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Abstract

A topology τ on a nonempty set X is called a clopen topology provided
each member of τ is both open and closed. Given a function f from X to
Y, the operator E 7→ f−1( f (E)) is a closure operator on the power set of X
whose fixed points are closed subsets corresponding to a clopen topology on
X. Conversely, for each clopen topology τ on X, we produce a function f
with domain X such that τ = {E ⊆ X : E = f−1( f (E))}. We characterize
the clopen topologies on X as those that are weak topologies determined by
a surjective function with values in some discrete topological space. Paral-
leling this result, we show that a topology admits a clopen base if and only
if it is a weak topology determined by a family of functions with values in
discrete spaces.

1 Introduction

In any course on mathematical notation and proof, students consider the operator
E 7→ f−1( f (E)) on the power set P(X) of a nonempty set X where f is a function
from X to some other nonempty set Y. Invariably, they are asked to show that (1)
∀E ⊆ X, E ⊆ f−1( f (E)), and (2) the operator is the identity map on the power set
if and only if f is one-to-one.

Recall that an operator Γ on P(X) is called a (Kuratowski) closure operator (see
[4, pp. 38-45] or [7, p. 25]) if it satisfies the following four properties:

• Γ(∅) = ∅;
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• ∀E ⊆ X, E ⊆ Γ(E);

• ∀E ⊆ X, Γ(Γ(E)) = Γ(E);

• ∀E1, E2 in P(X), Γ(E1 ∪ E2) = Γ(E1) ∪ Γ(E2).

Given a topology τ on X, the operator

E 7→ cl(E) := {x ∈ X : x ∈ V ∈ τ ⇒ V ∩ E 6= ∅}

satisfies the above four conditions, and {E ⊆ X : cl(E) = E} is the family of
closed sets as determined by τ. Conversely, given a closure operator Γ on P(X),
the family of fixed points of Γ, that is, {E ⊆ X : Γ(E) = E}, is the family of closed
sets corresponding to some topology on X.

Our particular operator E 7→ f−1( f (E)) is a closure operator on X, and it is
not hard to show that the complement of each set E satisfying f−1( f (E)) = E
also satisfies this property. This means that each open subset with respect to
the induced topology is also closed. We call a topology τ on X clopen provided
each member of τ is also τ-closed. Clopen topologies are evidently stable under
taking complements of its members, and are also stable under taking arbitrary
intersections as well as arbitrary unions. In terms of order (as determined by
inclusion), this means that the clopen sets of a clopen topology form a complete
Boolean algebra, while the clopen sets as determined by an arbitrary topology
just form a Boolean algebra. For the record, we note that each Boolean algebra is
isomorphic to the clopen sets of its so-called Stone space [5].

Of course, the familiar discrete and indiscrete topologies on a nonempty set
X are clopen topologies; the indiscrete topology is the only connected clopen
topology on X. Here is a nontrivial clopen topology on X = {a, b, c, d}:

{∅, {a}, {d}, {b, c}, {a, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}.

Clopeness of spaces is evidently preserved under topological sums and
quotients. Herrlich [2, p. 207] observed that a topological space is clopen if and
only if (1) 〈X, τ〉 is a topological sum of indiscrete spaces, if and only if (2) the
Kolmogorov quotient of 〈X, τ〉, that is, the T0-reflection of the space, is discrete
(see Corollary 3.2 below). Because of (1), clopen spaces have been called indis-
cretely generated [2] or locally indiscrete [3] in the literature.

The main result of this note shows that each clopen topology on X arises from
an operator of the form E 7→ f−1( f (E)) for an appropriate function f with do-
main X. We also show that each clopen topology on X arises as a weak topology
as determined by a surjection from X to an appropriately chosen discrete space.
Care is taken to compare and contrast clopen topologies with topologies having
a clopen base.
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2 Preliminaries

In the sequel we denote the positive integers by N, the rationals by Q, and the
real numbers by R. By a partition {Aj : j ∈ J} of a set X, we mean a cover of X
consisting of nonempty subsets such that ∀j1, j2 ∈ J, Aj1 ∩ Aj2 6= ∅ ⇒ Aj1 = Aj2 .
We write χA : X → {0, 1} for the characteristic function for a subset A of a
nonempty set X.

We denote a nonempty set X equipped with a topology τ by the notation
〈X, τ〉. We call a topological space 〈X, τ〉 discrete if τ is the discrete topology.

Suppose X is a nonempty set, and {〈Yj, σj〉 : j ∈ J} is a family of topologi-
cal spaces, and ∀j ∈ J, f j : X → Yj. Then the topology generated by the family

{ f−1
j (V) : V ∈ σj, j ∈ J} is the weakest topology τ on X for which each

f j : 〈X, τ〉 → 〈Y, σj〉 is continuous and is called the weak topology on X determined
by f [7, p. 55]. We denote the weak topology by τ{ f j:j∈J}.

For a general topological space 〈X, τ〉, if x ∈ X, we put

[x] := ∩{V ∈ τ : x ∈ V}.

That [x] = {x} for all x ∈ X is equivalent to 〈X, τ〉 satisfying the T1-separation
axiom. When 〈X, τ〉 is a clopen space, then {[x] : x ∈ X} forms a base for the
topology, for if x ∈ V ∈ τ, then x ∈ [x] ⊆ V. In this setting, we call {[x] : x ∈ X}
the essential base for the topology, as each base must contain these sets. Clearly, a
clopen topology is T0 if and only if it is discrete. Notice that the essential base for
the clopen topology on {a, b, c, d} of the Introduction partitions the underlying
set, and this is no accident.

Each subspace of a clopen space is a clopen space; in fact, the essential base
for the relative topology is the trace of the essential base for the underlying space
on the subspace. However, a product of clopen spaces need not be one: if we
equip {0, 1} with the discrete topology, then {0, 1}N being homeomorphic to the
Cantor set as a subspace of the line [7, p. 217] is not a clopen space. We leave the
easy proof of the next proposition that we will use in the sequel to the reader.

Proposition 2.1. Let X be a nonempty set and let 〈Y, σ〉 be a clopen space. If f : X → Y
is any function, then { f−1(V) : V ∈ σ}, the weak topology on X determined by { f}, is
a clopen topology on X.

It can be shown that the essential base for the weak topology in Proposition
2.1 consists of { f−1([y]) : y ∈ f (X)} (see Theorem 3.5 below). We next prove a
partial converse to Proposition 2.1.

Proposition 2.2. Let 〈Y, σ〉 be a topological space and let f : X → Y be onto. Suppose
that the weak topology τ{ f } on X is clopen. Then 〈Y, σ〉 is a clopen space.

Proof. Since V ∈ σ if and only if f−1(V) ∈ τ{ f }, by [1, Prop 2.4.3], 〈Y, σ〉 is home-
omorphic to a quotient of a clopen space.

A topological space with a clopen base is called zero-dimensional [7, p. 210].
Such spaces perhaps originate in a paper of Vedenissoff [6], who proved that a
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Hausdorff space has a clopen base if and only if it is homeomorphic to a subspace
of a product of 2-point discrete spaces. That a topological space 〈X, τ〉 has a base
consisting of clopen subsets is not enough to conclude that 〈X, τ〉 is a clopen
space: Q as a subspace of R has a clopen base consisting of all sets of the form
(α, β) ∩ Q where α < β are irrationals. As another example, the standard base for
the Sorgenfrey line [7, p. 34] is also a clopen base.

Our next result directly connects topological spaces with a clopen base with
clopen topologies.

Theorem 2.3. Let 〈X, τ〉 be a topological space. The following conditions are equivalent:

1. τ has a clopen base B;

2. τ is the weak topology determined by a family of functions each with domain X and
with values in {0, 1} equipped with the discrete topology;

3. τ is the weak topology determined by a family of functions each with domain X and
with values in a clopen space (that can vary with the function);

4. τ is the supremum of a family of clopen topologies on X (with respect to the lattice
of topologies on X).

Proof. (1) ⇒ (2). The desired family of functions is {χB : B ∈ B}. Since B

consists of clopen subsets of X, the generating sets for the weak topology consists

only of elements of τ, and furthermore, B = {χ−1
B ({1}) : B ∈ B} generates the

topology.

(2) ⇒ (3). This is trivial.

(3) ⇒ (4). If the family of functions in (3) is { f j : X → 〈Yj, σj〉 : j ∈ J}, then
by Proposition 2.1, the weak topology generated by each f j, namely

{ f−1
j (V) : V ∈ σj}

is a clopen topology, and τ is the smallest topology containing the individual
weak topologies.

(4) ⇒ (1). Suppose τ is the the supremum of {τj : j ∈ J} where each τj is
clopen; then ∪j∈Jτj is a family of subsets of X generating τ and each member is
clopen with respect to τ. Since a finite intersection of τ-clopen sets is τ-clopen,
finite intersections of members of ∪j∈Jτj form a clopen base for τ.

We also could have listed in Theorem 2.3 as an additional characteristic prop-
erty for zero-dimensionality this known one but chose not to: τ is the weak topol-
ogy determined by a family of functions each with domain X with values in
a zero-dimensional space (that can vary with the function). For the benefit of
the reader, we include a short direct argument for (1) ⇒ (4) of Theorem 2.3:
τ =

∨

B∈B τB where for each B ∈ B, τB := {∅, B, Bc, X}.
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The proof of Theorem 2.3 shows that if a topological space has a clopen base,
then it is the weak topology determined by the characteristic functions for the
members of that base. In view of [7, Theorem 8.10], this yields the following
attractive corollary.

Corollary 2.4. Let 〈X, τ〉 be a topological space with clopen base B, and let 〈Y, σ〉 be a
second topological space. Then f : Y → X is continuous if and only if ∀B ∈ B, χB ◦ f
is continuous.

3 Results

We first show that in a clopen space 〈X, τ〉, the essential base partitions X. With
this in mind, we will write x1 ≡ x2 in X if [x1] = [x2].

Proposition 3.1. Let 〈X, τ〉 be a clopen space. Then {[x] : x ∈ X} partitions X.
Conversely, if a topological space has the property that {[x] : x ∈ X} is a locally finite
family of closed sets, then the space is already clopen.

Proof. Without the clopenness assumption, these sets cover X. It remains to show
that if x1 ∈ [x2], then [x1] = [x2]. By definition, each open set containing x2

contains x1 and so [x1] ⊆ [x2]. For the reverse inclusion, suppose [x1] fails to
contain [x2]. Take p ∈ [x2]\[x1]; there exists some open neighborhood V of x1

with p /∈ V. Now x2 /∈ V either, else p ∈ [x2] ⇒ p ∈ V. Then Vc would be a
neighborhood of x2 that fails to contain x1, contradicting x1 ∈ [x2]. We conclude
that [x2] ⊆ [x1], so that [x2] = [x1].

For the converse, simply note that if V ∈ τ, then by definition, V = ∪x∈V [x],
and the union of a locally finite family of closed sets is closed [7, Lemma 20.5].

The condition that {[x] : x ∈ X} be a partition of X by closed sets is not
enough to guarantee that the space is clopen, for in any T1 space 〈X, τ〉,
{[x] : x ∈ X} consists of the singleton subsets of X.

Corollary 3.2. Let 〈X, τ〉 be a clopen space. Then each nonempty V ∈ τ can be written
uniquely as a union of sets from the essential base: namely, V can only be expressed as
the union of all the essential basic open sets that it contains.

Corollary 3.3. Let 〈X, τ〉 be a clopen space. The following are equivalent:

1. 〈X, τ〉 is compact;

2. the essential base for the topology is finite;

3. the topology τ consists of a finite family of sets.

Corollary 3.4. Each clopen space 〈X, τ〉 is pseudo-metrizable.

Proof. A compatible pseudometric d is given by d(x1, x2) = 0 if x1 ≡ x2 and
d(x1, x2) = 1 otherwise. The open balls of radius at most one as determined by d
consist of members of the essential base, while balls of larger radii give X.
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Theorem 3.5. Let f : X → 〈Y, σ〉 be onto and equip X with the weak topology τ{ f }.

Suppose 〈Y, σ〉 is clopen so that 〈X, τ{ f }〉 is as well. Then [y] 7→ f−1([y]) is a bijection

from the essential base of 〈Y, σ〉 to the essential base of 〈X, τ{ f }〉.

Proof. Let p ∈ f−1([y]). We claim [p] = f−1([y]). First, since [p] ∈ τ{ f },, ∃V ∈ σ

with [p] = f−1(V). Now V = (V − [y]) ∪ (V ∩ [y]). If V − [y] were nonempty,
then by surjectivity f−1(V − [y]) ∩ [p] 6= ∅ and this contradicts f−1(V − [y]) ∩
f−1([y]) = ∅ because [p] ⊆ f−1([y]) ∈ τ{ f }. This establishes the claim.

Obviously the map [y] 7→ f−1([y]) is one-to-one as the preimage operator pre-
serves disjointness. To see it is onto, fix x ∈ X and consider [x]. Since [x] ∈ τ{ f },

∃V ∈ σ with f−1(V) = [x]. Now if V 6= [y] for some y ∈ Y, then by Proposition
3.1, ∃y1, y2 ∈ V with [y1] ∩ [y2] = ∅ and [y1] ∪ [y2] ⊆ V. Then f−1([y1]) and
f−1([y2]) are disjoint nonempty open subsets of [x] which is impossible.

We next verify that if f : X → Y is a function between nonempty sets X and
Y, then E 7→ f−1( f (E)) a is closure operator.

Proposition 3.6. Let f : X → Y where X, Y are nonempty sets; then Γ(E) = f−1( f (E))
is a closure operator on P(X).

Proof. The properties Γ(∅) = ∅ and E ⊆ Γ(E) are obvious from the definition of
Γ. That Γ preserves unions of size two follows from the fact that both the direct
image and preimage operators preserve arbitrary unions. Finally, idempotency
follows from the formula

f ( f−1( f (E)) = f (E), E ⊆ X

which is valid in general.

We denote the topology on X associated with our closure operator by τf , that
is,

τf := {Ec : f−1( f (E)) = E}.

We now prove that each member of τf is closed as well.

Proposition 3.7. Let X and Y be nonempty sets and let f : X → Y. Suppose for some
E ⊆ X, we have f−1( f (E)) = E. Then f−1( f (Ec)) = Ec.

Proof. We need only show that f−1( f (Ec)) ⊆ Ec. To this end, let x ∈ f−1( f (Ec)).
As f (x) ∈ f (Ec), there exists p ∈ Ec with f (p) = f (x). Now if x ∈ E were
true, then p ∈ f−1( f (E)) = E which is impossible. We conclude that x ∈ Ec as
required.

We now come to the main result of this note.

Theorem 3.8. Let 〈X, τ〉 be a topological space. Then the space is clopen if and only if
there exists a function f with domain X such that τ = τf .
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Proof. Sufficiency has been established by Proposition 3.7. For necessity,
let Y = {[x] : x ∈ X} and define f : X → Y by f (x) = [x] (x ∈ X). We
intend to show that τ = {E ⊆ X : f−1( f (E)) = E}. Now it is clear that
f−1( f (E)) = ∪e∈E [e]. Furthermore, since the space is clopen, a nonempty subset
A of X is open if and only if A = ∪a∈A[a]. Thus, E is a fixed point of the operator
if and only E ∈ τ, that is, τ = τf .

Returning to our clopen topology on {a, b, c, d} of the Introduction, we see
that an appropriate function f relative to Theorem 3.8 is given by f (a) = {a},
f (d) = {d}, and f (b) = f (c) = {b, c}.

Given a nonempty set X, a topological space 〈Y, σ〉, and a function f : X → Y,
we now provide necessary and sufficient conditions for the coincidence of τf and
τ{ f }.

Theorem 3.9. Let X be a nonempty set, let 〈Y, σ〉 be a topological space, and let f be a
function from X to Y. The following conditions are equivalent:

1. τf = τ{ f };

2. the relative topology on f (X) determined by σ is discrete.

Proof. (1) ⇒ (2). Suppose condition (2) fails. Then there exists y0 ∈ f (X) such
that ∀V ∈ σ, V ∩ f (X) 6= {y0}. Now f−1({y0}) is a fixed point of the operator
f−1( f (·)), that is, f−1({y0}) ∈ τf . But f−1({y0}) /∈ τ{ f }, because if y0 ∈ V ∈ σ,

then V ∩ f (X) contains {y0} properly so that f−1(V) contains f−1({y0}) properly.
Thus, condition (1) fails.

(2) ⇒ (1). Let A ∈ τ{ f } be nonempty. By definition, there exists V ∈ σ with

f−1(V) = A. It follows that

f−1( f (A)) ⊆ f−1(V) = A,

so that f−1( f (A)) = A, i.e., A belongs to τf . For the reverse inclusion, let A ∈ τf

be nonempty. By the discreteness of the relative topology on f (X), there exists
V ∈ σ with f (A) = V ∩ f (X) so that

f−1(V) = f−1(V ∩ f (X)) = f−1( f (A)) = A.

We have shown that A ∈ τ{ f } and this completes the proof.

Our final result of this section, which complements Theorem 2.3, explains
exactly how clopen topologies arise as weak topologies.

Theorem 3.10. A topology τ on a nonempty set X is a clopen topology if and only if it
is the weak topology on X induced by a surjective function from X to a discrete space.

Proof. Sufficiency is a consequence of Proposition 2.1. For necessity, from Theo-
rem 3.8, τ = τf where f is a function with domain X, and without loss of gener-
ality, we can replace the target space by f (X) without affecting the validity of the
equality. From Theorem 3.9, τf is the weak topology determined by the corestric-
tion of f to f (X), equipped with the discrete topology.
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As a courtesy to the reader, we include a less abstract argument for necessity
in our last result. Suppose 〈X, τ〉 is a clopen space. Equip Y = {[x] : x ∈ X} with
the discrete topology (note that this is the Kolmogorov quotient of the original
space), and define f : X → Y by f (x) = [x]. If E is a subset of Y then f−1(E) =
∪{[x] : [x] ∈ E} which is a union of members of τ. Conversely, if V ∈ τ, then

V = ∪x∈V [x] = f−1({[x] : x ∈ V})

and {[x] : x ∈ V} is open in the discrete target space.

4 The Sorgenfrey Line

As we observed earlier, each topology with a clopen base is trivially a supremum
of four-element clopen topologies. However, a supremum of clopen topologies
can sometimes be achieved in a more illuminating way. We provide a construc-
tion of the Sorgenfrey line [7, p. 34] as the supremum of a family of clopen topolo-
gies using our closure operator Γ. We will denote the Sorgenfrey topology on R,
having as a base all half-open intervals of the form [a, b) with a < b, by τS .

Consider the equivalence relation on R given by x ∼ y if x − y ∈ Q. Let
x/ ∼ := {y ∈ R : x ∼ y} and X/ ∼ := {x/ ∼ : x ∈ R}. Let J be a set of repre-
sentatives for the blocks in X/∼. For each α ∈ J and n ∈ N, define fα,n : R → R

by fα,n(x) := ⌊n(x − α)⌋, where ⌊·⌋ is the floor function, also known as the great-
est integer function. For α ∈ J, let Fα := { fα,n : n ∈ N}. For fα,n ∈ Fα, put
Γα,n := f−1

α,n ( fα,n(·)). We define the topology ρα,n on R to be the clopen topology
determined by the closure operator Γα,n on P(R).

Fix α ∈ J and n ∈ N, and let x ∈ R. Then x may be expressed as α + y
for some y ∈ R and y in turn may be expressed as y = m

n + r with m ∈ Z and

r ∈ [0, 1
n ). Therefore,

fα,n(x) = ⌊n(x − α)⌋ = ⌊m + nr⌋ = m

because nr ∈ [0, 1).
Thus Γα,n({x}) = [α + m

n , α + m+1
n ) and so the essential basic open sets of ρα,n

are Bα,n := {[α + m
n , α + m+1

n ) : m ∈ Z}.
For α ∈ J, let ρα be the supremum of the topologies {ρα,n : n ∈ N}. Then, we

write ρ for the supremum of the topologies {ρα : α ∈ J}

Proposition 4.1. Let α ∈ J.

1. ρα contains all open intervals and half-open intervals of the form
{[x, r) : x ∈ α/∼, r ∈ R, r > x};

2. ρ = τS.
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Proof. (1) Let a, b ∈ R with a < b and let x ∈ (a, b). Then ∃n ∈ N such that
a < x − 1

n and x + 1
n < b. As before, we may express x as x = α + m

n + r for some

n ∈ N, m ∈ Z and r ∈ [0, 1
n). Since ρα,n ⊆ ρα, x ∈ [α + m

n , α + m+1
n ) ∈ ρα and

[α + m
n , α + m+1

n ) ⊆ (a, b). This shows that ρα contains the usual topology of the
real line.

Next let x ∈ α/ ∼ and r ∈ R, r > x. As we have just seen, (x, r) ∈ ρα.
Let n ∈ N satisfy 1

n < r − x. Then [x, x + 1
n) ∈ ρα and so [x, r) contains a

ρα-neighborhood of each of its points.
(2) For each α ∈ J, ρα ⊆ τS and ρα is generated by the half-open intervals that

include their minimum in α/ ∼. Since X = ∪α∈J α/ ∼, the supremum ρ of the
topologies ρα, α ∈ J, contains all half-open intervals of the form [a, b) where a < b
are otherwise arbitrary real numbers.

5 On the operator E 7→ f ( f−1(E))

Recall that an operator Θ on P(Y) is called an interior operator if it satisfies these
four properties [7, p. 27]

• Θ(Y) = Y;

• ∀E ⊆ Y, E ⊇ Θ(E);

• ∀E ⊆ Y, Θ(Θ(E)) = Θ(E);

• ∀E1, E2 in P(Y), Θ(E1 ∩ E2) = Θ(E1) ∩ Θ(E2).

If f : X → Y, we are led to dually look at E 7→ f ( f−1(E)) on P(Y) to see if it is
an interior operator. The first bullet point fails unless f is surjective, so we look
more generally at the modified operator Θ on P(Y) defined by

Θ(E) =

{

Y if E = Y

f ( f−1(E)) otherwise.

Clearly, Θ = f ( f−1(·)) if and only if f is surjective.

Theorem 5.1. Let f : X → Y; then Θ as just defined is an interior operator on P(Y).

Proof. The first two bullet points are obviously satisfied. The third follows from
the general fact that

f−1( f ( f−1(E))) = f−1(E) for E ⊆ Y.

For the fourth, we must show ∀E1, E2 ⊆ Y,

f ( f−1(E1)) ∩ f ( f−1(E2)) = f ( f−1(E1 ∩ E2)),
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or equivalently,

f ( f−1(E1)) ∩ f ( f−1(E2)) = f ( f−1(E1) ∩ f−1(E2)).

From basic set theory, we need only show

f ( f−1(E1)) ∩ f ( f−1(E2)) ⊆ f ( f−1(E1) ∩ f−1(E2)).

Let y ∈ f ( f−1(E1)) ∩ f ( f−1(E2)) be arbitrary. ∃xj ∈ f−1(Ej) with f (xj) = y,

j = 1, 2. Since y ∈ f ( f−1(E1)) ⊆ E1 and f (x2) = y we see x2 ∈ f−1(E1) as well.
This shows y ∈ f ( f−1(E1) ∩ f−1(E2)) as required.

We are now led to ask: when is the topology on Y associated with Θ a clopen
topology? This topology consists of all E ⊆ Y where Θ(E) = E.

Theorem 5.2. Let f : X → Y. Then {E ⊆ Y : Θ(E) = E} is a clopen topology if and
only if f is surjective. In this case, the topology is discrete.

Proof. Suppose f is not surjective and put E = f (X). Then f ( f−1(E)) = f (X) =
E, so E is open in the associated topology. On the other hand, Ec 6= ∅ while
f ( f−1(Ec)) = f (∅) = ∅, so Ec is not open. Conversely, if f is surjective, then
from elementary set theory ∀E ⊆ Y, f ( f−1(E)) = E, that is, each subset of Y is
open so that the topology is discrete (and clopen).

In general, the open subsets induced from a possibly non-surjective
f : X → Y by the interior operator Θ consist of all subsets of the range of f plus
the codomain Y. Thus, from Theorem 3.9, τf = τ{ f } with respect to the topology
on Y determined by our interior operator.

The authors are indebted to the referee for his/her expert guidance with
respect to the literature on clopen spaces. The overall quality of the paper has
also benefited from the stimulating remarks made and questions raised by our
CSULA colleague Gary Brookfield.
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