiable is residual –that is, its complement is of first
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category– in the space of continuous functions on R endowed with the topology
of uniform convergence in compacta (see also [38, Chapter 11] and [43]). It is
our aim in this paper to shed light on the structure of the family of Weierstrass
monsters, not only in the topological sense, but also in the algebraic sense. More-
over, we focus our attention on those periodic functions that can be extended
holomorphically on the unit disc or, more generally, on a given domain of the
complex plane. However, before going on with the history of findings and with
our specific goals, let us fix some notation, mostly standard.

As usual, the symbols N, N0, Z, Q, R, C, D and T will denote the set of posi-
tive integers, the set N ∪ {0}, the set of all integers, the field of rational numbers,
the real line, the complex plane, the open unit disc {z ∈ C : |z| < 1} and the
unit circle {z ∈ C : |z| = 1}, respectively. The symbol c will represent the
cardinality of the continuum. The symbol C[0, 1] will stand for the Banach space
of all R-valued continuous functions defined on the interval [0, 1], endowed with
the maximum norm. If Ω ⊂ C, then Ω and ∂Ω will stand for the closure and
the boundary of Ω in C, respectively. If Ω is an open subset of C, A(Ω) will
denote the vector space of all functions from Ω into C which are continuous on
Ω and holomorphic in Ω. If Ω is bounded, A (Ω) is endowed with the topology
of uniform convergence on Ω and then A (Ω) is a Banach space. When Ω is not
bounded, A (Ω) is endowed with the topology of uniform convergence on the
compact subsets of Ω and thus A (Ω) is an F-space, that is, a complete metrizable
topological vector space.

By a domain we mean a nonempty connected open subset of C. A domain
Ω ⊂ C is said to be simply connected whenever C∞ \ Ω is connected, where

C∞ = C ∪ {∞} stands for the extended complex plane. The symbols Ω
∞

and
∂∞Ω will represent, respectively, the closure and the boundary of Ω in C∞; that is,

Ω
∞

= Ω and ∂∞Ω = ∂Ω if Ω is bounded, while Ω
∞

= Ω ∪ {∞} and
∂∞Ω = ∂Ω ∪ {∞} if the subset Ω is unbounded. A Jordan domain is a domain
Ω ⊂ C such that ∂∞Ω is a homeomorphic image in C∞ of T. Note that we allow
unbounded domains here; for instance, an open half-plane is Jordan.

Some additional terminology, borrowed from the new theory of lineability,
will be used. The corresponding concepts were coined in [2, 4, 5, 9, 14, 25, 28, 42].
For an account of results on lineability, the reader is referred to the survey [18] and
the monograph [1]. Assume that X is a vector space and α is a cardinal number.
Then a subset A ⊂ X is said to be:

• lineable if there is an infinite dimensional vector space M such that
M \ {0} ⊂ A.

• α-lineable if there exists a vector space M with dim(M) = α and
M \ {0} ⊂ A.

• maximal lineable in X if A is dim (X)-lineable.
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If, in addition, X is a topological vector space, then the subset A is said to be:

• spaceable in X whenever there is a closed infinite-dimensional vector sub-
space M of X such that M \ {0} ⊂ A.

• dense-lineable in X whenever there is a dense vector subspace M of X satis-
fying M \ {0} ⊂ A.

• α-dense-lineable in X whenever there is a dense vector subspace M of X with
dim(M) = α and M \ {0} ⊂ A.

• maximal dense-lineable in X if A is dim (X)-dense-lineable.

And, provided that X is a vector space contained in some (linear) algebra, then A
is called:

• algebrable if there is an algebra M so that M \ {0} ⊂ A and M is infinitely
generated, that is, the cardinality of any system of generators of M is infi-
nite.

• strongly α-algebrable if there exists an α-generated free algebra M with
M \ {0} ⊂ A.

We recall that if X is contained in a commutative algebra, then a set B ⊂ X is a
generating set of some free algebra contained in A if and only if for any N ∈ N,
any nonzero polynomial P in N variables without constant term and any distinct
f1, . . . , fN ∈ B, we have P( f1, . . . , fN) 6= 0 and P( f1, . . . , fN) ∈ A.

A number of implications are obvious. For instance: lineability means
ℵ0-lineability, where ℵ0 = card (N), the cardinality of N; dense-lineability im-
plies lineability as soon as dim(X) = ∞; spaceability implies lineability; strong
α-algebrability implies algebrability if α is infinite. Under the continuum
hypothesis (which is assumed along this paper), we obtain as a consequence of
Baire’s category theorem that maximal (dense) lineability equals c-(dense, resp.)-
lineability if X a separable infinite-dimensional F-space.

Turning to our main concern, much progress have been done in the search
for algebraic structures inside the class of nowhere differentiable functions. Gu-
rariy [27] proved in 1991 the lineability of the set ND[0, 1] of continuous nowhere
differentiable functions on [0, 1]. In fact, Fonf, Gurariy and Kadets [23] showed
that ND[0, 1] is spaceable in C[0, 1]. Even more, Rodrı́guez-Piazza [39] proved
that every separable infinite-dimensional Banach space is isometrically isomor-
phic to a space of continuous functions in [0, 1] that are, except for the null func-
tion, nowhere differentiable in [0, 1] (this result was generalized by Hencl [29] to
nowhere hölderian functions). It turns out that the family ND[0, 1] is also dense-
lineable in C[0, 1] (see [3, 13]). In fact, Bayart and Quarta [12] established the
algebrability of the mentioned family (and even algebrability for the smaller class
of nowhere hölderian functions), with the additional property that the existent al-
gebra is dense in C[0, 1].
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In all previous results, starting from the Weierstrass example, there is no prob-
lem in assuming that the functions are periodic, so we can in fact consider contin-
uous functions on T. In a set of recent papers, Eskenazis and Makridis [20, 21]
took a step forwards on this research and studied the residuality of the fam-
ily of those F ∈ A(D) such that F|T is nowhere differentiable on T. It is well
known that not every continuous function f : T → K can be extended to a
function F ∈ A(D) such that F|T = f . Such extension is possible if and only if∫ 2π

0 einθ f (eiθ) dθ = 0 for all n ∈ N (in other words, the Fourier coefficients of f
of negative order are all zero). Specifically, in [20, 21] it is proved that the set of
f ∈ A(D) such that f |T is not differentiable at any point of T is residual in A(D).
In fact, it is shown that, generically, both ℜ f |T and ℑ f |T are not differentiable
at any z ∈ T. Analogous results for nowhere hölderian continuous functions on
T and for A(DI), where I is countable, are also obtained in [21]. In [35], these
results are extended to other domains Ω ⊂ C and their corresponding spaces
A(Ω) (or spaces X related to these) so as to prove that, for a given closed subset
J ⊂ ∂Ω without isolated points, the family

{
f ∈ X : lim sup

z→z0
z∈J\{z0}

∣∣ f (z)− f (z0)

z − z0

∣∣ = +∞ for every z0 ∈ J
}

is either empty or residual in X. Recall that, in fact, in both Banach’s [7] and
Mazurkiewicz’s [37] papers, it is obtained generically the everywhere unbound-

edness of incremental quotients | f (x)− f (x0)
x−x0

|, that is, continuous functions on [0, 1]

are generically nowhere Lipschitz.

Our main aim in this paper is to pick up the baton of this study and to lead
it to the setting of lineability in the framework of the algebra A(Ω). To be more
precise, we will establish, for a Jordan domain Ω having smooth boundary, the
existence of dense vector subspaces and of large free algebras in A(Ω) consist-
ing, except for zero, of functions that are not differentiable at almost (in several
senses) every boundary point. We even obtain unboundedness of incremental
quotients at such points. In Section 3 these results will be stated for Ω = D, in
which case we obtain nowhere differentiability in the unit circle for the existing
dense vector subspace. In Section 4, our findings will be translated to the general
case. The short Section 2 is devoted to furnish the appropriate approximation and
lineability tools. As an appendix, genericity of this kind of functions in a measure
theoretic sense is also considered.

2 Some auxiliary results

The following approximation theorem, due to Mergelyan, can be found in
[40, Theorem 20.5] (see also [24, Chapter III]) and plays an important role in the
sequel.

Theorem 2.1. Let K be a compact set in C such that C \ K is connected. If f : K → C

is a continuous function which is holomorphic in the interior of K and ε > 0, then there
is a polynomial P such that | f (z)− P (z)| < ε for all z ∈ K.
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The proof of the following auxiliary assertion, which has its roots in an earlier
version by Aron et al. [3, Theorem 2.2 and Remark 2.5] and is based on the notion
of “stronger than” coined by them, can be found in [17, Theorem 2.3] (see also
[1, Section 7.3]).

Theorem 2.2. Assume that X is a metrizable separable topological vector space. Suppose
that A and B are subsets of X such that A + B ⊂ A, A∩ B = ∅ and B is dense-lineable.
We have:

(a) If α is an infinite cardinal number such that A is α-lineable, then A is α-dense-
lineable in X.

(b) In particular, if A is c-lineable, then A is maximal-dense-lineable in X.

Note that since the space X is metrizable and separable, its cardinality is
card(X) = c and hence dim(X) ≤ c. Therefore, if A is c-lineable, then in fact
dim(X) = c and it follows that A is maximal-lineable.

A strong method to generate (or discover) algebras of strange functions from
[0, 1] into R is the one developed by Balcerzak et al. in [6, Proposition 7] (see
also [8, Theorem 1.5 and Section 6] and [10]). This method can be extended to
complex-valued functions (see [15]), so as to yield the assertion contained in the
next lemma. By E we denote the family of exponential-like functions on C, that
is, the functions of the form

ϕ(z) =
m

∑
j=1

aje
bjz

for some m ∈ N, some a1, . . . , am ∈ C \ {0} and some distinct b1, . . . , bm ∈ C \ {0}.

Lemma 2.3. Let Ω be a nonempty set and let F be a family of functions from Ω into
C. Assume that there exists a function f : Ω → C such that f (Ω) is uncountable
and ϕ ◦ f ∈ F for every ϕ ∈ E . Then F is strongly c-algebrable. More precisely, if
H ⊂ (0,+∞) is a set with card(H) = c and linearly independent over the field Q, then

{exp ◦(r f ) : r ∈ H}

is a free system of generators of an algebra contained in F ∪ {0}.

In the proof of Theorem 4.1, we will need the following result about Fourier
series in the disc algebra whose proof can be found in [16].

Theorem 2.4. For each g(z) = ∑
∞
n=0 anzn ∈ A(D) and each θ ∈ R, let

S(g|T , n)(eiθ) :=
n

∑
k=−n

aneinθ.

If E is a countable subset of T and the space CE of all C-valued functions on E is endowed
with the topology of pointwise convergence, then the family

FE =
{

g ∈ A(D) : {S(g|T , n)}n≥1 is dense in CE
}

is spaceable in A(D).

Remark 2.5. The residuality in A(D) of the family FE was proved for each count-
able set E ⊂ T by Herzog and Kunstmann [31].
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3 Weierstrass’ monsters in the disc algebra

In the disc algebra A(D), we find a rich algebraic structure inside the set

ND(T) := { f ∈ A(D) : f |T is not differentiable at any point of T}.

Let NL(T) denote the (smaller) class of functions f in the disc algebra such that
f |T is nowhere Lipschitz, that is,

NL(T) :=

{
f ∈ A (D) : lim sup

z∈T, z→z0

∣∣∣ f (z)− f (z0)
z−z0

∣∣∣ = +∞ for every z0 ∈ T

}
.

Theorem 3.1. The set NL(T) is c-lineable. Hence ND(T) is also c-lineable in A(D).

Proof. Some of our arguments are based on [36] and [43, Theorem 3.4]. For each
a ∈ (0, 1) let

fa(z) :=
∞

∑
n=0

anz9n
.

From the convergence of the geometrical series ∑
∞
n=0 an and the Weierstrass

M-test for uniform convergence one derives that fa ∈ A(D). Define

V := span

{
fa :

7

9
< a <

8

9

}
.

Then, of course, V is a vector subspace of A(D). First of all, we will prove that
the set

{
fa : 7

9 < a <
8
9

}
is linearly independent. Let us suppose that

λ1 fa1
+ λ2 fa2 + · · ·+ λk fak

= 0

for some k ∈ N, 7
9 < ak < · · · < a2 < a1 <

8
9 and λ1, . . . , λk ∈ C. Then

∞

∑
n=0

(λ1an
1 + λ2an

2 + · · ·+ λkan
k ) z9n

= 0

for every z ∈ D, so the uniqueness of coefficients of the Taylor series yields

λ1an
1 + λ2an

2 + · · ·+ λkan
k = 0

for every n ∈ N0. For n = 0, . . . , k − 1, we obtain the following conditions:




λ1 + λ2 + · · ·+ λk = 0
λ1a1 + λ2a2 + · · ·+ λkak = 0

...

λ1ak−1
1 + λ2ak−1

2 + · · ·+ λkak−1
k = 0.

These equations are equivalent to the following one:




1 1 · · · 1
a1 a2 · · · ak

ak−1
1 ak−1

2 · · · ak−1
k







λ1

λ2
...

λk


 =




0
0
...
0


 .
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The previous matrix is a Vandermonde matrix, so its determinant is not 0 because
a1, . . . , ak are different and non-zero. Therefore, λ1 = 0, λ2 = 0, . . . , λk = 0. This
proves that the set

{
fa : 7

9 < a <
8
9

}
is linearly independent and thus dim (V) = c.

We will prove that every function f ∈ V \ {0} belongs to NL(T), that is, for
every z0 ∈ T it satisfies

lim sup
z∈T, z→z0

∣∣∣∣
f (z)− f (z0)

z − z0

∣∣∣∣ = +∞. (3.1)

If f ∈ V \ {0}, then there are k ∈ N, 7
9 < ak < · · · < a1 <

8
9 and λ1, . . . , λk ∈

C \ {0} such that
f = λ1 fa1

+ · · ·+ λk fak
.

We can assume that λ1 = 1. If that were not the case, then we would prove the
property (3.1) for the function

g = fa1
+

λ2

λ1
fak−1

+ · · ·+
λk

λ1
fak

and then f = λ1g would also satisfy (3.1).

Let z0 be any fixed point in T and let x0 ∈ R such that z0 = eiπx0 . For each
m ∈ N there is αm ∈ Z such that 9mx0 − αm ∈ (−1/2, 1/2]. We define

tm := 9mx0 − αm ∈

(
−1

2
,

1

2

]
, xm :=

αm − 1

9m
.

Then

xm − x0 =
αm − 1 − 9mx0

9m
= −

1 + tm

9m
−→
m→∞

0.

That is, limm→∞ xm = x0, so limm→∞ eiπxm = z0.

For each j ∈ {1, . . . , k} we consider the function uj : R → R defined as

uj (x) = ℜ
[

faj

(
eiπx

)]
=

∞

∑
n=0

an
j cos (9nπx) .

Then

uj (xm)− uj (x0)

xm − x0
=

∞

∑
n=0

an
j

cos (9nπxm)− cos (9nπx0)

xm − x0
= Sj,m + Tj,m,

where

Sj,m :=
m−1

∑
n=0

an
j

cos (9nπxm)− cos (9nπx0)

xm − x0

and

Tj,m :=
∞

∑
n=0

am+n
j

cos (9m+nπxm)− cos (9m+nπx0)

xm − x0
.
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We will use the following relationship, which holds for every x, y ∈ R:

cos (x + y)− cos (x − y) = −2 sin x sin y.

Then we have

∣∣Sj,m

∣∣ =

∣∣∣∣∣∣

m−1

∑
n=0

an
j

−2 sin
(

9nπxm+9nπx0
2

)
sin

(
9nπxm−9nπx0

2

)

xm − x0

∣∣∣∣∣∣

≤
m−1

∑
n=0

π
(
9aj

)n

∣∣∣∣∣
sin

(
9nπ xm−x0

2

)

9nπ xm−x0
2

∣∣∣∣∣ .

Since
∣∣ sin x

x

∣∣ ≤ 1 for every x ∈ R and aj >
7
9 , we obtain

∣∣Sj,m

∣∣ ≤
m−1

∑
n=0

π
(
9aj

)n
= π

(
9aj

)m
− 1

9aj − 1
≤

π

6

(
9aj

)m
. (3.2)

Now, we study the series Tj,m. On the one hand, since αm ∈ Z, we have

cos
(
9m+nπxm

)
= cos

(
9m+nπ

αm − 1

9m

)
= cos (9n (αm − 1)π)

= (−1)αm−1 = − (−1)αm .

On the other hand, we have

cos
(
9m+nπx0

)
= cos

(
9m+nπ

αm + tm

9m

)
= cos (9nπαm + 9nπtm)

= cos (9nπαm) cos (9nπtm)− sin (9nπαm) sin (9nπtm)

= (−1)αm cos (9nπtm) .

Therefore,

Tj,m =
∞

∑
n=0

am+n
j

− (−1)αm − (−1)αm cos (9nπtm)

− 1+tm
9m

= (−1)αm
(
9aj

)m
∞

∑
n=0

an
j

1 + cos (9nπtm)

1 + tm
.

Now, note that

an
j

1 + cos (9nπtm)

1 + tm
≥ 0

for every n, m, j and that cos (πtm) ≥ 0 because tm ∈ (−1/2, 1/2], so

∣∣Tj,m

∣∣ =
(
9aj

)m
∞

∑
n=0

an
j

1 + cos (9nπtm)

1 + tm
≥

(
9aj

)m 1 + cos (πtm)

1 + tm

≥
(
9aj

)m 1

1 + 1
2

=
2

3

(
9aj

)m
.
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Moreover, since aj < 8/9, we have

∣∣Tj,m

∣∣ =
(
9aj

)m
∞

∑
n=0

an
j

1 + cos (9nπtm)

1 + tm

≤
(
9aj

)m
∞

∑
n=0

(
8

9

)n 2

1 − 1
2

= 36
(
9aj

)m
.

Consequently, we are led to

2

3

(
9aj

)m
≤

∣∣Tj,m

∣∣ ≤ 36
(
9aj

)m
. (3.3)

Therefore, by (3.2) and (3.3),

∣∣∣∣
uj (xm)− uj (x0)

xm − x0

∣∣∣∣ =
∣∣Sj,m + Tj,m

∣∣ ≤ π

6

(
9aj

)m
+ 36

(
9aj

)m
< 37

(
9aj

)m

and
∣∣∣∣
uj (xm)− uj (x0)

xm − x0

∣∣∣∣ =
∣∣Sj,m + Tj,m

∣∣ ≥
∣∣Tj,m

∣∣−
∣∣Sj,m

∣∣

≥
2

3

(
9aj

)m
−

π

6

(
9aj

)m
=

4 − π

6

(
9aj

)m
.

Thus,
4 − π

6

(
9aj

)m
≤

∣∣∣∣
uj (xm)− uj (x0)

xm − x0

∣∣∣∣ ≤ 37
(
9aj

)m
. (3.4)

Next, we study the function vj : R → R defined as

vj (x) = ℑ
[

faj

(
eiπx

)]
=

∞

∑
n=0

an
j sin (9nπx) .

Observe that

vj (xm)− vj (x0)

xm − x0
=

∞

∑
n=0

an
j

sin (9nπxm)− sin (9nπx0)

xm − x0
= S′

j,m + T′
j,m,

where

S′
j,m :=

m−1

∑
n=0

an
j

sin (9nπxm)− sin (9nπx0)

xm − x0

and

T′
j,m :=

∞

∑
n=0

am+n
j

sin (9m+nπxm)− sin (9m+nπx0)

xm − x0
.

We will first study the finite sum S′
j,m. To do that, we will apply the following

relationship:
sin (x + y)− sin (x − y) = 2 cos x sin y.
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Then

∣∣∣S′
j,m

∣∣∣ =

∣∣∣∣∣∣

m−1

∑
n=0

an
j

2 cos
(

9nπxm+9nπx0
2

)
sin

(
9nπxm−9nπx0

2

)

xm − x0

∣∣∣∣∣∣

≤
m−1

∑
n=0

π
(
9aj

)n

∣∣∣∣∣
sin

(
9nπ xm−x0

2

)

9nπ xm−x0
2

∣∣∣∣∣ .

Since
∣∣ sin x

x

∣∣ ≤ 1 for every x ∈ R and aj >
7
9 , we obtain

∣∣∣S′
j,m

∣∣∣ ≤
m−1

∑
n=0

π
(
9aj

)n
= π

(
9aj

)m
− 1

9aj − 1
<

π
(
9aj

)m

6
<

(
9aj

)m
. (3.5)

Now, we consider the series T′
j,m. On the one hand, since αm ∈ Z, we have that

sin
(
9m+nπxm

)
= sin

(
9m+nπ

αm − 1

9m

)
= sin (9nπ (αm − 1)) = 0.

On the other hand,

sin
(
9m+nπx0

)
= sin

(
9m+nπ

αm + tm

9m

)
= sin (9nπαm + 9nπtm)

= sin (9nπαm) cos (9nπtm) + cos (9nπαm) sin (9nπtm)

= (−1)αm sin (9nπtm) .

Therefore

T′
j,m =

∞

∑
n=0

am+n
j

− (−1)αm sin (9nπtm)

− 1+tm
9m

= (−1)αm
(
9aj

)m
∞

∑
n=0

an
j

sin (9nπtm)

1 + tm
.

Since aj <
8
9 and tm ∈ (−1/2, 1/2], we obtain

∣∣∣T′
j,m

∣∣∣ ≤
(
9aj

)m
∞

∑
n=0

(
8

9

)n 1

1 − 1
2

= 18
(
9aj

)m
. (3.6)

It follows from (3.5) and (3.6) that, for every j ∈ {1, . . . , k},
∣∣∣∣
vj (xm)− vj (x0)

xm − x0

∣∣∣∣ =
∣∣∣S′

j,m + T′
j,m

∣∣∣ ≤ 19
(
9aj

)m
. (3.7)

We recall that
f = fa1

+ λ2 fa2 + · · ·+ λk fak
,

where 7
9 < ak < · · · < a1 <

8
9 and λ2, . . . , λk ∈ C \ {0}. For each j = 2, . . . , k, let

pj, qj ∈ R be such that λj = pj + iqj. Then

f
(

eiπx
)
= u1 (x) + iv1 (x) +

k

∑
j=2

(
pj + iqj

) (
uj (x) + ivj (x)

)
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=

[
u1 (x) +

k

∑
j=2

(
pjuj (x)− qjvj (x)

)
]
+ i

[
v1 (x) +

k

∑
j=2

(
qjuj (x) + pjvj (x)

)
]

.

Hence

ℜ
f
(
eiπxm

)
− f

(
eiπx0

)

xm − x0
=

u1 (xm)− u1 (x0)

xm − x0
+

k

∑
j=2

pj

uj (xm)− uj (x0)

xm − x0

−
k

∑
j=2

qj

vj (xm)− vj (x0)

xm − x0
.

By (3.4) and (3.7),

∣∣∣∣∣
f
(
eiπxm

)
− f

(
eiπx0

)

xm − x0

∣∣∣∣∣ ≥
∣∣∣∣∣ℜ

f
(
eiπxm

)
− f

(
eiπx0

)

xm − x0

∣∣∣∣∣

≥

∣∣∣∣
u1 (xm)− u1 (x0)

xm − x0

∣∣∣∣−
k

∑
j=2

∣∣∣∣pj

uj (xm)− uj (x0)

xm − x0

∣∣∣∣−
k

∑
j=2

∣∣∣∣qj

vj (xm)− vj (x0)

xm − x0

∣∣∣∣

≥
4 − π

6
(9a1)

m −
k

∑
j=2

37
(
9aj

)m ∣∣pj

∣∣−
k

∑
j=2

19
(
9aj

)m ∣∣qj

∣∣

= (9a1)
m
[

4 − π

6
−

k

∑
j=2

37
∣∣pj

∣∣
(

aj

a1

)m

−
k

∑
j=2

19
∣∣qj

∣∣
(

aj

a1

)m ]
.

Finally, since 0 < aj/a1 < 1 for every j = 2, . . . , k and 9a1 > 1, we deduce that

lim
m→∞

∣∣∣∣∣
f
(
eiπxm

)
− f

(
eiπx0

)

xm − x0

∣∣∣∣∣ = +∞. (3.8)

Since

lim
m→∞

xm − x0

eiπxm − eiπx0
=

1

iπeiπx0
6= 0, (3.9)

we obtain

lim
m→∞

∣∣∣∣∣
f
(
eiπxm

)
− f (z0)

eiπxm − z0

∣∣∣∣∣ = lim
m→∞

∣∣∣∣
xm − x0

eiπxm − eiπx0

∣∣∣∣ ·
∣∣∣∣∣

f
(
eiπxm

)
− f

(
eiπx0

)

xm − x0

∣∣∣∣∣ ,

and the last limit equals +∞ thanks to (3.8) and (3.9). This implies the desired
property (3.1) and the proof is concluded.

With Theorem 2.2 at hand, it is possible to extract maximal-dense-lineability
from mere lineability.
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Theorem 3.2. The set NL(T) is c-dense-lineable, so maximal dense-lineable in A(D).
Hence ND(T) is also maximal dense-lineable in A(D).

Proof. Let P denote the set of restrictions to D of the family of all polynomials
on C. By Mergelyan’s theorem, P is dense in A (D) In fact, P is dense-lineable,
because it is a vector space. Consequently, the set of all polynomials with rational
coefficients is dense in A (D) and thus A (D) is a separable Banach space. More-
over, if g ∈ NL(T), P ∈ P and z0 ∈ T, there exists a sequence (zm)

∞
m=1 in T such

that

lim
m→∞

∣∣∣∣
g (zm)− g (z0)

zm − z0

∣∣∣∣ = +∞.

Then

lim
m→∞

∣∣∣∣
(g + P) (zm)− (g + P) (z0)

zm − z0

∣∣∣∣

≥ lim
m→∞

∣∣∣∣
g (zm)− g (z0)

zm − z0

∣∣∣∣−
∣∣P′ (z0)

∣∣ = +∞.

This proves that g + P ∈ NL(T), that is, NL(T) + P ⊂ NL(T). Moreover,
of course, NL(T) ∩ P = ∅. It follows from Theorem 2.2 (with X = A(D),
A = NL(T) and B = P) that NL(T) is maximal-dense-lineable in A(D).

In the next and final theorem of this section we show the existence of large
free algebras consisting of functions in A(D) presenting non-differentiability at
all points of T, except for a small set of them. Denote by m the normalized
Lebesgue measure on T. Moreover, let

ÑD(T) := { f ∈ A(D) : there is a closed subset A f ⊂ T such that

m(A f ) = 0 and f |T is not differentiable at any point of T \ A f },

ÑL(T) := { f ∈ A(D) : there is a closed subset A f ⊂ T such that

m(A f ) = 0 and lim sup
z∈T, z→z0

∣∣∣ f (z)− f (z0)
z−z0

∣∣∣ = +∞ for every z0 ∈ T \ A f }.

Of course, ND(T) ⊂ ÑD(T), NL(T) ⊂ ÑL(T) and ÑL(T) ⊂ ÑD(T). Note
that the above sets T \ A f where differentiability fails are dense, open (in partic-
ular, residual) and full-measure in T, that is, m(T \ A f ) = 1 = m(T). Hence they
are both topologically and metrically large in T.

Theorem 3.3. The set ÑL(T) is strongly c-algebrable. Consequently, the family ÑD(T)
is strongly c-algebrable.

Proof. Let us choose any function f ∈ NL(T) and an exponential-like function
ϕ (see Section 2). Then ϕ is entire and nonconstant, so ϕ′ is not identically zero.
By the Identity Principle for analytic functions, the set Z := {z ∈ C : ϕ′(z) =
0} lacks accumulation points in C. By continuity, the set f (T) is compact. In
particular, the intersection Z ∩ f (T) is finite, say

Z ∩ f (T) = {w1, . . . , wk}.
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Now, since f ∈ NL(T) ⊂ A(D), we have that f is a non-constant function which
belongs to the Hardy space H∞ of holomorphic functions that are bounded on
D. Therefore, f cannot be constant on any subset of T of positive measure (see
[40, Theorem 17.18]). That is, for each w ∈ C, the set Bw := {z ∈ T : f (z) = w}
satisfies m(Bw) = 0. The continuity of f implies that each Bw is closed.

Let us define the function g := ϕ ◦ f , which trivially belongs to A(D). Let

Ag := Bw1
∪ · · · ∪ Bwk

.

Then Ag is a closed subset of T such that m(Ag) = 0. Fix a point z0 ∈ T \ Ag.
Then f (z0) 6∈ Z, and so ϕ′( f (z0)) 6= 0. Since f ∈ NL(T), there exists a sequence
(zm) ⊂ T \ {z0} such that zm → z0 and

lim
m→∞

∣∣∣∣
f (zm)− f (z0)

zm − z0

∣∣∣∣ = +∞.

Without loss of generality we can assume f (zm) 6= f (z0) for all m ∈ N. The
continuity of f at z0 entails f (zm) → f (z0). Therefore

lim
m→∞

∣∣∣∣
ϕ( f (zm))− ϕ( f (z0))

f (zm)− f (z0)

∣∣∣∣ = |ϕ′( f (z0))| > 0.

Consequently,

lim
m→∞

∣∣∣∣
g(zm)− g(z0)

zm − z0

∣∣∣∣ = lim
m→∞

∣∣∣∣
ϕ( f (zm))− ϕ( f (z0))

f (zm)− f (z0)

∣∣∣∣ ·
∣∣∣∣

f (zm)− f (z0)

zm − z0

∣∣∣∣
= +∞.

But this implies

lim sup
z∈T, z→z0

∣∣∣∣
g (z)− g (z0)

z − z0

∣∣∣∣ = +∞.

That is, g = ϕ ◦ f ∈ ÑL(T). Observe that since f is holomorphic on D and non-
constant, f (D) is a nonempty open set and hence it is uncountable. To complete

the proof, it is enough to invoke Lemma 2.3 with Ω = D and F = ÑL(T).

Remark 3.4. Concerning the first part of the last proof, it is worth mentioning
that, thanks to a theorem due to Fatou (see [32, p. 80]), given w ∈ C and a closed
set K ⊂ T with m(K) = 0, there exists f ∈ A(D) such that {z ∈ D : f (z) = w} =
{z ∈ T : f (z) = w} = K.

We finish this section by posing the following natural problems.

Problems 3.5.
1. Are ND(T) or NL(T) spaceable in A(D)?
2. Are ND(T) or NL(T) (strongly) algebrable? Can the corresponding algebras be
found dense in A(D)?

Concerning Problem 3.5.1, see Theorem 4.1(c) in the next section.



254 L. Bernal-González – J. López-Salazar – J.B. Seoane-Sepúlveda

4 Nowhere differentiability on the boundary of more general do-

mains

In this section, it will be shown that, in an algebraic sense, many boundary-
almost-nowhere differentiable functions can be obtained, provided that the struc-
ture of the boundary is smooth enough. With this aim, we now recall some con-

cepts and facts. Let us recall that if Ω ⊂ C, then the symbols Ω
∞

and ∂∞Ω repre-
sent, respectively, the closure and the boundary of Ω in C∞. For the following, we
refer the reader to, e.g., [30, Chapter 14] and [40, Chapter 16]. According to the
Riemann mapping theorem, for each simply connected domain Ω ⊂ C we can fix
an isomorphism FΩ : Ω → D, that is, a bijective biholomorphic mapping. If (and
only if) Ω is, in addition, a Jordan domain, the Osgood–Carathéodory theorem

states that FΩ can be homeomorphically extended from Ω
∞

onto D and thus T

corresponds to ∂∞Ω.

If Ω is a bounded Jordan domain, then the Jordan curve ∂Ω is called piecewise
analytic if there is a parametric representation z : [α, β] → C and a finite subdi-
vision α = τ0 < τ1 < · · · < τn = β such that the restriction of z = z(τ) to each
subinterval [τk−1, τk] agrees with a function zk that is holomorphic on a domain of
the complex plane containing [τk−1, τk] and whose derivative is never zero. Simi-
larly, if Ω is an unbounded Jordan domain, then ∂Ω is piecewise analytic if there is
a parametric representation z : (α, β) → C, with limτ→α z(τ) = ∞ = limτ→β z(τ),
and a finite subdivision α < τ0 < τ1 < · · · < τn < β such that the restriction of
z = z(τ) to each subinterval [τk−1, τk], (α, τ0] and [τn, β) agrees with a function
zk that is holomorphic on a domain of the complex plane containing the corre-
sponding subinterval and whose derivative is never zero.

The points zk(τk) are called the corners of ∂Ω. We represent by CΩ the set
of such corners. In the case CΩ = ∅, we simply say that ∂Ω is analytic. Then
the Osgood–Caratheodory extension FΩ can be holomorphically continued to a
neighborhood of every point z0 ∈ (∂Ω) \ CΩ (see [30, Section 16.4]).

At this point, some further notation is needed. Let H1 stand for the 1-dimen-
sional Hausdorff measure on the Borel sets of R2 (see, e.g., [22, Chapter 2]). For a
domain Ω ⊂ C and a subset Z ⊂ ∂Ω we set:

ND(∂Ω) := { f ∈ A(Ω) : f |∂Ω is nowhere differentiable},

NL(∂Ω) := { f ∈ A(Ω) : f |∂Ω is nowhere Lipschitz},

NDZ(∂Ω) := { f ∈ A(Ω) : f |∂Ω is not differentiable at any z0 ∈ (∂Ω) \ Z},

NLZ(∂Ω) := { f ∈ A(Ω) : f |∂Ω is not Lipschitz at any z0 ∈ (∂Ω) \ Z},

ÑD(∂Ω) :={ f ∈ A(Ω) : there is a closed subset A f ⊂ ∂Ω such that

H1(A f ) = 0 and f |∂Ω is not differentiable at any z0 ∈ ∂Ω \ A f },

ÑL(∂Ω) :={ f ∈ A(Ω) : there is a closed subset A f ⊂ ∂Ω such that

H1(A) = 0 and f |∂Ω is not Lipschitz at any z0 ∈ ∂Ω \ A f }.
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Of course, we have a number of trivial relations, such as NL(∂Ω) ⊂ ND(∂Ω),

ÑL(∂Ω) ⊂ ÑD(∂Ω) and many others.

We are now ready to establish and prove our result.

Theorem 4.1. Let Ω ⊂ C be a Jordan domain with piecewise analytic boundary. Let
Z = ZΩ := CΩ ∪ {z ∈ (∂Ω) \ CΩ : F′(z) = 0}, where F : Ω → D is a fixed
biholomorphic mapping. We have:

(a) The set NLZ(∂Ω) is maximal dense-lineable in A(Ω). Hence NDZ(∂Ω) is also
maximal dense-lineable in A(Ω).

(b) The set ÑL(∂Ω) is strongly c-algebrable. Hence ÑD(∂Ω) is also strongly
c-algebrable.

(c) There is a dense subset DΩ in ∂Ω such that the family
{

f ∈ A(Ω) : f |∂Ω is not differentiable at any point of DΩ

}

is spaceable in A(Ω).

Proof. Let S be any subset of ∂Ω such that

lim inf
z∈∂Ω, z→z0

∣∣∣∣
F(z) − F(z0)

z − z0

∣∣∣∣ > 0

for all z0 ∈ (∂Ω) \ S (of course, that property happens if there exists F′(z0) 6= 0).
Let us fix any function g ∈ NLF(S)(T) and any point z0 ∈ (∂Ω) \ S. It is evident

that f := g ◦ F ∈ A(Ω). By injectivity and bicontinuity, respectively, we have
F(z) 6= F(z0) if z ∈ T \ {z0} and F(z) → F(z0) if and only if z → z0. Therefore,

lim sup
z∈∂Ω, z→z0

∣∣∣∣
f (z)− f (z0)

z − z0

∣∣∣∣ ≥

≥ lim sup
w∈T, w→F(z0)

∣∣∣∣
g (w)− g (F(z0))

w − F(z0)

∣∣∣∣ · lim inf
z∈∂Ω, z→z0

∣∣∣∣
F(z) − F(z0)

z − z0

∣∣∣∣ = +∞.

Hence f is not Lipschitz at z0. With our terminology, we have proved that

NLS(∂Ω) ⊃ {g ◦ F : g ∈ NLF(S)(T)} ⊃ {g ◦ F : g ∈ NL(T)}, (4.1)

the second inclusion being trivial.

According to Theorem 3.1, there is a c-dimensional vector space V0 ⊂ A(D)
such that V0 \ {0} ⊂ NL(T). Let us define V := {g ◦ F : g ∈ V0}, that is a vector
subspace of A(Ω). If {gi}i∈I (with card(I) = c) is an algebraic basis for V0, then
the fact F(Ω) = D shows that the functions fi := gi ◦ F form an algebraic basis
of V. Since the set Z satisfies that there exists F′(z0) 6= 0 for all z ∈ (∂Ω) \ Z, it
follows from (4.1) that

V \ {0} = {g ◦ F : g ∈ V0 \ {0}}

⊂ {g ◦ F : g ∈ NL(T)} ⊂ NLZ(∂Ω).
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This shows that NLZ(∂Ω) is maximal lineable. Now, we invoke Mergelian’s
Theorem 2.1 to get the density of the set of polynomials in A(Ω). Then we pro-
ceed as in the proof of Theorem 3.2 with D and NL(T) replaced, respectively, by
Ω and NLZ(∂Ω). This proves (a).

In order to prove (b), take a freely c-generated algebra M0 such that

M0 \ {0} ⊂ ÑL(T), which is furnished by Theorem 3.3. Let us define M :=
{g ◦ F : g ∈ M0}, that is a subalgebra of A(Ω). Again, the fact F(Ω) = D

implies that if {gi}i∈I (with card(I) = c) is a free generator system for M0 then
the functions fi := gi ◦ F form a free generator system of M. It suffices to prove

that M \ {0} ⊂ ÑL(∂Ω). Fix f ∈ M \ {0}. Then there is g ∈ M0 \ {0} such

that f = g ◦ F. Therefore, g ∈ ÑL(T), so there is a closed subset A0 ⊂ T with
m(A0) = 0 (equivalently, with H1(A0) = 0) such that g is non-Lipschitz at any
point of T \ A0. The set

A := (F|∂Ω)−1(A0) ∪ Z

is a closed subset of ∂Ω because Z is closed (see Remark 4.2 below, where the
countability of Z is also shown) and F is continuous. In addition, there exists
F′(z) 6= 0 for all z ∈ (∂Ω) \ A. It follows from (4.1) and the fact g ∈ NLA0

(T) ⊂
NLF(A)(T) that f = g ◦ F ∈ NLA(∂Ω). That is, f |∂Ω is not Lipschitz at any point

of (∂Ω) \ A.

Since F is analytic on (∂Ω) \ Z, with F′ never zero on this set, it possesses ana-
lytic local inverse F−1 at every point. Then F−1 is locally Lipschitz on
T \ F(Z) and, consequently, on A0 \ F(Z). It is known that the image under a lo-
cally Lipschitz mapping of a set with null H1-measure also has null H1-measure
(see, e.g., [22, Theorem 2.8]). Hence H1((F|∂Ω)−1(A0 \ F(Z))) = 0. Moreover,
H1(Z) = 0 because Z is countable, so we obtain

H1(A) = H1(Z ∪ (F|∂Ω)−1(A0 \ F(Z))) = 0.

Consequently, f ∈ ÑL(∂Ω), as required.

With the aim of proving (c), let us choose

E := {eiπx : x ∈ Q} \ F(Z),

which is a countable subset of T. It is also dense because {eiπx : x ∈ Q} is dense
in T and Z is discrete in ∂Ω, so F(Z) is discrete in T if Ω is bounded, while F(Z)
is discrete in T \ {F(∞)} if Ω is unbounded. In any case, the set

DΩ := {z ∈ ∂Ω : F(z) ∈ E}

is dense in ∂Ω. By Theorem 2.4, the set

FE =
{

g ∈ A(D) : {S(g|T , n)}n≥1 is dense in CE
}

is spaceable in A(D), where {S(g|T , n)}n≥1 denotes the sequence of Fourier par-
tial sums of a function g. Thus, there is a closed infinite-dimensional subspace
Y0 ⊂ A(D) with Y0 \ {0} ⊂ FE. Define

Y := {g ◦ F : g ∈ Y0}.
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As in the first part of the proof, we have that Y is an infinite-dimensional vec-
tor subspace of A(Ω). That Y is closed follows at once because Y0 is closed and
F is an homeomorphism. Fix f ∈ Y \ {0} and z0 ∈ DΩ. There exists g ∈ Y0

with f = g ◦ F. It remains to prove that f |∂Ω is not differentiable at z0. Assume,
by way of contradiction, that it is differentiable at z0. Since z0 6∈ Z, there exists
F′(z0) 6= 0. Then the inverse mapping theorem would entail that g|T is differen-
tiable at F(z0). Hence the Fourier series of g|T would converge at F(z0) ∈ E (see,
e.g., [41, Theorem 1.4.1]). Consequently, {S(g|T , n)}n≥1 could not be dense in CE,
which is absurd. This contradiction yields the conclusion.

Remark 4.2. Observe that, as in the case of the unit disc, the sets

EΩ := (∂Ω) \ (Z ∪ A f )

where differentiability fails are residual in ∂Ω because they are open and dense.
Indeed, CΩ is finite and, since FΩ is nonconstant, the set {z ∈ (∂Ω) \CΩ : F′(z) =
0} lacks accumulation points in (∂Ω) \ CΩ (in particular, it is countable). Hence
Z = CΩ ∪ {z ∈ (∂Ω) \ CΩ : F′(z) = 0} is closed and has empty ∂Ω-interior.
Moreover, A f is closed with H1(A f ) = 0, so it also has empty ∂Ω-interior.

In addition, the sets EΩ are full-measure in ∂Ω, that is, H1(EΩ) = H1(∂Ω).
Indeed, H1(A f ) = 0 and both CΩ and {z ∈ (∂Ω) \ CΩ : F′(z) = 0} are count-

able, so their H1-measure is zero. Hence the sets EΩ are both topologically and
metrically large in ∂Ω.

Example 4.3. Let Π be an open halfplane. Then there is a motion ϕ : z 7→ αz +
β of C (with |α| = 1, β ∈ C) taking Π onto the open right halfplane Π+ =
{z ∈ C : ℜz > 0}. Now, the function F0(z) = −z+1

z+1 performs an isomorphism
Π+ → D which can be extended homeomorphically to the C∞-boundaries iR ∪
{∞} and T. Then the same holds for the isomorphism F := F0 ◦ ϕ between Π

and D. Since ∂Π is a straight line (so analytic) and F′(z) = −2α
(ϕ(z)+1)2 6= 0 for

all z ∈ ∂Π, Theorem 4.1 tells us that NL(∂Π) and ND(∂Π) are maximal dense-

lineable in A(Π) and that ÑL(∂Π) and ÑD(∂Π) are strongly c-algebrable.

Of course, problems similar to those posed at the end of Section 3 can be for-
mulated for domains different from the unit disc.

Appendix: Prevalence of ND(T)

As a complement to the results obtained in the previous sections, we will briefly
consider in this appendix the large size of ND(T) –and its Ω-analogues– under
a measure-theoretical point of view. With this aim, we first recall the concept of
prevalence, that was coined by Hunt, Sauer and Yorke in 1992 (see [34]). We also
refer the reader to Bastin et al. [11] for a paper including both lineability and
prevalence results.

Let X be a metrizable topological vector space over R or C. A subset A ⊂ X
is called prevalent in X provided that there exist a Borel set S ⊂ X and a measure
µ on the Borel subsets of X satisfying the following conditions:
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(i) A ⊃ X \ S,

(ii) µ(S + v) = 0 for every v ∈ X,

(iii) 0 < µ(K) < ∞ for some compact subset K ⊂ X.

A sufficient (but not necessary) condition for a set to be prevalent is the one given
in the next lemma. Its content is given in [34, p. 225, after Definition 6] for the real
case, but it is immediate that it also holds in the complex case, that is the setting
in which it is stated here.

Lemma. Let us assume that X is a metrizable topological vector space over C, N ∈ N,
and that ϕ1, . . . , ϕN are linearly independent vectors in X. Let µ represent the 2N-
dimensional Lebesgue measure supported on span{ϕ1, . . . , ϕN}, that is, if B is a Borel
subset of X, then

µ(B) := m2N

({
(a1, b1, . . . , aN , bN) ∈ R2N :

N

∑
j=1

(aj + ibj)ϕj ∈ B
})

.

Let us suppose that A ⊂ X and that there is a Borel subset S ⊂ X such that A ⊃ X \ S
and µ(S + v) = 0 for every v ∈ X. Then the set A is prevalent in X.

For instance, a subset A ⊂ RN is prevalent if and only if RN \ A has N-
dimensional Lebesgue measure zero, while A ⊂ CN is prevalent if and only if
CN \ A has 2N-dimensional Lebesgue measure zero (see [34]). Hunt [33] proved
the prevalence in C[0, 1] of the family ND[0, 1] of Weierstrass monsters. We will
take advantage of the methods developed by Hunt in order to obtain prevalence
for the family ND(T) of Weierstrass monsters in the disc algebra. Let us recall
that ZΩ = CΩ ∪ {z ∈ (∂Ω) \ CΩ : F′

Ω(z) = 0}, where FΩ : Ω → D is a biholo-
morphic mapping.

Theorem. Assume that Ω ⊂ C is a Jordan domain whose boundary is piecewise
analytic. Then the set NLZΩ

(∂Ω) is prevalent in A(Ω). Consequently, the family
NDZΩ

(∂Ω) is prevalent in A(Ω).

Proof. It is enough to consider the special case Ω = D. The general case can
be handled as in the proof of Theorem 4.1, by considering the homeomorphism

FΩ : Ω
∞
→ D and taking into account that NLZ(∂Ω) ⊃ { f ◦ FΩ : f ∈ NL(T)}.

Let us deal with the case of the unit disc, so ZD = ∅ and NLZD
(T) = NL(T).

It is proved in [33, Proposition 2] that, for all f ∈ C[0, 1], the function f + αg + βh
is nowhere Lipschitz for Lebesgue almost (α, β) ∈ R2, where

g(x) :=
∞

∑
n=1

1

n2
cos(2nπx) and h(x) :=

∞

∑
n=1

1

n2
sin(2nπx).

A straightforward calculation reveals that the same holds if g and h are replaced
by g0(x) := g(2x) and h0(x) := h(2x), respectively. In other words, the set

N f := {(α, β) ∈ R2 : f + αg0 + βh0 is Lipschitz at some point of [0, 1]}
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satisfies m2(N f ) = 0 for all f ∈ C[0, 1].

For M > 0, we say that a function f : T → C is M-Lipschitz at a point z0 ∈ T

provided that | f (z)− f (z0)| ≤ M|z − z0| for all x ∈ T. Denote

SM := { f ∈ A(D) : f |T is M-Lipschitz at some point of T}.

A compactness argument reveals that SM is closed in A(D). Hence the set

S := A(D) \ NL(T) =
⋃

M∈N

SM

is a Borel subset of A(D). Consider the function

ϕ(z) =
∞

∑
n=1

z2n

n2
.

Again, Weierstrass M-test yields that ϕ ∈ A(D). Observe that g0(x) = ℜϕ(e2πix)
and h0(x) = ℑϕ(e2πix) for all x ∈ [0, 1].

Take X := A(D), A := NL(T), N := 1, and define the measure

µ(B) := m2

(
{(a, b) ∈ R2 : (a + ib)ϕ ∈ B}

)

for each Borel subset B of A(D). According to the previous Lemma, it is enough
to prove that µ(S + φ) = 0 for all φ ∈ A(D). To do that, we take any φ ∈ A(D)
and define the functions u0 : [0, 1] → R and v0 : [0, 1] → R as

u0(x) = ℜφ(e2πix), v0(x) = ℑφ(e2πix).

Assume that (a, b) ∈ R2 satisfies (a + ib)ϕ ∈ S + φ. Then there exists x0 ∈ [0, 1]
such that ((a+ bi)ϕ− φ)|T is Lipschitz at z0 := e2πix0 , so there is M > 0 satisfying
|Φ(z) − Φ(z0)| ≤ M|z − z0| for all z ∈ T, where we have set Φ := (a + bi)ϕ − φ.
We now use the inequality |eiα − eiβ| ≤ |α − β| for every α, β ∈ R to obtain that if
x ∈ [0, 1] then

|[−u0(x) + ag0(x)− bh0(x)]− [−u0(x0) + ag0(x0)− bh0(x0)]|

= |ℜ
[

Φ(e2πix)− Φ(e2πix0)
]
| ≤ |Φ(e2πix)− Φ(e2πix0)|

≤ M|e2πix − e2πix0 | ≤ 2πM|x − x0|.

That is, the function −u0 + ag0 − bh0 is Lipschitz at x0. With our previous nota-
tion, we get (a, b) ∈ σ(N−u0), where σ denotes the axial symmetry
(α, β) 7→ (α,−β) on R2. Thus, we have proved that

{(a, b) ∈ R2 : (a + ib)ϕ ∈ S + φ} ⊂ σ(N−u0).

Consequently, since σ is an isometry, we obtain

0 ≤ µ(S + φ) = m2

(
{(a, b) ∈ R2 : (a + ib)ϕ ∈ S + φ}

)

≤ m2(σ(N−u0)) = m2(N−u0) = 0.

Therefore, µ(S + φ) = 0 for every φ ∈ A(D), which concludes the proof.
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of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N.S.) 51
(2014), no. 1, 71–130.

[19] P. H. Enflo, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Some results and open
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