Johnson pseudo-contractibility of various classes of Banach algebras

A. Sahami A. Pourabbas

Abstract

The notion of Johnson pseudo-contractibility for Banach algebras is introduced. We investigate this notion for Banach algebras defined on locally compact groups. For a compact metric space *X* and $\alpha > 0$, we show that the Lipschitz algebra $Lip_{\alpha}(X)$ is Johnson pseudo-contractible if and only if *X* is finite. We give some examples to distinguish our new notion with the classical ones.

1 Introduction and Preliminaries

The concept of amenable Banach algebras were studied and introduced by Johnson, see [17]. In fact a Banach algebra A is amenable if A has a virtual diagonal, that is, there exists an element M in $(A \otimes_p A)^{**}$ such that $a \cdot M = M \cdot a$ and $\pi_A^{**}(M)a = a$ where $\pi_A : A \otimes_p A \to A$ is the product morphism given by $\pi_A(a \otimes b) = ab$ for every $a, b \in A$.

Some new generalizations of amenability like pseudo-amenability and pseudo-contractibility have been introduced. A Banach algebra A is called pseudo-amenable (pseudo-contractible) if there exists a not necessarily bounded net (m_{α}) in $A \otimes_p A$ such that $a \cdot m_{\alpha} - m_{\alpha} \cdot a \rightarrow 0$ $(a \cdot m_{\alpha} = m_{\alpha} \cdot a)$ and $\pi_A(m_{\alpha})a - a \rightarrow 0$, for every $a \in A$, respectively, see [11]. Pseudo-amenability and pseudo-contractibility of Segal algebras, semigroup algebras and matrix algebras were studied in [2], [4], [7] and [8]. Using [6, Theorem 3.1] we can see

Received by the editors in April 2017 - In revised form in August 2017.

Communicated by A. Valette.

²⁰¹⁰ Mathematics Subject Classification : Primary 43A07, 43A20, Secondary 46H05.

Key words and phrases : Segal algebras, Lipschitz algebras, Johnson pseudo-contractibility, amenable Banach algebras.

that $M_I(\mathbb{C})$ (the Banach algebra of $I \times I$ -matrices over \mathbb{C} , with finite ℓ^1 -norm and matrix multiplication) has no bounded approximate identity whenever I is infinite. So $M_I(\mathbb{C})$ is not amenable. But by [8, Theorem 3.7] we can see that $M_I(\mathbb{C})$ is pseudo-amenable for each non-empty set I. But Essmaili *et al.* showed that $M_I(\mathbb{C})$ is pseudo-contractible if and only if I is finite. In fact $M_I(\mathbb{C})$ under the various notions of amenability like amenability and pseudo-contractibility is forced to have a finite index set while the notion of pseudo-amenability holds for an arbitrary index set I. The differences refer to the conditions $a \cdot m_{\alpha} - m_{\alpha} \cdot a \to 0$ and $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ of the definition of these concepts.

Motivated by these considerations the question raised. "Is there any notion of amenability close to pseudo-amenability that forces the index set *I* to be finite? "

To answer this question we combined the condition of definitions of (Johnson) amenability and pseudo-contractibility to obtain a new notion, which is weaker than amenability and pseudo-contractibility but it is stronger than pseudo-amenability.

Definition 1.1. A Banach algebra *A* is called Johnson pseudo-contractible, if there exists a not necessarily bounded net (m_{α}) in $(A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A^{**}(m_{\alpha})a - a \to 0$, for every $a \in A$.

In this paper we study Johnson pseudo-contractibility for various classes of Banach algebras. We show that for a locally compact *G*, the measure algebra M(G) (the group algebra $L^1(G)$) is Johnson pseudo-contractible if and only if *G* is discrete and amenable (amenable), respectively. Also for a compact metric space *X* and $\alpha > 0$, the Lipschitz algebra $Lip_{\alpha}(X)$ is Johnson pseudo-contractible if and only if *X* is finite. We give some examples to distinguish our new notion with the classic ones.

2 Johnson pseudo-contractibility

Let *A* be a Banach algebra. Throughout this work, the character space of *A* is denoted by $\Delta(A)$, that is, all non-zero multiplicative linear functionals on *A*. The projective tensor product $A \otimes_p A$ is a Banach *A*-bimodule via the following actions

 $a \cdot (b \otimes c) = ab \otimes c, (b \otimes c) \cdot a = b \otimes ca (a, b, c \in A).$

For each $\phi \in \Delta(A)$ there exists a unique extension $\tilde{\phi}$ to A^{**} which is defined by $\tilde{\phi}(F) = F(\phi)$. It is easy to see that $\tilde{\phi} \in \Delta(A^{**})$.

Lemma 2.1. Let A be an amenable Banach algebra. Then A is Johnson pseudocontractible.

Proof. Since *A* is amenable, it has a virtual diagonal, that is, an element $M \in (A \otimes_p A)^{**}$ such that $a \cdot M = M \cdot a$ and $\pi_A^{**}(M)a = a$, for every $a \in A$. Hence *A* is Johnson pseudo-contractible.

Lemma 2.2. Let A be a pseudo-contractible Banach algebra. Then A is Johnson pseudocontractible.

Proof. Since *A* is pseudo-contractible, it has a net (m_{α}) in $A \otimes_p A \hookrightarrow (A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A(m_{\alpha})a \to a$, for every $a \in A$. Hence *A* is Johnson pseudo-contractible.

A Banach algebra *A* is called biflat if there exists a bounded *A*-bimodule morphism $\rho : A \to (A \otimes_p A)^{**}$ such that $\pi_A^{**} \circ \rho(a) = a$, for every $a \in A$. Note that *A* is amenable if and only if *A* is biflat and has a bounded approximate identity, see [17].

Proposition 2.3. Suppose that A is a biflat Banach algebra with a central approximate identity. Then A is Johnson pseudo-contractible.

Proof. Let (e_{α}) be a central approximate identity in A and let $\rho : A \to (A \otimes_p A)^{**}$ be a bounded A-bimodule morphism such that $\pi_A^{**} \circ \rho(a) = a$ for every $a \in A$. Then $M_{\alpha} = \rho(e_{\alpha})$ is a net in $(A \otimes_p A)^{**}$ such that

$$a \cdot M_{\alpha} = a \cdot \rho(e_{\alpha}) = \rho(ae_{\alpha}) = \rho(e_{\alpha}a) = \rho(e_{\alpha})a = M_{\alpha} \cdot a$$

and $\pi_A^{**}(M_{\alpha})a = \pi_A^{**} \circ \rho(e_{\alpha})a = e_{\alpha}a \rightarrow a$ for every $a \in A$. Thus A is Johnson pseudo-contractible.

A Banach algebra *A* is called left ϕ -amenable if there exists an element $m \in A^{**}$ such that $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$, for every $a \in A$, see [13].

Proposition 2.4. Suppose that A is a Banach algebra with $\phi \in \Delta(A)$. If A is Johnson pseudo-contractible, then A is left ϕ -amenable.

Proof. Since *A* is a Johnson pseudo-contractible Banach algebra, there exists a net (m_{α}) in $(A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A^{**}(m_{\alpha})a \to a$, for every $a \in A$. Define $T : A \otimes_p A \to A$ by $T(a \otimes b) = \phi(b)a$ for every $a, b \in A$. Since T^{**} is a w^* -continuous map, we have

$$T^{**}(a \cdot F) = a \cdot T^{**}(F), \quad \phi(a)T^{**}(F) = T^{**}(F \cdot a), \qquad (a \in A, F \in (A \otimes_p A)^{**}).$$

Thus

$$a \cdot T^{**}(m_{\alpha}) = T^{**}(a \cdot m_{\alpha}) = T^{**}(m_{\alpha} \cdot a) = \phi(a)T^{**}(m_{\alpha})$$

for every $a \in A$. Using w^* -continuity of T^{**} one can see that $\tilde{\phi} \circ T^{**} = \tilde{\phi} \circ \pi_A^{**}$. So we have

$$\tilde{\phi} \circ T^{**}(m_{\alpha}) = \tilde{\phi} \circ \pi_A^{**}(m_{\alpha}) \to 1.$$
(2.1)

Then for sufficiently large values of α , $\tilde{\phi} \circ \pi_A^{**}(m_\alpha)$ stays away from zero. Replacing $T^{**}(m_\alpha)$ by $\frac{T^{**}(m_\alpha)}{\tilde{\phi} \circ T^{**}(m_\alpha)}$ we can assume that

$$aT^{**}(m_{\alpha}) = \phi(a)T^{**}(m_{\alpha}), \quad \tilde{\phi} \circ T^{**}(m_{\alpha}) = 1,$$

for every $a \in A$. It follows that A is left ϕ -amenable.

Let *A* be a Banach algebra and *I* be a totally ordered set. The set of $I \times I$ upper triangular matrices with entries from *A* with the usual matrix operations and finite ℓ^1 -norm defined by $||(a_{i,j})_{i,j\in I}|| = \sum_{i,j\in I} ||a_{i,j}|| < \infty$ is a Banach algebra and it is denoted by UP(I, A).

Theorem 2.5. Let A be a Banach algebra with $\phi \in \Delta(A)$ and let I be a finite set. Then UP(I, A) is Johnson pseudo-contractible if and only if A is Johnson pseudo-contractible and |I| = 1.

Proof. If |I| = 1, then UP(I, A) = A. Conversely, let UP(I, A) be Johnson pseudocontractible. We go towards a contradiction and suppose that |I| > 1. Take $I = \{1, 2, 3, ..., n\}$. Define $\psi_{\phi}((a_{i,j})) = \phi(a_{n,n})$. It is easy to see that ψ_{ϕ} is a nonzero character on UP(I, A) and so by Proposition 2.4, UP(I, A) is left ψ_{ϕ} -amenable. Put

$$J = \{(a_{i,j})_{i,j} \in UP(I,A) : a_{i,j} = 0 \text{ whenever } j \neq n\}.$$

One can show that *J* is a closed ideal of UP(I, A) and $\psi_{\phi}|_{J} \neq 0$, then by [13, Lemma 3.1] *J* is left ψ_{ϕ} -amenable. Using [13, Theorem 1.4] there exists a bounded net (j_{α}) in *J* such that

$$jj_{\alpha} - \psi_{\phi}(j)j_{\alpha} \to 0, \quad \psi_{\phi}(j_{\alpha}) = 1 \quad (j \in J).$$
 (2.2)

Note that for every α the element j_{α} is of the form $\begin{pmatrix} 0 & \cdots & j_1^{\alpha} \\ \vdots & \cdots & \vdots \\ 0 & \cdots & j_n^{\alpha} \end{pmatrix}$, where $j_1^{\alpha}, \dots, j_n^{\alpha} \in A$. So by (2.2) we have

$$\begin{pmatrix} 0 & \cdots & j_1 j_n^{\alpha} \\ \vdots & \cdots & \vdots \\ 0 & \cdots & j_n j_n^{\alpha} \end{pmatrix} - \begin{pmatrix} 0 & \cdots & \phi(j_n) j_n^{\alpha} \\ \vdots & \cdots & \vdots \\ 0 & \cdots & \phi(j_n) j_n^{\alpha} \end{pmatrix} = \begin{pmatrix} 0 & \cdots & j_1 j_n^{\alpha} - \phi(j_n) j_n^{\alpha} \\ \vdots & \cdots & \vdots \\ 0 & \cdots & j_n j_n^{\alpha} - \phi(j_n) j_n^{\alpha} \end{pmatrix} \to 0$$
(2.3)

for every $j = \begin{pmatrix} 0 & \cdots & j_1 \\ \vdots & \cdots & \vdots \\ 0 & \cdots & j_n \end{pmatrix} \in J$, where j_1, \dots, j_n in A. Since ϕ is a character on

A, there exists a_0 in *A* such that $\phi(a_0) = 1$. In the particular case $j_1 = j_2 = ... = j_{n-1} = a_0$ and $j_n = 0$ apply (2.3) we have $a_0 j_n^{\alpha} - \phi(j_n) j_n^{\alpha} = a_0 j_n^{\alpha} \to 0$, as $\phi(j_n) = 0$. Since ϕ is continuous and $\phi(a_0) = 1$, we have $\phi(j_n^{\alpha}) \to 0$. But $\psi_{\phi}(j_{\alpha}) = \phi(j_n^{\alpha}) = 1$ which is a contradiction.

Proposition 2.6. Let A^{**} be a Johnson pseudo-contractible Banach algebra. Then A is pseudo-amenable.

Proof. Since A^{**} is Johnson pseudo-contractible, there exists a net $(m_{\alpha})_{\alpha \in I}$ in $(A^{**} \otimes_p A^{**})^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi^{**}_{A^{**}}(m_{\alpha})a \to a$ for every $a \in A^{**}$. By [10, Lemma 1.7] there exists a bounded linear map $\psi : A^{**} \otimes_p A^{**} \to (A \otimes_p A)^{**}$ such that for $a, b \in A$ and $m \in A^{**} \otimes_p A^{**}$, the following holds

- (i) $\psi(a \otimes b) = a \otimes b$,
- (ii) $\psi(m) \cdot a = \psi(m \cdot a), \qquad a \cdot \psi(m) = \psi(a \cdot m),$

(iii)
$$\pi_A^{**}(\psi(m)) = \pi_{A^{**}}(m)$$
.

Set $n_{\alpha} = \psi^{**}(m_{\alpha})$, it is easy to see that (n_{α}) is a net in $(A \otimes_p A)^{****}$ which satisfies

$$a \cdot n_{\alpha} = a \cdot \psi^{**}(m_{\alpha}) = \psi^{**}(a \cdot m_{\alpha}) = \psi^{**}(m_{\alpha} \cdot a) = \psi^{**}(m_{\alpha}) \cdot a = n_{\alpha} \cdot a$$

and

$$\pi_A^{****}(n_{\alpha})a - a = \pi_A^{****} \circ \psi^{**}(m_{\alpha})a - a = \pi_{A^{**}}^{**}(m_{\alpha})a - a \to 0, \quad (a \in A).$$

Suppose that $(y^{\alpha}_{\beta})_{\beta \in \Theta}$ is a net in $(A \otimes_p A)^{**}$ such that $y^{\alpha}_{\beta} \xrightarrow{w^*} n_{\alpha}$. Then

$$w^* - \lim w^* - \lim a \cdot y^{\alpha}_{\beta} - y^{\alpha}_{\beta} \cdot a = w^* - \lim a \cdot n_{\alpha} - n_{\alpha} \cdot a = 0$$

and

$$w^* - \lim w^* - \lim \pi_A^{**}(y^{lpha}_{eta})a - a = w^* - \lim w^* - \lim \pi_A^{****}(y^{lpha}_{eta})a - a = w^* - \lim \pi_{A^{***}}^{**}(m_{lpha})a - a = 0$$

for every $a \in A$. Let $E = I \times \Theta^I$ be a directed set with product ordering defined by

$$(\alpha,\beta) \leq_E (\alpha',\beta') \Leftrightarrow \alpha \leq_I \alpha', \beta \leq_{\Theta^I} \beta' \qquad (\alpha,\alpha' \in I, \quad \beta,\beta' \in \Theta^I),$$

where Θ^{I} is the set of all functions from I into Θ and $\beta \leq_{\Theta^{I}} \beta'$ means that $\beta(d) \leq_{\Theta} \beta'(d)$ for every $d \in I$. Suppose that $\gamma = (\alpha, \beta_{\alpha}) \in E$ and $m_{\gamma} = y^{\alpha}_{\beta_{\alpha}}$. Applying iterated limit theorem [14, page 69] and above calculations, we can easily see that $a \cdot m_{\gamma} - m_{\gamma} \cdot a \xrightarrow{w^{*}} 0$ and $\pi^{****}_{A}(m_{\gamma})a - a \xrightarrow{w^{*}} 0$, for every $a \in A$. So $a \cdot m_{\gamma} - m_{\gamma} \cdot a \xrightarrow{w} 0$ and $\pi^{***}_{A}(m_{\gamma})a - a \xrightarrow{w} 0$ for every $a \in A$. By Mazur's lemma we can assume that

$$a \cdot m_{\gamma} - m_{\gamma} \cdot a \xrightarrow{||\cdot||} 0, \quad \pi_A^{**}(m_{\gamma})a - a \xrightarrow{||\cdot||} 0,$$

for every $a \in A$. Use the similar method as above we can show that there exists a net (ξ_{γ}) in $A \otimes_p A$ such that

$$a \cdot \xi_{\gamma} - \xi_{\gamma} \cdot a \xrightarrow{||\cdot||} 0, \quad \pi_A(\xi_{\gamma})a - a \xrightarrow{||\cdot||} 0, \quad (a \in A).$$

Then *A* is pseudo-amenable.

The proof of the following corollary is similar to the previous Theorem so we omit it.

Corollary 2.7. Let A be Johnson pseudo-contractible. Then A is pseudo-amenable.

A Banach algebra *A* is said to be approximately amenable if for every *A*-bimodule *X* and every bounded derivation $D : A \to X^*$ there exists a net (x_{α}) in X^* such that $D(a) = \lim a \cdot x_{\alpha} - x_{\alpha} \cdot a$ for every $a \in A$.

Corollary 2.8. Let A be a Johnson pseudo-contractible Banach algebra with a bounded approximate identity. Then A is approximately amenable.

Proof. By hypothesis and previous Corollary *A* is pseudo-amenable. Now [11, Proposition 3.2] implies that *A* is approximately amenable.

Proposition 2.9. Let A and B be Banach algebras. Suppose that $T : A \rightarrow B$ is a continuous epimorphism. If A is Johnson pseudo-contractible, then B is Johnson pseudo-contractible.

Proof. Since *A* is Johnson pseudo-contractible, there exists a bounded net (m_{α}) in $(A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A^{**}(m_{\alpha})a \to a$ for every $a \in A$. Define $T \otimes T : A \otimes_p A \to B \otimes_p B$ by $T \otimes T(x \otimes y) = T(x) \otimes T(y)$, for every $x, y \in A$. It is easy to see that $T \otimes T$ is a bounded linear map. So we have

$$T(a) \cdot (T \otimes T)^{**}(m_{\alpha}) - (T \otimes T)^{**}(m_{\alpha}) \cdot T(a) = (T \otimes T)^{**}(a \cdot m_{\alpha} - m_{\alpha} \cdot a) = 0, \quad (a \in A).$$

Also

$$\pi_B^{**} \circ (T \otimes T)^{**}(m_{\alpha})T(a) - T(a) = (\pi_B \circ (T \otimes T))^{**}(m_{\alpha} \cdot a) - T(a) = T^{**}(\pi_A^{**}(m_{\alpha})a - a) \to 0,$$

for every $a \in A$. Then *B* is Johnson pseudo-contractible.

Corollary 2.10. Let A be a Johnson pseudo-contractible Banach algebra and let I be a closed ideal of A. Then $\frac{A}{T}$ is Johnson pseudo-contractible.

Proof. The quotient map is a bounded epimorphism from *A* onto $\frac{A}{I}$, now apply the previous Proposition.

Theorem 2.11. Fix $p \ge 1$. Let $A = \ell^p - \bigoplus_{i \in I} A_i$. If each A_i is Johnson pseudo-contractible, then A is Johnson pseudo-contractible.

Proof. Let $\epsilon > 0$ and F be any finite subset of A. For each $a \in F$ there exists a finite set $J_{\epsilon} \subset I$ such that $||P_{J_{\epsilon}}(a) - a|| < \frac{\epsilon}{2}$, where $P_{J_{\epsilon}}$ is the associated projection from A onto $\ell^p - \bigoplus_{i \in J_{\epsilon}} A_i$. Since A_i is Johnson pseudo-contractible, there exists a net $(m^i_{\alpha})_{\alpha}$ in $(A_i \otimes_p A_i)^{**}$ such that

$$x \cdot m^i_{lpha} = m^i_{lpha} \cdot x, \quad \pi^{**}_{A_i}(m^i_{lpha}) x o x \qquad (x \in A_i).$$

It is easy to see that we can naturally embed $A_i \otimes_p A_i$ in $A \otimes_p A$. So there exists a bounded *A*-bimodule morphism $L_i : A_i \otimes_p A_i \to A \otimes_p A$. Set $U_{\alpha} = \sum_{i \in I_c} L_i^{**}(m_{\alpha}^i)$. We regard that for every $a \in F$,

$$a \cdot U_{\alpha} = \sum_{i \in J_{\epsilon}} a \cdot L_{i}^{**}(m_{\alpha}^{i}) = \sum_{i \in J_{\epsilon}} L_{i}^{**}(a \cdot m_{\alpha}^{i})$$

$$= \sum_{i \in J_{\epsilon}} L_{i}^{**}(P_{J_{\epsilon}}(a) \cdot m_{\alpha}^{i})$$

$$= \sum_{i \in J_{\epsilon}} L_{i}^{**}(m_{\alpha}^{i} \cdot P_{J_{\epsilon}}(a))$$

$$= \sum_{i \in J_{\epsilon}} L_{i}^{**}(m_{\alpha}^{i} \cdot a) = \sum_{i \in J_{\epsilon}} L_{i}^{**}(m_{\alpha}^{i}) \cdot a = U_{\alpha} \cdot a.$$

$$(2.4)$$

Also for sufficiently large values of α , we have

$$\begin{aligned} ||\pi_{A}^{**}(U_{\alpha})a - a|| &= \\ ||\pi_{A}^{**}(U_{\alpha} \cdot a) - a|| &= ||\pi_{A}^{**}(U_{\alpha} \cdot P_{J_{\epsilon}}(a)) - a|| \\ &= ||\pi_{A}^{**}(U_{\alpha} \cdot P_{J_{\epsilon}}(a)) - P_{J_{\epsilon}}(a) + P_{J_{\epsilon}}(a) - a|| < \frac{\epsilon}{2} + \frac{\epsilon}{2} \end{aligned}$$
(2.5)

It follows that *A* is Johnson pseudo-contractible.

3 Some applications

In this section we characterized the Johnson pseudo-contractibility for algebras related to a locally compact group and next for Lipschitz algebras. Throughout this section *G* is a locally compact group. A linear subspace S(G) of $L^1(G)$ is said to be a Segal algebra on *G* if it satisfies the following conditions

- (i) S(G) is dense in $L^1(G)$,
- (ii) S(G) with a norm $|| \cdot ||_{S(G)}$ is a Banach space and $||f||_{L^1(G)} \leq ||f||_{S(G)}$ for every $f \in S(G)$,
- (iii) for $f \in S(G)$ and $y \in G$, we have $L_y f \in S(G)$ the map $y \mapsto L_y(f)$ from G into S(G) is continuous, where $L_y(f)(x) = f(y^{-1}x)$,
- (iv) $||L_y(f)||_{S(G)} = ||f||_{S(G)}$ for every $f \in S(G)$ and $y \in G$,

for more information see [15].

Proposition 3.1. If S(G) is Johnson pseudo-contractible, then G is amenable.

Proof. Since S(G) is Johnson pseudo-contractible, by Corollary 2.7, S(G) is pseudo-amenable. Applying [18, Theorem 3.1] *G* is amenable.

Remark 3.2. In the case $S(G) = L^1(G)$ by previous proposition and the Johnson theorem, we can easily see that $L^1(G)$ is Johnson pseudo-contractible if and only *G* is amenable.

Proposition 3.3. *The measure algebra* M(G) *is Johnson pseudo-contractible if and only if* G *is discrete and amenable.*

Proof. Suppose that M(G) is Johnson pseudo-contractible. Then by Corollary 2.7 M(G) is pseudo-amenable. Using [11, Proposition 4.2] *G* is discrete and amenable.

For converse, let *G* be discrete and amenable. By the main result of [3] M(G) is amenable. Then by Proposition 2.1 M(G) is Johnson pseudo-contractible.

Proposition 3.4. $L^1(G)^{**}$ is Johnson pseudo-contractible if and only if G is finite.

Proof. Suppose that $L^1(G)^{**}$ is Johnson pseudo-contractible. Then by Corollary 2.7 $L^1(G)^{**}$ is pseudo-amenable. Using [11, Proposition 4.2] *G* is finite. Converse is clear.

At the following we characterize Johnson pseudo-contractibility of Lipschitz algebras.

Let *A* be a Banach algebra and $\phi \in \Delta(A)$. An element $m \in A^{**}$ that satisfies $am = \phi(a)m$ and $\tilde{\phi}(m) = 1$, is called ϕ -mean. Suppose that $m \in A^{**}$ is a ϕ -mean for *A*. Since $||\phi|| = 1$, we have $||m|| \ge 1$. So for $C \ge 1$, *A* is called *C*- ϕ -amenable if *A* has a ϕ -mean *m* which $||m|| \le C$. Note that every amenable Banach algebra *A* is left ϕ -amenable for every $\phi \in \Delta(A)$ but the converse is not true, see [13].

Lemma 3.5. Let A be a Johnson pseudo-contractible Banach algebra with an identity and $\Delta(A) \neq \emptyset$. Then A is C- ϕ -amenable for every $\phi \in \Delta(A)$.

Proof. Since *A* is Johnson pseudo-contractible, there exists a net (m_{α}) in $(A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A^{**}(m_{\alpha})a \to a$ for every $a \in A$. So for every $\epsilon > 0$ there exists α_{ϵ} such that $||\pi_A^{**}(m_{\alpha_{\epsilon}})e - e|| < \epsilon$ and $a \cdot m_{\alpha_{\epsilon}} = m_{\alpha_{\epsilon}} \cdot a$, where *e* is an identity for *A*. Let $T : A \otimes_p A \to A$ be a map defined by $T(a \otimes b) = \phi(b)a$ for every $a, b \in A$. Since $||T|| \leq 1$, we have

$$|\tilde{\phi}\circ T^{**}(m_{\alpha_{\epsilon}})-1|=|\tilde{\phi}(\pi_{A}^{**}(m_{\alpha_{\epsilon}}))-1|=|\tilde{\phi}(\pi_{A}^{**}(m_{\alpha_{\epsilon}})e-e)|<\epsilon,$$

Take $\epsilon = \frac{1}{2}$, we have $\frac{1}{2} < |\tilde{\phi} \circ T^{**}(m_{\alpha_{\epsilon}})| < \frac{3}{2}$. So $||\frac{T^{**}(m_{\alpha_{\epsilon}})}{\tilde{\phi}(T^{**}(m_{\alpha_{\epsilon}}))}|| < 2||T^{**}(m_{\alpha_{\epsilon}})|| \le 2||m_{\alpha_{\epsilon}}||$ for every $\phi \in \Delta(A)$. Using the similar method as in the proof of Proposition 2.4, one can see that A is $||m_{\alpha_{\epsilon}}||$ - ϕ -amenable, for every $\phi \in \Delta(A)$.

Let *X* be a compact metric space and $\alpha > 0$. Set

$$Lip_{\alpha}(X) = \{f: X \to \mathbb{C} : p_{\alpha}(f) < \infty\},\$$

where

$$p_{\alpha}(f) = \sup\{\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} : x, y \in X, x \neq y\}$$

and also

$$\ell i p_{lpha}(X) = \{f \in Lip_{lpha}(X): rac{|f(x)-f(y)|}{d(x,y)^{lpha}}
ightarrow 0 \quad ext{as} \quad d(x,y)
ightarrow 0\}.$$

Define

$$||f||_{\alpha} = ||f||_{\infty} + p_{\alpha}(f),$$

with pointwise multiplication and norm $|| \cdot ||_{\alpha}$, $Lip_{\alpha}(X)$ and $\ell ip_{\alpha}(X)$ become Banach algebras. It is well-known that each nonzero multiplicative linear functional on $Lip_{\alpha}(X)$ or $\ell ip_{\alpha}(X)$ has a form ϕ_x , where $\phi_x(f) = f(x)$ for every $x \in X$. For further information about Lipschitz algebras see [1] and [20].

Theorem 3.6. Let X be a compact metric space and let A be $Lip_{\alpha}(X)$ or $\ell ip_{\alpha}(X)$. Then the following statements are equivalent

- (*i*) A is Johnson pseudo-contractible;
- *(ii)* X *is finite;*
- (iii) A is amenable.

Proof. (i) \Rightarrow (ii) Suppose that *A* is Johnson pseudo-contractible. Since *A* has an identity, by previous Lemma there exists $C \ge 1$ such that *A* is *C*- ϕ -amenable for each $\phi \in \Delta(A)$. By [5, Proposition 2.1] for every distinct element $x, y \in X$, we have $||\phi_x - \phi_y|| > C^{-1}$. Also since

$$||\phi_x - \phi_y|| = \sup_{||f||_{\alpha} \le 1} ||\phi_x(f) - \phi_y(f)|| = \sup_{||f||_{\alpha} \le 1} |f(x) - f(y)| < d(x,y)^{\alpha},$$

it follows that $d(x,y)^{\alpha} > C^{-1}$. This yields *X* is discrete and compact. So *X* is finite.

(ii) \Rightarrow (iii) It is clear by [12, Theorem 3].

(iii) \Rightarrow (i) It is valid by Lemma 2.1.

4 Examples

- *Example* 4.1. (i) Let *G* be the integer Heisenberg group. It is well-known that *G* is discrete and amenable. Also *G* is not a finite extension of an abelian group. Using the main result of [9], we can see that the Fourier algebra A(G) is not amenable. On the other hand by Leptin theorem [17, Theorem 7.1.3] amenability of *G* implies that A(G) has a central approximate identity. Using [18, Theorem 4.2] we see that A(G) is pseudo-contractible. Then by Lemma 2.2 A(G) is Johnson pseudo-contractible. Thus we find a Johnson pseudo-contractible Banach algebra which is not amenable.
 - (ii) It is well-known that $\ell^1(\mathbb{Z})$ is an amenable Banach algebra. So by Lemma 2.1 $\ell^1(\mathbb{Z})$ is Johnson pseudo-contractible. We claim that $\ell^1(\mathbb{Z})$ is not pseudo-contractible. Suppose conversely that $\ell^1(\mathbb{Z})$ is pseudo-contractible. Since $\ell^1(\mathbb{Z})$ is unital by [11, Theorem 2.4] $\ell^1(\mathbb{Z})$ must be contractible. It follows that \mathbb{Z} is finite which is impossible. Hence we get a Johnson pseudo-contractible Banach algebra which is not pseudo-contractible.
- (iii) In this part we give a pseudo-amenable Banach algebra, which is not Johnson pseudo-contractible.

Suppose that $A = M_{\mathbb{N}}(\mathbb{C})$ is the set of all $\mathbb{N} \times \mathbb{N}$ -matrices over \mathbb{C} with finite ℓ^1 -norm and matrix multiplication. By [16, Proposition 2.7] $A = M_{\mathbb{N}}(\mathbb{C})$ is biflat. Since \mathbb{C} is unital, by [8, Proposition 3.6] A has an approximate identity. So [8, Proposition 3.6] implies that A is pseudo-amenable. We claim that A is not Johnson pseudo-contractible. We go toward a contradiction and suppose that A is Johnson pseudo-contractible. It follows that there exists a net (m_{α}) in $(A \otimes_p A)^{**}$ such that $a \cdot m_{\alpha} = m_{\alpha} \cdot a$ and $\pi_A^{**}(m_{\alpha})a \to a$ for every $a \in A$. Let a be any non-zero element of A. By Hahn-Banach theorem there exists a bounded linear functional Y in A^* such that $Y(a) \neq 0$. It follows that $\pi_A^{**}(m_{\alpha})a(Y) \to a(Y)$. Then $\pi_A^{**}(m_{\alpha})(a \cdot Y) \to Y(a) \neq 0$. So we can assume that $\pi_A^{**}(m_{\alpha})((a \cdot Y)) \neq 0$ for every α . By Alaoglu's Theorem we have a bounded net (x_{α}^{β}) with bound $||m_{\alpha}||$ in $A \otimes_p A$ such that $x_{\alpha}^{\beta} \xrightarrow{w^*} m_{\alpha}$ and $\pi_A^{**}(x_{\alpha}^{\beta}) \xrightarrow{w^*} \pi_A^{**}(m_{\alpha})$, since π_A^{**} is a w^* -continuous map.

It is clear that $a \cdot x_{\alpha}^{\beta} \xrightarrow{w^*} a \cdot m_{\alpha}$ and $x_{\alpha}^{\beta} \cdot a \xrightarrow{w^*} m_{\alpha} \cdot a$ for each $a \in A$. It follows that $a \cdot x_{\alpha}^{\beta} - x_{\alpha}^{\beta} \cdot a \xrightarrow{w^*} 0$ (and also since (x_{α}^{β}) is a net in $A \otimes_p A$ we have $a \cdot x_{\alpha}^{\beta} - x_{\alpha}^{\beta} \cdot a \xrightarrow{w} 0$). Thus $\pi_A(a \cdot x_{\alpha}^{\beta} - x_{\alpha}^{\beta} \cdot a) = a\pi_A^{**}(x_{\alpha}^{\beta}) - \pi_A^{**}(x_{\alpha}^{\beta})a \xrightarrow{w^*} 0$. Therefore $a\pi_A^{**}(x_{\alpha}^{\beta}) - \pi_A^{**}(x_{\alpha}^{\beta})a \xrightarrow{w} 0$. Put $y_{\beta} = \pi_A^{**}(x_{\alpha}^{\beta})$. So (y_{β}) is a bounded net which satisfies $ay_{\beta} - y_{\beta}a \xrightarrow{w} 0$ and $y_{\beta} \xrightarrow{w^*} \pi_A^{**}(m_{\alpha})$ for every $a \in A$. Suppose that $y_{\beta} = (y_{\beta}^{i,j})$. We denote $\varepsilon_{i,j}$ for a matrix which (i,j)-entry is 1 and 0 elsewhere. Since the product of weak topology on \mathbb{C} coincides with the weak topology on A, [19, Theorem 4.3, p 137] and $\varepsilon_{1,j}y_{\beta} - y_{\beta}\varepsilon_{1,j} \xrightarrow{w} 0$, we have $y_{\beta}^{i,j} - y_{\beta}^{1,1} \xrightarrow{w} 0$ and $y_{\beta}^{i,j} \xrightarrow{w} 0$, whenever $i \neq j$. Since $||y_{\beta}|| \leq ||m_{\alpha}||$, it follows that $(y_{\beta}^{1,1})$ is a bounded net in \mathbb{C} . Then $(y_{\beta}^{1,1})$ has a convergence subnet $(y_{\beta_k}^{1,1})$ converges to l with respect to $|\cdot|$. Using $y_{\beta}^{i,j} - y_{\beta}^{i,1} \xrightarrow{w} 0$, we have $y_{\beta}^{i,j} - y_{\beta}^{1,1} \xrightarrow{|\cdot|} 0$. It follows that $y_{\beta_k}^{i,j} - y_{\beta_k}^{1,1} \xrightarrow{|\cdot|} l$ o, so $y_{\beta_k}^{i,j} \xrightarrow{|\cdot|} l$ for every $j \in \mathbb{N}$. We claim that $l \neq 0$, otherwise by

[19, Theorem 4.3] we have $y_{\beta} \xrightarrow{w} 0$. Then $(a \cdot Y)(y_{\beta}) \to 0$. On the other hand $(a \cdot Y)(y_{\beta}) = y_{\beta}(a \cdot Y) \to \pi_A^{**}(m_{\alpha})(a \cdot Y) \neq 0$, which reveals a contradiction. So $l \neq 0$. Since $y_{\beta_k}^{j,j} - y_{\beta}^{1,1} \xrightarrow{w} 0$ and $y_{\beta_k}^{i,j} \xrightarrow{w} 0$ by [19, Theorem 4.3,p 137] we have $y_{\beta_k} \xrightarrow{w} y_0$, where y_0 is a matrix which each entry of main diagonal is l and 0 elsewhere. Thus $y_0 \in \overline{Conv(y_{\beta})}^w = \overline{Conv(y_{\beta})}^{||.||}$. So $y_0 \in A$. But $\infty = \sum_{j \in \mathbb{N}} |l| = \sum_{j \in \mathbb{N}} |y_0^{j,j}| = ||y_0|| < \infty$, which is a contradiction. Therefore A is not Johnson pseudo-contractible.

(iv) A Banach algebra *A* is called approximately biprojective if there exists a net (ρ_{α}) of bounded linear *A*-bimodule morphisms from *A* into $A \otimes_p A$ such that $\pi_A \circ \rho_{\alpha}(a) - a \to 0$, for every $a \in A$, see [21]. Suppose that $A = \ell^2(\mathbb{N})$. With the pointwise multiplication *A* becomes a Banach algebra. By the main result of [4], *A* is not approximately amenable. But by [21, Example p-3239], *A* is approximately biprojective Banach algebra with a central approximate identity. Then by [11, Proposition 3.8], *A* is pseudo-contractible. So by Lemma 2.2 *A* is a Johnson pseudo-contractible Banach algebra. So there exists a Johnson pseudo-contractible Banach algebra which is not approximately amenable.

Example 4.2. Consider a commutative Banach algebra $A = C^1[0, 1]$. It is wellknown that $\Delta(A) = \{\phi_t : t \in [0, 1]\}$, where $\phi_t(f) = f(t)$ for each $f \in A$. Define $D : A \to \mathbb{C}$ by D(f) = f'(t). Clearly D satisfies $D(fg) = \phi_t(f)g + \phi_t(g)f$. So D is a non-zero point derivation at $\{\phi_t\}$. Thus by [13, Remark 2.4] A is not left ϕ_t -amenable. Thus by Proposition 2.4 A is not Johnson pseudo-contractible.

Example 4.3. Let *A* be a Banach space with dim A > 1 and $\phi \in A^* \setminus \{0\}$. Define $a * b = \phi(b)a$. It is easy to see that (A, *) becomes a Banach algebra.

We claim that *A* is not Johnson pseudo-contractible. We go toward a contradiction and suppose that *A* is Johnson pseudo-contractible. Then by Corollary 2.7, *A* is pseudo-amenable. So *A* has an approximate identity, say (e_{α}) . Then

$$\phi(a)e_{\alpha} - a = e_{\alpha} * a - a \to 0 \quad (a \in A).$$

Take $a_0 \in A$ such that $\phi(a_0) = 1$. So $e_\alpha - a_0 = \phi(a_0)e_\alpha - a_0 = e_\alpha * a_0 - a_0 \to 0$. So a_0 is an identity for A, that is, $a = a * a_0 = a_0 * a = \phi(a)a_0$ $(a \in A)$. It follows that dim A = 1 which is a contradiction.

Acknowledgment. The authors are grateful to the referee for carefully reading the paper, pointing out a number of misprints and for some helpful comments.

References

- W.G. Bade, P.C. Curtis Jr. and H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (3) (1987) 359-377.
- [2] Y. Choi, F. Ghahramani and Y. Zhang, *Approximate and pseudo-amenability of various classes of Banach algebras*, J. Func. Anal. **256** (2009) 3158-3191.
- [3] H. G. Dales, F. Ghahramani and A. Ya. Helemskii, *The amenability of measure algebras*, J. London Math. Soc. **66** (2002) 213-226.
- [4] H. G. Dales, R. J. Loy and Y. Zhang, *Approximate amenability for Banach sequence algebras*, Studia Math. **177** (2005) 81-96.
- [5] M. Dashti, R. Nasr-Isfahani, and S. Soltani Renani, *Character Amenability of Lipschitz Algebras*, Canad. Math. Bull. **57** (1) (2014) 37-41.
- [6] G. H. Esslamzadeh, *Double centralizer algebras of certain Banach algebras*. Monatshette Math. **142** (2004) 193-203.
- [7] M. Essmaili, M. Rostami and A. R. Medghalchi, Pseudo-contractibility and pseudoamenability of semigroup algebras, Arch. Math. 97 (2011) 167-177.
- [8] M. Essmaili, M. Rostami, A. Pourabbas, *Pseudo-amenability of certain semigroup algebras*, Semigroup Forum (2011) 478-484.
- [9] B. E. Forrest and V. Runde, *Amenability and weak amenability of the Fourier algebra*, Math. Z. **250** (2005) 731-744.
- [10] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc. 124 (1996) 1489-1497
- [11] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, Math. Proc. Camb. Phil. Soc. 142 (2007) 111-123.
- [12] F. Gourdeau, Amenability of Banach algebras. Math. Proc. Camb. Philos. Soc. 105 (1989) no. 2 351-355.
- [13] E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Camb. Philos. Soc. 44 (2008) 85-96.

- [14] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955.
- [15] H. Reiter, *L*¹-algebras and Segal Algebras, Lecture Notes in Math. **231** Springer, (1971).
- [16] P. Ramsden, Biflatness of semigroup algebras, Semigroup Forum 79 (2009) 515-530.
- [17] V. Runde Lectures on Amenability, Springer, New York, (2002).
- [18] E. Samei, N. Spronk and R. Stokke, *Biflatness and pseudo-amenability of Segal algebras*, Canad. J. Math. 62 (2010) 845-869.
- [19] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag, (1971).
- [20] N. Weaver, *Lipschitz Algebras*, World Sci. Publ., River Edge, NJ, (1999).
- [21] Y. Zhang, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. 127 (11) (1999) 3237-3242.

Faculty of Basic sciences, Department of Mathematics, Ilam University, P.O.Box 69315-516, Ilam, Iran. email : amir.sahami@aut.ac.ir

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran. email: arpabbas@aut.ac.ir