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Abstract

This paper is concerned with the following fourth-order elliptic equations

△2u − ∆u + V(x)u −
κ

2
∆(u2)u = f (x, u), in R

N,

where N ≤ 6, κ ≥ 0. Under some appropriate assumptions on V(x) and
f (x, u), we prove the existence and multiplicity of solutions for the above
equations via variational methods. Recent results from the literature are ex-
tended.

1 Introduction

Consider the following fourth-order elliptic equations of the form

α△2u − ∆u + V(x)u −
κ

2
∆(u2)u = f (x, u), x ∈ R

N, (1.1)

where △2 := △(△) is the biharmonic operator, α, κ ∈ R.
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When α = 1, κ = 0, (1.1) becomes the following fourth-order elliptic equation

△2u − ∆u + V(x)u = f (x, u), x ∈ R
N. (1.2)

Many authors studied Eq. (1.2) on a bounded domain as follows

{

△2u − ∆u = f (x, u), in Ω,
u = ∆u = 0, on ∂Ω.

(1.3)

In [1], An and Liu used the Mountain Pass Theorem to get the existence results
for Eq. (1.3). In [34], when the nonlinearity f (x, t) is odd in t and satisfies some
additional conditions, Zhou and Wu got infinitely many sign-changing solutions
via variational methods. While without symmetry, Wang and Shen in [22] ob-
tained the multiplicity result by perturbation theory. In [32], Zhang and Wei ob-
tained the existence of infinitely many solutions via variant fountain theorem
established in Zou [35] when the nonlinearity f (x, u) involves a combination of
superlinear and asymptotically linear terms.

Fourth-order elliptic equation on unbounded domains also attract a lot of at-
tention. For instance, see [2, 3, 24, 25, 26, 27, 28] and the references therein. In
[28], by using the Mountain Pass Theorem and the Symmetric Mountain Pass
Theorem, Yin and Wu obtained infinitely many high energy solutions for prob-
lem (1.2) under the condition that f (x, u) is superlinear at infinity in u. However,
for the whole space R

N case, the main difficulty of this problem is the lack of
compactness for the Sobolev’s embedding theorem. In order to overcome this
difficulty, they assumed that the potential V(x) satisfies
(V1) V ∈ C(RN , R) satisfies inf

x∈RN
V(x) ≥ a > 0, where a > 0 is a constant. More-

over, for any M > 0, meas{x ∈ R
N : V(x) ≤ M} < ∞, where meas denotes the

Lebesgue measure in R
N.

Later, under the condition (V1), when f (x, u) satisfies more general condi-
tions, Ye and Tang [27] obtained the existence of infinitely many large-energy and
small-energy solutions, which unified and generalized the results in [28], besides,
the sublinear case was also considered by them.

Eq. (1.1) with α = 0 is a quasilinear Schrödinger equation (also called modi-
fied nonlinear Schrödinger equation), whose solutions are related to the existence
of solitary wave solutions for the following quasilinear Schrodinger equation

i
∂ψ

∂t
= −△ψ + V(x)ψ − κ△(ρ(|ψ|2))ρ′(|ψ|2)− f (x, ψ), x ∈ R

N, (1.4)

where V(x) is a given potential, κ is a real constant, ρ and f are real functions.
We would like to mention that quasilinear equation of the form (1.4) arises in
various branches of mathematical physics and has been derived as models of
several physics phenomenon corresponding to various types of nonlinear terms
ρ, see [6, 7, 12].

The semilinear case (κ = 0) has been studied extensively in recent years with
a huge variety of conditions on the potential V(x) and the nonlinearity f , see
for example [14, 20, 33] and the references therein. Compared to the semilinear
problem, the quasilinear case (κ 6= 0) becomes more complicated since the effects
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of the quasilinear and non-convex term △(u2)u. One of the main difficulties of
the quasilinear problem is that there is no suitable space on which the energy
functional is well defined and belongs to C1-class except for N = 1 (see [13]).
There has been several ideas and approaches used in recent years to overcome the
difficulties such as by minimizations [11, 13], the Nehari or Pohozaev manifold
[10, 16] and change of variables [29, 30].

On the other hand, Morse theory and local linking theorem are powerful tools
in modern nonlinear analysis [4, 5, 17, 19], especially for the problems with reso-
nance [8, 18]. However, to the best of our knowledge, there are no papers dealing
with the existence of solutions for modified nonlinear fourth-order elliptic equa-
tions by using Morse theory.

Inspired by the above facts, the aim of this paper is to study the existence of
multiple nontrivial solutions for problem (1.1) with α = 1. On the one hand, we
prove problem (1.1) has at least two nontrivial solutions by using Morse theory
and local linking arguments. On the other hand, by using the Clark theorem, the
existence results of at least k distinct pairs of nontrivial solutions is obtained.

We assume that V(x) satisfies (V1) and f (x, u) satisfies the following hypothe-
ses.

( f1) f ∈ C(RN ×R, R), and there exist 1 < α1 < α2 < 2 and positive functions

c1 ∈ L
2

2−α1 (RN , R), c2 ∈ L
2

2−α2 (RN , R) such that

| f (x, u)| ≤ α1c1(x)|u|
α1−1 + α2c2(x)|u|

α2−1, ∀(x, u) ∈ R
N × R.

( f2) There exist c1 > 0, 0 < c2 <
1

2S2
2
, 1 < γ < 2 and small constants 0 < r < r0,

such that
c1|u|

γ
< F(x, u) ≤ c2|u|

2, r ≤ |u| ≤ r0, a.e. x ∈ R
N,

where S2 is the the best Sobolev constant from the working space E into L2(RN)
and F(x, u) =

∫ u
0 f (x, s)ds.

( f3) f (x, u) = − f (x,−u), f or all (x, u) ∈ R
N × R.

Now, we state our main results.

Theorem 1.1. Assume conditions (V1) and ( f1)− ( f2) hold, then problem (1.1) has at
least two nontrivial solutions.

Theorem 1.2. Assume conditions (V1) and ( f1)− ( f3) hold, then problem (1.1) has at
least k distinct pairs of nontrivial solutions, where k ∈ N.

Remark 1.1. It is well known that for the quasilinear Schrödinger equation prob-
lem (1.1), we must overcome the difficulty that the energy functional is not well
defined due to the non-convex term △(u2)u , while in this paper, under the as-
sumptions (V1) and N ≤ 6, we prove

∫

RN |∇u|2u2dx < ∞, which implies the
energy functional of problem (1.1) is well defined on our working space.

Notation 1.1. Throughout this paper, we shall denote by ‖ · ‖r the Lr-norm and
C various positive generic constants, which may vary from line to line. 2∗ = +∞

for N ≤ 4 and 2∗ = 2N
N−4 for N ≥ 5, is the critical Sobolev exponent. Also if we

take a subsequence of a sequence {un} we shall denote it again by {un}.
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2 Variational setting and preliminaries

Let

Lr(RN) = {u : R
N → R : u is measurable and

∫

RN
|u|rdx < ∞}, 1 ≤ r < ∞,

with the norm

‖u‖r = (
∫

RN
|u|rdx)

1
r .

H2(RN) := {u ∈ L2(RN) : ∇u,△u ∈ L2(RN)}.

E := {u ∈ H2(RN)|
∫

RN
V(x)u2dx < +∞}.

Then, under the conditions (V1), E is a Hilbert space with the following inner
product and norm

〈u, v〉 =
∫

RN
(∆u∆v +∇u∇v + V(x)uv)dx,

‖u‖ = (
∫

RN
(|∆u|2 + |∇u|2 + V(x)|u|2)dx)

1
2 .

Moreover, we have the following compactness lemma from [3].

Lemma 2.1.([[3], Lemma 2.1]) Under the assumption (V1), the embedding E →֒ Lr(RN)
is continuous for 2 ≤ r ≤ 2∗ and E →֒ Lr(RN) is compact for 2 ≤ r < 2∗.

Lemma 2.2. Under assumption (V1), ( f1) and N ≤ 6, the functional I : E → R defined
by

I(u) =
1

2
‖u‖2 +

κ

2

∫

RN
u2|∇u|2dx −

∫

RN
F(x, u)dx (2.1)

is well defined and of class C1(E, R) and

〈I ′(u), v〉 = (u, v) + κ
∫

RN
(uv|∇u|2 + u2∇u∇v)dx −

∫

RN
f (x, u)vdx. (2.2)

Moreover, the critical points of I in E are solutions of problem (1.1).
Proof . From ( f1), one has

|F(x, u)| ≤ c1(x)|u|
α1 + c2(x)|u|

α2 , ∀(x, u) ∈ R
N × R. (2.3)

Then, for any u ∈ E, it follows from (V1), (2.3) and the Hölder inequality that

∫

RN
|F(x, u)|dx ≤

∫

RN

[

c1(x)|u|
α1 + c2(x)|u|

α2
]

dx

≤
2

∑
i=1

a
−αi

2
(

∫

RN
|ci(x)|

2
2−αi dx

)

2−αi
2
(

∫

RN
V(x)|u|2dx

)

αi
2

≤
2

∑
i=1

a
−αi

2 ||ci|| 2
2−αi

||u||αi .

(2.4)
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Next, we prove
∫

RN u2|∇u|2dx < +∞ for every u ∈ E. Firstly, we choose two

numbers p = 3 and t = p
p−1 . Then 1

p + 1
t = 1, 2 ≤ 2p ≤ 2∗ and 2 ≤ 2t ≤ 2∗ for

N ≤ 6. Then by Lemma 2.1 and the assumption of (V1), we have

‖u‖2
H2 =

∫

RN
(|∆u|2 + |∇u|2 + |u|2)dx

≤ C
∫

RN
(|∆u|2 + |∇u|2 + V(x)|u|2)dx = C‖u‖2,

where C = max{1, 1
a}.

Since H2(RN) = W2,2(RN) →֒ W1,r(RN), 2 ≤ r ≤ 2∗ and H2(RN) →֒
Lr(RN), 2 ≤ r ≤ 2∗, we have

∫

RN
u2pdx < +∞,

∫

RN
|∇u|2tdx < +∞.

By Holder inequality and Lemma 2.1, we have
∫

RN
u2|∇u|2dx ≤

(

∫

RN
u2pdx

)
1
p
(

∫

RN
|∇u|2tdx

)
1
t
< +∞, (2.5)

It follows from (2.4) and (2.5) that I is well defined on E.
Now, we prove that I ∈ C1(E, R). Set

Φ1(u) :=
1

2

∫

RN
u2|∇u|2dx, Φ2(u) :=

∫

RN
F(x, u)dx.

Then I(u) = 1
2‖u‖2 + κΦ1(u) − Φ2(u). In order to prove I ∈ C1(E, R), we only

have to prove that Φi ∈ C1(E, R), i=1,2. By the proof of Lemma 2.2 in [3], it is
easy to verify that Φ1 ∈ C1(E, R). Next, we prove (2.2) and Φ2 ∈ C1(E, R).

For any function θ : R
N → (0, 1), by ( f1) and the Hölder inequality, we have

∫

RN
max
t∈[0,1]

| f (x, u(x) + tθ(x)v(x))v(x)|dx

=
∫

RN
max
t∈[0,1]

| f (x, u(x) + tθ(x)v(x))||v(x)|dx

≤
2

∑
i=1

αi

∫

RN
(ci(x)|u(x) + tθ(x)v(x)|αi−1)|v(x)|dx

≤
2

∑
i=1

αi

∫

RN
(ci(x)(|u(x)|

αi−1 + |v(x)|αi−1)|v(x)|dx

≤
2

∑
i=1

αia
−αi

2
(

∫

RN
|ci(x)|

2
2−αi dx

)

2−αi
2
(

∫

RN
V(x)|u(x)|2dx

)

αi−1
2

×
(

∫

RN
V(x)|v(x)|2dx

)
1
2

+
2

∑
i=1

αia
−αi

2
(

∫

RN
|ci(x)|

2
2−αi dx

)

2−αi
2
(

∫

RN
V(x)|v(x)|2dx

)

αi
2

≤
2

∑
i=1

αia
−αi

2 ||ci|| 2
2−αi

(||u||αi−1 + ||v||αi−1)||v||

< +∞.

(2.6)
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Then, by (2.1), (2.6) and Lebesgue’s Dominated Convergence Theorem, we have

〈I ′(u), v〉 = lim
t→0

I(u + tv)− I(u)

t

= lim
t→0

[

(u, v) +
t

2
||v||2 +

κ

2

∫

RN

(

t3v2|∇v|2 + 2t2v2∇u∇v + 2t2uv|∇v|2

+ 4tuv∇u∇v + tu2|∇v|2 + tv2|∇u|2 + 2u2∇u∇v + 2uv|∇u|2
)

−
∫

RN
f (x, u + θtv)vdx

]

= (u, v) + κ
∫

RN
(uv|∇u|2 + u2∇u∇v)dx −

∫

RN
f (x, u)vdx.

(2.7)

Therefore, it follows from Proposition 1.3 in [23] and (2.7) that (2.2) holds. Now,
we show that Φ2 ∈ C1(E, R). Let un → u in E, then un → u in L2(RN) and

lim
n→∞

un = u a.e. x ∈ R
N. (2.8)

Now, we claim that

lim
n→∞

∫

RN
| f (x, un)− f (x, u)|2dx = 0. (2.9)

Otherwise, there exist a constant ε0 > 0 and a sequence {uni} such that
∫

RN
| f (x, uni)− f (x, u)|2dx ≥ ε0, ∀i ∈ N. (2.10)

In fact, since un → u in L2(RN), passing to a subsequence if necessary, it can

be assumed that
∞

∑
i=1

||uni − u||22 < +∞. Set ω(x) = (
∞

∑
i=1

|uni(x)− u(x)|2)
1
2 , then

ω(x) ∈ L2(RN). Evidently

| f (x, uni)− f (x, u)|2

≤ 2| f (x, uni)|
2 + 2| f (x, u)|2

≤ 4α2
1|c1(x)|

2
[

|uni|
2(α1−1) + |u|2(α1−1)

]

+ 4α2
2|c2(x)|

2
[

|uni|
2(α2−1) + |u|2(α2−1)

]

≤
2

∑
j=1

(4αj + 4)α2
j |cj(x)|

2
[

|uni − u|2(αj−1) + |u|2(αj−1)]

≤
2

∑
j=1

(4αj + 4)α2
j |cj(x)|

2
[

|ω(x)|2(αj−1) + |u|2(αj−1)
]

:= h(x), ∀ i ∈ N, x ∈ R
N

(2.11)

and
∫

RN
h(x)dx =

2

∑
j=1

(4αj + 4)α2
j

∫

RN
|cj(x)|

2
[

|ω(x)|2(αj−1) + |u|2(αj−1)
]

dx

≤
2

∑
j=1

(4αj + 4)α2
j ||cj||

2
2

2−αj

(

||ω||
2(αj−1)

2 + ||u||
2(αj−1)

2

)

< +∞.

(2.12)
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It follows from (2.11), (2.12) and the Lebesgue’s Dominated Convergence Theo-
rem, we have

∫

RN
| f (x, uni)− f (x, u)|2dx = 0,

which is a contradiction with (2.10). Hence (2.9) holds. Then, by (2.2), (2.9) and
Φ1 ∈ C1(E, R), we have

∣

∣

∣

∣

〈

I ′(un)− I ′(u), v
〉

∣

∣

∣

∣

=

∣

∣

∣

∣

(un − u, v) + κ
∫

RN

(

|un|
2∇un − |u|2∇u

)

· ∇vdx

+ κ
∫

RN

(

|∇un|
2un − |∇u|2u

)

· vdx

−
∫

RN
[ f (x, un)− f (x, u)]vdx

∣

∣

∣

∣

≤ ||un − u||||v|| + |κ
∫

RN

(

|un|
2∇un − |u|2∇u

)

· ∇vdx

+ κ
∫

RN

(

|∇un|
2un − |∇u|2u

)

vdx|

+ a−
1
2
(

∫

RN
| f (x, un)− f (x, u)|2dx

)
1
2 ||v||

→ 0, as n → ∞,

which implies that I ∈ C1(E, R). Moreover, by a standard argument, it is easy to
verify that the critical points of I in E are solutions of problem (1.1). The proof is
complete.

We will use Morse theory in combination with local linking arguments to ob-
tain the critical points of I, so we recall the following definitions and results.

Definition 2.1. Let E be a real reflexive Banach space. We say that I satisfies
the (PS)-condition, i.e. every sequence {un} ⊂ E satisfying I(un) bounded and
limn→∞ I ′(un) = 0 contains a convergent subsequence.

Let E be a real Banach space and I ∈ C1(E, R). K = {u ∈ E : I ′(u) = 0},
then the qth critical group of I at an isolated critical point u ∈ K with I(u) = c is
defined by

Cq(I, u) := Hq(Ic ∩ U, Ic ∩ U \ {u}), q ∈ N := {0, 1, 2, · · · },

where Ic = {u ∈ E : I(u) ≤ c}, U is a neighborhood of u, containing the unique
critical point, H∗ is the singular relative homology with coefficient in an Abelian
group G.

We say that u ∈ E is a homological nontrivial critical point of I if at least one
of its critical groups is nontrivial.

Now, we present the following propositions that will be used later.

Theorem 2.1 ([9], Theorem 2.1 ). Assume that I has a critical point u = 0 with I(0) =
0. Suppose that I has a local linking at 0 with respect to E = V ⊕ W, k = dim V < ∞,
that is, there exists ρ > 0 small such that

{

I(u) ≤ 0, u ∈ V, ‖u‖ ≤ ρ;
I(u) > 0, u ∈ W, 0 < ‖u‖ ≤ ρ.
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Then Ck(I, 0) ≇ 0, hence 0 is a homological nontrivial critical point of I.

Theorem 2.2 ([9], Theorem 2.1). Let E be a real Banach space and let I ∈ C1(E, R)
satisfy the (PS)-condition and is bounded from below. If I has a critical point that is
homological nontrivial and is not a minimizer of I, then I has at least three critical points.

Theorem 2.3 ([15], Theorem 9.1). Let E be a real Banach space, I ∈ C1(E, R) with I
even, bounded from below, and satisfying (PS)-condition. Suppose I(0) = 0, there is a
set K ⊂ E such that K is homeomorphic to Sj−1 by an odd map, and supK I < 0. Then I
possesses at least j distinct pairs of critical points.

3 Proofs of main results

In this section, we will prove Theorem 1.1 and Theorem 1.2. To complete the
proof, we need the following lemmas.

Lemma 3.1. Assume that (V1), ( f1) and N ≤ 6 hold, then I is bounded from below and
satisfies the (PS) condition.
Proof . By Lemma 2.1, ( f1), the Sobolev embedding theorem and the Hölder
inequality, we have

I(u) =
1

2
‖u‖2 +

κ

2

∫

RN
u2|∇u|2dx −

∫

RN
F(x, u)dx

≥
1

2
‖u‖2 −

∫

RN
F(x, u)dx

≥
1

2
‖u‖2 −

∫

RN
c1(x)|u|

α1 dx −
∫

RN
c2(x)|u|

α2 dx

≥
1

2
‖u‖2 −

2

∑
i=1

a
−αi

2 ||ci|| 2
2−αi

||u||αi ,

(3.1)

which implies that I(u) → +∞, as n → ∞, since α1, α2 ∈ (1, 2). Consequently,
I is bounded from below.

Next, we prove that I satisfies the (PS) condition. Assume that {un} is a (PS)
sequence of I such that I(un) is bounded and ||I ′(un)|| → 0, as n → ∞. Then, it
follows from (3.1) that there exists a constant C > 0 such that

||un||2 ≤ a
−1
2 ||un|| ≤ C, n ∈ N. (3.2)

Then by Lemma 2.1, there exists u ∈ E such that

un ⇀ u in E,

un → u in Ls(RN), s ∈ [2, 2∗), (3.3)

un → u a.e. R
N.



Existence of multiple nontrivial solutions for a class of ... 47

Therefore

∫

RN

(

|un|
2∇un − |u|2∇u

)

· ∇(un − u)dx

=
∫

RN

(

|un|
2 − |u|2

)

∇un∇(un − u)dx +
∫

RN
|u|2|∇(un − u)|2dx

≥
∫

RN

(

|un|
2 − |u|2

)

∇un∇(un − u)dx

≥ −
∫

RN
(|un − u|(|un|+ |u|)|∇un ||∇(un − u)|)dx

≥ −
(

∫

RN
|un − u|6dx

)
1
6
(

∫

RN
(|un|+ |u|)6dx

)
1
6

×
(

∫

RN
|∇un|

3dx
)

1
3
(

∫

RN
|∇(un − u)|3dx

)
1
3

≥ −C||un − u||6 → 0, n → ∞.
(3.4)

Analogously, we have

∫

RN

(

|∇un|
2un − |∇u|2u

)

· (un − u)dx

=
∫

RN

(

|∇un|
2 − |∇u|2

)

u(un − u)dx +
∫

RN
|∇un|

2|(un − u)|2dx

≥ −
∫

RN

(

|∇un|
2 + |∇u|2

)

|un||un − u|dx

≥ −
(

∫

RN
|un − u|6dx

)
1
6
(

∫

RN
|u|6dx

)
1
6
(

∫

RN
|∇un|

3dx
)

1
3

−
(

∫

RN
|un − u|6dx

)
1
6
(

∫

RN
|u|6dx

)
1
6
(

∫

RN
|∇u|3dx

)
1
3

≥ −C||un − u||6 → 0, n → ∞.

(3.5)

On the other hand, for any given ε > 0, by ( f1) , we can choose Rε > 0 such that

(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi
2

< ε, i = 1, 2. (3.6)

It follows from (3.3) that there exists n0 > 0 such that

∫

|x|≤Rε

|un − u|2dx < ε2, f or n ≥ n0. (3.7)
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Therefore, by ( f1), (3.2), (3.7) and the Hölder inequality, for any n ≥ n0, one has

∫

|x|≤Rε

| f (x, un)− f (x, u)||un − u|dx

≤
(

∫

|x|≤Rε

| f (x, un)− f (x, u)|2dx
)

1
2
(

∫

|x|≤Rε

|un − u|2dx
)

1
2

≤ ε
[

∫

|x|≤Rε

2(| f (x, un)|
2 + | f (x, u)|2)dx

]
1
2

≤ ε
[

4
2

∑
i=1

α2
i

∫

|x|≤Rε

|ci(x)|
2(|un|

2(αi−1) + |u|2(αi−1))dx
]

1
2

≤ Cε
[

2

∑
i=1

α2
i ||ci||

2
2

2−αi

(

||un||
2(αi−1)
2 + ||u||

2(αi−1)
2

)]
1
2

≤ Cε
[

2

∑
i=1

α2
i ||ci||

2
2

2−αi

(

C2(αi−1) + ||u||
2(αi−1)
2

)]
1
2 .

(3.8)

For another, for n ∈ N, it follows from ( f1), (3.2), (3.6) and Hölder inequality that

∫

|x|>Rε

| f (x, un)− f (x, u)||un − u|dx

≤
2

∑
i=1

αi

∫

|x|>Rε

|ci(x)|
(

|un|
αi−1 + |u|αi−1

)(

|un|+ |u|
)

dx

≤ 2
2

∑
i=1

αi

∫

|x|>Rε

|ci(x)|
(

|un|
αi + |u|αi

)

dx

≤ 2
2

∑
i=1

αi

(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi
2
(

||un||
αi
2 + ||u||αi

2

)

≤ 2
2

∑
i=1

αi

(

∫

|x|>Rε

|ci(x)|
2

2−αi dx
)

2−αi
2
(

Cαi + ||u||αi
2

)

≤ 2ε
2

∑
i=1

αi

(

Cαi + ||u||αi
2

)

.

(3.9)

Since ε is arbitrary, combining (3.8) and (3.9), we have

lim
n→∞

∫

RN
( f (x, un)− f (x, u))(un − u)dx = 0. (3.10)



Existence of multiple nontrivial solutions for a class of ... 49

Then by (2.2), (3.4), (3.5), (3.10) and the weak convergence of {un}, one has

on(1) = 〈I ′(un)− I ′(u), un − u〉

=
∫

RN
|△(un − u)|2dx +

∫

RN
|∇(un − u)|2dx +

∫

RN
V(x)(un − u)2dx

+ κ
∫

RN

(

|un|
2∇un − |u|2∇u

)

· ∇(un − u)dx

+ κ
∫

RN

(

|∇un|
2un − |∇u|2u

)

· (un − u)dx

−
∫

RN
( f (x, un)− f (x, u))(un − u)dx

≥ ||un − u||2 + κ
∫

RN
(u2

n − u2)∇u∇(un − u)dx+

κ
∫

RN
(|∇un|

2 − |∇u|2)u(un − u)dx

−
∫

RN
( f (x, un)− f (x, u))(un − u)dx

= ||un − u||2 + on(1),

which implies that un → u in E. Therefore, I satisfies the (PS) condition. The
proof is complete.

We choose an orthogonal basis {ej} of E and define Xj := span{ej},

j = 1, 2, · · · , Yk := ⊕k
j=1Xj, Zk = ⊕∞

j=k+1Xj, then E = Yk ⊕ Zk.

Lemma 3.2. Suppose that the conditions of Theorem 1.1 are satisfied, then
Ck(I, 0) ≇ 0.

Proof. It follows from ( f1) that the zero function is a critical point of I. So we only
need to prove that I has a local linking at 0 with respect to E = Yk ⊕ Zk.

Step 1: Take u ∈ Yk, since Yk is finite dimensional, we have that for given r0,
there exists 0 < ρ < 1 small such that

u ∈ Yk, ‖u‖ ≤ ρ ⇒ |u| < r0, x ∈ R
N.

For 0 < r < r0, let Ω1 = {x ∈ R
N : |u(x)| < r}, Ω2 = {x ∈ R

N : r ≤ |u(x)| ≤ r0},
Ω3 = {x ∈ R

N : |u(x)| > r0}, then R
N =

⋃3
i=1 Ωi. For the sake of simplicity, let

G(x, u) = F(x, u)− c1|u|
γ. Therefore, from ( f2) it follows that

I(u) =
1

2
‖u‖2 +

κ

2

∫

RN
u2|∇u|2dx −

∫

RN
c1|u|

γdx −

(

∫

Ω1

+
∫

Ω2

+
∫

Ω3

)

G(x, u)dx

≤
1

2
‖u‖2 + C‖u‖4 −

∫

RN
c1|u|

γdx −
∫

Ω1

G(x, u)dx.

Note that the norms on Yk are equivalent to each other, ‖u‖γ is equivalent to
‖u‖ and

∫

Ω1
G(x, u)dx → 0 as r → 0. Since 0 < γ < 2, then I(u) ≤ 0, for all

u ∈ Yk with ‖u‖ ≤ ρ.
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Step 2: Take u ∈ Zk, since the embedding E →֒ Lp is continuous, we have that
for given r0, there exists 0 < ρ < 1 small such that

u ∈ Zk, ‖u‖ ≤ ρ ⇒ |u| < r0, x ∈ R
N.

Therefore, it follows from ( f2) that

I(u) ≥
1

2
‖u‖2 −

∫

RN
c2|u|

2dx

>
1

2
‖u‖2 −

1

2
‖u‖2 = 0.

Therefore, we complete the proof due to Theorem 2.1.

Proof of Theorem 1.1. By Lemma 3.1, I satisfies the (PS)-condition and is bounded
from below. By Lemma 3.2 and Theorem 2.1, the trivial solution u = 0 is homo-
logical nontrivial and is not a minimizer. Then Theorem 1.1 follows immediately
from Theorem 2.2.

Proof of Theorem 1.2. By ( f3), we can easily check that the functional I is even.
Lemma 3.1 shows that I satisfies the (PS)-condition and is bounded from below.
For ρ > 0, let K = Sρ = {u ∈ Yk : ‖u‖ = ρ}. Thus, just as shown in the proof of
Lemma 3.2, if ρ > 0 is small enough, we have that

sup
K

I(u) < 0.

By the definition of Yk, we have dim Yk = k, then by Theorem 2.3, we have that I
has at least k distinct pairs of critical points. Therefore, problem (1.1) has at least
k distinct pairs of solutions.
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