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Abstract

We prove that every infinite dimensional Banach space can be equiva-
lently renormed so that the set of norm attaining functionals contains an
infinite dimensional vector subspace.

1 Introduction and background

Following the notion of a “big set” in the measure theory sense (the complemen-
tary of a measure zero set) and in the Baire theory sense (a comeager set), Gurariy
coined in 1991 (see [12]) a new version of this notion in the linear sense: lineabil-
ity and spaceability. However, this did not appear in the literature until the early
2000’s in [3, 13]. For the last decade there has been an intensive trend to search for
large algebraic and linear structures of special objects. We would like to mention
the nice survey paper [5] related to this topic and the very recent monograph [2].
Let us introduce what we are meaning: A subset M of a Banach space X is said to
be lineable (spaceable) if M ∪ {0} contains an infinite dimensional (closed) vector
subspace. By λ-lineable (λ-spaceable) we mean that M ∪ {0} contains a (closed)
vector subspace of dimension λ.

Throughout this paper, we will deal with a special friend: NA (X), the set of
norm-attaining functionals on a Banach space X. By a classical Bishop-Phelps’s
theorem it is known that NA (X) is always “topologically generic”, that is, dense
in X∗, therefore it seems natural to raise the following question (originally posed
by Godefroy in [11]).
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Problem 1.1 (Godefroy, [11]). Given an infinite dimensional Banach space X, is NA (X)
always lineable?

Very recently, Rmoutil in [17] observed that the example of Read [16] of a
Banach space with no proximinal subspaces of codimension 2 is also an exam-
ple of a Banach space whose set of norm-attaining functionals does not contain
subspaces of dimension 2. In [1] it has been shown that the above question has
a positive answer for some classical Banach spaces like the C(K) and the L1(µ)
spaces. In [9] it is observed that not all closed infinite dimensional subspaces
of ℓ∞ verify that the set of norm-attaining functionals is lineable. In the same
manuscript it is also found a class of closed infinite dimensional subspaces of ℓ∞,
called filling subspaces of ℓ∞, such that the set of norm-attaining functionals is
lineable. We recall the reader that a closed infinite dimensional subspace V of
ℓ∞ is said to be filling provided that for every infinite subset A of supp(V) there
exists x ∈ SV with supp(x) ⊆ A and x attains its sup norm. In [10] the previous
results are generalized in the following way.

Theorem 1.2 (Garcı́a-Pacheco and Puglisi, 2017). Let X be a Banach space. There
exists a biorthogonal system (xi, x∗i )i∈I such that {x∗i : i ∈ I} is norming if and only
if X is linearly isometric to a filling subspace of ℓ∞ (Λ). In this situation, NA(X) is
card(Λ)-lineable.

Another isometric result concerning the lineability of the norm-attaining func-
tionals was given in [8], where it is proved that if a Banach space admits a mono-
tonic projection basis then the set of norm-attaining functionals is lineable.

Concerning Question 1.1 in terms of spaceability, the main effort has been
done by Bandyopadhyay and Godefroy in [4], where it was shown that Asplund
Banach spaces with the Dunford-Pettis property cannot be equivalently renormed
to make the norm-attaining functionals spaceable. In particular, if K is an infinite
Hausdorff scattered compact topological space, then NA (C(K)) is lineable but not
spaceable.

As far as we know, the main result obtained until now concerning the iso-
morphic lineability of NA (X) was obtained in [8], where it is shown that every
Banach space admitting an infinite dimensional separable quotient can be equiv-
alently renormed so that the set of its norm-attaining functionals is lineable. In
[10] it also provided an isomorphic condition for the lineability of NA (X).

Theorem 1.3 (Garcı́a-Pacheco and Puglisi, 2017). Let X be a Banach space. There
exists a biorthogonal system (xi, x∗i )i∈I such that {x∗i : i ∈ I} is bounded and

span
(

abco
w∗

{x∗i : i ∈ I}
)

= X∗ if and only if X is isomorphic to a filling subspace of

ℓ∞ (Λ). In this situation, X can be equivalently renormed to make NA(X) be card(Λ)-
lineable.

In this note we solve completely the isomorphic version of Godefroy’s ques-
tion 1.1.
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2 Main results

Let (X, ‖ · ‖) be a Banach space. A closed subspace M of X∗ is said to be total if
for every 0 6= x ∈ X there is an f ∈ M such that f (x) 6= 0. For a total subspace
M ⊆ X∗ one can define a norm on X

‖x‖M = sup{| f (x)| : f ∈ M, ‖ f‖ ≤ 1}.

It is clear that ‖ · ‖M ≤ ‖ · ‖. If ‖ · ‖M is equivalent to ‖ · ‖, then M is said
to be norming. A first example of a total non-norming subspace goes back to S.
Mazurkiewicz [14]. Observe that if M is a total non-norming subspace of X∗, then
BX is not a neighborhood of 0 in (X, ‖ · ‖M) and, since BX is absolutely convex, we
deduce that BX has empty interior in (X, ‖ · ‖M) as well as in its completion. In
[7], W.J. Davis and J. Lindenstrauss proved that a Banach space X has a total non-
norming subspace in X∗ if and only if X has infinite codimension in its second
dual, i.e. dim X∗∗/X = ∞ (see also [15]).

Lemma 2.1. Let X be a Banach space and A a closed absolutely convex subset of X with
empty interior. Then for every ε > 0 there exists fε ∈ SX∗ such that | fε(a)| ≤ ε for all
a ∈ A.

Proof. Consider the polar set A0 := { f ∈ X∗ : | f (a)| ≤ 1 ∀a ∈ A}. We will show
that A0 is unbounded. Otherwise, there exists α > 0 such that A0 ⊆ αBX∗ . Then
αBX = (αBX∗)0 ⊆

(

A0
)

0
= abco(A) = A. This contradicts the fact that A has

empty interior, therefore A0 is unbounded. Let ( fn)n∈N be a sequence in A0 such
that (‖ fn‖)n∈N diverges to ∞. Let n0 ∈ N such that ‖ fn0‖ >

1
ε . Finally, it suffices

to take fε := fn0/‖ fn0‖.

Lemma 2.2. Let X be a topological vector space, A and B non-empty subsets of X, and
Y a proper subspace of X. If A + B ⊆ Y, then both A and B have empty interior.

Proof. We will show that A has empty interior. In a similar way it can be shown
that B has empty interior. Fix an arbitrary b ∈ B. Then A + b ⊆ A + B ⊆ Y
and since Y is proper we have that Y has empty interior in X, therefore A + b has
empty interior in X. Since translations are homeomorphisms, we deduce that A
has empty interior in X.

We are now in the right position to state and prove the main result in this
manuscript. The argument used in the proof resembles the one in [15].

Theorem 2.3. Every infinite dimensional Banach space X admits an equivalent norm
such that NA (X) is lineable.

Proof. In case dim X∗∗/X < ∞, X is a quasi–reflexive space and hence by [18]
X is a direct sum of a reflexive subspace Y and a separable subspace Z. There-
fore it has a separable infinite–dimensional quotient space and the thesis follows
directly by [8, Corollary 3.3].

Let us suppose that dim X∗∗/X = ∞. By the Davis-Lindenstrauss’s theorem
[7], there exists a closed subspace M ⊆ X∗ which is total non-norming. Let us
define XM to be the completion of (X, ‖ · ‖M) and let

E0 : X →֒ XM
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be the natural embedding.

We have that E0(BX) does not have interior point in XM. Therefore, by the
Lemma 2.1 there exists f1 ∈ SX∗

M
such that

| f1(E0(x))| ≤
1

2 · 3
, ∀x ∈ BX.

Let v0 ∈ X such that ‖E0(v0)‖M ≤ 2 and f1(E0(v0)) = 1 and define

E1 : X −→ XM

by

E1(x) = E0(x)− f1(E0(x))E0(v0).

Therefore we have

(i0) (E0 − E1)(X) = span{E0(v0)},

(ii0) ‖E∗
0( f1)‖X∗ ≤ 1

2·3 ,

(iii0) ‖E0 − E1‖ ≤ 1
3 ,

(iv0) E1(X) ⊆ ker( f1) ∩ E0(X).

According to Lemma 2.2, E1(BX) does not have interior points in XM. Hence,
we can proceed exactly as before with E1 instead of E0, to create an operator
E2 : X −→ XM and f2 ∈ SX∗

M
satisfying suitable conditions. Iterating this process,

for each n ∈ N ∪ {0}, we obtain a sequence of operators

En : X −→ XM,

a sequence of functionals ( fn)n ⊆ SX∗
M

and (vn)n ⊆ X, such that

(in) fn+1(En(vn)) = 1,

(iin) ‖E∗
n( fn+1)‖X∗ ≤ 1

2·3n+1 ,

(iiin) (En − En+1)(X) = span{En(vn)},

(ivn) ‖En − En+1‖ ≤ 1
3n+1 ,

(vn) En+1(X) ⊆ ker( fn+1) ∩ En(X) ⊆
(

∩n+1
i=1 ker( fi)

)

∩ E0(X)..

Directly from the construction it follows that

• The sequence ( fn)n is linearly independent. Indeed, by (in) fn+1 does not
vanish on En(X) and then by (vn), it does not vanish on ∩n

i=0ker( fi).

• For all n ∈ N, E0(v0), . . . , En(vn) ∈ span{E0(vi) : 0 ≤ i ≤ n}.



Lineability of functionals and renormings 145

By (ivn), the sequence (En)n converges in the norm-operator topology to some
operator

D : X −→ XM,

which by (vn)

D(X) ⊆

(

∞
⋂

n=0

ker( fn)

)

∩ E0(X). (2.1)

We obtain that

E0 =
∞

∑
n=0

(En − En+1) + D.

From this equality, since E0(X) is dense in XM, we easily obtain that

span{En(vn) : n ∈ N} ⊕ D(X) is dense in XM. (2.2)

By (iin) above, we have that ∑n≥0 |E
∗
n( fn+1)(x)| < ∞ for all x ∈ X. Thus

∑
n≥1

| fn(x)| < ∞ for all x ∈ XM/D(X). (2.3)

Next, we will use a classical basic sequence construction. Let (εn)n be a
sequence such that 0 < εn < 1 and ∑n εn < ∞. Using (2.3) inductively one
can find a strictly increasing sequence (pn)n in N, and an increasing sequence of
finite sets An ⊆ B

XM/D(X)
such that

• For each u ∈
(

span{ fp1
, . . . , fpn}

)∗
with ‖u‖ ≤ 1 there is an x ∈ An such

that
|u( f ) − f (x)| ≤

εn

3
‖ f‖ for every f ∈ span{ fp1

, . . . , fpn}

• | fpn+1(x)| ≤
εn
3 for every x ∈ An.

Therefore, it is easy to check that

‖ f + λ fpn+1‖ ≥ (1 − εn)‖ f‖ for all f ∈ span{ fp1
, . . . , fpn}, λ ∈ R.

By the classical Mazur lemma, the sequence ( fpn)n is basic in
(

XM/D(X)
)∗

,

and passing to a quotient if necessary we can assume without any loss of gen-
erality that the corresponding biorthogonal sequence of coordinates (zn)n is a

Schauder basis in XM/D(X). Moreover we can consider an equivalent norm on

XM/D(X) such that such that (zn)n is a monotone Schauder basis.

Now we apply [4, Lemma 2.4] to find an equivalent norm | · | on XM which

coincides with the original norm on D(X) and makes D(X) proximinal.

At this point, we may assume that (zn)n∈N ⊆ span{E0(vn) : n ∈ N}. Thus
there exists a bounded subset A of X such that every fn attains its norm at an
element of A.

Therefore, the norm whose unit ball is abco (BX ∪ A) defines an equivalent
renorming on X that makes

span{ fn : n ∈ N} ⊆ NA (X) .
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