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Abstract

In the present paper we study dynamics of linear operators defined on
topological vector space over non-Archimedean valued fields. We give suf-
ficient and necessary conditions of hypercyclicity (resp. supercyclicity) of
linear operators on separable F-spaces. It is proven that a linear operator
T on topological vector space X is hypercyclic (supercyclic) if it satisfies
Hypercyclicity (resp. Supercyclicity) Criterion. We consider backward shifts
on c0(Z) and c0(N), respectively, and characterize hypercyclicity and super-
cyclicity of such kinds of shifts. Finally, we study hypercyclicity, supercyclic-
ity of operators λI + µB, where I is identity and B is backward shift. We note
that there are essential differences between the non-Archimedean and real
cases.

1 Introduction

Linear dynamics is a young and rapidly evolving branch of functional analy-
sis, which was probably born in 1982 with the Toronto Ph.D. thesis of C. Kitai
[10]. It has become rather popular, thanks to the efforts of many mathematicians
(see [5, 6]). In particular, hypercyclicity and supercyclicity of weighted bilateral
shifts were characterized by Salas [16, 17]. In [18] Shkarin proved the existence
of a bounded linear operator T satisfying the Kitai Criterion on each separable
infinite-dimensional Banach space. For more detailed information about cyclic,
hypercyclic linear operators we refer to [1].
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We stress that all investigations on dynamics of linear operators were consid-
ered over the field of the real or complex numbers. On the other hand,
non-Archimedean functional analysis is well-established discipline, which was
developed in Monna’s series of works in 1943. Last decades there have been
published a lot of books devoted to the non-Archimedean functional analysis
(see for example [14, 19]). In [12] a Non-Archimedean spectral theorem has been
recently developed for normal operator linear operators on non-Archimedean
Banach spaces.

In the present paper, we are going to study dynamics of linear operators
defined on topological vector space over non-Archimedean valued fields.
In section 3, we will show that there does not exist any hypercyclic operator on a
finite
dimensional space. Moreover, we give sufficient and necessary conditions of
hypercyclicity (supercyclicity) of linear operators on separable F-spaces Theorem
3.2 (resp. Theorem 3.12). We will show that a linear operator T on topological
vector space X is hypercyclic (supercyclic) if it satisfies Hypercyclic (resp. Super-
cyclic) Criterion. Note that the shift operators have many applications in many
branches of modern mathematics (in real setting). In [13] the p-adic counterpart
of the shift operator has been studied and established that some properties of
these operators are parallel to the classical patterns, others are quite different.
For example, the lattice of invariant subspaces of the non-Archimedean unilat-
eral shift is indexed by polynomials (in the classical Beurling theorem this role
is played by inner functions), the operator itself can be seen also as an analog of
the Volterra integration operator whose properties are (classically) very far from
those of the unilateral shift. Moreover, the non-Archimedean shift operators have
certain applications in p-adic dynamical systems [8, 9]. These investigations moti-
vate us to consider weighted shifts (which are more general). Therefore, in section
4 we study weighted backward shifts on c0(Z) and c0(N) spaces, respectively,
and characterize hypercyclicity and supercyclicity of such kinds of operators.
In section 5, we will consider an operator λI +µB, where I is the identity operator
and B is the backward shift. We prove that if |µ| ≤ 1 then the operator I + µB can-
not be hypercyclic while in the real case this operator is hypercyclic when µ 6= 0
(see [18]). This is an essential difference between the non-Archimedean and real
cases. Our investigations will open further investigations of non-Archimedean
analogous of Volterra integration operators.

2 Definitions and preliminary results

All fields appearing in this paper are commutative. A valuation on a field K is a
map | · | : K → [0,+∞) such that:

(i) |λ| = 0 if and only if λ = 0,

(ii) |λµ| = |λ| · |µ| (multiplicativity),

(iii) |λ + µ| ≤ |λ|+ |µ| (triangle inequality), for all λ, µ ∈ K.

The pair (K, | · |) is called a valued field. We often write K instead of (K, | · |).
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Definition 2.1. Let K = (K, | · |) be a valued field. If | · | satisfies the strong triangle
inequality: (iii′) |λ + µ| ≤ max{|λ|, |µ|}, for all λ, µ ∈ K, then | · | is called non-
Archimedean, and K is called a non-Archimedean valued field

Remark 2.1. In what follows, we always assume that a norm in non-Archimedean
valued field is nontrivial.

From the strong triangle inequality we get the following useful property of
non-Archimedean value: If |λ| 6= |µ| then |λ ± µ| = max{|λ|, |µ|}.
We frequently use this property, and call it as the non-Archimedean norm’s property.
A non-Archimedean valued field K is a metric space and it is called ultrametric
space.

Let a ∈ K and r > 0. The set

B(a, r) := {x ∈ K : |x − a| ≤ r}

is called the closed ball with radius r about a. (Indeed, B(a, r) is closed in the induced
topology). Similarly,

B(a, r−) := {x ∈ K : |x − a| < r}

is called the open ball with radius r about a.
We set |K| := {|λ| : λ ∈ K} and K× := K \ {0}, the multiplicative group of K.

Also, |K×| := {|λ| : λ ∈ K×} is a multiplicative group of positive real numbers,
the value group of K.

Lemma 2.2. (Lemma 1.4 [19]) Let K be a non-Archimedean valued field. Then the value
group of K either is dense or is discrete; in the latter case there is a real number 0 < r < 1
such that |K×| = {rs : s ∈ Z}.

Example 2.1. Let us provide some examples of non-Archimedean fields (we refer
a reader to [15] for more information).

1. Let Q be the field of rational numbers. For a fixed prime number p, every
rational number x 6= 0 can be represented in the form x = pr n

m , where
r, n ∈ Z, m is a positive integer, and n and m are relatively prime with
p: (p, n) = 1, (p, m) = 1. The p-adic norm of x is given by

|x|p =

{

p−r for x 6= 0
0 for x = 0.

The completion of Q with respect to | · |p is denoted by Qp, and it is called
the field of p-adic numbers. One can see that |Q×

p | = {ps : s ∈ Z}.

2. Let Cp be the completion of the algebraic closure of Qp with respect to the
extension of the absolute value | · |p. For this field |C×

p | is dense in R. The
defined field is called p-adic complex field.

Definition 2.3. A pair (E, ‖ · ‖) is called a K-normed space over K, if E is a K-vector
space and ‖ · ‖: E → [0,+∞) is a non-Archimedean norm, i.e.
(i) ‖ x ‖= 0 if and only if x = 0,
(ii) ‖ λx ‖= |λ| ‖ x ‖,
(iii) ‖ x + y ‖≤ max{‖ x ‖, ‖ y ‖}, for all x, y ∈ E, λ ∈ K.
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We frequently write E instead of (E, ‖ · ‖). Moreover, E is called a K-Banach
space or a Banach space over K if it is complete with respect to the induced ultra-
metric d(x, y) =‖ x − y ‖.

Example 2.2. Let K be a non-Archimedean valued field; then

l∞ := all bounded sequences on K

with pointwise addition and scalar multiplication and the norm

‖ x ‖∞:= sup
n

|xn|

is a K-Banach space.

Remark 2.2. From now on we often drop the prefix ”K”- and write vector space,
normed space, Banach space instead of K-vector space, K-normed space,
K-Banach space, respectively.

In what follows, we need the following auxiliary fact.

Lemma 2.4. Let E be a normed space over a non-Archimedean valued field K. Then for
each pair of sequences (xn) and (yn) in E such that ‖ xn ‖ · ‖ yn ‖→ 0 as n → ∞ there
exists a sequence (λn) ⊂ K× such that

λnxn → 0 and λ−1
n yn → 0, as n → ∞. (1)

Proof. First, we will prove the lemma for the case when the value group of K is a
discrete. Then according to Lemma 2.2 there exists a real number r ∈ (0, 1) such
that |K×| = {rs : s ∈ Z}. Let (nk) and (mk) be the increasing subsequences of N

with (nk) ∪ (mk) = N such that

‖xnk
‖ · ‖ynk

‖ = 0, ‖xmk
‖ · ‖ymk

‖ 6= 0, ∀k

Let us define νnk
∈ K as follows

|νnk
| =



















1, if xnk
= ynk

= 0;
‖ynk

‖

rnk
, if xnk

= 0, ynk
6= 0;

rnk

‖xnk
‖
, if xnk

6= 0, ynk
= 0,

Since 0 < r < 1, for any ε > 0 there exists a positive integer k′ such that
‖νnk

xnk
‖ < ε and ‖ν−1

nk
ynk

‖ < ε for any k > k′.
On the other hand, according to Lemma 2.2, there exists a sequence of integer

numbers (αmk
) such that

r2αmk ≤
‖ ymk

‖

‖ xmk
‖
≤ r2αmk

−2. (2)

For any k ≥ 1 we take µmk
∈ K× such that |µmk

| = rαmk . Then from (2) we get

‖ µmk
xmk

‖= rαmk ‖ xmk
‖≤‖ xmk

‖
1
2 · ‖ ymk

‖
1
2 ,

‖ µ−1
mk

ymk
‖= r−αmk ‖ ymk

‖≤ r−1 ‖ xmk
‖

1
2 · ‖ ymk

‖
1
2 ,
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Since ‖ xmk
‖ · ‖ ymk

‖→ 0, for any ε > 0 there exists a positive integer k′′ > 0

such that ‖µmk
xmk

‖ < ε and ‖µ−1
mk

ymk
‖ < ε for any k > k′′.

Finally, we define a sequence {λn} as follows:

λn =

{

νn, if n ∈ (nk)
µn, if n ∈ (mk)

.

Then for any ε > 0 one has ‖λnxn‖ < ε and ‖λ−1
n yn‖ < ε for any n > max{nk′ , mk′′}.

Now, we suppose that value group of K is dense. Then we can find sequences
(x′n) and (y′

n) such that

‖x′n‖ > ‖xn‖, ‖y′
n‖ > ‖yn‖, ‖x′n‖ · ‖y′

n‖ < ‖xn‖ · ‖yn‖+
1

n

It is clear that ‖x′n‖ · ‖y′
n‖ → 0 as n → ∞. Fix a a ∈ K× with |a| > 1 Then there

exists a sequence (βn) such that

|a|βn ≤

√

‖ y′
n ‖

‖ x′n ‖
≤ |a|βn+1

Define a sequence λn := aβn . Then we have

‖λnxn‖ < ‖λnx′n‖ = |a|βn‖x′n‖ ≤
√

‖x′n‖ · ‖y′
n‖

‖λ−1
n yn‖ < ‖λ−1

n y′
n‖ = |a|−βn‖y′

n‖ ≤ |a|
√

‖x′n‖ · ‖y′
n‖

Since ‖x′n‖ · ‖y′
n‖ → 0 we get (1). This completes the proof.

Let X and Y be topological vector spaces over non-Archimedean valued field
K. By L(X, Y) we denote the set of all continuous linear operators from X to Y.
If X = Y then L(X, Y) is denoted by L(X). In what follows, we use the following
terminology: T is a linear continuous operator on X means that T ∈ L(X). The
T-orbit of a vector x ∈ X, for some operator T ∈ L(X), is the set

O(x, T) := {Tn(x); n ∈ Z+}.

An operator T ∈ L(X) is called hypercyclic if there exists some vector x ∈ X such
that its T-orbit is dense in X. The corresponding vector x is called T-hypercyclic,
and the set of all T-hypercyclic vectors is denoted by HC(T). Similarly, T is called
supercyclic if there exists a vector x ∈ X such that whose projective orbit

K · O(x, T) := {λTn(x); n ∈ Z+, λ ∈ K}

is dense in X. The set of all T-supercyclic vectors is denoted by SC(T). Finally,
we recall that T is called cyclic if there exists x ∈ X such that

K[T]x := spanO(x, T) = {P(T)x; P polynomial}

is dense in X. The set of all T-cyclic vectors is denoted by CC(T).

Remark 2.3. We stress that the notion of hypercyclicity makes sense only if the
space X is separable. Note that one has

HC(T) ⊂ SC(T) ⊂ CC(T).

Remark 2.4. Note that if T is a hypercyclic operator on a Banach space then ‖T‖ > 1.
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3 Hypercyclicity and supercyclicity of linear operators

In this section we find sufficient and necessary conditions to hypercyclicity of
linear operators on F-spaces. In what follows, by F-space we mean a topological
vector space X which is metrizable and complete over a non-Archimedean field.
Basically, this section mostly repeats the well-known facts from the dynamics of
linear operators [1]. But for the sake of completeness, we are going to prove them
(with taking into account non-Archimedeanness of the space). In this section, a
main approach is based on the Baire category theorem.

We start with the well-known equivalence between hypercyclicity and topo-
logical transitivity: an operator T acting on some separable completely metriz-
able space X is hypercyclic iff for each pair of non-empty open sets (U, V) ∈ X,
one can find n ∈ N such that Tn(U) ∩ V 6= ∅; in this case, there is in fact a
residual set of hypercyclic vectors. From this, one gets immediately the so-called
Hypercyclicity Criterion, a set of sufficient conditions for hypercyclicity with a
remarkably wide range of applications. The analogous Supercyclicity Criterion
is proved along the same lines.

Now we show that hypercyclicity turns out to be a purely infinite-dimensional
phenomenon.

Proposition 3.1. Let X 6= {0} be a finite-dimensional space. Then each operator
T ∈ L(X) is not hypercyclic.

Proof. Without loss of generality, we may assume that X = Km for some m ≥ 1.
Now we are going to prove that each operator T ∈ L(Km) is not hypercyclic.
Suppose that a linear operator T on Km is hypercyclic. Take x ∈ HC(T). The
density of O(x, T) in Km implies that the family {x, T(x), . . . , Tm−1(x)} forms a
linearly independent system. Hence, this collection is a basis of Km. For any
α ∈ K \ {0}, one can find a sequence of integers (nk) such that Tnk(x) → αx.
Then Tnk(Tix) = Ti(Tnkx) → αTi(x) for each i < m. Hence for any y ∈ Km we
obtain Tnk(y) → αy which yields that det(Tnk) → αm, i.e. det(T)nk → αm. Thus,
putting a := det(T), we have the set {an; n ∈ N} is dense in K \ {0}, but it is
impossible. Indeed, it is clear that |an − z| > 1 for any z ∈ K \ B(0, 1) if |a| ≤ 1
and |an − w| > 1 for any w ∈ B(0, 1) if |a| > 1.

Our first characterization of hypercyclicity is a direct application of the Baire
category theorem.

Theorem 3.2. (cp. [3]) (TRANSITIVITY THEOREM) Let X be a separable F-space and
T ∈ L(X). The following statements are equivalent:

(i) T is hypercyclic;

(ii) T is topologically transitive; that is, for each pair of non-empty open sets
(U, V) ⊂ X there exists n ∈ N such that Tn(U) ∩ V 6= ∅.

Proof. (i) Assume that HC(T) 6= ∅. Since X has no isolated points, for any k ∈ N

it is easy to see that Tk(x) ∈ HC(T) if and only if x ∈ HC(T). Let U, V be open
sets in X. Take x ∈ U ∩ HC(T). Then there exists a number n ∈ N such that
Tn(x) ∈ V. This means that T is topologically transitive.
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(ii) Let T be topologically transitive and {Vk}k∈N be a countable basis of open
sets on X (this kind of basis exists since X is a separable F-space). Then from
the topological transitivity of T, for any k ≥ 1 and non-empty open set U ⊂ X
there exists an n such that U ∩ T−n(Vk) 6= ∅. This means that each open set
⋃

n≥0
T−n(Vk) is dense, hence one gets the density of

⋂

k≥1

⋃

n≥0
T−n(Vk). On the other

hand, we have
HC(T) =

⋂

k≥1

⋃

n≥0

T−n(Vk). (3)

Consequently, HC(T) 6= ∅. This completes the proof.

Corollary 3.3. Let X be a separable F-space and T ∈ L(X). If T is hypercyclic then
HC(T) is a dense Gδ-set.

Proof. According to Theorem 3.2 the hypercyclicity of T implies its topological
transitivity. From (3) one easily sees that HC(T) is a Gδ-set.

Definition 3.4. [2] Let X be a topological vector space, and let T ∈ L(X). It is said that
T satisfies the Hypercyclicity Criterion if there exist an increasing sequence of integers
(nk), two dense sets D1,D2 ⊂ X and a sequence of maps Snk

: D2 → X such that:

(1) Tnk(x) → 0 for any x ∈ D1;

(2) Snk
(y) → 0 for any y ∈ D2;

(3) TnkSnk
(y) → y for any y ∈ D2.

Note that in the above definition the maps Snk
are not assumed to be continu-

ous or linear. We will sometimes say that T satisfies the Hypercyclicity Criterion
with respect to the sequence (nk). When it is possible to take nk = k and D1 = D2,
it is usually said that T satisfies Kitai’s Criterion [10].

Theorem 3.5. Let T ∈ L(X), where X is a separable F-space. Assume that T satisfies
the Hypercyclicity Criterion. Then the operator T is hypercyclic.

Proof. According to the Transitivity Theorem it is enough to show that T is topo-
logically transitive. Let U, V be two non-empty open subsets of X. Take
x ∈ D1 ∩ U, y ∈ D2 ∩ V. Then x + Snk

(y) → x ∈ U as k → ∞. Due to the linear-
ity and the continuity of Tnk we obtain Tnk(x + Snk

(y)) = Tnk(x) + Tnk Snk
(y) →

y ∈ V. Hence, for sufficiently large k one gets Tnk(U) ∩ V 6= ∅. The proof is
complete.

Definition 3.6. Let T0 : X0 → X0 and T : X → X be two continuous maps acting on
topological spaces X0 and X. The map T is said to be a quasi-factor of T0 if there exists
a continuous map with dense range J : X0 → X such that TJ = JT0. When this can
be achieved with a homeomorphism J : X0 → X, we say that T0 and T are topological
conjugate. Finally, when T0 ∈ L(X0) and T ∈ L(X) and the factoring map (resp. the
homeomorphism) J can be taken as linear, we say that T is a linear quasi-factor of T0

(resp. that T0 and T are linearly conjugate).

The usefulness and importance of these definitions can be seen in the follow-
ing
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Lemma 3.7. Let T0 ∈ L(X0) and T ∈ L(X). Assume that there exists a continuous
map with dense range J : X0 → X such that TJ = JT0. Then the following statements
are satisfied:

(1) Hypercyclicity of T0 implies hypercyclicity of T;

(2) Let J be a homeomorphism and T0 satisfies Hypercyclicity Criterion then T satisfies
Hypercyclicity Criterion;

(3) Let J be a linear homeomorphism then T is hypercyclic iff T0 is hypercyclic.

Proof. (1) Due to TJ = JT0 one can see that O(J(x0), T) = J(O(x0, T0)) for any
x0 ∈ X0. This with the density of Ran(J) implies J(x) ∈ HC(T) if x ∈ HC(T0).

(2) Now we assume that T0 satisfies Hypercyclicity Criterion. Then J(D1) and
J(D2) are both dense sets in X, since J has a dense range. For all x = J(x0) ∈ J(D1)
we have

Tnk(x) = Tnk J(x0) = JT
nk
0 (x0).

The continuity of J implies that Tnk(x) → 0. Denoting by S̃nk
:= JSnk

J−1, for
every y ∈ J(D2) one finds

Tnk S̃nk
(y) = JT

nk
0 Snk

J−1(y) → J J−1(y) = y

and
S̃nk

(y) = JSnk
J−1(y) → 0.

Thus, we have shown that T satisfies Hypercyclicity Criterion.
The proof of (3) is obvious.

Remark 3.1. Note that if T ∈ L(X) is hypercyclic and if J ∈ L(X) has a dense
range and JT = TJ then HC(T) is invariant under J.

We have already observed that if T is a hypercyclic operator on some F-space
X then HC(T) is a dense Gδ-set in X. It shows that the set HC(T) is large in a
topological sense. This implies largeness in an algebraic sense.

Proposition 3.8. Let T ∈ L(X) be hypercyclic on the separable F-space X. Then for
every x ∈ X there exist y, z ∈ HC(T) such that x = y + z.

Proof. According to Corollary 3.3 HC(T) is a dense Gδ-set, therefore, X \ HC(T)
and X \ (x − HC(T)) are the first category sets. Then by the Baire category
Theorem, we infer that HC(T) and x− HC(T) have non-empty intersection. This
completes the proof.

We say that a linear subspace E ⊂ X is a hypercyclic manifold for T if E \ {0}
consists entirely of hypercyclic vectors.
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Lemma 3.9. Let T ∈ L(X) and E ⊂ X be a closed T-invariant subspace. Then either
E = X or E has infinite codimension in X.

Proof. Assume that dim(X/E) < ∞. Let q : X → X/E be the canonical quotient
map. By T-invariance of E we get Ker(q) ⊂ Ker(qT). Therefore, one can find an
operator A ∈ L(X/E) such that Aq = qT. Since q is continuous onto, the operator
A is a quasi-factor of T. According to Lemma 3.7 the operator A is hypercyclic on
X/E. Due to dim(X/E) < ∞, by Proposition 3.1, it follows that X/E = {0}, i.e.
E = X.

Lemma 3.10. Let T ∈ L(X) be hypercyclic. For any non-zero polynomial P, the operator
P(T) has a dense range.

Proof. Let P be a non-zero polynomial and E := Ran(P(T)). For any x ∈ E there
exists a sequence (xn) ⊂ X such that P(T)xn → x. Then from P(T)T(xn) =
TP(T)xn → T(x) ∈ E we conclude that E is T-invariant. Hence, by Lemma 3.9 it
is enough to show that dim(X/E) < ∞.

Let x ∈ HC(T) and q : X → X/E be the canonical quotient map. By the
division algorithm and the commutativity of the algebra K[T], one can easily see
that

K[T]x ⊂ Ran(P(T)) + span{Ti(x) : i < deg(P)}.

From this we conclude that q(K[T]x) is finite-dimensional. By the cyclicity of x
one finds the finite dimensionality of X/E = q(X).

Theorem 3.11. [4, 7] Let X be a topological vector space, and T ∈ L(X) be hypercyclic.
If x ∈ HC(T), then K[T]x is a hypercyclic manifold for T. In particular, T admits a
dense hypercyclic manifold.

Proof. Let x ∈ HC(T) and P be a non-zero polynomial. According to Lemma 3.10
the operator P(T) has a dense range and it commutes with T. By Lemma 3.7 one
gets P(T)x ∈ HC(T). This means that K[T] is a hypercyclic manifold for T. The
density of K[T] follows from O(x, T) ⊂ K[T].

We now turn to the supercyclic analogues of Theorems 3.2 and 3.5.

Theorem 3.12. Let X be a separable F-space, and T ∈ L(X). The following statements
are equivalent:

(i) T is supercyclic;

(ii) For each pair of non-empty open sets (U, V) ⊂ X there exist n ∈ N and λ ∈ K

such that λTn(U) ∩ V 6= ∅.

The proof is similar to the proof of Theorem 3.2.

Definition 3.13. [17] Let X be a topological vector space, and let T ∈ L(X). We say that
T satisfies the Supercyclic Criterion if there exist an increasing sequence of integers
(nk), two dense sets D1,D2 ⊂ X and a sequence of maps Snk

: D2 → X such that:

(1) ‖ Tnk(x) ‖‖ Snk
(y) ‖→ 0 for any x ∈ D1 and any y ∈ D2;
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(2) Tnk Snk
(y) → y for any y ∈ D2.

Theorem 3.14. Let T ∈ L(X), where X is a separable Banach space. Assume that T
satisfies the Supercyclic Criterion. Then T is supercyclic.

Proof. Let U and V be two non-empty open subsets of X. Take x ∈ D1 ∩ U and
y ∈ D2 ∩ V. It follows from part (1) of Definition 3.13 and by Lemma 2.4,
we can find a sequence of non-zero scalars (λk) such that λkTnk(x) → 0 and

λ−1
k Snk

(y) → 0. Then, for large enough k, the vector z = x+ λ−1
k Snk

(y) belongs to
U and λkTnk(z) belongs to V. By Theorem 3.12 we infer that T is supercyclic.

Lemma 3.15. Let X0 and X be Banach spaces over the field K and T0 ∈ L(X0),
T ∈ L(X) be such that there exists a J ∈ L(X0, X) which has a dense range and satis-
fying TJ = JT0. Then the supercyclicity (resp. cyclicity) of T0 implies the supercyclicity
(resp. cyclicity) of T.

Proof. Observe that

{λ(Tn J)(x0) : n ∈ Z+, λ ∈ K} = J({λTn
0 (x0) : n ∈ Z+, λ ∈ K}),

span{(Tn J)(x0) : n ∈ Z+} = J(span{Tn
0 (x0) : n ∈ Z+})

for any x0 ∈ X0. Hence, J(x0) is a supercyclic (resp. cyclic) vector for T for each
x0 ∈ SC(T0) (resp. x0 ∈ C(T)).

4 Backward shifts on c0

In the present section, we are going to study the backward shifts on c0. We notice
that similar to results in the archimedean case have been investigated in [6, 16, 17].
Here, as usual, c0 stands for the set of all sequences which tend to zero equipped
with a norm

‖ x ‖:= sup
n
{|xn|}, x ∈ c0.

It is clear that c0 is a Banach space. For convenience, we denote

c0(Z) := {(xn)n∈Z : xn ∈ K, |x±n| → 0 as n → +∞}

and
c0(N) := {(xn)n∈N : xn ∈ K, |xn| → 0 as n → +∞}

In what follows, we always assume that c0 is a separable space. Note that the
separability of c0 is equivalent to the separability of K. Let K be a countable
dense subset of K. Then the countable set

c00(Z) := {λ−ne−n + λ−n+1e−n+1 + · · ·+ λnen : λ±j ∈ K, 0 ≤ j ≤ n, ∀n ∈ N}

is dense in c0(Z), where en is an unit vector such that only n-th coordinate equals
to 1 and others are zero.

Let a = (an)n∈Z be a bounded sequence of non-zero numbers of K. An oper-
ator Ba on c0(Z) defined by Ba(en) = anen−1 is called bilateral weighted backward
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shift if ai 6= 1 for some i ∈ Z, otherwise it is called bilateral unweighted backward
shift and we denote it by B. In general, the (unweighted) backward shift B is con-
sidered as a weighted shift and is thus not excluded from the family of weighted
shifts. The operator B is an example of weighted shifts where each weight is equal
to 1.

Theorem 4.1. Let Ba be a bilateral weighted backward shift operator on c0(Z). Then the
following statements hold:

(i) Ba is hypercyclic if and only if, for any q ∈ N,

lim inf
n→+∞

max

{

n+q

∏
i=1

|a−1
i |,

n−q

∏
j=1

|a−j+1|

}

= 0. (4)

(ii) Ba is supercyclic if and only if, for any q ∈ N,

lim inf
n→+∞

n+q

∏
i=1

|a−1
i | ×

n−q

∏
j=1

|a−j+1| = 0. (5)

Proof. For any weight b ∈ l∞(Z) with bn 6= 0, n = 0,±1,±2, . . . we introduce
the weighted space

c0(Z, b) :=

{

x ∈ c0(Z) : ‖ x ‖b= sup
n

|bnxn|

}

.

Take a weight sequence b = (bn)n∈Z as follows b0 = 1 and bnb−1
n+1 = an+1.

Let B be the bilateral backward shift on c0(Z, b). Then Ba is linearly conjugate
to B. Indeed, the operator J : c0(Z) → c0(Z, b) defined by (Jx)n = b−1

n xn is a lin-
ear homeomorphism and J(c0(Z)) = c0(Z, b), JBa = BJ. According to Lemma
3.7 (resp. Lemma 3.15) hypercyclicity (supercyclicity) of Ba is equivalent to the
hypercycility (resp. supercyclicity) of B.

Assume that B is hypercyclic and fix q ∈ N. Due to the density of O(x, B) (for
all x ∈ HC(B)), for an arbitrary ε > 0 one can find x ∈ HC(B) and an integer
n > 2q such that

‖ x − eq ‖b< ε and ‖ Bn(x)− eq ‖b< ε.

These inequalities imply that

|bq(xq − 1)| < ε, |bn+qxn+q| < ε, (6)

|bq(xn+q − 1)| < ε, |b−n+qxq| < ε. (7)

We assume that ε < |bq|. Then from the first inequalities of (6) and (7) we obtain
|xq − 1| < 1 and |xn+q − 1| < 1. Hence, by the non-Archimedean norm’s property,
one gets |xq| = |xn+q| = 1. Putting it into the second inequalities of (6) and (7)
one finds |b±n+q| < ε, which is equivalent to

lim inf
n→+∞

|b±n+q| = 0. (8)
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Now let us assume that (8) holds for any q ∈ N. We will show that B satisfies the
Hypercyclicity Criterion. Take some positive number M such that

M > max

{

1, sup
n

|bn|

|bn+1|

}

.

By (8), one can find an increasing sequence of positive integers {nk} such that

|b±nk+k| ≤ M−3k for all k ∈ N.

Let i be a fixed integer and k > |i|. Then
∣

∣b±nk+i

∣

∣ < Mi+k
∣

∣b±nk+k

∣

∣ ≤ M−2k+i <

M−k. It follows that bnk+i → 0 as k → ∞ for any i ∈ Z. Now, let D1 = D2 :=
c00(Z) and let S be the forward shift, defined on D2 by S(ei) = ei+1. Due to the
linearity of B and S, it is enough to show that Bnk(ei) → 0 and Snk(ei) → 0 for
any i ∈ Z, but this is clear, since

‖ Bnk(ei) ‖b= |b−nk+i| and ‖ Snk(ei) ‖b= |bnk+i|.

Thus, we have shown that Ba is hypercyclic if and only if for any q ∈ N holds (8).
According to

bn =
n

∏
i=1

a−1
i and b−n =

n

∏
j=1

a−j+1 for all n ∈ N

one can see that (8) and (4) are equivalent.
Now we turn to the supercyclic case. Suppose that B is supercyclic and q ∈ N.

Let ε > 0 be an arbitrary number. Then the density of supercyclic vectors implies
the existence of x ∈ c0(Z, b), λ ∈ K× and n > 2q such that

‖ x − eq ‖b< ε and ‖ λBn(x)− eq ‖b< ε.

As above, we obtain

|bq(xq − 1)| < ε, |bn+qxn+q| < ε,

|bq(λxn+q − 1)| < ε, |λb−n+qxq| < ε.

Assuming ε < |bq| and using the non-Archimedean norm’s property one finds

|b−n+q| <
ε

|λ|
and |bn+q| < ε|λ|.

Hence, |b−n+qbn+q| < ε2 which yields

lim inf
n→+∞

|bn+qb−n+q| = 0. (9)

Note that (9) and (5) are equivalent.
If the condition (9) holds then we can find as above an increasing sequence

(nk) such that, for any i, j ∈ Z,

bnk+ib−nk+j → 0, as k → +∞.

Hence, from
‖ Bnk(ej) ‖b · ‖ Snk

(ei) ‖b= |bnk+ib−nk+j|.

we infer the Supercyclic Criterion is satisfied for D1 = D2 := c00(Z) and the
forward shift S.
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From this theorem we immediately find the following facts.

Corollary 4.2. Let Ba be a bilateral weighted backward shift on c0(Z). Then the follow-
ing statements hold:

(i) if Ba is supercyclic then λBa is supercyclic for any λ ∈ K×;

(ii) if the weight sequence a = (an)n∈Z is symmetrical to the norm, i.e. |an| =
|a−n|, n = 1, 2, . . . then Ba is not supercyclic.

Corollary 4.3. Let B be the bilateral unweighted backward shift on c0(Z). Then B is not
supercyclic. Moreover, λB is not supercyclic for any λ ∈ K.

Corollary 4.4. Let a and b be weighted sequences such that |an| > |bn| for any
n ∈ Z. Then Ba+b is hypercyclic (resp. supercyclic) if and only if Ba is hypercyclic
(resp. supercyclic).

Proof. By the non-Archimedean norm’s property we have |an + bn| = |an| for any
n ∈ Z. Using it to (4) (resp. (5)) we can conclude that hypercyclicity (supercyclic-
ity) of Ba and Ba+b are equivalent.

Remark 4.1. We first notice that Theorem 4.1 remains the same in the real setting,
but the valuation should be replaced with the usual absolute value. However, in
the real case, Corollary 4.4 is not true. Indeed, for the weights a and b defined by

an =

{

n, if n ≥ 1,

− 1
n−1 , if n < 1.

bn =

{

−n + 1
n+1 , if n ≥ 1,

1
n−1 −

1
n−2 , if n < 1.

the operators Ba and Bb are hypercyclic. But, the weight a+b does not satisfy (4).
Consequently, according to Theorem 4.1 the operator Ba+b can not be hypercyclic.

Now let us consider a unilateral weighted backward shifts on c0(N). Recall
that the operator defined as Ba(e1) = 0 and Ba(en) = an−1en−1 if n ≥ 2, is called
unilateral weighted backward shift. Here a = (an)n∈N be a bounded sequence of
non-zero numbers of K. The operator Ba is called unilateral unweighted back-
ward shift if an = 1 for all n ≥ 1. We denote by B a unilateral unweighted
backward shift operator.

In [13] various functional models of the unilateral shift operator B has been
given. For the sake of completeness, let us provide one an illustrative example.

Example 4.1. Let Zp be the unit ball in Qp. By C(Zp, Cp) we denote the space
of all continuous functions on Zp with values in Cp endowed with ”sup”-norm.
Consider a linear operator T : C(Zp , Cp) → C(Zp, Cp) defined by

(T f )(x) = f (x + 1)− f (x), (x ∈ Zp), f ∈ C(Zp, Cp).

We note (see [11]) that the operator T can be interpreted as the annihilation opera-
tors in a p-adic representation of the canonical commutation relations of quantum
mechanics.
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It is well known [15] that the Mahler polynomials

Pn(x) =
x(x − 1) · · · (x − n + 1)

n!
, n ∈ N; P0(x) = 1,

form an orthonormal basis in C(Zp , Cp). The operator T acts on the Mahler poly-
nomials as follows:

TPn = Pn−1, n ∈ N; TP0 = 0.

It is known that the spaces C(Zp, Cp) and c0(N) are isomorphic via the isomor-
phism

∞

∑
n=0

xnPn → (x0, x1, . . . , xn, . . . )

therefore, the operator T is transformed to B.

Theorem 4.5. Any unilateral weighted backward shift Ba on c0(N) is supercyclic.
Moreover, Ba is hypercyclic iff

lim sup
n→∞

n

∏
i=1

|ai | = ∞. (10)

Proof. Let Ba be a unilateral weighted backward shift. Let D1 = D2 := c00(N) be
the set of all finitely supported sequences. Let Sa be the linear map defined on D2

by Sa(en) = a−1
n en+1 and, for each k ∈ N, set Sk := Sk

a. Then, the Supercyclicity
Criterion is satisfied with respect to k because ‖ Bk

a(x) ‖= 0 for large enough k on
D1 and Bk

aSk = I on D2. According to Theorem 3.14 operator Ba is supercyclic.
Now we are going to establish that the hypercyclicity of Ba is equivalent

to (10). First we suppose that (10) holds, and let us show that Ba satisfies the
Hypercyclicity Criterion. It is enough to show that Sk(x) → 0 as k → ∞ for all
x ∈ c00(N). Let x ∈ c00(N) \ {0}. Then there exists a positive integer q such that

xq 6= 0 and xm = 0 for all m > q. Denote x
(k)
j := (Skx)j, j = 1, 2, 3, . . . . We have

x
(k)
j = 0 if 1 ≤ j ≤ k or j > q + k, and

xk
j+k =

xj

k

∏
i=1

|aj+i−1|

, 1 ≤ j ≤ q.

From (10), we obtain that xk
j+k tends to 0 along the subsequence.

Let us assume that Ba is hypercyclic, and take an arbitrary number ε > 0.
Then the density of hypercyclic vectors implies the existence of x ∈ c0(N) and an
integer k > 2 such that

‖ x − e1 ‖< ε and ‖ Bk
a(x)− e1 ‖< ε.

From these relations, we obtain |xk+1| < ε and
∣

∣

∣∏
k
i=1 aixk+1 − 1

∣

∣

∣
< ε. Again using

the non-Archimedean norm’s property from the last inequalities one finds

k

∏
i=1

|ai| =
1

|xk+1|
>

1

ε
.

The arbitrariness of ε yields (10). The proof is complete.
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Corollary 4.6. Let B be an unilateral unweighted backward shift on c0(N). Then the
following assertions hold:

(i) The operator λB is supercyclic for any λ ∈ K×;

(ii) λB is hypercyclic iff |λ| > 1.

5 λI + µB operators on c0

In this section, we are going to consider the following operator

Tλ,µ = λI + µB,

where I is a identity and B is the unweighted backward shift. We will show that
there does not exist pair of (λ, µ) such that Tλ,µ can be supercyclic on c0(Z). But,
for any pair of (λ, µ) with |λ| < |µ| an operator Tλ,µ is supercyclic on c0(N).
Moreover, we will prove that the condition |λ| < |µ| is necessary for the super-
cyclicity of Tλ,µ on c0(N).

Theorem 5.1. The operator Tλ,µ on c0(Z) is not supercyclic for all λ, µ ∈ K.

Proof. First, we consider the case |λ| ≥ |µ|. Take x ∈ c0(Z) \ {0}. Then there
exists a number k ∈ N such that |xk| > |xm| for all m > k.

Denote
x
(n)
i :=

(

Tn
λ,µx

)

i
, i = 0,±1,±2, . . .

It is easy to get the following recurrence formula

x
(n)
i = λn

n

∑
j=0

(

n

j

)

µjλ−jxi+j, i = 0,±1,±2, . . .

Due to |(n
j)| ≤ 1, j = 1, n and |µ| ≤ |λ|, and using the non-Archimedean norm’s

property one gets
∣

∣

∣
x
(n)
k

∣

∣

∣
= |λnxk|

and
∣

∣

∣
x
(n)
k+1

∣

∣

∣
< |λnxk| .

Then for any α ∈ K× we get

∣

∣

∣
αx

(n)
k

∣

∣

∣
>

∣

∣

∣
αx

(n)
k+1

∣

∣

∣
.

This with the non-Archimedean norm’s property yields that

‖ αTn
λ,µ(x)− ek+1 ‖≥ 1,

which means that O(x, αTλ,µ) ∩ B(ek+1, 1) = ∅. The arbitrariness of α implies

that c0(Z) \ K · O(x, Tλ,µ) 6= ∅. Since x is an arbitrary vector we conclude that
Tλ,µ can not be supercyclic if |λ| ≥ |µ|.
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Now we assume that |µ| > |λ|. Pick a non-zero vector y. We can take an
integer number ℓ such that |yℓ| ≥ |yi| for all i > ℓ and |yℓ| > |yj| for all j < ℓ.
Then for any k ∈ Z we have

y
(n)
k−n = µn

n

∑
j=0

(

n

j

)

λn−jµj−nyk−n+j. (11)

Using the strong triangle inequality one gets

∣

∣

∣
y
(n)
ℓ−n

∣

∣

∣
= |µnyℓ|

Pick an integer number m such that |yi| < |yℓ| for all i > m. Then from (11) for
any i > m we obtain

∣

∣

∣
y
(n)
i

∣

∣

∣
< |µnyℓ| .

Due to
∣

∣

∣
y
(n)
ℓ−n

∣

∣

∣
>

∣

∣

∣
y
(n)
m+1

∣

∣

∣
and the inequality

∣

∣

∣
βy

(n)
ℓ−n

∣

∣

∣
< 1, for any β ∈ K, we obtain

∣

∣

∣
βy

(n)
m+1 − 1

∣

∣

∣
= 1. It yields that O(y, βTλ,µ) ∩ B(em+1, 1) = ∅ for any β ∈ K. The

arbitrariness of y implies that Tλ,µ can not be supercyclic on c0(Z) if |λ| < |µ|.
This completes the proof.

From Remark 2.3 we obtain the following

Corollary 5.2. The operator Tλ,µ on c0(Z) is not hypercyclic for all λ, µ ∈ K.

Now we consider the operator Tλ,µ on c0(N). We will show that hypercyclicity
of Tλ,µ is equivalent to the Hypercyclicity Criterion.

Theorem 5.3. For the the operator Tλ,µ acting on c0(N) the following statements are
equivalent:

(i) Tλ,µ satisfies Hypercyclicity Criterion;

(ii) Tλ,µ is hypercyclic;

(iii) |λ| < |µ| and |µ| > 1.

To prove the theorem we first prove three auxiliary lemmas.

Lemma 5.4. If the operator Tλ,µ acting on c0(N) is hypercyclic then |µ| > |λ| and
|µ| > 1.

Proof. Assume that Tλ,µ is hypercyclic. We immediately get that ‖ Tλ,µ ‖> 1.
Using the non-archimedean norm’s property one finds max{|λ|, |µ|} > 1. Let us
suppose that |µ| ≤ |λ|. Take x ∈ HC(Tλ,µ). Since the vector x is not zero, then
there exists a number k ∈ N such that |xk| > |xm| for all m > k.

It is easy to get the following recurrence formula

x
(n)
i = λn

n

∑
j=0

(

n

j

)

(µ

λ

)j
xi+j, i = 1, 2, 3, . . .
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From |(n
j)| ≤ 1, j = 1, n and |µ| ≤ |λ|, by means of the non-Archimedean norm’s

property one gets
∣

∣

∣
x
(n)
k

∣

∣

∣
= |λnxk| .

From |λ| > 1 we get
∣

∣

∣
x
(n)
k

∣

∣

∣
> |xk|. Hence,

‖ Tn
λ,µ(x) ‖> |xk| > 0.

Then O(x, Tλ,µ) ∩ B(0, ε) = ∅ for any positive ε < |xk|. This means that
x 6∈ HC(Tλ,µ). Thus, we have shown that Tλ,µ cannot be hypercyclic if |µ| ≤ |λ|.
From this fact and max{|λ|, |µ|} > 1 we get |µ| > 1.

Lemma 5.5. Let |µ| > 1. If |λ| < 1, then Tλ,µ acting on c0(N) is hypercyclic.

Proof. Let |λ| < 1 < |µ|. We define the operator Sµ,λ as follows

(

Sµ,λx
)

1
= 0

(

Sµ,λx
)

i
= 1

µ

(

i−1

∑
j=1

(

−λ
µ

)j−1
xi−j

)

, i = 2, 3, 4, . . .
(12)

Then one has Tλ,µSµ,λ = I. Let x ∈ c00. It is clear that Tn
λ,µ(x) → 0 as n → ∞. It

follows from the strong triangle inequality that

‖ Sn
µ,λ(x) ‖≤

1

|µn|
‖ x ‖ .

Since |µ| > 1 we obtain Sn
µ,λ(x) → 0 as n → ∞. Hence, the operator Tλ,µ

satisfies the Hypercyclicity Criterion, therefore, Theorem 3.5 implies that Tλ,µ is a
hypercyclic.

Proposition 5.6. If 1 ≤ |λ| < |µ| then
⋃∞

n≥1 T−n
λ,µ(0) is a dense set in c0(N).

Proof. First we show that Tn
λ,µ(x) = 0 has a solution for any n ≥ 1. Note that

Tn
λ,µ(x) = 0 is equivalent to

n

∑
j=0

(

n

j

)

λn−jµjxk+j = 0, k = 1, 2, 3, . . . ,

where xm → 0 as m → ∞.
Dividing by λn and denoting µ̃ =

µ
λ from the last equality, we obtain

n

∑
j=0

(

n

j

)

µ̃jxk+j = 0, k = 1, 2, 3, . . . (13)

Then for any (a1, a2, . . . , an) ∈ Kn the sequence (bm)m≥1 defined by

{

bm = am, if m ≤ n,

bm = −
∑

n
j=0 (

n
j)µ̃

jbm−n+j

µ̃n , if m > n.
(14)
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is a solution of the system (13). Using the strong triangle inequality from (14) we
get

|bn+k| ≤ max
0≤j≤n−1

∣

∣

∣

∣

bk+j

µ̃n−j

∣

∣

∣

∣

, k = 1, 2, 3 . . .

Hence,

|bn+k| ≤
1

|µ̃k−1|
max

1≤j≤n

∣

∣

∣

∣

bj

µ̃n−j+1

∣

∣

∣

∣

, k = 1, 2, 3 . . .

From |µ̃| > 1 one has bm → 0 as m → ∞. Thus, we have shown that
y = (y1, y2, . . . ) ∈ c0(N) is a solution of Tn

λ,µ(x) = 0 if and only if the sequence

(ym)m≥1 satisfies (14).

Now, let us show that
⋃∞

n≥1 T−n
λ,µ(0) = c0(N). Indeed, pick up any x ∈ c0(N).

Then for any ε > 0 there exists a positive integer n0 such that |xm| < ε for all
m > n0. We can find an integer number N > n0 such that

max
1≤j≤n0

{|xj|}

|µ̃N−n0+1|
< ε. (15)

Then for the vector y = (y1, y2, y3, . . . ) defined by

ym =

{

xm, if m ≤ N,

−
∑

N
j=0 (

N
j )µ̃

jym−N+j

µ̃N , if m > N.
(16)

we have TN
λ,µ(y) = 0. Hence, y ∈

⋃∞
n≥1 T−n

λ,µ(0). Noting (15), using the strong

triangle inequality from (16) one finds |ym| < ε for every m > N. Hence,
‖ x − y ‖< ε. The arbitrariness of x implies that the density of

⋃∞
n≥1 T−n

λ,µ(0) in

c0(N).

Lemma 5.7. Let 1 ≤ |λ| < |µ|. Then the operator Tλ,µ satisfies the Hypercyclicity
Criterion.

Proof. Let 1 ≤ |λ| < |µ|. We denote D1 =
⋃∞

n≥1 T−n
λ,µ(0) and D2 = c00. According

to Proposition 5.6 the set D1 is dense. Let x ∈ D1. Then there exists an integer
k ≥ 1 such that Tk

λ,µ(y) = 0. Hence, for any n ≥ k we have Tn
λ,µ(y) = 0.

For the linear operator Sµ,λ defined by (12), we can easily check that
Sn

µ,λ(y) → 0 for every y ∈ c00, here we have used 1 ≤ |λ| < |µ|. From

Tλ,µSµ,λ = I, one gets Tn
λ,µSn

µ,λ(y) → y for every y ∈ c00. Hence, we have shown

that the operator Tλ,µ satisfies Hypercyclicity Criterion.

Proof of Theorem 5.3 The implication (i)⇒(ii) follows from Theorem 3.5. By
Lemma 5.4 we obtain the implication (ii)⇒(iii). Finally, (iii)⇒(i) follows from
Lemma 5.5 and Lemma 5.7. This completes the proof.

Remark 5.1. According to Theorem 5.3 an operator I + µB on c0(N) can not be
hypercyclic for any µ ∈ K. But, in real case [18], it is hypercyclic for µ 6= 0.

Now we will study supercyclicity of Tλ,µ. Similarly to the hypercyclic case we
have the following
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Theorem 5.8. For the operator Tλ,µ acting on c0(N) the following statements are
equivalent:

(i) Tλ,µ satisfies Supercyclicity Criterion;

(ii) Tλ,µ is supercyclic;

(iii) |λ| < |µ|.

Proof. The implication (i)⇒(ii) follows from Theorem 3.14. We will establish the
implications (ii)⇒(iii)⇒(i).

(ii)⇒(iii) Let us assume that Tλ,µ is a supercyclic. Suppose that |µ| ≤ |λ|. Let
x ∈ SC(Tλ,µ). Due to x 6= 0 there exists a positive integer k such that |xk| > |xm|

for all m > k. Denote x
(n)
i :=

(

Tn
λ,µx

)

i
. Then for any n ≥ 1 using the non-

Archimedean norm’s property we get

∣

∣

∣
x
(n)
k

∣

∣

∣
= |λnxk| (17)

and
∣

∣

∣
x
(n)
k+1

∣

∣

∣
< |λnxk| (18)

Since x is a supercyclic vector, there exist n ∈ N and α ∈ K such that

‖ αTn
λ,µ(x)− ek+1 ‖< 1.

It follows that
∣

∣

∣
αx

(n)
k

∣

∣

∣
< 1,

∣

∣

∣
αx

(n)
k+1 − 1

∣

∣

∣
< 1 (19)

On the other hand, from (17) and (18) we obtain
∣

∣

∣
αx

(n)
k

∣

∣

∣
= |αλnxk|

and
∣

∣

∣
αx

(n)
k+1

∣

∣

∣
< |αλnxk| .

The last ones with the non-Archimedean norm’s property imply

∣

∣

∣
αx

(n)
k

∣

∣

∣
< 1,

∣

∣

∣
αx

(n)
k+1 − 1

∣

∣

∣
= 1.

It is a contradiction to (19). This yields that Tλ,µ can not be supercyclic.
(iii)⇒(i) Let |λ| < |µ|. Take an arbitrary vector x ∈ c00(N). Then there exists

a number ℓ ∈ N such that xℓ 6= 0 and xj = 0 for all j > ℓ. It is clear that

x
(n)
j = 0, j > ℓ for any n ≥ 1. For a given n ≥ ℓ we have

x
(n)
j =

ℓ−j

∑
i=0

(

n

i

)

λn−iµixj+i, 1 ≤ j ≤ ℓ.

which yields
∣

∣

∣
x
(n)
j

∣

∣

∣
≤
∣

∣

∣
λn−ℓ+jµℓ−j

∣

∣

∣
· |xl|.
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Hence,

‖ Tn
λ,µ(x) ‖≤

∣

∣

∣
λn−lµl

∣

∣

∣
· ‖ x ‖ (20)

Now let us take an arbitrary vector y ∈ c00(N) and compute the norm of Sn
µ,λ(y),

where the operator Sµ,λ is defined by (12). From (12) and using the non-Archime-
dean norm’s property one finds

‖ Sn
µ,λ(y) ‖≤

∣

∣µ−n
∣

∣ · ‖ y ‖ . (21)

Multiplying (20) and (21) we obtain

‖ Tn
λ,µ(x) ‖ · ‖ Sn

µ,λ(y) ‖≤

(

|λ|

|µ|

)n−l

‖ x ‖ · ‖ y ‖ .

Due to |λ| < |µ| one has ‖ Tn
λ,µ(x) ‖ · ‖ Sn

µ,λ(y) ‖→ 0 as n → ∞. Hence, Tλ,µ

satisfies the Supercyclicity Criterion. This completes the proof.

Remark 5.2. We stress that all operators on c0 considered above are hypercyclic
(resp. supercyclic) if they satisfy Hypercyclic (reps. Supercyclic) Criterion. It is
natural to ask: does there exist a hypercyclic (resp. supercyclic) linear operator
on c0 which does not satisfy HC (SC)? We conjecture that such kind of linear
operators on c0 do not exist.
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