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Abstract

In this paper, we characterize disk-cyclic and codisk-cyclic weighted
pseudo-shifts on Banach sequence spaces, and consider the bilateral
operator weighted shifts on ℓ2(Z,K) as a special case. Moreover, we present
a counter-example to show that a result in [Y. X. Liang and Z. H. Zhou],
Disk-cyclicity and Codisk-cyclicity of certain shift operators, Operators and
Matrices, 9(2015), 831–846] is not correct.

1 Introduction

Let N denote the set of non-negative integers, Z denote the set of all integers. Let
L(X) be the space of all linear and continuous operators on a separable, infinite
dimensional complex Banach space X. An operator T ∈ L(X) is said to be hyper-
cyclic if there is a vector x ∈ X such that the orbit Orb(T, x) = {Tnx : n ∈ N} is
dense in X. In such a case, x is called a hypercyclic vector for T.

The first example of a hypercyclic operator on a Banach space was offered in
1969 by Rolewicz [15], who showed that if B is the unilateral backward shift on
ℓ2(N), then the scaled shift λB is hypercyclic if and only if |λ| > 1. Salas [16]
completely characterized the hypercyclic unilateral weighted backward shifts on
ℓp(N) with 1 ≤ p < ∞ and the bilateral weighted shifts on ℓp(Z) with 1 ≤ p < ∞

in terms of their weight sequences. León-Saavedra and Montes-Rodrı́guez [12]
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later used Salas’ weight characterization to show that each type of weighted
shifts is hypercyclic precisely when it satisfies the so-called Hypercyclicity Cri-
terion. This criterion was obtained independently by Kitai [11] and by Gethner
and Shapiro [4], and it provides a sufficient condition for a general operator to be
hypercyclic. Using the Hypercyclicity Criterion, Grosse-Erdmann [5] extended
Salas’ results by obtaining a characterization for hypercyclic weighted shifts on
an arbitrary F-sequence space. We refer the readers to the books by Bayart and
Matheron [2], and by Grosse-Erdmann and A. Peris Manguillot [6] for more back-
ground and many examples about hypercyclic operators.

By Rolewicz’s example above, λB is not hypercyclic whenever |λ| ≤ 1, this
led to study the disk orbit or codisk orbit notion. Disk-cyclic and codisk-cyclic
operators were introduced by Zeana in her PhD thesis [8], and defined as follows:

Definition 1.1. A bounded linear operator T on X is called disk-cyclic if there is a
vector x in X such that the set

{αTnx : α ∈ C, 0 < |α| ≤ 1, n ∈ N} is dense in X.

In this case x is said to be a disk-cyclic vector for T.

Definition 1.2. A bounded linear operator T on X is called codisk-cyclic if there is
a vector x in X such that the set

{αTnx : α ∈ C, |α| ≥ 1, n ∈ N} is dense in X.

In this case x is said to be a codisk-cyclic vector for T.

Remarks 1.3. (1) Every hypercyclic operator is (co)disk-cyclic;
(2) In [8], Zeana proved that the set of all disk-cyclic (respectively codisk-

cyclic) vectors for a disk-cyclic (respectively codisk-cyclic) operator on Hilbert
space is a dense Gδ set. With the same arguments, this conclusion is also valid in
Banach spaces.

In [8] the author also proposed the disk-cyclicity criterion and codisk-cyclicity
criterion in Hilbert spaces. These two criteria play a key role in this paper, now
we extend them to Banach spaces and the proofs are the same as those in Hilbert
spaces.

Proposition 1.4. (Disk-Cyclicity Criterion) Let X be a separable Banach space,
T ∈ L(X) such that

(1) There are dense sets X0, Y0 in X and a right inverse S of T (not necessarily
bounded) such that S(Y0) ⊂ Y0 and TS = IY0

.
(2) There is a sequence (nk) ⊂ N such that

(a) lim
k→∞

‖Snk y‖ = 0 for all y ∈ Y0;

(b) lim
k→∞

‖Tnk x‖ ‖Snk y‖ = 0 for all x ∈ X0, y ∈ Y0.

Then T is disk-cyclic.
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Proposition 1.5. (Codisk-Cyclicity Criterion) Let X be a separable Banach space,
T ∈ L(X) such that

(1) There are dense sets X0, Y0 in X and a right inverse S of T (not necessarily
bounded) such that S(Y0) ⊂ Y0 and TS = IY0

.

(2) There is a sequence (nk) ⊂ N such that

(a) lim
k→∞

‖Tnk x‖ = 0 for all x ∈ X0;

(b) lim
k→∞

‖Tnk x‖ ‖Snk y‖ = 0 for all x ∈ X0, y ∈ Y0.

Then T is codisk-cyclic.

For examples of disk-cyclic operators, Zeana [10] characterized the disk-cyclic
bilateral weighted shifts on ℓ2(Z). Liang and Zhou studied the disk-cyclic and
codisk-cyclic tuples of the adjoint weighted composition operators on Hilbert
spaces in [14]. For more results about (co)disk-cyclic operators, we recommend
papers [17], [1] and [9]. In this paper, motivated by Grosse-Erdmann’s work
[5], we investigate the (co)disk-cyclicity of weighted pseudo-shifts on arbitrary
Banach sequence spaces.

To proceed further we recall some definitions of the sequence spaces and
weighted pseudo-shifts. For a comprehensive survey we recommend Grosse-
Erdmann’s paper [5].

Definition 1.6. (Sequence Space) If we allow an arbitrary countably infinite set
I as an index set, then a sequence space over I is a subspace of the space ω(I) = C

I

of all scalar families (xi)i∈I. The space ω(I) is endowed with its natural product
topology.

A topological sequence space X over I is a sequence space over I that is endowed
with a linear topology in such a way that the inclusion mapping X →֒ ω(I) is
continuous or, equivalently, that every coordinate functional fi : X → C, (xk)k∈I 7→
xi (i ∈ I) is continuous. A Banach (Hilbert) sequence space over I is a topological
sequence space over I that is a Banach (Hilbert) space.

Definition 1.7. (OP-basis) By (ei)i∈I we denote the canonical unit vectors
ei = (δik)k∈I in a topological sequence space X over I. We say (ei)i∈I is an
OP− basis or (Ovsepian Pelczyński basis) if span{ei : i ∈ I} is a dense subspace of
X and the family of coordinate projections x 7→ xiei(i ∈ I) on X is equicontinuous.
Note that in a Banach sequence space over I the family of coordinate projections
is equicontinuous if and only if supi∈I ||ei|||| fi|| < ∞.

Definition 1.8. (Pseudo-shift Operators) Let X be a Banach sequence space over
I. Then a continuous linear operator T : X → X is called a weighted pseudo-shift if
there is a sequence (bi)i∈I of non-zero scalars and an injective mapping ϕ : I → I
such that

T(xi)i∈I = (bixϕ(i))i∈I

for (xi) ∈ X. We then write T = Tb,ϕ, and (bi)i∈I is called the weight sequence.
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Remarks 1.9. (1) If T = Tb,ϕ : X → X is a weighted pseudo-shift, then each
Tn(n ≥ 1) is also a weighted pseudo-shift as follows

Tn(xi)i∈I = (bn,ixϕn(i))i∈I

where
ϕn(i) = (ϕ ◦ ϕ ◦ · · · ◦ ϕ)(i) (n − fold)

bn,i = bibϕ(i) · · · bϕn−1(i) =
n−1

∏
v=0

bϕv(i).

(2) We consider the inverse ψ = ϕ−1 : ϕ(I) → I of the mapping ϕ. We also set

bψ(i) = 0 and eψ(i) = 0 if i ∈ I \ ϕ(I),

i.e. when ψ(i) is “ undefined ”. Then for all i ∈ I,

Tb,ϕei = bψ(i)eψ(i).

(3) We denote ψn = ψ ◦ψ ◦ · · · ◦ψ (n-fold), and we set bψn(i) = 0 and eψn(i) = 0

when ψn(i) is “ undefined ”.

Definition 1.10. A sequence (ϕn)n∈N of mappings ϕn : I → I is called a run-away
sequence if for each pair of finite subsets I0 ⊂ I and J0 ⊂ I there exists an n0 ∈ N

such that, for every n ≥ n0, ϕn(J0) ∩ I0 = ∅.
We usually apply this definition to the sequence of iterates of the mapping

ϕ : I → I. Specifically, if we denote ϕn := ϕ ◦ ϕ ◦ · · · ◦ ϕ (n-fold), we call (ϕn)n a
run-away sequence if for each pair of finite subsets I0 ⊂ I and J0 ⊂ I, there exists
an n0 ∈ N such that ϕn(J0) ∩ I0 = ∅ for every n ≥ n0.

The rest of the paper is organized as follows: Equivalent conditions for disk-
cyclic and codisk-cyclic pseudo-shifts on arbitrary Banach sequence spaces are
given in Section 2. In Section 3, we illustrate the result about disk-cyclic pseudo-
shifts in Section 2 with operator weighted shifts on ℓ2(Z,K). As a consequence,
we point out a mistake in [13] by a simple counter-example. Motivated by Feld-
man’s work in [3], we derive that the characterizations are far simplified when
the operator weighted shifts are invertible in Section 4.

2 Disk-cyclic and Codisk-cyclic weighted pseudo-shifts

In this section let X be a Banach sequence space over I in which (ei)i∈I is an
OP-basis. We are concerned with the (co)disk-cyclicity of weighted pseudo-shifts
on X. For the characterization of hypercyclic weighted pseudo-shifts on X Grosse-
Erdmann established the following result in [5].
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Theorem 2.1. [5, Theorem 5] Let T = Tb,ϕ : X → X be a weighted pseudo-shift. Then
the following assertions are equivalent:

(i) T is hypercyclic;
(ii) (α) The mapping ϕ : I → I has no periodic point;

(β) There exists an increasing sequence (nk) of positive integers such that, for
every i ∈ I,

(H1)

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(i)

)−1

eϕnk (i)

∥∥∥∥∥∥
→ 0,

(H2)

∥∥∥∥∥

(
nk

∏
v=1

bψv(i)

)
eψnk (i)

∥∥∥∥∥→ 0,

as k → ∞.

Remark 2.2. In paper [5], Theorem 2.1 holds for weighted pseudo-shifts on
F-sequence space.

The following theorem is our main result in this section.

Theorem 2.3. Let T = Tb,ϕ be a weighted pseudo-shift on X. If (ϕn)n is a run-away
sequence, then the following assertions are equivalent:

(1) T is disk-cyclic;
(2) There exists an increasing sequence (nk) of positive integers such that, for every

i, j ∈ I,

(a) lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(j)

)−1

eϕnk (j)

∥∥∥∥∥∥
= 0;

(b) lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(j)

)−1

eϕnk (j)

∥∥∥∥∥∥

∥∥∥∥
(

nk

∏
v=1

bψv(i)

)
eψnk(i)

∥∥∥∥ = 0.

(3) T satisfies the Disk-Cyclicity Criterion.

Proof. (1) ⇒ (2). Assume T is disk-cyclic. To prove (2), we need the following
fact.

Fact For every finite subset I0 of I, any 0 < ε ≤ 1 and N ∈ N there exists an
integer n > N such that

∥∥∥∥∥∥

(
n−1

∏
v=0

bϕv(j)

)−1

eϕn(j)

∥∥∥∥∥∥
< ε, for all j ∈ I0, (2.1)

and
∥∥∥∥∥∥

(
n−1

∏
v=0

bϕv(j)

)−1

eϕn(j)

∥∥∥∥∥∥

∥∥∥∥∥

(
n

∏
v=1

bψv(i)

)
eψn(i)

∥∥∥∥∥ < ε, for all i, j ∈ I0. (2.2)



214 Y. Wang – H.-G. Zeng

Proof of the fact. Let 0 < ε ≤ 1, finite subset I0 ⊂ I and N ∈ N be given.
Since (ϕn) is a run-away sequence, there exists an n0 ∈ N such that for every
m ≥ n0,

ϕm(I0) ∩ I0 = ∅. (2.3)

By the equicontinuity of the coordinate projections in X, there is some δ > 0 so
that for x = (xi)i∈I ∈ X

‖xiei‖ <
ε

2
for all i ∈ I, if ||x|| < δ. (2.4)

Since the set of disk-cyclic vectors for T is dense in X, there exist a disk-cyclic vec-
tor x ∈ X, a complex number α with 0 < |α| ≤ 1 and n ∈ N with
n > max {N, n0} such that

∥∥∥∥∥x − ∑
i∈I0

ei

∥∥∥∥∥ < δ and

∥∥∥∥∥αTnx − ∑
j∈I0

ej

∥∥∥∥∥ < δ. (2.5)

(Here we prove that the selection of n in the second inequality of (2.5) can be arbi-
trarily large. Let A = {αTnx : α ∈ C, 0 < |α| ≤ 1, n ∈ N},
B = {y : ‖y − ∑

j∈I0

ej‖ < δ}. For every p ∈ N, let Bp = {αTnx : α ∈ C,

0 ≤ |α| ≤ 1, n ∈ N, n ≤ p}. It is enough to show that B ∩ (A \ Bp) 6= ∅. Since X
is an infinite dimensional Banach space, for every p ∈ N, B \ Bp is a non-empty
open subset of X. It follows that B ∩ (A \ Bp) = (B \ Bp) ∩ A 6= ∅, because A is
dense in X.)
By the continuous inclusion of X into ω(I), we can in addition obtain that

sup
i∈I0

|xi − 1| ≤
1

2
and sup

j∈I0

|αyj − 1| ≤
1

2
, (2.6)

where Tnx = (yj)j∈I =

((
n−1

∏
v=0

bϕv(j)

)
xϕn(j)

)

j∈I

.

(2.4) and the first inequality in (2.5) imply that

||xiei|| <
ε

2
if i ∈ I\I0,

hence by (2.3) we have that

∥∥∥xϕn(j)eϕn(j)

∥∥∥ <
ε

2
for j ∈ I0. (2.7)

By the second inequality in (2.6),

∣∣∣∣∣α
(

n−1

∏
v=0

bϕv(j)

)
xϕn(j) − 1

∣∣∣∣∣ ≤
1

2
for j ∈ I0,
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which implies xϕn(j) 6= 0 and

∣∣∣∣∣∣∣∣∣

1

α

(
n−1

∏
v=0

bϕv(j)

)
xϕn(j)

∣∣∣∣∣∣∣∣∣

≤ 2 (2.8)

for every j ∈ I0.
Now, by (2.7), (2.8) and |α| 6= 0 we have

∥∥∥∥∥∥

(
α

n−1

∏
v=0

bϕv(j)

)−1

eϕn(j)

∥∥∥∥∥∥
=

∣∣∣∣∣∣∣∣∣

1

α

(
n−1

∏
v=0

bϕv(j)

)
xϕn(j)

∣∣∣∣∣∣∣∣∣

∥∥∥xϕn(j)eϕn(j)

∥∥∥

≤ 2
∥∥∥xϕn(j)eϕn(j)

∥∥∥ < ε (2.9)

for all j ∈ I0. This implies condition (2.1) because 0 < |α| ≤ 1.
As for (2.2), we deduce from (2.3) and the definition of ψn that

ψn(I0 ∩ ϕn(I)) ∩ I0 = ∅. (2.10)

By (2.4), the second inequality in (2.5) implies that

∥∥∥∥∥α

(
n−1

∏
v=0

bϕv(j)

)
xϕn(j)ej

∥∥∥∥∥ <
ε

2
if j ∈ I\I0.

So by (2.10) and the fact that eψn(i) = 0 for all i ∈ I\ϕn(I),

∥∥∥∥∥α

(
n

∏
v=1

bψv(i)

)
xieψn(i)

∥∥∥∥∥ <
ε

2
if i ∈ I0. (2.11)

By the first inequality in (2.6) we have

0 <
1

|xi|
≤ 2 for i ∈ I0. (2.12)

Now, (2.11) and (2.12) imply that for each i ∈ I0

∥∥∥∥∥α

(
n

∏
v=1

bψv(i)

)
eψn(i)

∥∥∥∥∥ =
1

|xi|

∥∥∥∥∥α

(
n

∏
v=1

bψv(i)

)
xieψn(i)

∥∥∥∥∥
< ε. (2.13)
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Thus from (2.9) and (2.13) we can deduce that
∥∥∥∥∥∥

(
n−1

∏
v=0

bϕv(j)

)−1

eϕn(j)

∥∥∥∥∥∥

∥∥∥∥∥

(
n

∏
v=1

bψv(i)

)
eψn(i)

∥∥∥∥∥

=

∥∥∥∥∥∥

(
α

n−1

∏
v=0

bϕv(j)

)−1

eϕn(j)

∥∥∥∥∥∥

∥∥∥∥∥α

(
n

∏
v=1

bψv(i)

)
eψn(i)

∥∥∥∥∥

< ε2 ≤ ε

for any i, j ∈ I0. Therefore (2.2) holds.
Coming back to the proof of (2). Since I is a countably infinite set, we fix

I := {i1, i2, · · · , in, · · · } and set Ik := {i1, i2, · · · , ik} for each k ∈ N, k ≥ 1. Using
the above fact, we define inductively an increasing sequence (nk)k≥1 of positive
integers by letting nk be a positive integer satisfying (2.1) and (2.2) for I0 = Ik,
ε = 1

k and N = nk−1, where we set N = 0 when k = 1. To prove (2) we only need
to verify that the sequence (nk)k≥1 satisfies both (a) and (b). This is clear, since
for any fixed i, j ∈ I there exists n′

0 ∈ N such that i, j ∈ Ik for each k ≥ n′
0, which

means

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(j)

)−1

eϕnk (j)

∥∥∥∥∥∥
<

1

k
if k ≥ n′

0,

and

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(j)

)−1

eϕnk (j)

∥∥∥∥∥∥

∥∥∥∥∥

(
nk

∏
v=1

bψv(i)

)
eψnk (i)

∥∥∥∥∥ <
1

k
if k ≥ n′

0.

So (a) and (b) hold.
(2) ⇒ (3). Suppose (2) holds. Set X0 = Y0 = span{ei , i ∈ I} which are dense

in X and define a linear mapping: S : Y0 → X by

S(ej) = b−1
j eϕ(j)

for each j ∈ I,

thus

Sn(ej) =

(
n−1

∏
v=0

bϕv(j)

)−1

eϕn(j) (n ∈ N, j ∈ I).

Since

Tnei =

(
n

∏
v=1

bψv(i)

)
eψn(i) (n ∈ N, i ∈ I),

we have TnSn(ej) = ej for each n ∈ N, j ∈ I. Let (nk) be the sequence given in
condition (2). By (a) and (b), it follows that for any i, j ∈ I

lim
k→∞

∥∥Snk ej

∥∥ = 0,
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and
lim
k→∞

‖Tnkei‖
∥∥Snk ej

∥∥ = 0.

By Proposition 1.4, T satisfies the Disk-Cyclicity Criterion.
(3) ⇒ (1). This implication follows from Proposition 1.4.

Using a similar argument as in the proof of Theorem 2.3, we obtain equivalent
conditions for T to be codisk-cyclic.

Theorem 2.4. Let T = Tb,ϕ : X → X be a weighted pseudo-shift. If (ϕn) is a run-away
sequence, then the following assertions are equivalent:

(1) T is codisk-cyclic;
(2) There exists an increasing sequence (nk) of positive integers such that, for every

i, j ∈ I,

(a) lim
k→∞

∥∥∥∥
(

nk

∏
v=1

bψv(i)

)
eψnk(i)

∥∥∥∥ = 0;

(b) lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(j)

)−1

eϕnk (j)

∥∥∥∥∥∥

∥∥∥∥
(

nk

∏
v=1

bψv(i)

)
eψnk(i)

∥∥∥∥ = 0.

(3) T satisfies the Codisk-Cyclicity Criterion.

3 Disk-cyclic operator weighted shifts on Hilbert space ℓ2(Z,K)

Bilateral operator weighted shifts on space ℓ2(Z,K) were studied by Hazarika
and Arora in [7]. Here we prove that the bilateral operator weighted shifts are
special weighted pseudo-shifts. Before stating the main results of this section, we
settle some terminologies.

Let K be a separable complex Hilber space with an orthonormal basis { fk}
∞
k=0.

Define a separable Hilbert space

ℓ
2(Z,K) := {x = (. . . , x−1, [x0], x1, . . .) : xi ∈ K and ∑

i∈Z

||xi||
2
< ∞}

under the inner product 〈x, y〉 = ∑
i∈Z

〈xi, yi〉K.

Let {An}∞
n=−∞ be a uniformly bounded sequence of invertible positive diago-

nal operators on K. The bilateral forward and backward operator weighted shifts
on ℓ2(Z,K) are defined as follows:

(i) The bilateral forward operator weighted shift T on ℓ2(Z,K) is defined by

T(. . . , x−1, [x0], x1, . . .) = (. . . , A−2x−2, [A−1x−1], A0x0, . . .).

Since {An}∞
n=−∞ is uniformly bounded, T is bounded and ||T|| = sup

i∈Z

||Ai|| < ∞.

For n > 0,

Tn(. . . , x−1, [x0], x1, . . .) = (. . . , y−1, [y0], y1, . . .),

where yj =
n−1

∏
s=0

Aj+s−nxj−n.
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(ii) The bilateral backward operator weighted shift T on ℓ2(Z,K) is defined
by

T(. . . , x−1, [x0], x1, . . .) = (. . . , A0x0, [A1x1], A2x2, . . .).

Then
Tn(. . . , x−1, [x0], x1, . . .) = (. . . , y−1, [y0], y1, . . .),

where yj =
n

∏
s=1

Aj+sxj+n.

Since each An is an invertible diagonal operator on K, we conclude that

||An|| = sup
k

||An fk|| and ||A−1
n || = sup

k

||A−1
n fk||.

Our main goal in this section is to prove the theorem stated below, which is a
special case of Theorem 2.3.

Theorem 3.1. Let T be a bilateral forward operator weighted shift on ℓ2(Z,K) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K. Then the following statements are equivalent:

(1) T is disk-cyclic;
(2) There exists an increasing sequence (nk) of positive integers such that, for every

i1, i2 ∈ N and j1, j2 ∈ Z,

(a) lim
k→∞

∥∥∥∥∥
j1−1

∏
v=j1−nk

A−1
v fi1

∥∥∥∥∥ = 0;

(b) lim
k→∞

∥∥∥∥∥
j1−1

∏
v=j1−nk

A−1
v fi1

∥∥∥∥∥

∥∥∥∥∥
j2+nk−1

∏
s=j2

As fi2

∥∥∥∥∥ = 0.

(3) T satisfies the Disk-Cyclicity Criterion.

Proof. We start by proving that T is a weighted pseudo-shift on the Hilbert
sequence space ℓ2(Z,K). For any x = (xj)j∈Z ∈ ℓ2(Z,K), since each xj is in
K, there exist scalars {xi,j}i∈N such that xj = ∑

∞
i=0 xi,j fi. If we identify the tuple

(. . . , x−1, [x0], x1, . . .) = (. . . , (xi,(−1))i∈N, [(xi,0)i∈N], (xi,1)i∈N, . . .)

with (xi,j)i∈N,j∈Z, the space ℓ2(Z,K) can be regarded as a Hilbert sequence space
over I := N × Z.

For each (i0, j0) ∈ I, we define ei0,j0 := (. . . , z−1, [z0], z1, . . .) ∈ ℓ2(Z,K), by
letting zj0 = fi0 and zj = 0 for j 6= j0. It is easy to see that (ei,j)(i,j)∈I is an OP-basis

of ℓ2(Z,K).
As by the hypothesis that {An}n∈Z is a uniformly bounded sequence of

positive invertible diagonal operators on K, there exist uniformly bounded posi-
tive sequences {(ai,n)i∈N}n∈Z, such that for each n ∈ Z

An fi = ai,n fi and A−1
n fi = a−1

i,n fi for every i ∈ N.

In this interpretation, T is the operator given by

T(xi,j)(i,j)∈I = (yi,j)(i,j)∈I where yi,j = ai,(j−1)xi,(j−1).
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Hence T is a weighted pseudo-shift Tb,ϕ with

bi,j = ai,j−1 and ϕ(i, j) = (i, j − 1) for (i, j) ∈ I.

It follows from Theorem 2.3 that (1) and (3) are equivalent to the statement:
There exists an increasing sequence (nk) of positive integers such that, for every
(i1, j1), (i2, j2) ∈ I

lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(i1,j1)

)−1

eϕnk (i1,j1)

∥∥∥∥∥∥
= lim

k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

b(i1,j1−v)

)−1

e(i1,j1−nk)

∥∥∥∥∥∥

= lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

a(i1 ,j1−v−1)

)−1

e(i1,j1−nk)

∥∥∥∥∥∥

= lim
k→∞

∥∥∥∥∥∥

(
nk

∏
v=1

a(i1,j1−v)

)−1

e(i1,j1−nk)

∥∥∥∥∥∥

= lim
k→∞

∥∥∥∥∥

j1−1

∏
v=j1−nk

A−1
v fi1

∥∥∥∥∥ = 0

and

lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

bϕv(i1,j1)

)−1

eϕnk (i1,j1)

∥∥∥∥∥∥

∥∥∥∥∥

(
nk

∏
v=1

bψv(i2,j2)

)
eψnk(i2,j2)

∥∥∥∥∥

= lim
k→∞

∥∥∥∥∥∥

(
nk−1

∏
v=0

a(i1,j1−v−1)

)−1

e(i1,j1−nk)

∥∥∥∥∥∥

∥∥∥∥∥

(
nk

∏
v=1

a(i2 ,j2+v−1)

)
e(i2,j2+nk)

∥∥∥∥∥

= lim
k→∞

∥∥∥∥∥

j1−1

∏
v=j1−nk

A−1
v fi1

∥∥∥∥∥

∥∥∥∥∥

j2+nk−1

∏
s=j2

As fi2

∥∥∥∥∥ = 0,

which concludes the proof.

By Theorem 2.1 and the same proof as for Theorem 3.1 we get the following
result.

Theorem 3.2. Let T be a bilateral forward operator weighted shift on ℓ2(Z,K) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible diagonal operators on K. Then the following statements are equivalent:

(1) T is hypercyclic;
(2) There exists an increasing sequence (nk) of positive integers such that, for every

i ∈ N and j ∈ Z,

lim
k→∞

∥∥∥∥∥

j−1

∏
v=j−nk

A−1
v fi

∥∥∥∥∥ = 0 and lim
k→∞

∥∥∥∥∥

j+nk−1

∏
v=j

Av fi

∥∥∥∥∥ = 0.

In [13], Liang and Zhou also provided a sufficient and necessary condition for
disk-cyclic forward bilateral operator weighted shifts on ℓ2(Z,K).
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Claim 1. [13, Theorem 2.2] Let T be a forward bilateral operator weighted shift
on ℓ2(Z,K) with weight sequence {An}∞

n=−∞, where {An} is a uniformly
bounded sequence of positive invertible diagonal operators on K. Then the fol-
lowing statements are equivalent:

(1) T is disk-cyclic;
(2) For all q ∈ N,

(a) lim inf
n→∞

max

{∥∥∥∥∥
j−1

∏
k=j−n

A−1
k

∥∥∥∥∥ , |j| ≤ q

}
= 0,

(b) lim inf
n→∞

max

{∥∥∥∥∥
j+n−1

∏
k=j

Ak

∥∥∥∥∥

∥∥∥∥
h−1

∏
s=h−n

A−1
s

∥∥∥∥ , |h|, |j| ≤ q

}
= 0;

(3) T satisfies the Disk-Cyclicity Criterion.

However, we discover that there is a gap in the proof of “(1) ⇒ (2)” in the
above claim: in paper [13], line 21 of page 836 does not imply line 23 of page 836,
since the selection of the integer n in line 21 depends on fi.

The following counter-example demonstrates that condition (2) of Claim 1 is
not necessary for disk-cyclicity.

Example 3.3. Let {An}∞
n=−∞ be the uniformly bounded sequence of positive

invertible diagonal operators on K, defined as follows:

if n ≥ 0 : An( fk) =






2 fk, 0 ≤ k ≤ n,

3 fk, k > n.

if n < 0 : An( fk) = 3 fk, for all k ≥ 0.

Let T be the bilateral forward operator weighted shift on ℓ2(Z,K) with weight
sequence {An}∞

n=−∞. Then
(1) T is disk-cyclic;

(2) T is not hypercyclic;

(3) T does not satisfy condition (2) of Claim 1.

Proof. To prove (1), we apply Theorem 3.1 with (nk) = (1, 2, 3, · · · ). For any fixed
integers i1, i2 ∈ N and j1, j2 ∈ Z, by the definition of {An}n we have

∥∥∥∥∥

j1−1

∏
v=j1−n

A−1
v fi1

∥∥∥∥∥ ≤
1

2|j1| · 3n−|j1|
, (3.1)

and
∥∥∥∥∥

j1−1

∏
v=j1−n

A−1
v fi1

∥∥∥∥∥

∥∥∥∥∥

j2+n−1

∏
s=j2

As fi2

∥∥∥∥∥ ≤
1

2|j1| · 3n−|j1|
· 3|j2|+i2 · 2n−|j2|−i2, (3.2)

when n > |j1|+ |j2|+ i2 + 1.
It is obvious that condition (2) of Theorem 3.1 is satisfied, so T is disk-cyclic.
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But for each integer n ≥ 1 and any integers i ∈ N, j ∈ Z, we have

∥∥∥∥∥

j+n−1

∏
v=j

Av fi

∥∥∥∥∥ ≥ 2,

By Theorem 3.2, T is not hypercyclic.
For the proof of (3), letting q = 0 in (2) of Claim 1 we can obtain

lim inf
n→∞

max

{∥∥∥∥∥

j+n−1

∏
k=j

Ak

∥∥∥∥∥

∥∥∥∥∥
h−1

∏
s=h−n

A−1
s

∥∥∥∥∥ , |h|, |j| ≤ 0

}

= lim inf
n→∞

{∥∥∥∥∥
n−1

∏
k=0

Ak

∥∥∥∥∥

∥∥∥∥∥
−1

∏
s=−n

A−1
s

∥∥∥∥∥

}

= lim inf
n→∞

3n 1

3n
= 1 6= 0,

which means that T does not satisfy condition (2) of Claim 1.

Remark 3.4. We note that Theorem 2.2 in paper [13] was motivated by Theorem
3.1 in [7] by Hazarika and Arora. In paper [7] Theorem 3.1 and its proof contain
the same mistake as [13]. Theorem 3.2 is the correct version of it. Indeed, we have
the following counter-example: Let T be the bilateral forward operator weighted
shift on ℓ2(Z,K) with weight sequence defined by

An( fk) =





1
2 fk if n ≥ k,
fk if − k < n < k,
2 fk if n ≤ −k,

Then T is hypercyclic by Theorem 3.2, but it does not satisfy condition (3.1) of
Theorem 3.1 in [7].

4 Invertible shifts

In [3], Feldman showed that for bilateral weighted shifts on ℓ2(Z) that are invert-
ible, the characterizing conditions for hypercyclicity simplify. It is clear that if T is
a bilateral operator weighted shift on ℓ2(Z,K) with weight sequence {An}∞

n=−∞,
then T is invertible if and only if there exists m > 0 such that ||A−1

n || ≤ m for
all n ∈ Z. For such shifts, the characterizing conditions of Theorem 3.1 simplify.
Following Feldman [3] we notice that for this simplification it suffices to demand
that there is some m > 0 such that ||A−1

n || ≤ m for all n < 0 (or for all n > 0).
Thus we have the following.

Theorem 4.1. Let T be a bilateral forward operator weighted shift on ℓ2(Z,K) with
weight sequence {An}∞

n=−∞, where {An} is a uniformly bounded sequence of positive
invertible operators on K and there exists m > 0 such that ||A−1

n || ≤ m for all n < 0
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(or for all n > 0). Then T is disk-cyclic if and only if there exists an increasing sequence
(nk) of positive integers such that, for every i1, i2 ∈ N,

(a) lim
k→∞

∥∥∥∥
nk

∏
v=1

A−1
−v fi1

∥∥∥∥ = 0;

(b) lim
k→∞

∥∥∥∥
nk

∏
v=1

A−1
−v fi1

∥∥∥∥
∥∥∥∥

nk

∏
s=1

As fi2

∥∥∥∥ = 0.

Proof. If T is disk-cyclic the result follows from Theorem 3.1. For the converse,
it is sufficient to show that for any ε > 0, K ∈ N with K > 1 and every N ∈ N,
there exists an integer n > N such that for any |j1|, |j2| ≤ K and i1, i2 ≤ K

∥∥∥∥∥

j1−1

∏
v=j1−n

A−1
v fi1

∥∥∥∥∥ < ε, (4.1)

and
∥∥∥∥∥

j1−1

∏
v=j1−n

A−1
v fi1

∥∥∥∥∥

∥∥∥∥∥

j2+n−1

∏
s=j2

As fi2

∥∥∥∥∥ < ε. (4.2)

To see this, we fix m1 = 1 and for k = 2, 3, 4, · · · let mk be a number n satisfying
(4.1) and (4.2) for ε = 1

k , K = k and N = mk−1. It is clear that the increasing
sequence (mk)k≥1 satisfies condition (2) of Theorem 3.1, so that T is disk-cyclic.

We have to prove (4.1) and (4.2) under the assumption of (a) and (b). Firstly,
we assume ||A−1

n || ≤ m for all n < 0. Let ε > 0, K ∈ N (K > 1) and N ∈ N be
given. Let (nk) be a sequence satisfying (a) and (b). Then we define a sequence
(ñk) by letting ñk := nk + K + 2 (this choice of ñk guarantees that ñk + j − 1 ≥
nk + 1 and ñk − j ≥ nk + 1 for all j with |j| ≤ K). Then for any j ∈ Z with |j| ≤ K
and for all i ∈ N we can deduce

∥∥∥∥∥

j+ñk−1

∏
s=j

As fi

∥∥∥∥∥ ≤ Cj

∥∥∥∥∥

nk

∏
s=1

As fi

∥∥∥∥∥

∥∥∥∥∥

ñk+j−1

∏
s=nk+1

As

∥∥∥∥∥

where Cj =

∥∥∥∥∥
j−1

∏
s=1

A−1
s

∥∥∥∥∥ if 1 < j ≤ K, Cj = 1 if j = 1, Cj =

∥∥∥∥∥
0

∏
s=j

As

∥∥∥∥∥ if −K ≤ j < 1.

And
∥∥∥∥∥

j−1

∏
v=j−ñk

A−1
v fi

∥∥∥∥∥ =

∥∥∥∥∥

ñk−j

∏
v=1−j

A−1
−v fi

∥∥∥∥∥

≤ C′
j

∥∥∥∥∥

nk

∏
v=1

A−1
−v fi

∥∥∥∥∥

∥∥∥∥∥

ñk−j

∏
v=nk+1

A−1
−v

∥∥∥∥∥

where C′
j =

∥∥∥∥∥
0

∏
v=1−j

A−1
−v

∥∥∥∥∥ if 0 < j ≤ K, C′
j = 1 if j = 0, C′

j =

∥∥∥∥∥
−j

∏
v=1

A−v

∥∥∥∥∥ if

−K ≤ j < 0.
Since {An}∞

n=−∞ is uniformly bounded, there exists M1 > 1 such that
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||An|| < M1 for all n ∈ Z.
By setting C1 := max{Cj : |j| ≤ K}, C2 := max{C′

j : |j| ≤ K}, C := max{M1, m}

we can easily obtain that for all i ∈ N

∥∥∥∥∥

j+ñk−1

∏
s=j

As fi

∥∥∥∥∥ ≤ C1C2K+1

∥∥∥∥∥

nk

∏
s=1

As fi

∥∥∥∥∥ for all |j| ≤ K, (4.3)

and
∥∥∥∥∥

j−1

∏
v=j−ñk

A−1
v fi

∥∥∥∥∥ ≤ C2C2K+2

∥∥∥∥∥

nk

∏
v=1

A−1
−v fi

∥∥∥∥∥ for all |j| ≤ K. (4.4)

Combining (4.3) and (4.4) we can get that for any |j1|, |j2| ≤ K and i1, i2 ∈ N

∥∥∥∥∥

j1−1

∏
v=j1−ñk

A−1
v fi1

∥∥∥∥∥ ≤ C2C2K+2

∥∥∥∥∥

nk

∏
v=1

A−1
−v fi1

∥∥∥∥∥ (4.5)

and
∥∥∥∥∥

j1−1

∏
v=j1−ñk

A−1
v fi1

∥∥∥∥∥

∥∥∥∥∥

j2+ñk−1

∏
s=j2

As fi2

∥∥∥∥∥ ≤ C1C2C4K+3

∥∥∥∥∥

nk

∏
v=1

A−1
−v fi1

∥∥∥∥∥

∥∥∥∥∥

nk

∏
s=1

As fi2

∥∥∥∥∥ . (4.6)

By (a) and (b) we can find an integer n ∈ {ñk}k, n > N, such that (4.1) and
(4.2) hold for |j1|, |j2| ≤ K and i1, i2 ≤ K.

The proof is similar when ||A−1
n || ≤ m for all n > 0, in which case we just

need to let ñk = nk − K − 1.
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