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Abstract

A topological space X has property (DC(ω1)) if it has a dense subspace
every uncountable subset of which has a limit point in X. In this paper, we
make some observations on spaces with property (DC(ω1)). In particular,
we prove that the cardinality of a space X with property (DC(ω1)) does not
exceed c if X satisfies one of the following conditions: (1) X is normal and
has a rank 2-diagonal; (2) X is perfect and has a rank 2-diagonal; (3) X has a
rank 3-diagonal; (4) X is perfect and has countable tightness. We also prove
that if X is a regular space with a Gδ-diagonal and property (DC(ω1)) then
the cardinality of X is at most 2c.

1 Introduction

All topological spaces in this paper are assumed to be Hausdorff unless otherwise
stated.

The property (DC(ω1)) was first introduced and studied by Ikenaga in [10].
We say that a topological space X has property (DC(ω1)) ([10]) if it has a dense
subspace every uncountable subset of which has a limit point in X. Obviously, ev-
ery separable space or every space with countable extent has property (DC(ω1)).

The properties of the diagonal often imply restrictions on the cardinality. For
example, Ginsburg and Woods in [8] proved that the cardinality of a space with
countable extent and a Gδ-diagonal is at most c. Buzyakova in [3] proved that if
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a space X with the countable Souslin number has a regular Gδ-diagonal then the
cardinality of X does not exceed c. Arhangel’skii and Bella in [2] proved that if X
is a space with a rank 4-diagonal and cellularity at most c then the cardinality of
X does not exceed c. In [14], we prove that the cardinality of a star Lindelöf space
X does not exceed c if X satisfies one of the following conditions: (1) X has a rank
3-diagonal; (2) X is normal and has a rank 2-diagonal; (3) X is first countable,
normal and has a Gδ-diagonal. For more results one can refer to [4, 6, 7].

In this paper, by developing the idea of [8], we prove that the cardinality of
a space X with property (DC(ω1)) does not exceed c if X satisfies one of the
following conditions: (1) X is normal and has a rank 2-diagonal; (2) X is perfect
and has a rank 2-diagonal; (3) X has a rank 3-diagonal; (4) X is perfect and has
countable tightness. We also prove that if X is a regular space with a Gδ-diagonal
and property (DC(ω1)) then the cardinality of X is at most 2c.

2 Notation and terminology

The cardinality of a set X is denoted by |X|, and [X]2 will denote the set of
two-element subsets of X. As usual, w(X), χ(X), d(X), nw(X) and ψ(X) denote
respectively the weight, character, density, network weight and pseudocharacter of X.
We write ω for the first infinite cardinal and c for the cardinality of the continuum.

If A is a subset of a space X and U is a family of subsets of X, then St(A,U ) =
⋃

{U ∈ U : U ∩ A 6= ∅}. We also put St0(A,U ) = A and for a natural number

n, Stn+1(A,U ) = St(Stn(A,U ),U ). For simplicity, we write Stn(x,U ) instead of
Stn({x},U ).

Definition 2.1. ([1]) A diagonal sequence of rank k on a space X, where k ∈ ω, is a
countable family {Un : n ∈ ω} of open covering of X such that
{x} =

⋂

{Stk(x,Un) : n ∈ ω} for each x ∈ X.

Definition 2.2. ([1]) A space X has a rank k-diagonal, where k ∈ ω, if there is a
diagonal sequence {Un : n ∈ ω} on X of rank k. The rank of the diagonal of X
is defined as the greatest natural number k such that X has a rank k-diagonal, if
such a number k exists.

Definition 2.3. ([1]) Recall that a space X has a strong rank 1-diagonal if there exists
a sequence {Un : n ∈ ω} of open covers of X such that for each x ∈ X, we have

the equality {x} =
⋂

{St(x,Un) : n ∈ ω}.

Definition 2.4. ([15]) We say that a space X has a Gδ-diagonal if there is a countable
family {Un : n ∈ ω} of open neighbourhoods of the diagonal ∆X in the square
X × X such that ∆X =

⋂

{Un : n ∈ ω}.

Definition 2.5. ([15]) We say that a space X has a regular Gδ-diagonal if there is a
countable family {Un : n ∈ ω} of open neighbourhoods of the diagonal ∆X in the
square X × X such that ∆X =

⋂

{Un : n ∈ ω}.

Zenor in [15] pointed out that a space X has a Gδ-diagonal if and only if X has
a rank 1-diagonal. If the rank of the diagonal of a space X is at least 3 then X has
a regular Gδ-diagonal. It is evident that every rank 2-diagonal is a strong rank
1-diagonal and every strong rank 1-diagonal is a Gδ-diagonal (see [1]).
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Definition 2.6. A topological space X is called perfect if every closed subset of X
is a Gδ-set.

Therefore, every perfect T1-space has countable pseudocharacter.

Definition 2.7. We say that X has countable tightness if for any A ⊂ X, if x ∈ A,
then there exists a countable set A0 ⊂ A such that x ∈ A0.

Definition 2.8. A topological space X is called a sequential space if a set A ⊂ X is
closed if and only if together with any sequence it contains all its limits.

Definition 2.9. If X is a topological space and A ⊂ X, say that a family U is an
open expansion of A if U = {Ua : a ∈ A} and Ua ∈ τ(a, X) for any a ∈ A.

All notations and terminology not explained in the paper are given in [5].

3 Results

We will use a following set-theoretic theorem due to Erdös and Radó.

Lemma 3.1. ([9, p.8]) Let X be a set with |X| > c and suppose [X]2 =
⋃

{Pn : n ∈ ω}.
Then there exists n0 < ω and a subset S of X with |S| > ω such that [S]2 ⊂ Pn0 .

Proposition 3.2. If a space X has property (DC(ω1)), then any discrete family of non-
empty open subsets of X is countable.

Proof. Assume the contrary. Then there exists a discrete family U = {Uα : α < ω1}
of non-empty open subsets in X. Let Y be a dense subspace of X such that every
uncountable subset of Y has a limit point in X. For each α < ω1 take dα ∈ Uα ∩Y.
Then D = {dα : α < ω1} is an uncountable closed and discrete subset of X, which
leads a contradiction.

Proposition 3.3. If D is a closed and discrete subset of a normal space X and
U = {U(d) : d ∈ D} is a pairwise disjoint open expansion of D, then there is a discrete
disjoint open expansion V = {V(d) : d ∈ D} of D such that d ∈ V(d) ⊂ U(d) for each
d ∈ D.

Proof. Since X is normal, there exists an open set W ⊂ X such that D ⊂ W ⊂
W ⊂

⋃

U . For each d ∈ D, let V(d) = U(d) ∩ W. It is not difficult to show that
V = {V(d) : d ∈ D} is a discrete disjoint open expansion of D. This completes
the proof.

Proposition 3.4. If X is a perfect space and D is an uncountable discrete subset of X,
then there exists an uncountable subset E ⊂ D which is closed and discrete in X.

Proof. Let U = {U(d) : d ∈ D} be a family of open subsets of X such that
U(d) ∩ D = {d} for each d ∈ D. Since X is perfect, there are closed subsets
Fn for n ∈ ω such that

⋃

d∈D Ud =
⋃

n∈ω Fn. Clearly, there is an uncountable sub-
set E = D ∩ Fn0 ⊂ X for some n0 ∈ ω. Now we show that E is closed and discrete
in X. Suppose not, then there is a limit point ξ for E. Since Fn0 is closed, we have

ξ ∈ Fn0 ⊂
⋃

n∈ω

Fn =
⋃

d∈D

Ud.
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Therefore, there exists d′ ∈ D such that ξ ∈ U(d′), and hence U(d′) contains
infinite points of E, which contradicts the choice of U . This completes the proof.

Proposition 3.5. If a regular space X has countable pseudocharacter and countable tight-
ness, then |Y| ≤ c for any subset Y ⊂ X with |Y| ≤ c.

Proof. Let U (x) = {Un(x) : n ∈ ω} be a family of open subsets of X such that

{x} =
⋂

n Un(x) for each x ∈ Y, since X is regular and has countable pseudochar-
acter. Since X has countable tightness, for each x ∈ Y there is a countable set
Ax ⊂ Y such that x ∈ Ax. Now define a map f : Y → (Yω)ω by

f (x) = {Un(x) ∩ Ax : n ∈ ω}.

Since |Y| ≤ c, it follows that |(Yω)ω| ≤ c.
To complete the proof, we will show that such a mapping is injective. Fix any

two distinct points a, b ∈ Y. Then there exists n0 ∈ ω such that b /∈ Un0(a).

It is obvious that b /∈ Un0(a) ∩ Aa and b ∈ Un0(b) ∩ Ab, which implies that
Un0(a) ∩ Aa 6= Un0(b) ∩ Ab for some n0 ∈ ω. Thus f (a) 6= f (b). So the map-
ping f is injective and this completes the proof.

Note that the regularity is necessary in Proposition 3.5, which can be seen in
the following example.

Example 3.6. ([11, p.64]) Let kN denote the Katetov’s extension of the natural
numbers with the discrete topology. The space kN has the following properties:
(a) kN is a Hausdorff non-regular space; (b) kN is separable; (c) kN has countable
tightness; (d) kN has countable pseudocharacter; (e) |kN| = 2c.

Proposition 3.7. If a space X has a rank 2-diagonal and |X| > c, then there exists an
uncountable closed and discrete subset of X which has a disjoint open expansion.

Proof. Assume the contrary. Since X has a rank 2-diagonal, there exists a sequence
{Un : n ∈ ω} of open covers of X such that {x} =

⋂

{St2(x,Un) : n ∈ ω} for every
x ∈ X. Note that x ∈ St2(y,Un) if and only if y ∈ St2(x,Un) for any distinct points
x, y ∈ X by symmetry. For each n ∈ ω, let

Pn =
{

{x, y} ∈ [X]2 : x /∈ St2(y,Un)
}

.

Thus, [X]2 =
⋃

{Pn : n ∈ ω} and hence there exists a subset D ⊂ X with |D| > ω
and [D]2 ⊂ Pn0 for some n0 ∈ ω by Lemma 3.1. It is evident that D is a closed and
discrete set and {St(x,Un0) : x ∈ D} is an uncountable pairwise disjoint family of
non-empty open sets of X by symmetry. This completes the proof.

Corollary 3.8. If X is a normal space with a rank 2-diagonal and property
(DC(ω1)), then the cardinality of X is at most c.

Proof. Assume the contrary. Then there exists an uncountable closed and discrete
subset D ⊂ X which has a disjoint open expansion by Proposition 3.7, since X has
a rank 2-diagonal. Therefore, D shall have a discrete disjoint open expansion by
Proposition 3.3 and normality of X. But every discrete family of non-empty open
subsets of X is countable by Proposition 3.2, since X has property (DC(ω1)). This
contradiction completes the proof.
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The following corollary shows that the condition “normal” in Corollary 3.8
can be replaced by “perfect”.

Corollary 3.9. If X is a perfect space with a rank 2-diagonal and property
(DC(ω1)), then the cardinality of X is at most c.

Proof. Assume the contrary. Then there exists an uncountable closed and discrete
subset S ⊂ X which has a disjoint open expansion {U(x) : x ∈ S} by Proposition
3.7, since X has a rank 2-diagonal. Let Y be a dense subspace of X such that every
uncountable subset of Y has a limit point in X. For each x ∈ S take dx ∈ U(x)∩Y.
Then D = {dx : x ∈ S} is an uncountable discrete subset of Y. It follows from
Proposition 3.4 that there exists an uncountable subset E ⊂ D which is closed and
discrete in X, since X is perfect. This contradicts the choice of Y and completes
the proof.

Corollary 3.10. If X is a Moore space with property (DC(ω1)), then the cardinal-
ity of X is at most c.

Proof. Since every Moore space is perfect and has a rank 2-diagonal ([1]), we
could conclude that |X| ≤ c by Corollary 3.9.

The following questions look interesting.

Question 3.11. Let X be a Hausdorff (regular, Tychonoff) space with a rank
2-diagonal and property (DC(ω1)). Must the cardinality of X be at most c?

Question 3.12. ([7]) Let X be a weakly Lindelöf space with a rank 2-diagonal.
Must the cardinality of X be at most c?

Question 3.13. ([7]) Let X be a weakly Lindelöf Moore space. Must the cardinality
of X be at most c?

Theorem 3.14. If X is a regular space with a Gδ-diagonal and property (DC(ω1)), then
the cardinality of X is at most 2c.

Proof. Since X has a Gδ-diagonal, there exists a sequence {Gk : k ∈ ω} of open
sets of X2 such that ∆X =

⋂

{Gk : k ∈ ω}. For each k ∈ ω and x ∈ X, there
exists an open subset Vk(x) of X such that (x, x) ∈ Vk(x) × Vk(x) ⊂ Gk. Thus
without loss of generality, we assume that Gk =

⋃

{Vk(x) × Vk(x) : x ∈ X} and
Gk+1 ⊂ Gk.

Assume that Y is the dense subspace of X which witnesses that X has property
(DC(ω1)). We shall show that |Y| ≤ c. Suppose not. For each n ∈ ω, let

Pn =
{

{x, y} ∈ [Y]2 : (x, y) /∈ Gn

}

.

Clearly, for any {x, y} ∈ [Y]2, there exists n ∈ ω such that {x, y} ∈ Pn. Thus,
[Y]2 =

⋃

{Pn : n ∈ ω}. Then by Lemma 3.1 there exists a subset S ⊂ Y with
|S| > ω and [S]2 ⊂ Pn0 for some n0 ∈ ω. It follows that S has a limit point x ∈ X
by the choice of Y. Since X is T1, each neighborhood of x meets infinitely many
members of S. In particular, there exist distinct points y and z in S ∩Vn0(x). Thus
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(y, z) ∈ Vn0(x)× Vn0(x) ⊂ Gn0. However, since {y, z} ∈ Pn0 , (y, z) /∈ Gn0 , which
is a contradiction. This shows that |Y| ≤ c.

Since w(X) ≤ 2d(X) holds for any regular space X and d(X) ≤ |Y| ≤ c, we

have w(X) ≤ 2c. Therefore, |X| ≤ nw(X)ψ(X) ≤ w(X)ψ(X) ≤ (2c)ω = 2c.

The conclusion in Theorem 3.14 is also true for Hausdorff spaces if we replace
“Gδ-diagonal” with “strong rank 1-diagonal”.

Proposition 3.15. If X is a Hausdorff space with a strong rank 1-diagonal and property
(DC(ω1)), then the cardinality of X is at most 2c.

Proof. Since every strong rank 1-diagonal is a Gδ-diagonal, by using the proof of
Theorem 3.14, we could conclude that there exists a dense set Y ⊂ X of cardinality
at most c, thus d(X) ≤ c. Since X has a strong rank 1-diagonal, it follows that

s∆(X) = ω (see [4]). It has been established in [4] that |X| ≤ 2d(X)s∆(X) for any
Hausdorff space X so we have |X| ≤ 2c·ω = 2c. This completes the proof.

Theorem 3.16. If X is a space with a rank 3-diagonal and property (DC(ω1)), then the
cardinality of X is at most c.

Proof. Assume the contrary. Since X has a rank 3-diagonal, there exists a sequence
{Un : n ∈ ω} of open covers of X such that {x} =

⋂

{St3(x,Un) : n ∈ ω} for every
x ∈ X. Note that x ∈ St3(y,Un) if and only if y ∈ St3(x,Un) for any distinct points
x, y ∈ X by symmetry. For each n ∈ ω, let

Pn =
{

{x, y} ∈ [X]2 : x /∈ St3(y,Un)
}

.

Thus, [X]2 =
⋃

{Pn : n ∈ ω}. Then by Lemma 3.1 there exists a subset S of X with
|S| > ω and [S]2 ⊂ Pn0 for some n0 ∈ ω. It is evident that {St(x,Un0) : x ∈ S}
is an uncountable discrete family of non-empty open subsets of X. But every
discrete family of non-empty open subsets of X is countable by Proposition 3.2,
since X has property (DC(ω1)). This contradiction completes the proof.

Note that every rank 3-diagonal is a regular Gδ-diagonal, however the con-
verse doesn’t hold in general. Thus the following question arises naturally.

Question 3.17. Let X be a space with a regular Gδ-diagonal and property
(DC(ω1)). Is the cardinality of X at most c? What if X is additionally first count-
able?

Theorem 3.18. If X is a regular perfect space of countable tightness with property
(DC(ω1)), then the cardinality of X is at most c.

Proof. Let Y be a dense subspace of X which witnesses that X has property
(DC(ω1)). We shall show that |Y| ≤ c. Suppose not. Since X is a perfect space, X
has countable pseudocharacter. For each x ∈ Y, let B(x) = {Bn(x) : n ∈ ω} be a
family of open sets of X such that

⋂

B(x) = {x} and Bn+1 ⊂ Bn for each n ∈ ω.
For each n ∈ ω, let

Pn =
{

{x, y} ∈ [Y]2 : y /∈ Bn(x); x /∈ Bn(y)
}

.
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It is easy to check that [Y]2 =
⋃

{Pn : n ∈ ω}. We can apply Lemma 3.1 to
conclude that there exists an uncountable subset S of Y and [S]2 ⊂ Pn0 for some
n0 ∈ ω. Note that for each x ∈ S, Bn0(x) ∩ S = {x}. It follows from Proposition
3.4 that there exists an uncountable subset E ⊂ S which is closed and discrete in
X. This contradiction the choice of Y shows that |Y| ≤ c. Now we could conclude
that |X| = |Y| ≤ c by Proposition 3.5, since X has countable pseudocharacter and
countable tightness and Y is dense in X. This completes the proof.

Since every first countable (Fréchet, sequential) space has countable tightness,
we have the following corollaries by Theorem 3.18.

Corollary 3.19. If X is a regular, perfect and sequential space with property
(DC(ω1)), then the cardinality of X is at most c.

Corollary 3.20. If X is a regular, perfect and Fréchet space with property
(DC(ω1)), then the cardinality of X is at most c.

Corollary 3.21. If X is a regular, perfect and first countable space with property
(DC(ω1)), then the cardinality of X is at most c.

If we drop the condition “countable tightness” in Theorem 3.18, then 2c would
be the least upper bound of X.

Proposition 3.22. If X is a regular perfect space with property (DC(ω1)), then the
cardinality of X is at most 2c.

Proof. By using the proof of Theorem 3.18, we could conclude that there exists a

dense set Y ⊂ X of cardinality at most c, thus d(X) ≤ c. Since |X| ≤ 2d(X)ψ(X)

holds for any regular space X, we conclude that |X| ≤ 2c·ω = 2c which completes
the proof.
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