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Abstract

We investigate the existence of closed G2-structures which are solitons
for the Laplacian flow on nilpotent Lie groups. We obtain that seven of the
twelve Lie algebras admitting a closed G2-structure do admit a Laplacian
soliton. Moreover, one of them admits a continuous family of Laplacian soli-
tons which are pairwise non-homothetic and the Laplacian flow evolution
on four of the Lie groups is not diagonal.

1 Introduction

A closed G2-structure ϕ on a 7-manifold M is said to be a Laplacian soliton if

∆ϕ ϕ = λϕ +LX ϕ, (1.1)

for some c ∈ R and vector field X on M, where ∆ϕ is the Hodge Laplacian on
forms defined by ϕ and LX denotes the Lie derivative. Laplacian solitons are also
characterized as the G2-structures that evolves self-similarly under the Laplacian

flow ∂
∂t ϕ(t) = ∆ϕ(t)ϕ(t) introduced by Bryant in [B] (see [LoW] for further infor-

mation).
For left-invariant G2-structures on a simply connected Lie group G, one has

the following ‘algebraic’ versions of Laplacian solitons (see [L2]): a semi-algebraic
soliton is a Laplacian soliton for which the field X is defined by the one-parameter
subgroup of automorphisms of G associated to some derivation D of the Lie
algebra g of G. If Dt is also a derivation, then it is called an algebraic soliton,
which is known to be equivalent to evolve ‘diagonally’ under the Laplacian flow
(see [L2, Theorem 4.10]).

Conti and Fernández proved in [CF] that there are, up to isomorphism, twelve
7-dimensional nilpotent Lie algebras that admit a left-invariant closed G2-structure.
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On the other hand, Fernández, Fino and Manero studied in [FFM] the existence of
left-invariant closed G2-structures defining a Ricci soliton metric among the Lie
algebras given in [CF]. It is also natural to ask which of these twelve Lie algebras
admit a closed Laplacian soliton. In this paper, we find a closed Laplacian soliton
on each of the first seven Lie algebras. Our main result is summarized as follows.

Theorem 1.1. For each i = 1, . . . , 7, let ni be the Lie algebra given in Table 1.

(i) n2 admits an algebraic soliton (see Table 2).

(ii) n3 admits a pairwise non-homothetic one-parameter family of algebraic solitons
(see Table 2).

(iii) Each of n4, n5, n6, n7 does admit a semi-algebraic soliton which is not algebraic
(see Table 3 and Table 4).

The Laplacian solitons obtained are all expanding (i.e. λ > 0 in (1.1)). It is not
hard to see that in the cases n1 and n2, the Laplacian soliton is also a Ricci soliton.
In cases n4 and n6, the Laplacian soliton we found is not a Ricci soliton, though
n4 and n6 are known to admit closed G2-structures with Ricci soliton associated
metrics. The remaining algebras n3, n5 and n7 do not admit a closed G2-structure
with Ricci soliton associated metric (see [FFM]).

The family of non-homothetic Laplacian solitons found on n3 shows that the
uniqueness up to isometry and scaling of Ricci solitons on nilpotent Lie alge-
bras (see [L1]) does not hold in the Laplacian case. This abundance of soli-
tons on the same nilpotent Lie algebra is kind of unexpected, bearing in mind
that the uniqueness of the solitons seems to hold even for some other geometric
flows like Chern-Ricci flow (see [LR]) and symplectic curvature flow (see[LW]).
Another relevant difference between Laplacian and Ricci solitons is the fact that
any homogeneous Ricci soliton is isometric to an algebraic soliton (see [J]). On the
contrary, we proved that four of the Lie algebras admit semi-algebraic Laplacian
solitons that are not equivalent to any algebraic soliton.

It would be desirable to find a Laplacian soliton on every Lie algebra in Table
1, but the computations became very complicated. Indeed, the Ricci soliton on
n10, whose existence was proved in [FC, Example 2], is not known explicitly and
the existence of a closed G2-structure with a Ricci soliton associated metric on n10

is still open (see [FFM, Remark 3.5]).

2 Preliminaries

Given a 7-dimensional differentiable manifold M, we consider a differentiable
3-form ϕ ∈ Ω

3M. For each p ∈ M, ϕp is said to be positive if there exists a basis
{e1, . . . , e7} of TpM such that

ϕp = e127 + e347 + e567 + e135 − e146 − e236 − e245, (2.1)

where eijk := ei ∧ ej ∧ ek and {e1, . . . , e7} is the dual basis of {e1, . . . , e7}. When ϕp

is positive for every p ∈ M, we call ϕ a G2-structure (see [B, LoW, L2] for further
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information on G2-structures). Any G2-structure induces a Riemannian metric
gϕ and an orientation, and so a Hodge star operator denoted by ∗ϕ : ΩM →
ΩM. The Hodge star operator in combination with the differential of forms on M
define the Hodge Laplacian operator ∆ϕ. In particular, on 3-forms, ∆ϕ : Ω

3M →
Ω

3M is given by ∆ϕ = ∗ϕd ∗ϕ d − d ∗ϕ d∗ϕ.
For a one-parameter family ϕ(t) of G2-structures on M, we have a natural

geometric flow, introduced by R. Bryant in 1992, given by

∂

∂t
ϕ(t) = ∆ϕ(t)ϕ(t), (2.2)

so called the Laplacian flow (see [B]). A G2-structure ϕ on a 7-differentiable man-
ifold flows in a self-similar way along the Laplacian flow, i.e. the solution ϕ(t)
with ϕ(0) = ϕ has the form

ϕ(t) = c(t) f (t)∗ ϕ, for some c(t) ∈ R
∗ and f (t) ∈ Diff(M),

if and only if

∆ϕ ϕ = cϕ +LX ϕ, for some c ∈ R, X ∈ X(M) (complete),

where LX denotes the Lie derivative. In that case, c(t) =
(

2
3ct + 1

)3/2
and ϕ is

called a Laplacian soliton. Furthermore, ϕ is said to be expanding, steady or shrink-
ing, when c > 0, c = 0 or c < 0, respectively.

A G2-structure ϕ on a 7-differentiable manifold is said to be closed if dϕ = 0.
In the closed case, the intrinsic torsion is only given by the 2-form

τϕ = − ∗ϕ d ∗ϕ ϕ, dτϕ = ∆ϕ ϕ.

We now consider a 7-dimensional vector space g. It is known that a 3-form
ψ ∈ Λ

3g∗ is positive, i.e. ψ can be written as

ϕ0 := e127 + e347 + e567 + e135 − e146 − e236 − e245, (2.3)

relative to some basis {e1, . . . , e7} of g, if and only if ψ is in the orbit GL(g) · ϕ0.
Here the action is given by,

(h · φ)(X1, . . . , Xk) = φ(h−1X1, . . . , h−1Xk), ∀X1, . . . , Xk ∈ g, φ ∈ Λ
kg∗.

(2.4)
Also, we know that ϕ0 induces an inner product on g as follows:

〈X, Y〉ϕ0 vol0 := 1
6 ιX ϕ0 ∧ ιY ϕ0 ∧ ϕ0,

where vol0 := e1...7 and ιX is defined by (ιXφ)(·, ·) := φ(X, ·, ·). It is easy to check
that the basis {e1, . . . , e7} is orthonormal with respect to the inner product 〈·, ·〉ϕ0

and oriented relative to vol0.
Every positive 3-form ψ = h · ϕ0 with h ∈ GL(g) defines an inner product

〈·, ·〉ψ and a volume form volψ by

〈·, ·〉ψ := 〈h−1·, h−1·〉ϕ0 , volψ := h · vol0 . (2.5)

If { f1, . . . , f7} is an orthonormal basis of (g, 〈·, ·〉ψ), then we also denote by

〈·, ·〉ψ the inner product on Λ
kg∗, which makes of { f i1 ...ik : i1 < · · · < ik} an

orthonormal basis.
The following facts are direct consequences of the above definitions.
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Lemma 2.1. Let g be a 7-dimensional vector space. If X, Y ∈ g, h ∈ GL(g) and
ψ ∈ Λ

3g∗ is positive, then,

(i) 〈X, Y〉ψ volψ = 1
6 ιXψ ∧ ιYψ ∧ ψ.

(ii) 〈X, Y〉h·ψ = 〈h−1X, h−1Y〉ψ, ∀X, Y ∈ g, (i.e. 〈·, ·〉h·ψ = h · 〈·, ·〉ψ).

(iii) 〈·, ·〉cψ = c
2
3 〈·, ·〉ψ, ∀c ∈ R

∗.

For our next lemma, we need to introduce a definition. Let g be a Lie algebra
and G the corresponding simply connected Lie group. We note that each positive
3-form ϕ ∈ Λ

3g∗ defines a left-invariant G2-structure on G. Given D ∈ Der(g)
and t ∈ R, we denote by ft ∈ Aut(G) the automorphism such that d ft|e = etD ∈
Aut(g) and by XD the corresponding vector field on G:

XD(a) :=
d

dt

∣

∣

∣

0
ft(a), ∀a ∈ G.

It is easy to prove that the Lie derivative of a left-invariant form ψ ∈ Λ
kg∗

with respect to XD is given by

(LXD
ψ)(X1, . . . , Xk) := ψ(DX1, X2, . . . , Xk) + · · ·+ ψ(X1, X2, . . . , DXk), (2.6)

for all X1, . . . , Xk ∈ g. The proofs of the following results are all straightforward.

Lemma 2.2. Let g be a 7-dimensional Lie algebra and consider ψ ∈ Λ
kg∗, h ∈ Aut(g).

(i) d(h · ψ) = h · dψ.

(ii) If k = 3 and ψ is positive, then

(a) ∆h·ψh · ψ = h · ∆ψψ.

(b) ∆cψcψ = c
1
3 ∆ψψ, ∀c ∈ R

∗.

(iii) LX
hDh−1

(h · ψ) = h · LXD
ψ, for any D ∈ Der(g).

Laplacian solitons on Lie groups have been deeply studied in [L2].
The following definition will be used from now on along the paper.

Definition 2.3. Given g a 7-dimensional Lie algebra and ψ a positive 3-form on g,
we call (g, ψ) a semi-algebraic soliton if there exist D ∈ Der(g) and λ ∈ R such that

∆ψψ = LXD
ψ + λψ. (2.7)

In the case when Dt ∈ Der(g), we say that (g, ψ) is an algebraic soliton.

Let θ : gl(g) → End(Λ3g∗) be the derivative of the action given by (2.4), i.e.

θ(A)ψ(·, ·, ·) = −ψ(A·, ·, ·)− ψ(·, A·, ·)− ψ(·, ·, A·), ∀A ∈ gl(g), ψ ∈ Λ
3g∗.
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It is shown in [L2, (11)] that for any closed G2-structure ψ on g, there exists a
unique symmetric operator Qψ ∈ gl(g) such that θ(Qψ)ψ = ∆ψψ. The follow-
ing useful formula for Qψ was given in [L2, Proposition 2.2]: for any closed G2-
structure ψ,

Qψ = Ricψ − 1

12
tr(τ2

ψ)I +
1

2
τ2

ψ, (2.8)

where Ricψ is the Ricci operator of (G, gψ) and τψ ∈ so(TG) also denotes the
skew-symmetric operator determined by the 2-form τψ (i.e. τψ = 〈τψ·, ·〉ψ).

According to [L2, Proposition 4.5], (g, ψ) is a semi-algebraic soliton with ∆ψψ =

LXD
ψ+λψ, if and only if Qψ = − 1

3 λI − D+Dt

2 . Recall that ψ is an algebraic soliton

if and only if D+Dt

2 ∈ Der(g).

Definition 2.4. We say that two G2-structures (g1, ψ1) and (g2, ψ2) are equivalent
if there exists a Lie algebra isomorphism h : g1 → g2 such that h · ψ1 = ψ2. We
denote it briefly by (g1, ψ1) ≃ (g2, ψ2). Also, we say that (g1, ψ1) and (g2, ψ2) are
homothetic if there exists c ∈ R

∗ such that (g1, ψ1) ≃ (g2, cψ2).

Proposition 2.5. Let g be a 7-dimensional Lie algebra, ψ1, ψ2 ∈ Λ
2g∗ positive such that

(g, ψ1) and (g, ψ2) are homothetic. Then (g, ψ1) is a semi-algebraic soliton if and only if
(g, ψ2) is so.

Proof. Recall that (g, ψ1) is semi-algebraic soliton if and only if there exist D ∈
Der(g) and λ ∈ R such that ∆ψ1

ψ1 = LXD
ψ1 + λψ1. Therefore, by Lemma 2.2, we

have that

c
1
3 ∆ψ2ψ2 = ∆cψ2(cψ2) = ∆h·ψ1

(h · ψ1) = h · ∆ψ1
ψ1 = h · (LXD

ψ1 + λψ1)

= LX
hDh−1

(h · ψ1) + λ(h · ψ1) = LX
hDh−1

(cψ2) + λ(cψ2)

= cLX
hDh−1

ψ2 + cλψ2.

So, ∆ψ2 ψ2 = c
2
3LX

hDh−1
ψ2 + c

2
3 λψ2 = LX

c
2
3 hDh−1

ψ2 + c
2
3 λψ2. Since c

2
3 hDh−1 ∈

Der(g), we conclude that (g, ψ2) is a semi-algebraic soliton.

3 Closed Laplacian solitons

In [CF], Conti and Fernández studied the existence of closed G2-structures on a 7-
dimensional nilpotent Lie algebra. They obtained that, up to isomorphism, there
are 12 nilpotent Lie algebras with that property, which are shown in Table 1. It is
of interest to know whether these Lie algebras admit closed Laplacian solitons.

We prove that for the first seven Lie algebras of the table, there exists at least
one closed Laplacian soliton.

Theorem 3.1. For each i = 1, . . . , 7, let ni be the Lie algebra given in Table 1.

(i) n2 admits an algebraic soliton (see Table 2).

(ii) n3 admits a pairwise non-homothetic one-parameter family of algebraic solitons (see
Table 2).
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g Lie bracket

n1 [·, ·] = 0

n2 [e1, e2] = −e5, [e1, e3] = −e6

n3 [e1, e2] = −e4, [e1, e3] = −e5, [e2, e3] = −e6

n4 [e1, e2] = −e3, [e1, e3] = −e6, [e2, e4] = −e6, [e1, e5] = −e7

n5 [e1, e2] = −e3, [e1, e3] = −e6, [e1, e4] = −e7, [e2, e5] = −e7

n6 [e1, e2] = −e4, [e1, e3] = −e5, [e1, e4] = −e6, [e1, e5] = −e7

n7 [e1, e2] = −e4, [e1, e3] = −e5, [e1, e4] = −e6, [e2, e3] = −e6, [e1, e5] = −e7

n8

[e1, e2] = −e3, [e1, e3] = −e4, [e2, e3] = −e5, [e1, e5] = −e6,

[e2, e4] = −e6, [e1, e6] = −e7, [e3, e4] = −e7

n9

[e1, e2] = −e3, [e1, e3] = −e4, [e2, e3] = −e5, [e1, e5] = −e6,

[e2, e4] = −e6, [e1, e6] = −e7, [e3, e4] = −e7, [e2, e5] = −e7

n10

[e1, e2] = −e3, [e1, e3] = −e5, [e2, e4] = −e5, [e1, e4] = −e6,

[e4, e6] = −e7, [e3, e4] = −e7, [e1, e5] = −e7, [e2, e3] = −e7

n11

[e1, e2] = −e3, [e1, e3] = −e5, [e2, e4] = −e6, [e2, e3] = −e6,

[e2, e5] = −e7, [e3, e4] = −e7, [e1, e5] = −e7, [e1, e6] = −e7, [e2, e6] = 3e7

n12

[e1, e2] = −e4, [e2, e3] = −e5, [e1, e3] = e6, [e2, e6] = −2e7,

[e3, e4] = 2e7, [e1, e6] = 2e7, [e2, e5] = −2e7

Table 1: Nilpotent Lie algebras that admit a closed G2-structure (see [CF]).



Laplacian solitons on nilpotent Lie groups 189

(iii) Each of n4, n5, n6, n7 does admit a semi-algebraic soliton which is not algebraic
(see Table 3 and Table 4).

Proof. We only give a proof for the cases n3 and n4, the other cases follow in much
the same way.

To prove that n3 admits a family of algebraic solitons up to isomorphism and
scaling, we consider n3(a, b, c) to be the 7-dimensional Lie algebra with basis
{e1, . . . , e7} and Lie bracket defined by

[e1, e2] = −ae4, [e1, e3] = −be5, [e2, e3] = −ce6, a, b, c ∈ R
∗,

or equivalently,

de12 = ae4, de13 = be5, de23 = ce6, a, b, c ∈ R
∗. (3.1)

We have a linear isomorphism that carries n3(1, 1, 1) into n3(a, b, c), whose matrix
is Diag(1, 1, a, ab/c, 1, ab, d). From now on n3 denotes n3(a, b, c). We consider the
3-form

ϕ3 = e123 + e145 + e167 + e246 − e257 − e347 − e356 ∈ Λ
3n∗3 .

If h3 ∈ GL7(R) is the permutation (1, 6, 4, 3, 5, 2, 7), then h3 · ϕ3 = ϕ0, which im-
plies that ϕ3 is positive. It is easy to check by using (3.1) that dϕ3 =
(a − b − c)e1237, so ϕ3 is closed if and only if a = b + c. If we assume ϕ3 to be
closed, then the Laplacian can be computed as follows:

∗ϕ3 = −e1247 − e1256 − e1346 + e1357 + e2345 + e2367 + e4567,

d ∗ ϕ3 = ae12567 − be13467 + ce23457,

∗d ∗ ϕ3 = ce16 − be25 + ae34,

d ∗ d ∗ ϕ3 = −(a2 + b2 + c2)e123.

By replacing in the condition a = b + c, we obtain ∆ϕ3 ϕ3 = 2(b2 + c2 + bc)e123.
What is left to show is that ∆ϕ3 ϕ3 = LXD

ϕ3 + λϕ3 for some D ∈ Der(n3) and
λ ∈ R. We propose D := d Diag(1, 1, 1, 2, 2, 2, 2) with d ∈ R

∗, so the resulting Lie
derivative of ϕ3 with respect to the field XD is

LXD
ϕ3 = 3de123 + 5de145 + 5de167 + 5de246 − 5de257 − 5de347 − 5de356.

It follows that ∆ϕ3 ϕ3 = LXD
ϕ3 + λϕ3 if and only if λ = −5d and

d = −(b2 + c2 + bc). Since D = Dt, one obtains that (n3, ϕ3) is an algebraic
soliton.

Lemma 3.2. If a, b, c ∈ R
∗ and n3(a, b, c) are as above, then

(i) ϕ3 is closed if and only if a = b + c.

(ii) (n3(b + c, b, c), ϕ3) is an algebraic soliton.

Remark 3.3. For all b, c ∈ R
∗, the algebraic soliton (n3(b + c, b, c), ϕ3) is expand-

ing since λ > 0.
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As we have two free parameters, it is natural to ask whether there are two
non-equivalent algebraic solitons on n3.

Proposition 3.4. There exists a pairwise non-homothetic continuous family of algebraic
solitons on n3.

Remark 3.5. This is in contrast to the known uniqueness up to isometry and scal-
ing of Ricci solitons on nilpotent Lie algebras (see [L1]).

Proof. By using e.g. the formula for the Ricci operator given in [L1, (8)], it is easy
to see that

Ricb,c =
1

2
Diag(−a2 − b2,−a2 − c2,−b2 − c2, a2, b2, c2, 0),

where a = b + c. Clearly, Ricb,c has three positives eigenvalues, one equal to zero
and three negatives for each b, c ∈ R

∗. If we set b := 1 − t and c := t with
t ∈ (0, 1

2), then for every t ∈ (0, 1
2) the positive eigenvalues are ordered in the

following way:

t2

2
<

1 − 2t + t2

2
<

1

2
.

Now, if (n3(b1 + c1, b1, c1), ϕ3) and (n3(kb2 + kc2, kb2, kc2), ϕ3) are equivalent for
some k ∈ R

∗ (where bi = 1 − ti, ci = ti), then there are in particular isometric,
hence

1

2
= k2 1

2
,

1 − 2t1 + t2
1

2
= k2 1 − 2t2 + t2

2

2
,

t2
1

2
= k2 t2

2

2
,

which implies that k2 = 1 and t1 = t2.
In the case when t = 1

2 , the Ricci operator results Ric = Diag(− 5
8 ,− 5

8 ,− 1
4 , 1

2 , 1
8 ,

1
8 , 0), which has two of the three positive eigenvalues equal. Thus n3(1, 1

2 , 1
2) is

non-homothetic to n3(1, 1 − t, t) for any t ∈ (0, 1
2); concluding the proof of the

proposition.

Remark 3.6. Let Rϕ denote the scalar curvature of ϕ, i.e. Rϕ = tr Ricϕ. The num-

ber
R2

ϕ

|Ricϕ |2 is therefore an invariant up to isometry or scaling. For

(n3(b + c, b, c), ϕ3),
R2

b,c

|Ricb,c |2
= 1

2 for all b, c ∈ R
∗, so it can not be used to prove

non-homothety.

It follows from (2.8) that Qϕ3 =
a2+b2+c2

6 Diag(−2,−2,−2, 1, 1, 1, 1). Note that

this coincides with − 1
3λI − D above.

We can now proceed to the proof of part (iii) for n4. Let n4 = n4(a, b, c, d) be the
7-dimensional nilpotent Lie algebra with basis {e1, . . . , e7} and Lie bracket given
by

[e1, e2] = −ae3, [e1, e3] = −be6, [e2, e4] = −ce6, [e1, e5] = −de7 a, b, c, d ∈ R
∗,

or equivalently,

de3 = ae12, de6 = be13 + ce24, de7 = de15 a, b, c, d ∈ R
∗.
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We have a linear isomorphism that carries n4(1, 1, 1, 1) into n4(a, b, c, d), whose
matrix is Diag(1, 1, a, ab/c, 1, ab, d). From now on n4 denotes n4(a, b, c, d).

We consider the 3-form

ϕ4 = −e124 − e456 + e347 + e135 + e167 + e257 − e236 ∈ Λ
3n∗4 .

Let h4 ∈ GL7(R) be the permutation (1,−6, 3, 4, 5, 2, 7), then h4 · ϕ4 = ϕ0, which
implies that ϕ4 is positive.

Lemma 3.7. If a, b, c, d ∈ R
∗ and n4(a, b, c, d) is as above, then

(i) ϕ4 is closed if and only if a = c and b = d.

(ii) If a2 = 2b2, then (n4(a, b, a, b), ϕ3) is a semi-algebraic soliton.

Proof. It is easy to see that dϕ4 = (a − c)e1247 + (d − b)e1345, so ϕ4 is closed if and
only if a = c and b = d. Assuming ϕ4 to be closed we proceed to compute the
Laplacian ∆ϕ4

ϕ4:

∗ϕ4 = e3567 + e1237 + e1256 − e2467 + e2345 + e1346 + e1457,

d ∗ ϕ4 = ae12567 − ce23457 + be12347 + de12456,

∗d ∗ ϕ4 = ae34 − ce16 + be56 − de37,

d ∗ d ∗ ϕ4 = (a2 + c2)e124 − (b2 + d2)e135 − bce245 − ade127.

Replacing in the condition a = c and b = d, we obtain ∆ϕ4
ϕ4 = −2a2e124 +

2b2e135 + abe245 + abe127 .
To prove that (n4, ϕ4) is a semi-algebraic soliton, we have to find some λ ∈ R

and D ∈ Der(n4) such that ∆ϕ4
ϕ4 = λϕ4 +LXD

ϕ4. We propose

D :=













−b2 0 0 0 0 0 0
0 −2b2 0 0 0 0 0
0 0 −3b2 0 0 0 0
0 0 0 −2b2 0 0 0

−ab 0 0 0 −3b2 0 0
0 0 0 0 0 −4b2 0
0 0 0 −ab 0 0 −4b2













and λ = 9b2. Then the Lie derivative equals

LXD
ϕ4 =5b2e124 + 9b2e456 − abe146 − 9b2e347 − 7b2e135 − 9b2e167

+ abe146 − 9b2e257 + abe127 + abe245 + 9b2e236.

The soliton equation holds if a2 = 2b2, i.e. if a2 = 2b2 then

LXD
ϕ4 + 9b2ϕ4 = −4b2e124 + 2b2e135 + abe127 + abe245 = ∆ϕ4

ϕ4.

Note that (n4(a, b, a, b), ϕ4) is not an algebraic soliton. Indeed, Dt 6∈ Der(n4) since
[Dte2, e7] + [e2, Dte7] = −ab[e2, e4] = abce6 6= 0 = Dt[e2, e7].

Remark 3.8. For every a, b ∈ R
∗ such that a2 = 2b2, (n4(a, b, a, b), ϕ4) is an

expanding semi-algebraic soliton since λ > 0.
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On the other hand, we are interested in computing Qϕ4
. It is not hard to see

that Ricϕ4
= Diag

(

− a2+b2+d2

2 ,− a2+c2

2 , a2−b2

2 ,− c2

2 ,− d2

2 , b2+c2

2 , d2

2

)

and

τϕ4
= −ae34 + ce16 − be56 + de37. It follows from (2.8) that

Qϕ4
=





















− α
3 0 0 0 bc

2 0 0

0 α−3a2−3c2

6 0 0 0 0 0

0 0 α−3b2−3d2

6 0 0 0 0

0 0 0 α−3a2−3c2

6 0 0 ad
2

bc
2 0 0 0 α−3b2−3d2

6 0 0

0 0 0 0 0 α
6 0

0 0 0 ad
2 0 0 α

6





















,

where α = a2 + b2 + c2 + d2. Thus, Qϕ4
= − 1

3λI − D, where λ and D are as above.
The remaining cases are analogous and the following lemmas provide infor-

mation about them.

Lemma 3.9. If a, b ∈ R
∗, n2(a, b) is the Lie algebra with Lie bracket [e1, e2] = −ae5,

[e1, e3] = −be6 and ϕ2 := e147 + e267 + e357 + e123 + e156 + e245 − e346, then

(i) ϕ2 is closed if and only if a = b.

(ii) (n2(a, a), ϕ2) is an algebraic soliton.

Lemma 3.10. If n5(a, b, c, d) is the Lie algebra with Lie bracket given by

[e1, e2] = −ae3, [e1, e3] = −be6, [e1, e4] = −ce7, [e2, e5] = −de7,

where a, b, c, d ∈ R
∗ and ϕ5 := e134 + e457 − e246 − e125 − e356 + e167 − e237, then

(i) ϕ5 is closed if and only if a = d and b = c.

(ii) If a2 = 2b2, then (n5(a, b, b, a), ϕ5) is a semi-algebraic soliton.

Lemma 3.11. If a, b, c, d ∈ R
∗, n6(a, b, c, d) is the Lie algebra with Lie bracket given by

[e1, e2] = −ae4, [e1, e3] = −be5, [e1, e4] = −ce6, [e1, e5] = −de7

and ϕ6 := e123 + e347 + e356 + e145 − e246 + e167 + e257, then

(i) ϕ6 is closed if and only if a = b and c = d.

(ii) If a2 = 2c2, then (n6(a, a, c, c), ϕ6) is a semi-algebraic soliton.

Lemma 3.12. If n7(a, b, c, d, e) is the Lie algebra with Lie bracket given by

[e1, e2] = −ae4, [e1, e7] = −be6, [e2, e7] = −ce5, [e5, e7] = −de3, [e6, e7] = −ee4,

where a, b, c, d, e ∈ R
∗ and ϕ7 := e127 + e135 − e146 − e236 − e245 + e347 + e567, then

(i) ϕ7 is closed if and only if a = −b − c and d = e.

(ii) If e2 = b2+c2+bc
2 , then (g7(b + c, b, c, e, e), ϕ7) is a semi-algebraic soliton.



Laplacian solitons on nilpotent Lie groups 193

n2 n3

[·, ·] [e1, e2] = −e5, [e1, e3] = −e6.
[e1, e2] = −e4, [e1, e3] = (c − 1)e5,

[e2, e3] = −ce6, 0 < c ≤ 1/2.

ϕ
e147 + e267 + e357

+e123 + e156 + e245 − e346

e123 + e145 + e167

+e246 − e257 − e347 − e356

τϕ −e35 + e26 −ce16 + (1 − c)e25 − e34

∆ϕ ϕ 2e123 2(1 − c + c2)e123

Ricϕ −Diag
(

1, 1
2 , 1

2 , 0,− 1
2 ,− 1

2 , 0
)

1
2 Diag(−2 + 2c − c2,−1− c2,

−1 + 2c − 2c2, 1, (−1 + c)2, c2, 0)

Rϕ −1 −1 + c − c2

R2
ϕ

tr Ric2
ϕ

1
2

1
2

λ 5 5(1 − c + c2)

D −Diag(1, 1, 1, 2, 2, 2, 2) −(1 − c + c2)Diag(1, 1, 1, 2, 2, 2, 2)

Table 2:

The Lie bracket given in the above lemma is isomorphic to the one given by
Table 1, the isomorphism is given by:









0 1 0 0 0 0 0
0 0 be/a 0 0 0 0
0 bcde/a 0 0 0 0 bcde/a
0 0 −be 0 0 be 0
0 0 0 0 −bce/a 0 0
0 0 0 −b 0 0 0
1 0 0 0 0 0 0









.

This concludes the proof of the theorem.

The following tables provide information about the solitons found for the Lie
algebras n2, . . . , n7. For any Lie algebra ni, the 3-form ϕ, the number λ and the
derivation D given in the tables are such that

∆ϕ ϕ = LXD
ϕ + λϕ.

Note that for each i, the given λ is always positive. This implies that all the
Laplacian solitons are expanding.

Using (2.8), we computed Qϕ for any ni with i = 2, . . . , 7:
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n4 n5

[·, ·] [e1, e2] = −
√

2e3, [e1, e3] = −e6,

[e2, e4] = −
√

2e6, [e1, e5] = −e7.

[e1, e2] = −
√

2e3, [e1, e3] = −e6,

[e1, e4] = −e7, [e2, e5] = −
√

2e7.

ϕ
−e124 − e456 + e347

+e135 + e167 + e257 − e236
e134 + e457 − e246

−e125 − e356 + e167 − e237

τϕ −
√

2e34 +
√

2e16 − e56 + e37 −e46 + e37 −
√

2e35 +
√

2e17

∆ϕ ϕ −4e124 + 2e135 +
√

2e245 +
√

2e127 2e134 +
√

2e127 +
√

2e235 − 4e125

Ricϕ Diag
(

−2,−2, 1
2 ,−1,− 1

2 , 3
2 , 1

2

)

Diag
(

−2,−2, 1
2 ,− 1

2 ,−1, 1
2 , 3

2

)

Rϕ −3 −3
Rϕ

2

tr Ric2
ϕ

3
4

3
4

λ 9 9

D











−1 0 0 0 0 0 0
0 −2 0 0 0 0 0
0 0 −3 0 0 0 0
0 0 0 −2 0 0 0

−
√

2 0 0 0 −3 0 0
0 0 0 0 0 −4 0
0 0 0 −

√
2 0 0 −4





















−1 0 0 0 0 0 0
0 −2 0 0 0 0 0√
2 0 −3 0 0 0 0

0 0 0 −3 0 0 0
0 0 0 0 −2 0
0 0 0 0 0 −4 0
0 0 0 0 −

√
2 0 −4











Table 3:

n6 n7

[·, ·] [e1, e2] = −
√

2e4, [e1, e3] = −
√

2e5

[e1, e4] = −e6, [e1, e5] = −e7.

[e1, e2] = 4e4, [e1, e7] = −2e6,

[e2, e7] = −2e5, [e5, e7] = −
√

6e5,

[e6, e7] = −
√

6e4.

ϕ
e123 + e347 + e356

+e145 − e246 + e167 + e257
e127 + e135 − e146

−e236 − e245 + e347 + e567

τϕ −
√

2e34 +
√

2e25 − e56 + e47 −2e15 + 2e26 −
√

6e36 +
√

6e45 − 4e47

∆ϕ ϕ 4e123 −
√

2e136 +
√

2e127 + 2e145 24e127 − 4
√

6e125 − 2
√

6e137

+2
√

6e247 + 12e567

Ricϕ Diag
(

−3,−1,−1, 1
2 , 1

2 , 1
2 , 1

2

)

Diag (−10,−10, 3, 11,−1,−1,−10)

Rϕ −3 −18
Rϕ

2

tr Ric2
ϕ

3
4

3
4

λ 9 54

D











−1 0 0 0 0 0 0
0 −2 0 0 0 0 0
0 0 −2 0 0 0 0
0 0 0 −3 0 0 0
0 0 0 0 −3 0 0
0

√
2 0 0 0 −4 0

0 0
√

2 0 0 0 −4





















−12 0 0 0 0 0 0
0 −12 0 0 0 0 0
0 −2

√
6 −24 0 0 0 0

−2
√

6 0 0 −24 0 0 0

0 0 0 0 −18 0 −4
√

6
0 0 0 0 0 −18 0
0 0 0 0 0 0 −6











Table 4:
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Qϕ2 =
1

3
Diag(−2,−2,−2, 1, 1, 1, 1),

Qϕ3 =
1 − c + c2

3
Diag(−2,−2,−2, 1, 1, 1, 1),

Qϕ4
=





















−2 0 0 0
1√
2

0 0

0 −1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 −1 0 0
1√
2

1√
2

0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0
1√
2

0 0 1





















, Qϕ5 =





















−2 0 − 1√
2

0 0 0 0

0 −1 0 0 0 0 0

− 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0
1√
2

0 0 0 0 0 1 0

0 0 0 0
1√
2

0 1





















,

Qϕ6 =

















−2 0 0 0 − 1√
2

0 0

0 −1 0 0 0 0 0
0 0 −1 0 0 0 − 1√

2
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 − 1√

2
0 0 0 1 0

0 0 − 1√
2

0 0 0 1

















, Qϕ7 =













−4 0 0 0 −1 0 0
0 −4 0 0 0 1 0
0 0 9 0 0 −

√
6/2 0

0 0 0 17
√

6/2 0 −2

1 0 0 −
√

6/2 5 0 0

0 −1
√

6/2 0 0 5 0
0 0 0 2 0 0 −4













.

Note that in every case, we have that Qϕ = − 1
3λI − D, where λ and D are

given in the tables above.
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