Observations on spaces with property
 $\left(D C\left(\omega_{1}\right)\right)^{*}$

Wei-Feng Xuan Wei-Xue Shi

Abstract

A topological space X has property $\left(D C\left(\omega_{1}\right)\right)$ if it has a dense subspace every uncountable subset of which has a limit point in X. In this paper, we make some observations on spaces with property $\left(D C\left(\omega_{1}\right)\right)$. In particular, we prove that the cardinality of a space X with property $\left(D C\left(\omega_{1}\right)\right)$ does not exceed \mathfrak{c} if X satisfies one of the following conditions: (1) X is normal and has a rank 2-diagonal; (2) X is perfect and has a rank 2-diagonal; (3) X has a rank 3-diagonal; (4) X is perfect and has countable tightness. We also prove that if X is a regular space with a G_{δ}-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$ then the cardinality of X is at most 2^{c}.

1 Introduction

All topological spaces in this paper are assumed to be Hausdorff unless otherwise stated.

The property $\left(D C\left(\omega_{1}\right)\right)$ was first introduced and studied by Ikenaga in [10]. We say that a topological space X has property $\left(D C\left(\omega_{1}\right)\right)$ ([10]) if it has a dense subspace every uncountable subset of which has a limit point in X. Obviously, every separable space or every space with countable extent has property $\left(D C\left(\omega_{1}\right)\right)$.

The properties of the diagonal often imply restrictions on the cardinality. For example, Ginsburg and Woods in [8] proved that the cardinality of a space with countable extent and a G_{δ}-diagonal is at most \mathfrak{c}. Buzyakova in [3] proved that if

[^0]a space X with the countable Souslin number has a regular G_{δ}-diagonal then the cardinality of X does not exceed \mathfrak{c}. Arhangel'skii and Bella in [2] proved that if X is a space with a rank 4-diagonal and cellularity at most \mathfrak{c} then the cardinality of X does not exceed c. In [14], we prove that the cardinality of a star Lindelöf space X does not exceed \mathfrak{c} if X satisfies one of the following conditions: (1) X has a rank 3-diagonal; (2) X is normal and has a rank 2-diagonal; (3) X is first countable, normal and has a G_{δ}-diagonal. For more results one can refer to [4, 6, 7].

In this paper, by developing the idea of [8], we prove that the cardinality of a space X with property $\left(D C\left(\omega_{1}\right)\right)$ does not exceed \mathfrak{c} if X satisfies one of the following conditions: (1) X is normal and has a rank 2-diagonal; (2) X is perfect and has a rank 2-diagonal; (3) X has a rank 3-diagonal; (4) X is perfect and has countable tightness. We also prove that if X is a regular space with a G_{δ}-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$ then the cardinality of X is at most 2^{c}.

2 Notation and terminology

The cardinality of a set X is denoted by $|X|$, and $[X]^{2}$ will denote the set of two-element subsets of X. As usual, $w(X), \chi(X), d(X), n w(X)$ and $\psi(X)$ denote respectively the weight, character, density, network weight and pseudocharacter of X. We write ω for the first infinite cardinal and \mathfrak{c} for the cardinality of the continuum.

If A is a subset of a space X and \mathcal{U} is a family of subsets of X, then $\operatorname{St}(A, \mathcal{U})=$ $\bigcup\{U \in \mathcal{U}: U \cap A \neq \varnothing\}$. We also put $\mathrm{St}^{0}(A, \mathcal{U})=A$ and for a natural number $n, \operatorname{St}^{n+1}(A, \mathcal{U})=\operatorname{St}\left(\mathrm{St}^{\mathrm{n}}(A, \mathcal{U}), \mathcal{U}\right)$. For simplicity, we write $\mathrm{St}^{\mathrm{n}}(x, \mathcal{U})$ instead of $\mathrm{St}^{\mathrm{n}}(\{x\}, \mathcal{U})$.
Definition 2.1. ([1]) A diagonal sequence of rank k on a space X, where $k \in \omega$, is a countable family $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covering of X such that $\{x\}=\bigcap\left\{\operatorname{St}^{\mathrm{k}}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for each $x \in X$.
Definition 2.2. ([1]) A space X has a rank k-diagonal, where $k \in \omega$, if there is a diagonal sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ on X of rank k. The rank of the diagonal of X is defined as the greatest natural number k such that X has a rank k-diagonal, if such a number k exists.

Definition 2.3. ([1]) Recall that a space X has a strong rank 1-diagonal if there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that for each $x \in X$, we have the equality $\{x\}=\bigcap\left\{\overline{\operatorname{St}\left(x, \mathcal{U}_{n}\right)}: n \in \omega\right\}$.
Definition 2.4. ([15]) We say that a space X has a G_{δ}-diagonal if there is a countable family $\left\{U_{n}: n \in \omega\right\}$ of open neighbourhoods of the diagonal Δ_{X} in the square $X \times X$ such that $\Delta_{X}=\bigcap\left\{U_{n}: n \in \omega\right\}$.
Definition 2.5. ([15]) We say that a space X has a regular G_{δ}-diagonal if there is a countable family $\left\{U_{n}: n \in \omega\right\}$ of open neighbourhoods of the diagonal Δ_{X} in the square $X \times X$ such that $\Delta_{X}=\bigcap\left\{\overline{U_{n}}: n \in \omega\right\}$.

Zenor in [15] pointed out that a space X has a G_{δ}-diagonal if and only if X has a rank 1-diagonal. If the rank of the diagonal of a space X is at least 3 then X has a regular G_{δ}-diagonal. It is evident that every rank 2-diagonal is a strong rank 1-diagonal and every strong rank 1-diagonal is a G_{δ}-diagonal (see [1]).

Definition 2.6. A topological space X is called perfect if every closed subset of X is a G_{δ}-set.

Therefore, every perfect T_{1}-space has countable pseudocharacter.
Definition 2.7. We say that X has countable tightness if for any $A \subset X$, if $x \in \bar{A}$, then there exists a countable set $A_{0} \subset A$ such that $x \in \overline{A_{0}}$.

Definition 2.8. A topological space X is called a sequential space if a set $A \subset X$ is closed if and only if together with any sequence it contains all its limits.

Definition 2.9. If X is a topological space and $A \subset X$, say that a family \mathcal{U} is an open expansion of A if $\mathcal{U}=\left\{U_{a}: a \in A\right\}$ and $U_{a} \in \tau(a, X)$ for any $a \in A$.

All notations and terminology not explained in the paper are given in [5].

3 Results

We will use a following set-theoretic theorem due to Erdös and Radó.
Lemma 3.1. ([9, p.8]) Let X be a set with $|X|>\mathfrak{c}$ and suppose $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then there exists $n_{0}<\omega$ and a subset S of X with $|S|>\omega$ such that $[S]^{2} \subset P_{n_{0}}$.
Proposition 3.2. If a space X has property $\left(D C\left(\omega_{1}\right)\right)$, then any discrete family of nonempty open subsets of X is countable.

Proof. Assume the contrary. Then there exists a discrete family $\mathcal{U}=\left\{U_{\alpha}: \alpha<\omega_{1}\right\}$ of non-empty open subsets in X. Let Y be a dense subspace of X such that every uncountable subset of Y has a limit point in X. For each $\alpha<\omega_{1}$ take $d_{\alpha} \in U_{\alpha} \cap Y$. Then $D=\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ is an uncountable closed and discrete subset of X, which leads a contradiction.

Proposition 3.3. If D is a closed and discrete subset of a normal space X and $\mathcal{U}=\{U(d): d \in D\}$ is a pairwise disjoint open expansion of D, then there is a discrete disjoint open expansion $\mathcal{V}=\{V(d): d \in D\}$ of D such that $d \in V(d) \subset U(d)$ for each $d \in D$.

Proof. Since X is normal, there exists an open set $W \subset X$ such that $D \subset W \subset$ $\bar{W} \subset \cup \mathcal{U}$. For each $d \in D$, let $V(d)=U(d) \cap W$. It is not difficult to show that $\mathcal{V}=\{V(d): d \in D\}$ is a discrete disjoint open expansion of D. This completes the proof.

Proposition 3.4. If X is a perfect space and D is an uncountable discrete subset of X, then there exists an uncountable subset $E \subset D$ which is closed and discrete in X.

Proof. Let $\mathcal{U}=\{U(d): d \in D\}$ be a family of open subsets of X such that $U(d) \cap D=\{d\}$ for each $d \in D$. Since X is perfect, there are closed subsets F_{n} for $n \in \omega$ such that $\bigcup_{d \in D} U_{d}=\bigcup_{n \in \omega} F_{n}$. Clearly, there is an uncountable subset $E=D \cap F_{n_{0}} \subset X$ for some $n_{0} \in \omega$. Now we show that E is closed and discrete in X. Suppose not, then there is a limit point ξ for E. Since $F_{n_{0}}$ is closed, we have

$$
\xi \in F_{n_{0}} \subset \bigcup_{n \in \omega} F_{n}=\bigcup_{d \in D} U_{d} .
$$

Therefore, there exists $d^{\prime} \in D$ such that $\xi \in U\left(d^{\prime}\right)$, and hence $U\left(d^{\prime}\right)$ contains infinite points of E, which contradicts the choice of \mathcal{U}. This completes the proof.

Proposition 3.5. If a regular space X has countable pseudocharacter and countable tightness, then $|\bar{Y}| \leq \mathfrak{c}$ for any subset $Y \subset X$ with $|Y| \leq \mathfrak{c}$.

Proof. Let $\mathcal{U}(x)=\left\{U_{n}(x): n \in \omega\right\}$ be a family of open subsets of X such that $\{x\}=\bigcap_{n} \overline{U_{n}(x)}$ for each $x \in \bar{Y}$, since X is regular and has countable pseudocharacter. Since X has countable tightness, for each $x \in \bar{Y}$ there is a countable set $A_{x} \subset Y$ such that $x \in \overline{A_{x}}$. Now define a map $f: \bar{Y} \rightarrow\left(Y^{\omega}\right)^{\omega}$ by

$$
f(x)=\left\{U_{n}(x) \cap A_{x}: n \in \omega\right\} .
$$

Since $|Y| \leq \mathfrak{c}$, it follows that $\left|\left(Y^{\omega}\right)^{\omega}\right| \leq \mathfrak{c}$.
To complete the proof, we will show that such a mapping is injective. Fix any two distinct points $a, b \in \bar{Y}$. Then there exists $n_{0} \in \omega$ such that $b \notin \overline{U_{n_{0}}(a)}$. It is obvious that $b \notin \overline{U_{n_{0}}(a) \cap A_{a}}$ and $b \in \overline{U_{n_{0}}(b) \cap A_{b}}$, which implies that $U_{n_{0}}(a) \cap A_{a} \neq U_{n_{0}}(b) \cap A_{b}$ for some $n_{0} \in \omega$. Thus $f(a) \neq f(b)$. So the mapping f is injective and this completes the proof.

Note that the regularity is necessary in Proposition 3.5, which can be seen in the following example.
Example 3.6. ([11, p.64]) Let $k N$ denote the Katetov's extension of the natural numbers with the discrete topology. The space $k N$ has the following properties: (a) $k N$ is a Hausdorff non-regular space; (b) $k N$ is separable; (c) $k N$ has countable tightness; (d) $k N$ has countable pseudocharacter; (e) $|k N|=2^{\text {c }}$.
Proposition 3.7. If a space X has a rank 2-diagonal and $|X|>\mathfrak{c}$, then there exists an uncountable closed and discrete subset of X which has a disjoint open expansion.

Proof. Assume the contrary. Since X has a rank 2-diagonal, there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that $\{x\}=\bigcap\left\{\operatorname{St}^{2}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for every $x \in X$. Note that $x \in \operatorname{St}^{2}\left(y, \mathcal{U}_{n}\right)$ if and only if $y \in \operatorname{St}^{2}\left(x, \mathcal{U}_{n}\right)$ for any distinct points $x, y \in X$ by symmetry. For each $n \in \omega$, let

$$
P_{n}=\left\{\{x, y\} \in[X]^{2}: x \notin \operatorname{St}^{2}\left(y, \mathcal{U}_{n}\right)\right\} .
$$

Thus, $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$ and hence there exists a subset $D \subset X$ with $|D|>\omega$ and $[D]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$ by Lemma 3.1. It is evident that D is a closed and discrete set and $\left\{\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right): x \in D\right\}$ is an uncountable pairwise disjoint family of non-empty open sets of X by symmetry. This completes the proof.
Corollary 3.8. If X is a normal space with a rank 2-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.
Proof. Assume the contrary. Then there exists an uncountable closed and discrete subset $D \subset X$ which has a disjoint open expansion by Proposition 3.7 , since X has a rank 2-diagonal. Therefore, D shall have a discrete disjoint open expansion by Proposition 3.3 and normality of X. But every discrete family of non-empty open subsets of X is countable by Proposition 3.2 , since X has property $\left(D C\left(\omega_{1}\right)\right)$. This contradiction completes the proof.

The following corollary shows that the condition "normal" in Corollary 3.8 can be replaced by "perfect".

Corollary 3.9. If X is a perfect space with a rank 2-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Proof. Assume the contrary. Then there exists an uncountable closed and discrete subset $S \subset X$ which has a disjoint open expansion $\{U(x): x \in S\}$ by Proposition 3.7, since X has a rank 2-diagonal. Let Y be a dense subspace of X such that every uncountable subset of Y has a limit point in X. For each $x \in S$ take $d_{x} \in U(x) \cap Y$. Then $D=\left\{d_{x}: x \in S\right\}$ is an uncountable discrete subset of Y. It follows from Proposition 3.4 that there exists an uncountable subset $E \subset D$ which is closed and discrete in X, since X is perfect. This contradicts the choice of Y and completes the proof.

Corollary 3.10. If X is a Moore space with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Proof. Since every Moore space is perfect and has a rank 2-diagonal ([1]), we could conclude that $|X| \leq \mathfrak{c}$ by Corollary 3.9.

The following questions look interesting.
Question 3.11. Let X be a Hausdorff (regular, Tychonoff) space with a rank 2-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$. Must the cardinality of X be at most \mathfrak{c} ?

Question 3.12. ([7]) Let X be a weakly Lindelöf space with a rank 2-diagonal. Must the cardinality of X be at most c ?

Question 3.13. ([7]) Let X be a weakly Lindelöf Moore space. Must the cardinality of X be at most \mathfrak{c} ?

Theorem 3.14. If X is a regular space with a G_{δ}-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most 2^{c}.

Proof. Since X has a G_{δ}-diagonal, there exists a sequence $\left\{G_{k}: k \in \omega\right\}$ of open sets of X^{2} such that $\Delta_{X}=\bigcap\left\{G_{k}: k \in \omega\right\}$. For each $k \in \omega$ and $x \in X$, there exists an open subset $V_{k}(x)$ of X such that $(x, x) \in V_{k}(x) \times V_{k}(x) \subset G_{k}$. Thus without loss of generality, we assume that $G_{k}=\bigcup\left\{V_{k}(x) \times V_{k}(x): x \in X\right\}$ and $G_{k+1} \subset G_{k}$.

Assume that Y is the dense subspace of X which witnesses that X has property $\left(D C\left(\omega_{1}\right)\right)$. We shall show that $|Y| \leq \mathfrak{c}$. Suppose not. For each $n \in \omega$, let

$$
P_{n}=\left\{\{x, y\} \in[Y]^{2}:(x, y) \notin G_{n}\right\} .
$$

Clearly, for any $\{x, y\} \in[Y]^{2}$, there exists $n \in \omega$ such that $\{x, y\} \in P_{n}$. Thus, $[Y]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then by Lemma 3.1 there exists a subset $S \subset Y$ with $|S|>\omega$ and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. It follows that S has a limit point $x \in X$ by the choice of Y. Since X is T_{1}, each neighborhood of x meets infinitely many members of S. In particular, there exist distinct points y and z in $S \cap V_{n_{0}}(x)$. Thus
$(y, z) \in V_{n_{0}}(x) \times V_{n_{0}}(x) \subset G_{n_{0}}$. However, since $\{y, z\} \in P_{n_{0}},(y, z) \notin G_{n_{0}}$, which is a contradiction. This shows that $|Y| \leq \mathfrak{c}$.

Since $w(X) \leq 2^{d(X)}$ holds for any regular space X and $d(X) \leq|Y| \leq \mathfrak{c}$, we have $w(X) \leq 2^{c}$. Therefore, $|X| \leq n w(X)^{\psi(X)} \leq w(X)^{\psi(X)} \leq\left(2^{c}\right)^{\omega}=2^{c}$.

The conclusion in Theorem 3.14 is also true for Hausdorff spaces if we replace " G_{δ}-diagonal" with "strong rank 1-diagonal".

Proposition 3.15. If X is a Hausdorff space with a strong rank 1-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most 2^{c}.

Proof. Since every strong rank 1-diagonal is a G_{δ}-diagonal, by using the proof of Theorem 3.14, we could conclude that there exists a dense set $Y \subset X$ of cardinality at most \mathfrak{c}, thus $d(X) \leq \mathfrak{c}$. Since X has a strong rank 1-diagonal, it follows that $s \Delta(X)=\omega$ (see [4]). It has been established in [4] that $|X| \leq 2^{d(X) s \Delta(X)}$ for any Hausdorff space X so we have $|X| \leq 2^{\mathfrak{c} \cdot \omega}=2^{\mathfrak{c}}$. This completes the proof.

Theorem 3.16. If X is a space with a rank 3-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Proof. Assume the contrary. Since X has a rank 3-diagonal, there exists a sequence $\left\{\mathcal{U}_{n}: n \in \omega\right\}$ of open covers of X such that $\{x\}=\bigcap\left\{\operatorname{St}^{3}\left(x, \mathcal{U}_{n}\right): n \in \omega\right\}$ for every $x \in X$. Note that $x \in \operatorname{St}^{3}\left(y, \mathcal{U}_{n}\right)$ if and only if $y \in \operatorname{St}^{3}\left(x, \mathcal{U}_{n}\right)$ for any distinct points $x, y \in X$ by symmetry. For each $n \in \omega$, let

$$
P_{n}=\left\{\{x, y\} \in[X]^{2}: x \notin \operatorname{St}^{3}\left(y, \mathcal{U}_{n}\right)\right\} .
$$

Thus, $[X]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. Then by Lemma 3.1 there exists a subset S of X with $|S|>\omega$ and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. It is evident that $\left\{\operatorname{St}\left(x, \mathcal{U}_{n_{0}}\right): x \in S\right\}$ is an uncountable discrete family of non-empty open subsets of X. But every discrete family of non-empty open subsets of X is countable by Proposition 3.2, since X has property $\left(D C\left(\omega_{1}\right)\right)$. This contradiction completes the proof.

Note that every rank 3-diagonal is a regular G_{δ}-diagonal, however the converse doesn't hold in general. Thus the following question arises naturally.

Question 3.17. Let X be a space with a regular G_{δ}-diagonal and property $\left(D C\left(\omega_{1}\right)\right)$. Is the cardinality of X at most \mathfrak{c} ? What if X is additionally first countable?

Theorem 3.18. If X is a regular perfect space of countable tightness with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Proof. Let Y be a dense subspace of X which witnesses that X has property $\left(D C\left(\omega_{1}\right)\right)$. We shall show that $|Y| \leq \mathfrak{c}$. Suppose not. Since X is a perfect space, X has countable pseudocharacter. For each $x \in Y$, let $\mathcal{B}(x)=\left\{B_{n}(x): n \in \omega\right\}$ be a family of open sets of X such that $\bigcap \mathcal{B}(x)=\{x\}$ and $B_{n+1} \subset B_{n}$ for each $n \in \omega$. For each $n \in \omega$, let

$$
P_{n}=\left\{\{x, y\} \in[Y]^{2}: y \notin B_{n}(x) ; x \notin B_{n}(y)\right\} .
$$

It is easy to check that $[Y]^{2}=\bigcup\left\{P_{n}: n \in \omega\right\}$. We can apply Lemma 3.1 to conclude that there exists an uncountable subset S of Y and $[S]^{2} \subset P_{n_{0}}$ for some $n_{0} \in \omega$. Note that for each $x \in S, B_{n_{0}}(x) \cap S=\{x\}$. It follows from Proposition 3.4 that there exists an uncountable subset $E \subset S$ which is closed and discrete in X. This contradiction the choice of Y shows that $|Y| \leq c$. Now we could conclude that $|X|=|\bar{Y}| \leq \mathfrak{c}$ by Proposition 3.5, since X has countable pseudocharacter and countable tightness and Y is dense in X. This completes the proof.

Since every first countable (Fréchet, sequential) space has countable tightness, we have the following corollaries by Theorem 3.18.

Corollary 3.19. If X is a regular, perfect and sequential space with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Corollary 3.20. If X is a regular, perfect and Fréchet space with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

Corollary 3.21. If X is a regular, perfect and first countable space with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most c.

If we drop the condition "countable tightness" in Theorem 3.18, then 2^{c} would be the least upper bound of X.

Proposition 3.22. If X is a regular perfect space with property $\left(D C\left(\omega_{1}\right)\right)$, then the cardinality of X is at most 2^{c}.

Proof. By using the proof of Theorem 3.18, we could conclude that there exists a dense set $Y \subset X$ of cardinality at most \mathfrak{c}, thus $d(X) \leq \mathfrak{c}$. Since $|X| \leq 2^{d(X) \psi(X)}$ holds for any regular space X, we conclude that $|X| \leq 2^{\mathfrak{c} \cdot \omega}=2^{\mathfrak{c}}$ which completes the proof.

4 Acknowledgement

We would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

[1] A. V. Arhangel'skii, R. Z. Buzyakova. The rank of the diagonal and submetrizability. Comment. Math. Univ. Carolin, 47(4)(2006): 585-597.
[2] A. V. Arhangel'skii, and A. Bella. The diagonal of a first countable paratopological group, submetrizability, and related results. Appl. Gen. Topology., 8(2)(2007): 207-212.
[3] R. Z. Buzyakova. Cardinalities of ccc-spaces with regular G_{δ}-diagonals. Topology Appl., 153(11)(2006): 1696-1698.
[4] D. Basile, A. Bella, and G. J. Ridderbos. Weak extent, submetrizability and diagonal degrees. Houston J. Math., 40(1)(2011): 255-266.
[5] R. Engelking. General Topology. 1989.
[6] I. S. Gotchev, M. G. Tkachenko, and V. V. Tkachuk. Regular G_{δ}-diagonals and some upper bounds for cardinality of topological spaces. Acta Math. Hungar., 149(2)(2016): 324-337.
[7] I. S. Gotchev. Cardinalities of weakly Lindelöf spaces with regular G_{κ}-diagonals, preprint.
[8] J. Ginsburg, R. G. Woods. A cardinal inequality for topological spaces involving closed discrete sets. Proc. Amer. Math. Soc., 64(2)(1977): 357-360.
[9] R. Hodel. Cardinal functions I, in: Handbook of Set-Theoretic topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984: 1-61.
[10] S. Ikenaga. Topological concept between Lindelöf and Pseudo-Lindelöf. Research Reports of Nara National College of Technology, 26(1990): 103-108.
[11] I. Juhasz. Cardinal Functions in Topology. Math. Centre Tracts, 1971.
[12] W. F. Xuan, W. X. Shi. A note on spaces with a rank 3-diagonal. Bull. Aust. Math. Soc., 90(3)(2014): 521-524.
[13] W. F. Xuan, W. X. Shi. Cardinalities of star countable first countable spaces with G_{δ}-diagonals. Q \& A in Gen. Top., 34(2016): 39-42.
[14] W. F. Xuan, W. X. Shi. Notes on star Lindelöf space. Topology Appl., 204(2016): 63-69.
[15] P. Zenor. On spaces with regular G_{δ}-diagonal. Pacific J. Math., 40(1972): 759763.

College of Science, Nanjing Audit University, Nanjing, China, 210093 email: wfxuan@nau.edu.cn
Department of Mathematics, Nanjing University, Nanjing, China, 210093
email: wxshi@nju.edu.cn

[^0]: *The paper is supported by NSFC project 11626131.
 Received by the editors in November 2015 - In revised form in January 2017 and June 2017.
 Communicated by E. Colebunders.
 2010 Mathematics Subject Classification : Primary 54D20; Secondary 54E35.
 Key words and phrases : Rank 2-diagonal, Rank 3-diagonal, G_{δ}-diagonal, Normal, Property $\left(D C\left(\omega_{1}\right)\right)$, Perfect, Countable tightness, Cardinality.

