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Abstract

In this paper, we give a characterization of alternatively convex or smooth
Banach spaces. In fact we prove that every normaloid numerical radius
attaining operator on a Banach space X is radialoid if and only if X is
alternatively convex or smooth. In addition, we show that every compact
normaloid operator on X is radialoid if and only if every rank one normaloid
operator on X is radialoid. Finally we present some types of Banach spaces
on which the compact normaloid operators are radialoid.

1 Introduction

The notion of normaloid operators was introduced by Wintner [12], and its fea-
tures have been considered by many authors. An operator is normaloid if its
norm is equal to its numerical radius and it is radialoid if its norm is equal to its
spectral radius. It is obvious that every radialoid operator is normaloid. Wint-
ner [12] proved that the converse is true for the operators which act on a Hilbert
space. Lumer extended this result by showing that on every uniformly convex
Banach space every normaloid operator is radialoid [2, Corollary 10.7]. Also
normaloid numerical radius attaining operators on a strictly convex Banach space
are radialoid [2, Theorem 10.8]. The subject of normaloid operators on a
Banach space has a close relation with Daugavet and alternative Daugavet equa-
tions which are useful in approximation theory for finding the best constants in
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some inequalities [10]. The normaloid operators are important tools in studying
the geometry of Banach spaces. Especially, the Banach spaces on which all oper-
ators are normaloid and those Banach spaces on which all rank one operators are
normaloid are interesting topics in the geometry of Banach spaces.

Let X be a real or complex Banach space, BX be its closed unit ball, SX be its
unit sphere and as usual X∗ denote its dual. An operator T ∈ B(X), the algebra
of bounded linear operators on X, satisfies Daugavet equation [3] if ‖I + T‖ =
1 + ‖T‖ and it satisfies alternative Daugavet equation, if

‖I + eiθT‖ = 1 + ‖T‖, for some 0 ≤ θ < 2π,

where I denotes the identity operator on X. It is well known that T is normaloid
if and only if it satisfies alternative Daugavet equation (see [7, Lemma 2.3] for an
explicit proof). A Banach space X has Daugavet property for a class M of operators
in B(X), if Daugavet equation holds for all operators in M. If X has Daugavet
property for rank one operators, then it is said that X has Daugavet property. For
a survey of Daugavet property see [8, Chapter 6], [11] and the references therein.
A Banach space X has anti-Daugavet property for a class M of operators if for every
T ∈ M, the equivalence

‖I + T‖ = 1 + ‖T‖ ⇐⇒ ‖T‖ ∈ σ(T) (1.1)

holds. Here σ(T) denotes the spectrum of T. We say that X has anti-alternative
Daugavet property for a class M of operators if for every T ∈ M, the equivalence

max
0≤θ≤2π

‖I + eiθT‖ = 1 + ‖T‖ ⇐⇒ ρ(T) = ‖T‖ (1.2)

holds, where ρ(T) denotes the spectral radius of T. If B(X) = M in (1.1) and
(1.2), it is said that X has anti-Daugavet and anti-alternative Daugavet property
respectively. Clearly X has anti-alternative Daugavet property for a class M of
operators if and only if every normaloid operator T ∈ M is radialoid. It is easy to
see that if X has anti-Daugavet property for a class M of operators which is closed
under scalar multiplication, then X has anti-alternative Daugavet property for
M. We will show that the converse is true, when X is a finite dimensional Banach
space and M = B(X). A Banach space X is called alternatively convex or smooth
[5, Definition 3.1] and [6, Definition 4.1] if for all x, y ∈ SX and f ∈ SX∗ the
implication

f (x) = 1, ‖x + y‖ = 2 ⇒ f (y) = 1

holds. More precisely, X is alternatively convex or smooth if and only if
every two points on a segment of SX have the same support functionals. Kadets
[5, Theorem 3.2] proved that a finite dimensional Banach space has anti-Daugavet
property if and only if it is alternatively convex or smooth. Hardtke [4] studied
the absolute sums of these Banach spaces.

A pair (x, f ) ∈ SX × SX∗ is a dual pair if f (x) = 1. For every x ∈ SX and
f ∈ SX∗ , we define

D(x) = {g : (x, g) is a dual pair},

D( f ) = {y : (y, f ) is a dual pair}.
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By the Hahn-Banach theorem, D(x) is not an empty set. The elements of D(x) are
called support functionals of x. For every T in B(X) the spatial numerical range
and numerical radius of T are defined as follows respectively:

W(T) = { f (Tx) : (x, f ) is a dual pair},

r(T) = sup{|λ| : λ ∈ W(T)}.

It is clear that ρ(T) ≤ r(T) ≤ ‖T‖. An operator T ∈ B(X) is numerical ra-
dius attaining, if there exists a dual pair (x0, f0) such that r(T) = | f0(Tx0)|.
We denote by NRA(X) all operators in B(X) that attain their numerical radius.
T is normaloid if r(T) = ‖T‖ and it is radialoid if ρ(T) = ‖T‖.

In this paper, we prove that X has anti-alternative Daugavet property for
NRA(X) if and only if X is alternatively convex or smooth. In addition, we show
that every compact normaloid operator on X is radialoid if and only if every
rank one normaloid operator on X is radialoid. Finally we present some types of
Banach spaces on which the compact normaloid operators are radialoid.

2 Anti-alternative Daugavet property for Banach spaces

As we said, normaloid numerical radius attaining operators on a strictly convex
Banach space are radialoid [2, Theorem 10.8]. The following theorem gives a
characterization of alternatively convex or smooth Banach spaces. Before stating
this theorem, we note that in this section, K(X) and F1(X) are the set of all com-
pact and rank one operators acting on X respectively and for every pair (x, f ) in
X × X∗, the rank one operator T = x ⊗ f is defined by T(.) = f (.)x.

Theorem 2.1. Let X be a Banach space. Then the following expressions are
equivalent:

(i) X has anti-alternative Daugavet property for NRA(X).
(ii) X has anti-alternative Daugavet property for F1(X)

⋂
NRA(X).

(iii) X is alternatively convex or smooth.
Proof . Clearly we have (i) → (ii).
(ii) → (iii) Suppose (iii) is not satisfied. Then there exist x, y ∈ SX and func-

tionals f , h ∈ SX∗ such that f (x) = f (y) = h(x) = 1 and h(y) 6= 1. Let 0 < λ0 < 1
and g = λ0 f + (1 − λ0)h. Setting T = y ⊗ g, we have ‖T‖ = 1, ρ(T) = |g(y)| < 1
and f (T(x)) = g(x) f (y) = 1. Therefore T is a normaloid operator in NRA(X)
which is not radialoid.

(iii) → (i) Let T be a normaloid operator in NRA(X). Without loss of gen-
erality we can suppose that ‖T‖ = 1. Since T is numerical radius attaining,
there is a dual pair (x, f ) such that | f (Tx)| = 1. Substituting T with T

f (Tx)
,

we can suppose that f (Tx) = 1. If Tx = x or T∗ f = f , then T will be radi-
aloid and there is nothing to prove. Suppose that Tx 6= x and T∗ f 6= f . Then
(x, f ), (Tx, f ) and (x, T∗ f ) are distinct dual pairs. Since both x and Tx are in
the segment D( f ), by our assumption, we should have D(x) = D(T(x)), and
so (T∗ f )(Tx) = 1. Therefore (T2x, f ) is a dual pair and ‖T2‖ = 1. Now if
(T2)∗ f = f , then ρ(T)2 = ρ(T2) = ρ((T2)∗) = 1, and T will be radialoid. Other-
wise, we have (T2)∗ f 6= f and so (x, f ), (Tx, f ) and (x, (T2)∗ f ) are distinct dual
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pairs. A similar argument shows that (T3x, f ) is a dual pair and ‖T3‖ = 1. In
general, either there exists a step k such that (Tk)∗( f ) = f , which implies that T
is radialoid or for every positive integer k the equality ‖Tk‖ = 1 holds. In the
second case, we have

ρ(T) = limk→∞
‖Tk‖ 1

k = 1,

and again T will be radialoid.
The following corollary is an immediate result of Theorem 2.1 and [5, Theo-

rem 3.2].
Corollary 2.2. Let X be a finite dimensional Banach space. Then the following

expressions are equivalent:
(i) X has anti-Daugavet property.
(ii)X has anti-alternative Daugavet property.
(iii) X is alternatively convex or smooth.
We should emphasize that attaining the numerical radius condition in Theo-

rem 2.1 cannot be dropped. In the following, we give an example of a strictly con-
vex Banach space which satisfies Kadec-Klee property and there exists a rank one
normaloid operator on it which is not radialoid. We note that in [1, Example 2.8]
the authors constructed a non-compact bounded linear operator T on a locally
uniformly convex reflexive Banach space which satisfies the Daugavet equation
(and consequently is normaloid) but T2 = 0 and so it is not radialoid. However,
in a locally uniformly convex Banach space, the corresponding operator cannot
be chosen to be compact (see Theorem 2.4).

Example 2.3. Consider the Banach Space ℓ1, the space of absolutely summable
sequences and for x = (x1, x2, x3, ...) ∈ ℓ1, set x′=(0, x2, x3, ...). Define the equiv-
alent norm ‖x‖M = max(|x1|, ‖x′‖1) on ℓ1. Let I : ℓ1 → ℓ2 be the inclusion
mapping and for x ∈ ℓ1 define

‖x‖H = (‖x‖2
M + ‖Ix‖2

W)1/2,

where ‖x‖W is defined on ℓ2 as follows

‖x‖W = (‖x‖2
S + ‖Tx‖2

2)
1
2 .

Here ‖x‖S = max((|x1 |, ‖x′‖2)), and T is defined on ℓ2 by

T(x1, x2, x3, x4, ...) = (x1, x2, x3/3, x4/4, ...).

Then (ℓ1, ‖.‖H) is a strictly convex Banach space which satisfies Kadec-Klee

property [9, Example 5]. Now setting x = (0,
√

3/3, 0, ...), xn = (
√

3/3, 0, ..., 0,√
3/3

︸ ︷︷ ︸

nth place

, 0, ...) and f = (
√

3, 0, ...), we have

(i) f (x) = 0 and f (xn) = 1, for n = 1, 2, · · · ,
(ii) ‖x‖H = 1 and ‖xn‖H → 1,
(iii) ‖x + xn‖H → 2,
(iv) ‖ f‖ = f (

√
3/3, 0, ...) = 1.



A characterization of alternatively convex or smooth Banach spaces 125

Setting K = x ⊗ f , we obtain

2 ≥ ‖I + K‖ ≥ ‖xn + x‖H

‖xn‖H
→ 2.

Hence ‖I + K‖ = 2 and K will be normaloid but since ρ(K) = | f (x)| = 0 it is
not radialoid.

In [6, Definition 4.1] the authors defined locally uniformly alternatively
convex or smooth (luacs) Banach spaces. A Banach space X is luacs if for all
xn, y ∈ SX and f ∈ SX∗ the implication

f (xn) → 1, ‖xn + y‖ → 2 ⇒ f (y) = 1

holds. They proved that a Banach space X is luacs if and only if X has the
anti-Daugavet property for compact or equivalently rank one operators [6, Theo-
rem 4.3]. Motivated by this, we define the concept of quasi locally uniformly alter-
natively convex or smooth (qluacs) Banach spaces. A Banach space X is qluacs if for
all xn, y ∈ SX and f ∈ SX∗ the implication

f (xn) → 1, ‖xn + y‖ → 2 ⇒ | f (y)| = 1

holds. Clearly if X is luacs then it will be qluacs but the converse is an open
question for us. Now we state a version of [6, Theorem 4.3] for qluacs Banach
spaces.

Theorem 2.4. Let X be a Banach space. Then the following expressions are
equivalent:

(i) X has anti-alternative Daugavet property for K(X).
(ii) X has anti-alternative Daugavet property for F1(X).
(iii) X is qluacs.
Proof . The implication (i) → (ii) is evident.
(ii) → (iii) Suppose (iii) is not satisfied. Then there exist xn, y ∈ SX and

functional f ∈ SX∗ such that f (xn) → 1, ‖xn + y‖ → 2 and | f (y)| < 1. Now
the operator T = y ⊗ f satisfies alternative Daugavet equality. Therefore T is a
normaloid operator which is not radialoid.

(iii) → (i) Let T be a compact normaloid operator in B(X) and ‖T‖ = 1. There
exists a sequence {xn} in SX and 0 ≤ θ < 2π such that ‖xn + eiθTxn‖ → 2. Since T
is compact, passing through a subsequence we can suppose that ‖Txn − x‖ → 0,
for some x ∈ BX. Hence ‖yn + x‖ → 2, where yn = e−iθxn and so x ∈ SX.
Now choose f ∈ SX∗ in such a way that f (x) = 1 and set g1 = eiθT∗ f . Then
g1(yn) → 1 and by our assumption we have |g1(x)| = 1. Setting φ1 = Arg(g1(x)),

(x, f ), (x, e−iφ1 g1), (e
i(θ−φ1)Tx, f ) are dual pairs and (iii) implies that

1 = |e−iφ1 g1(e
i(θ−φ1)Tx)| = | f (T2x)|.

Therefore ‖T2‖ = 1. Considering g2 = (T∗)2 f , φ2 = Arg(g2(x)) and continuing
the above argument with dual pairs (x, f ), (x, e−iφ1 g1), (e

−iφ2 T2x, f ) we conclude
that ‖T‖3 = 1. In general by induction we can prove that for every positive
integer k, the equality ‖Tk‖ = 1 holds and so T is radialoid.
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Note that weakly locally uniformly convex and uniformly Gâteaux smooth
Banach spaces are luacs [4, Figs. 3 and 4] and so qluacs. In addition, by [4, Propo-
sition 2.29] every reflexive Fréchet smooth Banach space is luacs. Also if X∗ is
Fréchet smooth then X will be luacs. To see this let xn, x ∈ SX , f ∈ X∗ and

f (xn) → 1, ‖xn + x‖ → 2.

Since X∗ is Fréchet smooth and f (xn) → 1, we conclude that there exists y ∈ SX

such that ‖y − xn‖ → 0. Therefore ‖y + x‖ = 2 and strict convexity of X implies
that f (x) = 1.

We refer to [4] for various generalizations of rotundity and smoothness prop-
erties for Banach spaces and their relationships.
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