
Closed range composition operators for

non-injective smooth symbols R → R
d

A. Przestacki
∗

Abstract

In 2011 Kenessey and Wengenroth gave a full description of closed range
composition operators Cψ : C∞(Rd) → C∞(R), F 7→ F ◦ ψ, corresponding to

smooth injective symbols ψ : R → R
d. In 2012 Przestacki gave a sufficient

condition for the range of Cψ to be closed in case if ψ : R → R is a smooth not
necessarily injective symbol. Using their ideas we give a sufficient condition
ensuring that the range of Cψ is closed when ψ : R → R

d is a smooth not
necessarily injective function.

1 Introduction

Let C∞(Rd) be the space of real valued smooth functions on R
d equipped with the

usual topology of uniform convergence of functions and all (partial) derivatives
on compact sets. One of the most important classes of operators acting between
spaces of smooth functions are composition operators, i.e., operators of the form
Cψ : C∞(Rn) → C∞(Rm), F 7→ F ◦ ψ, where ψ : R

m → R
n is a smooth function.

The aim of this paper is to investigate for which smooth symbols ψ : R → R
d the

operator Cψ has closed range. This is an interesting problem with a long history.
In [15] Whitney proved that the composition operator Cψ : C∞(R) → C∞(R)

with the symbol ψ(x) = x2 has closed range. Later on Glaeser [6] showed that if
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ψ : R
m → R

n is a semiproper (i.e., for every compact set K ⊂ R
n there exists a

compact set L ⊂ R
m such that K ∩ ψ(Rm) ⊂ ψ(L)) analytic function with a dense

set of points where its Jacobian has rank equal to n, then the composition operator
Cψ : C∞(Rn) → C∞(Rm) has closed range. Finally, Bierstone and Milman [3],
[4] and Bierstone, Milman and Pawłucki [5] gave a complete characterization of
composition operators with closed range for analytic symbols .

In the case when the symbol of the composition operator is only assumed to be
smooth relatively little is known. One of the most important things in studying
closed range composition operators is investigating the behavior of the closure
of Im Cψ := {F ◦ ψ : F ∈ C∞(Rd)}. In [2] Allan, Kakiko, O’Farrell and Watson

proved that for smooth and injective symbols ψ : R → R
d we have

Im Cψ = { f ∈ C∞(R) : ∀x ∈ R ∃F ∈ C∞(Rd) ∀n ≥ 0 f (n)(x) = (F ◦ ψ)(n)(x)}.

Moreover, as they noted in [1], the proper non-injective analogue of the set from
the right side of above equality should be the following set

Îm Cψ = { f ∈ C∞(R) : ∀x ∈ R
d ∃F ∈ C∞(Rd) ∀a ∈ ψ−1({x}) ∀n ≥ 0

f (n)(a) = (F ◦ ψ)(n)(a)}

and they obtained ([1, Cor. 5]) that we always have Im Cψ ⊂ Îm Cψ. Let us notice
that Tougeron in [14, Thm 1.1 and Thm 1.2] showed that if ψ : R

n → R
m is a real

analytic function, then Im Cψ = Îm Cψ.
Using the result of Allan, Kakiko, O’Farrell and Watson, in 2011 Kenessey and

Wengenroth [8] obtained a full description of closed range composition operators
corresponding to injective symbols ψ : R → R

d. Recall that a point x is called a
flat point of a smooth function function ψ = (ψ1, . . . , ψd) : R → R

d if for every
1 ≤ j ≤ d all derivatives of ψj vanish at x. Recall also that a closed set F ⊂ R

d is
called Whitney regular if for every x ∈ F there are d, δ, C > 0 such that for any
two points y, z ∈ F with ||y − x|| ≤ d, ||z − x|| ≤ d there is a rectifiable curve in F
connecting y and z of length not greater than C||y − z||δ (here || · || stands for the
euclidean distance in R

d). If ψ : R → R
d is smooth, then the set ψ(R) is a curve

and, roughly speaking, it is Whitney regular if it has no sharp cusps. A typical
example of a set of that form which is not Whitney regular is the set ψ(R), where
ψ : R → R

2 is defined by the formula

ψ(x) =

{
(x2, e−

1
x ), x > 0

(x2, 0), x ≤ 0
.

Theorem. (Kenessey, Wengenroth, 2011) Let ψ : R → R
d be a smooth injective func-

tion. The composition operator Cψ : C∞(Rd) → C∞(R) has closed range if and only if
ψ is semiproper, has Whitney regular image and no flat points.

In 2012 in [11], the author gave the following sufficient condition for the range
of Cψ to be closed in case if ψ : R → R is a smooth not necessarily injective symbol
(in some cases this condition is also necessary - see [12, 13]). For every y ∈ R the
set ψ−1({y}) is called the fiber of ψ over y.
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Theorem. (Przestacki, 2012) Let ψ : R → R be a smooth semiproper function such that
every fiber over a boundary point of ψ(R) contains a non-flat point and every fiber over
an interior point of ψ(R) contains either a non-flat non extreme point or both a non-flat

local minimum and a non-flat local maximum. Then Im Cψ = Im Cψ = Îm Cψ.

In this paper we prove the following theorem which gives a sufficient con-
dition for the range of Cψ to be closed in case if ψ : R → R

d is a smooth not
necessarily injective function. Note that for two different points a, b ∈ R by [a, b]
(or (a, b)) we denote the closed (or open) interval with endpoints a and b.

Theorem. Let ψ : R → R
d be a smooth function satisfying the following conditions:

1. For every b ∈ ψ(R) there are an open neighbourhood Ub of b, non-flat points
a1, . . . , an ∈ ψ−1({b}), and nonzero δ1, . . . , δn ∈ R such that:

(a) ψ([ai , ai + δi]) ∩ ψ([aj, aj + δj]) = {b} for every 1 ≤ i 6= j ≤ n;

(b) Ub ∩ ψ(R) ⊂
⋃n

i=1 ψ([ai , ai + δi]);

(c) ψ restricted to [ai, ai + δi] is injective for every 1 ≤ i ≤ n.

2. The set ψ(R) is closed and Whitney regular.

Then

Im Cψ = Im Cψ = Îm Cψ.

It is easy to see that our result extends the sufficiency part of the theorem
due to Kenessey and Wengenroth and generalizes the mentioned result of Przes-
tacki. Indeed, the conditions in our main theorem imply that the function ψ is
semiproper and that there are no flat points in the injective case and there are
sufficiently many non-flat points in the non-injective case.

The following examples illustrate our result. The function ϕ : R → R is

defined by the formula ϕ(x) = e−1/x2
for x 6= 0 and ϕ(0) = 0.

Example 1.1. Let ψ1, ψ2, ψ3 : R → R
2 be functions defined by the formulas: ψ1(x) =

(x, x2),

ψ2(x) =
(

x · ϕ(x), x2 · ϕ2(x)
)

,

ψ3(x) =

{(
x · ϕ(x), x2 · ϕ2(x)

)
, x < 0(

(x2 − x) · ϕ(x), (x2 − x)2 · ϕ2(x)
)

, x > 0
.

Those functions are smooth, semiproper, and ψ1(R) = ψ2(R) = ψ3(R). Moreover, one
can easily check that those sets are Whitney regular. Since ψ1 is injective and has no flat
points, the result of Kenessey and Wengenroth implies that the range of Cψ1

is closed. The
same result implies that the range of Cψ2 is not closed because ψ2 is injective and 0 is a flat
point of ψ2. The function ψ3 is not injective and one can easily check that the conditions

in our theorem are satisfied (observe that ψ−1
3 ({(0, 0)}) = {0, 1}) and, therefore, Cψ3

has closed range.
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Example 1.2. Let ψ : R → R
2 be defined by the formula

ψ(x) =

{(
−(x2 + x) · ϕ(x), 0

)
, x < 0

(sin (x · ϕ(x)) , cos (x · ϕ(x))− 1) , x > 0
.

This function is smooth, semiproper and one can check that the image of ψ is equal to the
union of the set {(x, 0) : x ≤ c}, where c is a constant bigger than 0 and the circle of
radius 1 with center at (0,−1). The image of ψ is Whitney regular and it is easy to check
that ψ has sufficiently many non-flat points and, therefore, by our theorem the range of
Cψ is closed.

Unfortunately, we do not know what happens if a function ψ does not satisfy
the conditions of our theorem. In particular, we do not know what happens if
ψ has a fiber containing only flat points (the answer is not known even in the
one-dimensional case) or if the image of ψ has too many self-intersections.

2 Tools

In order to prove our main theorem we will need the following lemmas which
are all contained in [8]. The first one is an easy consequence of Rolle’s theo-
rem. Recall that a point x0 ∈ R is called a critical point of a smooth function
ψ = (ψ1, . . . , ψd) : R → R

d if ψ′
j(x0) = 0 for 1 ≤ j ≤ d.

Lemma 2.1. Let ψ : R → R
d be smooth. If x0 is a non-flat point of ψ, then there exists

ε > 0 such that the only possible critical point of ψ in [x0 − ε, x0 + ε] is x0.

By D([a, b]) we denote the space of all functions on [a, b] which are restric-
tions of smooth functions on R with support contained in [a, b], with the topology
inherited from C∞(R).

Lemma 2.2. Let ψ : [a, b] → [c, d] be a smooth bijection without critical points or with
one non-flat critical point at a. Then the composition operator

Cψ−1 : D([a, b]) → D([c, d]), F 7→ F ◦ ψ−1

is well-defined and continuous.

The following lemma will play a crucial role in the proof of our main theorem.
This lemma and its proof is contained in Step 2 of the proof of the main result in
[8] which deals with composition operators corresponding to injective symbols.
However, an easy examination of that proof allows us to transfer it to the non-
injective case. We include the proof for the convenience of the reader. Recall that
a smooth function G ∈ C∞(Rd) is called flat at a point x0 if all (partial) derivatives
of this function vanish at x0. For f ∈ C∞(Rd), n ∈ N, and K ⊂ R

d

‖ f‖n,K := max
x∈K

max
0≤|α|≤n

∣∣∣∣∣
∂|α| f

∂xα
(x)

∣∣∣∣∣ .
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Lemma 2.3. Let ψ = (ψ1, . . . , ψd) : R → R
d be a smooth function and let a, b ∈ R.

Assume that:

1. There is an index 1 ≤ j ≤ d such that the only possible critical point of ψj in [a, b]
is a at which ψj is non-flat.

2. The set ψ(R) is closed and Whitney regular.

3. There exists an open set W ⊂ R
d such that W ∩ ψ(R) = ψ((a, b)).

Let

X = {G ∈ C∞(Rd) : G is equal to zero and is flat on ψ(R)\ψ((a, b))}.

Then the operator
T : X → D([a, b]), G 7→ G ◦ ψ|[a,b]

is surjective.

Proof. Let πj : R
d → R be the projection on the j-th coordinate, i.e, πj(x1, . . . , xd) =

xj. From the first assumption of the lemma it follows that the set

{x ∈ R
d : πj(x) ∈ ψj((a, b))}

is open. Thus the set

U = W ∩ {x ∈ R
d : πj(x) ∈ ψj((a, b))}

is also open and moreover

U ∩ ψ(R) = ψ((a, b)).

Note that the function
ψj : (a, b) → ψj((a, b))

has a smooth inverse.
Step 1.
First we will show that the space D((a, b)) of functions from D([a, b]) with sup-
port contained in (a, b) belongs to the image of T. Let g ∈ D((a, b)) be arbitrary.
We can find a smooth function Φg such that

supp(Φg) ⊂ U, Φg = 1 near ψ(supp(g)).

Consider now the function G defined by the formula

G(x) = Φg(x) · (g ◦ ψ−1
j ◦ πj)(x)

for every x ∈ U and as zero outside the set U. It is clear that G is smooth and that
G ∈ X. Of course we have G ◦ ψ|[a,b] = g.

Step 2. Note that D((a, b)) is dense in D([a, b]). Hence, from Step 1, to prove the
lemma it is enough to show that the range of T is closed. To prove this it suffices
to show (see [9, Thm. 26.3]) that

Ker(T)◦ ⊂ Range(Tt),
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where Tt : D([a, b])′ → X′ is the transposed operator and Ker(T)◦ is the polar set
of the kernel of the operator T, i.e.,

Ker(T)◦ = {u ∈ X′ : u(G) = 0 for all G ∈ X with G ◦ ψ|[a,b] = 0}.

Take u ∈ Ker(T)◦. By Hahn-Banach theorem, we can extend u to a distribution
with compact support û ∈ C∞(Rd)′. It is easy to see that the support of û is
contained in ψ(R). Our aim is to find v in D([a, b])′ such that

v(G ◦ ψ) = u(G)

for all G ∈ X.
First we will define v on D((a, b)). From Step 1 we know that every

g ∈ D((a, b)) can be written as G ◦ ψ, where G ∈ X. We define

v(g) = u(G).

This definition makes sense since u ∈ Ker(T)◦. We will show that v is continuous
on D((a, b)) with the topology inherited from D([a, b]). Since the set ψ(R) is
Whitney regular, there is a natural number n and C > 0 such that

|û(F)| ≤ C‖F‖n,ψ(R)

for every F ∈ C∞(Rd) (see [7, Thm. 2.3.11]). This gives us that

|v(g)| = |u(G)| = |û(G)| ≤ C‖G‖n,ψ(R)

for every smooth function G ∈ X such that g = G ◦ ψ. With the specific choice of
the function G from Step 1 we obtain that

|v(g)| ≤ C‖G‖n,ψ(R) = C‖Φg · (g ◦ ψ−1
j ◦ πj)‖n,ψ(R)∩U.

The properties of the functions g and Φg imply that

‖Φg · (g ◦ ψ−1
j ◦ πj)‖n,ψ(R)∩U = ‖g ◦ ψ−1

j ◦ πj‖n,ψ([a,b]).

Now the projection πj and the function ψ−1
j induce continuous composition op-

erators (see Lemma 2.2) and therefore, altogether, we can find a natural number
k and D > 0 such that

|v(g)| ≤ D‖g‖k,[a,b].

This shows that v is continuous. Hence, by continuity, we can extend it to
v̂ ∈ D([a, b])′ . Now, we have to verify that

v̂(G ◦ ψ) = u(G)

for every G ∈ X. If G ∈ X is such that G ◦ ψ|[a,b] ∈ D((a, b)), then from the
construction it is clear that

v̂(G ◦ ψ) = u(G).

To finish the proof it is enough to show that the linear subspace

Y = {G ∈ X : G ◦ ψ|[a,b] ∈ D((a, b))}

is dense in X. To do this we prove that every w ∈ X′ which vanishes on Y also
vanishes on X. Let w ∈ X′ be a linear functional which vanishes on Y. We can
extend w using Hahn-Banach theorem to a distribution with compact support ŵ.
It is easy to see that the support of ŵ is contained in ψ(R)\ψ((a, b)). Using this,
the definition of X, and [7, Thm. 2.3.3] we conclude that ŵ vanishes on X.
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3 Proof of the main result

Throughout this section we assume that ψ : R → R
d is a smooth function

satisfying the conditions of the main theorem. Our goal is to show that Im Cψ

is closed and equal to its formal closure Îm Cψ. As noted in the Introduction, it is
well-known (see [1, Cor. 5]) that

Im Cψ ⊂ Im Cψ ⊂ Îm Cψ

and hence to prove the theorem it is enough to show

Îm Cψ ⊂ Im Cψ.

Let f ∈ Îm Cψ be an arbitrary function. We will show that for every b ∈ ψ(R)

we can find an open set Wb ⊂ R
d containing b and a function Fb ∈ C∞(Rd)

satisfying

Fb ◦ ψ = f on ψ−1(Wb).

This is enough. Indeed, the family {Wb : b ∈ ψ(R)} forms an open covering of
the closed set ψ(R). Let {ϕb : b ∈ ψ(R)} be a smooth partition of unity associated
to this covering, i.e., let {ϕb : b ∈ ψ(R)} be a family of smooth function on R

d

such that

0 ≤ ϕb ≤ 1, supp(ϕb) ⊂ Wb, {supp(ϕb) : b ∈ ψ(R)} is locally finite,

and ∑
b∈ψ(R)

ϕb = 1 on ψ(R).

Such a partition of unity exists by [10, Thm. 1.2.3 and Cor. 1.2.6]. Consider now
the function

F = ∑
b∈ψ(R)

ϕb · Fb.

Clearly F is a smooth function on R
d and it is easy to verify that

F ◦ ψ = f .

Let us now fix b ∈ ψ(R). We will proceed now with constructing an open set
Wb containing b and a function Fb ∈ C∞(Rd) such that Fb ◦ ψ = f on ψ−1(Wb).
Step 1.
From the assumptions of the theorem we can find an open set Ub ⊂ R

d containing
b, non-flat points a1, . . . , an ∈ ψ−1({b}) and nonzero δ1, . . . , δn ∈ R such that the
conditions (a), (b), (c) in the theorem are satisfied. Using Lemma 2.1 and the
continuity of ψ we can find nonzero numbers ε1, . . . , εn ∈ R such that

• |εi| ≤ |δi| for 1 ≤ i ≤ n;

• sign(εi) = sign(δi) for 1 ≤ i ≤ n;

• ψ([ai , ai + εi ]) ⊂ Ub for 1 ≤ i ≤ n;
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• for every 1 ≤ i ≤ n there is 1 ≤ j ≤ d such that the only possible critical
point of ψj in [ai , ai + εi] is ai.

The set

Wb = Ub\
n⋃

i=1

ψ([ai + εi/2, ai + δi])

is open and it is clear that b ∈ Wb.
Step 2.
For every 1 ≤ i ≤ n the set

Wi = Ub\


ψ([ai + εi, ai + δi]) ∪

⋃

j 6=i

ψ([aj, aj + δj])




is open and satisfies
Wi ∩ ψ(R) = ψ((ai , ai + εi)).

For every 1 ≤ i ≤ n let

Xi = {G ∈ C∞(Rd) : G is equal to zero and is flat on ψ(R)\ψ((ai , ai + εi))}

and let
Ti : Xi → D([ai , ai + εi ]), G 7→ G ◦ ψ|[ai,ai+ε i]

.

The above considerations show that the assumptions of Lemma 2.3 are satisfied
and thus the operator Ti is surjective for 1 ≤ i ≤ n.
Step 3.
Let Ω1, . . . , Ωn and Ωb be open, disjoint neighborhoods of the points
ψ(a1 + ε1), . . . , ψ(an + εn) and b, respectively. We choose smooth functions
ϕ1, . . . , ϕn and ϕb such that

ϕi = 1 near ψ(ai + εi), supp(ϕi) ⊂ Ωi for 1 ≤ i ≤ n

and
ϕb = 1 near b, supp(ϕb) ⊂ Ωb.

From the definition of Îm Cψ we can find smooth functions F1, . . . , Fn and Fb such
that

f − (ϕi ◦ψ) · (Fi ◦ψ) is equal to zero and is flat on ψ−1({ψ(ai + εi)}) for 1 ≤ i ≤ n

and
f − (ϕb ◦ ψ) · (Fb ◦ ψ) is equal to zero and is flat on ψ−1({b}).

From the properties of the functions ϕ1, . . . , ϕn and ϕb it follows that the function

g = f − (ϕb ◦ ψ) · (Fb ◦ ψ)−
n

∑
i=1

(ϕi ◦ ψ) · (Fi ◦ ψ)

is equal to zero and is flat on the set

ψ−1({b}) ∪
n⋃

i=1

ψ−1({ψ(ai + εi)}).
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Thus, for 1 ≤ i ≤ n the restriction of g to the interval [ai, ai + εi] belongs to
D([ai , ai + εi]). From Step 2 (the surjectivity of the operators Ti) we can find
smooth functions Gi ∈ Xi such that

Gi ◦ ψ|[ai,ai+ε i]
= g|[ai,ai+ε i]

for 1 ≤ i ≤ n.

Since g ∈ Îm Cψ, it is constant on fibers of ψ and therefore

Gi ◦ ψ = g on ψ−1(ψ([ai , ai + εi])) for 1 ≤ i ≤ n.

Moreover, the definition Xi implies that Gi ◦ ψ vanishes on ψ−1(ψ([aj , aj + ε j]))
for j 6= i and thus

n

∑
i=1

Gi ◦ ψ = g on
n⋃

i=1

ψ−1(ψ([ai , ai + εi]).

Therefore

f = (ϕb ◦ψ) · (Fb ◦ψ)+
n

∑
i=1

Gi ◦ψ +
n

∑
i=1

(ϕi ◦ψ) · (Fi ◦ψ) on
n⋃

i=1

ψ−1(ψ([ai , ai + εi]).

This shows that we can find a smooth function F such that

f = F ◦ ψ on
n⋃

i=1

ψ−1(ψ([ai , ai + εi]).

To finish the proof it is enough to observe that

ψ−1(Wb) ⊂
n⋃

i=1

ψ−1(ψ([ai , ai + εi]).
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