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Abstract

We shall give a new treatment to intersection points of two maps, named
common value pairs. Given two maps f , g : X → Y. Instead of considering
intersection points on target space Y, we focus on the pairs in the domains
X, the pair (u, v) with f (u) = g(v). The set of all these pairs is exactly the
preimage of product f × g at the diagonal in Y2. We shall apply the idea of
Nielsen root theory into such a general case: preimage of a set. Hence, some
estimation for common value pairs and therefore for intersection points are
obtained.

1 Introduction

The Nielsen fixed point theory (see [3] and [7]) deals with the estimation of the
numbers of fixed points of self-maps. The Lefschetz number contains the exis-
tence information of fixed points, while the Nielsen number serves as a lower
bound for the number of fixed points. Many generalization have been done, such
as classical Nielsen coincidence theory ([6]) and root theory ([1], [8]). Recently, a
type of Nielsen fixed point theoretical version of Borsuk-Ulam theorem is given
[4].

The origin of intersection theory can be traced back to early stage of topol-
ogy, and was formalized as cup products in cohomology. One of famous works
in this direction due to H. Whitney [11], showing that any smooth n-manifold
may be imbedded into 2n-dimensional Euclidean space R

2n, where self intersec-
tion points and their indices were given. Comparing with fixed point theory, his
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treatment is an analogy of Lefschetz theory. It is a natural idea to ask for a Nielsen
theory version for intersection theory. C. McCord [9, 10] initiated this study, and
considered the relation between intersection and preimage, i.e. a natural gener-
alization of root theory. Similar work can be found in [5]. Along this way, we
shall give a kind of estimation of the number of intersection points by using the
method from Nielsen theory, where the fundamental groups play essential roles.

Our consideration begins with a very general context: the preimage f−1(B)
of a map f : X → Y for some given subset B of Y. It is obvious that the preim-
age is a direct generalization of roots. By a root of f at y0, we mean a point
x ∈ X with f (x) = y0. Actually, coincidence point of f1, f2 : X → Y is exactly

the preimage (( f1 × f2)∆X2)−1(∆Y2(Y)) of the composition X
∆

X2
→ X2 f1× f2

→ Y2. As
in classical Nielsen fixed point theory, especially root theory, we divide preimage
into preimage classes, and then define kinds of “index” for each preimage classes
based on homomorphism indices for roots. Such a definition is one of our main
improvement on the essentiality of a class. Usually, one can say that a class is
essential if it will not disappear under any homotopy. Therefore, we obtain some
homotopy invariants which serve as lower bounds for the number of preimage
or its components.

Our main application is the consideration of intersection points of two maps
f , g : X → Y. But, we focus on the common value pairs, i.e. the pairs (u, v) with
f (u) = g(v). Such a consideration has its advantage: we need not make extra
assumptions, like transversality, on maps f and g. For example, a triple point of
a map will be understood as three common value pairs of f and itself, and no
regular requirement on f as in [11] is needed.

This paper is arranged as follow. We shall give the definition of preimage
classes in Section 2. The homomorphism indices of preimage classes will intro-
duce in Section 3. Some properties of such indices are proved there, especially
lower bound property. In Section 4, we shall apply our preimage treatments into
common value pairs, and explain some relations with intersections. Self common
value pairs are discussed in Section 5.

Throughout this paper, we make the following convention in notions.

• X and Y: both are connected spaces with universal coverings pX : X̃ → X
and pY : Ỹ → Y, respectively.

• D(X̃) and D(Ỹ): deck transformation groups of X̃ and Ỹ, respectively.

• ∆W2 : the main diagonal map from W to W2 defined by w 7→ (w, w) for any
w ∈ W.

The authors would like to thank the referee for his comments on our writing
and suggestions on references.

2 Preimage classes

In this section, we consider a map f : X → Y and its preimage f−1(B) at a con-
nected subset B of Y. In general, one can consider the preimages of components
of B whenever B is not connected.
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For a map f : X → Y, a lifting f̃ of f (with respect to universal covering pX

and pY) is understood as a map f̃ : X̃ → Ỹ satisfying the following commutative
diagram

X̃
f̃

// Ỹ

X
f

//
��

pX

Y
��
pY

We shall make use of liftings to study the preimage set f−1(B).

Proposition 2.1. Let B̃ be a component of p−1
Y (B). Then f−1(B) = ∪ f̃ pX( f̃−1(B̃)),

where f̃ ranges over all liftings of f .

Proof. Let x ∈ f−1(B), i.e. f (x) ∈ B. Pick a point x̃ ∈ p−1
X (x) and a lifting f̃

of f . Then f̃ (x̃) ∈ p−1
Y (B) by definition of lifting. Since B̃ is a component of

p−1
Y (B), there is an element β in deck transformation group D(Ỹ) of Ỹ such that

β f̃ (x̃) ∈ B̃. This implies that x̃ ∈ (β f̃ )−1(B̃), and hence x ∈ pX((β f̃ )−1(B̃)). It
follows that f−1(B) ⊂ ∪ f̃ pX( f̃−1(B̃)).

Suppose that x ∈ pX( f̃−1(B̃)) for some lifting f̃ of f . Then there is a point

x̃ ∈ p−1
X (x) such that f̃ (x̃) ∈ B̃. By definition of lifting, f (x) = f (pX(x̃)) =

pY f̃ (x̃) ∈ pY(B̃) = B, i.e. x ∈ f−1(B). We obtain that f−1(B) ⊃ ∪ f̃ pX( f̃−1(B̃)).

Definition 2.2. Let B̃ a component of p−1
Y (B). Two liftings f̃ ′ and f̃ ′′ of f are said

to equivalent with respect to B̃, written as f̃ ′′ ∼B̃ f̃ ′, if f̃ ′′ = β f̃ ′α for some element
α ∈ D(X̃) and some element β ∈ D(Ỹ) with β(B̃) = B̃.

The equivalent relation above leads to the following:

Proposition 2.3. For any two liftings f̃ ′ and f̃ ′′ of f , we have
(1) If f̃ ′′ ∼B̃ f̃ ′, then pX( f̃ ′′−1(B̃)) = pX( f̃ ′−1(B̃)).
(2) If f̃ ′′ 6∼B̃ f̃ ′, then pX( f̃ ′′−1(B̃)) ∩ pX( f̃ ′−1(B̃)) = ∅.

Proof. (1) Since f̃ ′′ ∼B̃ f̃ ′, we have that f̃ ′′ = β f̃ ′α. Let x̃ ∈ f̃ ′−1(B̃), i.e. f̃ ′(x̃) ∈ B̃.
Note that β(B̃) = B̃. We have that β f̃ ′αα−1(x̃) ∈ B̃. This means that
α−1(x̃) ∈ f̃ ′′−1(B̃). Thus, α−1( f̃ ′−1(B̃)) ⊂ f̃ ′′−1(B̃). It follows that pX( f̃ ′−1(B̃)) ⊂
pX( f̃ ′′−1(B̃)). In the same way, we can prove that pX( f̃ ′′−1(B̃)) ⊂ pX( f̃ ′−1(B̃))
because f̃ ′ = β−1 f̃ ′′α−1.

(2) Suppose on the contrary that pX( f̃ ′′−1(B̃))∩ pX( f̃ ′−1(B̃)) is not empty, and

therefore contains a point x. Thus, there are two points x̃′ and x̃′′ in p−1
X (x) such

that f̃ ′(x̃′) and f̃ ′′(x̃′′) are both in B̃. It follows that f̃ ′′(x̃′′) = β f̃ ′(x̃′) for some
β ∈ D(Ỹ). Note that B̃ is connected. We have that β(B̃) = B̃. Since both of

x̃′ and x̃′′ lie in p−1
X (x), we have that x̃′ = α(x̃′′) for some α ∈ D(X̃). Hence,

f̃ ′′(x̃′′) = β f̃ ′(x̃′) = β f̃ ′(αx̃′′). We obtain that f̃ ′′ = β f̃ ′α, i.e. f̃ ′′ ∼B̃ f̃ ′. This is a
contradiction.

From this Proposition, we know that the set of preimage f−1(B) is divided
into a disjoint union of subsets pX( f̃−1(B̃))’s. As in fixed point theory or root
theory, we have
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Definition 2.4. The subset pX( f̃−1(B̃)) of f−1(B) is said to be the preimage class of the
map f at B which is determined by f̃ and B̃.

Note that f̃−1(B̃) = {x̃ | f̃ (x̃) ∈ B̃} = {x̃ | α f̃ (x̃) ∈ αB̃} = (α f̃ )−1(α(B̃))
for any α ∈ D(X̃). Thus, the classification of preimage set is independent of the
choice of B̃.

Similar to a fixed point class, we have

Proposition 2.5. Each preimage class is a relatively open set of f−1(B).

Proof. Let x ∈ pX( f̃−1(B̃)) for some lifting f̃ of f . Then f̃ (x̃) ∈ B̃ for some

x̃ ∈ p−1
X (x). By definition of covering, f (x) has a neighborhood V such that

each component of p−1
Y (V) is homeomorphic to V by pY|. Let Ṽ be the com-

ponent of p−1
Y (V) containing f̃ (x̃). Since B̃ is a component of p−1

Y (B), we have

that Ṽ ∩ p−1
Y (B) ⊂ B̃. Pick a neighborhood W of x such that f (W) ⊂ V. More-

over, we can make W so that the restriction of pX on each component of p−1
X (W)

is a homeomorphism. If f (x′) ∈ B for some x′ ∈ W, then there is a unique

point x̃′ ∈ p−1
X (x′) such that x̃ and x̃′ lie in the same component W̃ of p−1

X (W).

Note that f̃ = (pY|Ṽ)
−1 f pX on W̃. We have f̃ (x̃′) ∈ B̃. Thus, x′ ∈ pY( f̃−1(B̃)).

It follows that W ∩ f−1(B) is contained in the class pY( f̃−1(B̃)).

Corollary 2.6. If X is compact and B is closed, then the number of preimage classes is
finite for any map.

The next two Propositions describe that the preimage classes are kinds of gen-
eralizations of the classical coincidence classes, especially root classes. The proofs
are straightforward, we omit the details here.

Proposition 2.7. Let f , g : X → Y be two maps. The set of preimage classes of
( f × g)∆X2 : X → Y2 at the diagonal ∆Y2(Y) is the same as the set of coincidence classes
of f and g.

Proposition 2.8. For any point y0 ∈ Y, the set of preimage classes of a map f : X → Y
at {y0} is the same as the set of root classes of the map f at y0.

Moreover, we can consider the influence of a homotopy on preimage classes.

Let F : X× I → Y be a homotopy between f0 and f1. A preimage class pX( f̃−1
0 (B̃))

of f0 and a preimage class pX( f̃−1
1 (B̃)) of f1 are said to be related by the homotopy

F if f̃0 and f̃1 are respectively 0- and 1-slice of a lifting F̃ of F, i.e. F̃(x̃, 0) = f̃0(x̃)
and F̃(x̃, 1) = f̃1(x̃) for all x̃ ∈ X̃.

It should be mentioned that “homotopy related” is not a one-to-one corre-
spondence here, because a preimage class may be related to an empty set.

3 Indices for subsets of preimages

Let f : X → Y be a map, and B a subset of Y. In this section, we shall con-
sider the indices of an isolated subset A of preimage f−1(B). By an isolated sub-
set A of f−1(B) we mean that there is a closed neighborhood N of A such that
N ∩ f−1(B) = A.
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Definition 3.1. The (homology) homomorphism index L∗( f , A, B) of A is defined to be
the composition of following:

H∗(X)
j∗
→ H∗(X, X − A)

e−1
∗→ H∗(N, N − A)

f∗
→ H∗(Y, Y − B),

where j∗ is the natural homomorphism in the homology exact sequence of pair
(X, X − A), e∗ is the exclusion, and N is a closed neighborhood of A such that
N ∩ f−1(B) = A.

The definition above is obviously a generalization of homomorphism index
for a root set, see [2] and [8].

Lemma 3.2. (Independency) The homomorphism index L∗( f , A, B) is independent of
the choice of closed neighborhoods of A.

Proof. Let N1 and N2 be two closed neighborhoods of A such that N1 ∩ f−1(B) =
N2 ∩ f−1(B) = A. Then N = N1 ∪ N2 is also a closed neighborhood of A with
N ∩ f−1(B) = A. Consider the following commutative diagram

H∗(N1, N1 − A)

e′∗
��

f |N1∗

))❘❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

H∗(X)
j∗// H∗(X, X − A)

e−1
∗ //

e−1
1∗

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

e−1
2∗

))❘❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

H∗(N, N − A)
f |N∗ // H∗(Y, Y − B),

H∗(N2, N2 − A)

e′′∗

OO

f |N2∗

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

where the e’s indicate varies of exclusions. We have

f |N1∗e−1
1∗ j∗ = ( f |N∗e′∗)(e

′−1
∗ e−1

∗ )j∗ = f |N∗e−1
∗ j∗,

f |N2∗e−1
2∗ j∗ = ( f |N∗e′′∗)(e

′′−1
∗ e−1

∗ )j∗ = f |N∗e−1
∗ j∗.

We then obtain the conclusion.

Lemma 3.3. The homomorphism index L∗( f , A, B) is equal to the following composi-
tion:

H∗(X)
jQ∗
→ H∗(X, X − Q)

e−1
∗→ H∗(NQ, NQ − Q)

f∗
→ H∗(Y, Y − B),

as long as Q contains A and NQ is a closed neighborhood with NQ ∩ f−1(B) = A.

Proof. Consider following natural diagram

H∗(X)
j∗//

jQ∗

''❖❖
❖
❖
❖
❖
❖
❖
❖
❖
❖

H∗(X, X − A)
e−1
∗ // H∗(NQ, NQ − A)

f |NQ∗
// H∗(Y, Y − B).

H∗(X, X − Q)

j′∗

OO

e−1
∗ // H∗(NQ, NQ − Q)

j′′∗

OO

f |NQ∗

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

Since A ⊂ Q, NQ is also a closed neighborhood of A. Thus, the homomorphism
index of A is the composition of homomorphisms in first row. We obtain our
conclusion by the commutativity of above diagram.
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Lemma 3.4. (Additivity) Let As be a subset of f−1(B) for s = 1, . . . , m. Suppose that
there is a closed neighborhood Ns of As for each s with Ns ∩ f−1(B) = As such that all
Ns’s are pairwisely disjoint. Then L∗( f ,∪m

s=1As, B) = ∑
m
s=1 L∗( f , As, B).

Proof. Clearly, the disjoint union N = ∪m
s=1Ns is a closed neighborhood of

A = ∪m
s=1As with N ∩ f−1(B) = A. We then have the following commutative

diagram

H∗(X)
j∗ //

∑
m
s=1 js∗ ((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗

H∗(X, X − A)
e−1
∗ //

∑
m
s=1 j′s∗∼=

��

H∗(N, N − A)
f |N∗ // H∗(Y, Y − B).

⊕m
s=1H∗(X, X − As)

e−1
s∗ // ⊕m

s=1H∗(Ns, Ns − As)

∑
m
s=1 is∗ ∼=

OO

∑
m
s=1 f |Ns∗

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

where j′s∗ : H∗(X, X − As) → H∗(X, X − A) is the natural homomorphism in-
duced by the projection from C∗(X, X − A) to C∗(X, X − As). With the same
argument as in [1, 4.10], we obtain the conclusion.

Lemma 3.5. (Homotopy invariance) Let F = { ft} : X × I → Y be a homotopy, and
C be a compact isolated subset of F−1(B). Then L∗( f0, C0, B) = L∗( f1, C1, B), where
Ct = {x ∈ X | (x, t) ∈ C} denotes the t-slice of C for any t ∈ I.

Proof. It is sufficient to show that the correspondence from I to Hom(H∗(X),
H∗(Y, Y − B)), which is given by t 7→ L∗( ft, Ct, B), is locally constant for any
t ∈ I.

With loss of generality, we shall prove that this correspondence is locally con-
stant at 0. If C0 = ∅, there is a positive number ε such that Ct = ∅ for t ∈ [0, ε] be-
cause of the compactness of C. Thus, H∗(X, X − Ct) = H∗(X, X) = 0 for t ∈ [0, ε].
It follows that L∗( ft, Ct, B) is a zero homomorphism for all t with t ∈ [0, ε], and
therefore locally constant at 0.

Now we consider the case C0 6= ∅. Since C is isolated, there is a closed neigh-
borhood N of C in X × I such that N ∩ F−1(B) = C. For each (x, t) ∈ C, there
is an open product neighborhood Vx,t × Jx,t such that its closure V̄x,t × J̄x,t is con-
tained in the interior Int(N) of N. Here, we can make a choice such that Jx,t is
in the form of either [0, s1), (s2, s3) or (s4, 1], where s1, s2, s3, s4 ∈ (0, 1). Since C is
compact, {Vx,t × Jx,t}(x,t)∈C has a finite sub-cover of C, i.e. C ⊂ ∪m

q=1Vxq,tq × Jxq,tq .

We reorder these subscripts so that

0 = inf Jx1,t1
= · · · = inf Jxk,tk

< inf Jxk+1,tk+1
≤ · · · ≤ inf Jxm ,tm .

Moreover, since C0 is not empty, there is at least one Jq with min Jxq,tq = 0. Thus,
1 ≤ k ≤ m. Take

ε = min{sup{Jxq,tq | 1 ≤ q ≤ k}, inf{Jxq,tq | k < q ≤ m}}.

Of course, the value inf{Jxq,tq | k < q ≤ m} is understand to be 1 if k = m. (By the
way, sup{Jxq ,tq | 1 ≤ q ≤ k} can be smaller than inf{Jxq ,tq | k < q ≤ m}. In this
case, Ct will be empty for these t between these two values.)

By definition of ε, we have that C ∩ (X × [0, ε]) ⊂ ∪k
q=1Vxq,tq × [0, ε]. Write

V = ∪k
q=1Vxq,tq . Then Ct is contained in V for all t ∈ [0, ε]. Note that Nt is also
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a closed neighborhood of V for all t ∈ [0, ε]. By Lemma 3.3, L∗( ft, Ct, B) is the
composition of the following

H∗(X)
j∗
→ H∗(X, X − V)

e−1
∗→ H∗(Nt, Nt − V)

f∗
→ H∗(Y, Y − B)

for t ∈ [0, ε]. As in the proof Lemma 3.2, above composition is actually indepen-
dent of the choice of closed neighborhood Nt of V. The homomorphism index
L∗( ft, Ct, B) is therefore constant for t ∈ [0, ε]. Thus, we are done.

From Proposition 2.5 and its corollary, we know that each preimage class of
is an isolated subset of f−1(B), and hence has a well-defined (homology) homo-
morphism index. Thus, we have following definition

Definition 3.6. We write N( f , B; H∗) for the number of preimage classes of f at B with
non-zero (homology) homomorphism index.

By Lemma 3.5, N( f , B; H∗) is a homotopy invariant. We obtain

Theorem 3.7. Let f : X → Y be a map, and B a closed subset of Y. Suppose that X
is compact. Then for any map g : X → Y homotopic to f , the number N( f , B; H∗) is
a lower bound for either (1) the number of components of g−1(B) or (2) the number of
points in g−1(B).

Proof. Suppose that F : X × I → Y is a homotopy from f to g. The homotopy
invariance of homomorphism index implies that F-related preimage classes have
the same homomorphism indices. Moreover, if a preimage class of f does not
H-related to any preimage class of f , then such a class must have zero indices.
Thus, each preimage class of f with non-zero index contributes at least a compo-
nent of g−1(B). We obtain our conclusion.

We can also define similar indices by using cohomology, the coefficient can be
arbitrary abelian group G, denoted L∗( f , A, B; G). If some dimension n is spec-
ified, we refer to Ln( f , A, B; G), or Ln( f , A, B; G). All of these indices share the
same properties in the section. Thus, we may have other lower bounds for num-
ber and component number of f−1(B): N( f , B; H∗(·, G)) and N( f , B; H∗(·, G)),
N( f , B; Hn(·, G)), etc.

We would like to remark that the requirements on the space X can be weak-
ened to normality. A topological space is said to be normal if any singleton is
always a closed subset and any two disjoint closed subsets have disjoint neigh-
borhoods.

4 Common value pairs

In this section, we shall apply our preimage class arguments into a special case:
common value pairs, which is defined as follows.

Definition 4.1. Let f , g : X → Y be two maps. The set of common value pairs CVP( f , g)
of f and g is defined to be ( f × g)−1(∆Y2(Y)) = {(u, v) ∈ X2 | f (u) = g(v)}.
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From this definition, one can see a relation with coincidence point: x ∈
Coin( f , g) if and only if (x, x) ∈ CVP( f , g), i. e. CVP( f , g) = ∆X2(X)(Coin( f , g)).
Moreover, CVP( f , g) = Coin(( f × g)p1, ( f × g)p2), where p1, p2 : Y2 → Y are two
projections. But, we consider here the behavior of the set CVP( f , g) under the ho-
motopies of f and g, which is a different story about Coin(( f × g)p1, ( f × g)p2).

Note that any lifting of f × g has the form f̃ × g̃, where f̃ and g̃ are respec-
tively liftings of f and g. We write pX2 for the product pX2 : X̃2 → X2, giving the
universal covering of X2, so is pY2 . Thus,

Proposition 4.2. Let f , g : X → Y be two maps, and f̃0 and g̃0 be respectively chosen
liftings of f and g. Then

CVP( f , g) = ∪ f̃∈lift( f ),g̃∈lift(g)pX2(CVP( f̃ , g̃))

= ∪ f̃∈lift( f )pX2(CVP( f̃ , g̃0))

= ∪g̃∈lift(g)pX2(CVP( f̃0, g̃)).

Proof. The first equality is a special case of Proposition 2.1. The second one comes
from the fact that pX2(CVP( f̃ , g̃0)) = pX2(CVP(δ f̃ , δg̃0)) for any δ ∈ D(Ỹ), and
the fact that any lifting of g has the form γg̃0 for some γ ∈ D(Ỹ) . The third one
is in the same situation.

Observe that the preimage (pY2)−1(∆Y2(Y)) has a natural component ∆Ỹ2(Ỹ),
because Y and hence Ỹ is connected. We may regard preimage classes here as
those in the form pX2(( f̃ × g̃)−1(∆Ỹ2(Ỹ))). This leads to the following:

Definition 4.3. Let f , g : X → Y be two maps. The preimage class pX2(( f̃ × g̃)−1

(∆Ỹ2(Ỹ))) of f × g at the subset ∆Y2(Y) of Y2 is said to be the common value class of

( f , g) determined by f̃ × g̃, or say by f̃ and g̃.

Note that pX2(( f̃ × g̃)−1(∆Ỹ2(Ỹ))) = pX2(CVP( f̃ × g̃)).

Proposition 4.4. Let f̃ ′× g̃′ and f̃ ′′ × g̃′′ be two liftings of f × g. Then f̃ ′ × g̃′ ∼∆
Ỹ2(Ỹ)

f̃ ′′ × g̃′′ if and only if there are two elements α, γ in D(X̃) and an element β ∈ D(Ỹ)
such that f̃ ′ = β f̃ ′′α and g̃′ = βg̃′′γ.

Proof. By definition of the relation ∼∆
Ỹ2(Ỹ)

(see Definition 2.2), f̃ ′ × g̃′ ∼∆
Ỹ2(Ỹ)

f̃ ′′ × g̃′′ means that there is an element α1 × α2 ∈ D(X̃2) = D(X̃)× D(X̃) and an
element β1 × β2 ∈ D(Ỹ2) = D(Ỹ)× D(Ỹ) with (β1 × β2)(∆Ỹ2(Ỹ)) = ∆Ỹ2(Ỹ) such

that f̃ ′ × g̃′ = (β1 × β2) ◦ ( f̃ ′′ × g̃′′) ◦ (α1 × α2), i.e. f̃ ′ = β1 f̃ ′′α1 and g̃′ = β2 g̃′′α2.
Note that (β1 × β2)(∆Ỹ2(Ỹ)) = ∆Ỹ2(Ỹ) if and only if β1 = β2. We are done.

Corollary 4.5. If X is compact and Y is a Hausdorff space, then any two maps
f , g : X → Y has finitely many common value classes.

By Proposition 4.2 again, if we have chosen reference liftings f̃0 and g̃0 of
f and g. Each common value class can be written as pX2(CVP( f̃0, δg̃0)) =
pX2(( f̃0 × δg̃0)

−1(∆Ỹ2(Ỹ))) for some δ ∈ D(Ỹ).
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Proposition 4.6. Let f̃0 and g̃0 be respectively liftings of f and g. Then f̃0 × δ1g̃0 ∼∆
Ỹ2(Ỹ)

f̃0 × δ2g̃0 if and only if δ2 = f̃D(α
−1)δ1 g̃D(γ) for some α, γ ∈ D(X̃), where

f̃D : D(X̃) → D(Ỹ) is the homomorphism determined by the relation f̃0(ηx̃) =
f̃D(η) f̃0(x̃) for all η ∈ D(X̃) and x̃ ∈ X̃, and g̃D is defined similarly.

Proof. By Proposition 4.4, the equivalency in the sense of ∼∆
Ỹ2(Ỹ)

implies that

f̃0 = β f̃0α and δ2g̃0 = βδ1 g̃0γ for some α, γ ∈ D(X̃) and some β ∈ D(Ỹ).
Thus, f̃0 = β f̃D(α) f̃0 and δ2g̃0 = βδ1 g̃D(γ)g̃0. It follows that 1 = β f̃D(α) and
δ2 = βδ1 g̃D(γ) in D(Ỹ). The former equality gives us β = f̃D(α

−1). From the
other equality, we obtain that δ2 = f̃D(α

−1)δ1 g̃D(γ).

Corollary 4.7. If one of f and g induces a surjective homomorphism between fundamen-
tal group, all lifting of f × g are equivalent in the sense of ∼∆

Ỹ2(Ỹ)
. Hence, the number

of common value classes of f and g is either 0 or 1.

The following Proposition gives a geometric interpretation of common value
classes.

Proposition 4.8. Two common value pairs (u0, v0) and (u1, v1) of ( f , g) are in the same
common value class if and only if there is a path ηU from u0 to u1 and a path ηV from v0

to v1 such that f ηU and gηV are homotopic keeping end points fixed.

Proof. “If”. Assume that (u0, v0) ∈ pX2(CVP( f̃ , g̃)). Then f̃ (ũ0) = g̃(ṽ0) with
pX(ũ0) = u0 and pX(ṽ0) = v0. Let η̃U be the lifting path of ηU with initial point
η̃U(0) = ũ0, and η̃V be the lifting path of ηV with initial point η̃V(0) = ṽ0. Thus,
f̃ η̃U is the lifting path of f ηU with initial point f̃ (ũ0), and g̃η̃V is the lifting path
of gηV with initial point g̃(ṽ0).

Let H : I × I → Y be a homotopy from f ηU to gηV . We write H̃ : I × I → Ỹ
for the lifting homotopy with H̃(0, 0) = f̃ (ũ0). Thus, H̃(·, 0) is the lifting path
of f ηU with initial point f̃ (ũ0). Similarly, H̃(·, 1) is the lifting path of gηV with
initial point g̃(ṽ0) (= f̃ (ũ0)). By the uniqueness of liftings, we know that f̃ η̃U

is the same as H̃(·, 0), and g̃η̃V is the same as H̃(·, 1). Especially, f̃ (η̃U(1)) =
H̃(1, 0) and g̃(η̃V(1)) = H̃(1, 1). Note that H(1, ·) is a constant path at f (u1) =
g(v1). We have that H̃(1, 0) = H̃(1, 1). Thus, (u1, v1) = pX2(ηU(1), ηV(1)) ∈
pX2(CVP( f̃ , g̃)).

“Only if”. Since (u0, v0) and (u1, v1) are in the same common value class, there
is a lifting f̃ of f and a lifting g̃ of g such that f̃ (ũ0) = g̃(ṽ0) and f̃ (ũ1) = g̃(ṽ1),
where ũi ∈ p−1

X (ui) and ṽi ∈ p−1
X (vi) for i = 0, 1. Let η̃U be a path from ũ0 to ũ1

in X̃, and η̃V be a path from ṽ0 to ṽ1 in X̃. Then pX η̃U will be a path from u0 to
u1 in X, and pX η̃V will be a path from v0 to v1 in X. Since Ỹ is simply-connected,
and since f̃ η̃U has the same end points as g̃η̃V , we have that f̃ η̃U≃̇g̃η̃V . Thus,
f pX η̃U = pY f̃ η̃U≃̇pY g̃η̃V = gpX η̃V .

Let f , g : X → Y be two maps. By Proposition 2.5 and its Corollary, If X is
compact and Y is a Hausdorff space, then any common value class C is an isolated
subset of ( f × g)−1(Y2), and hence admits a well-defined homomorphism index
L∗( f × g, C, ∆Y2(Y)) (see Definition 3.1).

Let Ff : X × I → Y be a homotopy from f0 to f1, and Fg : X × I → Y be a ho-
motopy from g0 to g1. A common value class C0 of f0 and g0 and a common value
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class of f1 and g1 are said to be (Ff , Fg)-related if they are respectively determined

by a pair of liftings ( f̃0, g̃0) of ( f0, g0) and a pair of liftings ( f̃1, g̃1) of ( f1, g1) such
that f̃i(x̃) = F̃f (x̃, i) and g̃i(x̃) = F̃g(x̃, i), i = 0, 1, where F̃f : X̃ × I → Ỹ and

F̃g : X̃ × I → Ỹ are respectively liftings of H f and Hg.
Moreover, “(Ff , Fg)-related” is an equivalent relation preserving equivalent

relation in the sense of ∼∆
Ỹ2(Ỹ)

. By Proposition 3.5, we obtain immediately that

Lemma 4.9. (Homotopical existence) Suppose that X is compact and Y is a Haus-
dorff space. Let C be a common value class of two maps f and g with non-zero index

L∗( f × g, C, ∆Y2(Y)). Then for any two maps f ′ and g′ with f
Ff

≃ f ′ and g
Fg

≃ g′, C is
(Ff , Fg)-related to some common value class of f ′ and g′.

By this Lemma and the arguments in the proof of Theorem 3.7, we obtain
immediately

Theorem 4.10. Suppose that X is compact and Y is a Hausdorff space. Let f , g : X → Y
be two maps. Then the number N( f × g, ∆Y2(Y); H∗) of common value classes with non-
zero homology homomorphism indices is a lower bound of the number of common value
pairs of f ′ and g′ for any f ′ ≃ f and g′ ≃ g. So is the number N( f × g, ∆Y2(Y); H∗) of
common value classes with non-zero cohomology homomorphism indices.

Note that a common value pair gives a consideration of an intersection coming
from the domain, in other words the image of a common value pair is just an
intersection. Thus, we have

Corollary 4.11. With the same assumptions as in Theorem 4.10. If f and g have no inter-
section with multiple bigger than 2, then either N( f × g, ∆Y2(Y); H∗) or
N( f × g, ∆Y2(Y); H∗) gives a lower bound for the number of intersection points of f
and g.

From intersection point of view, the usual situation is that both of X and Y
are manifolds with dim Y = 2 dim X. By a standard argument in differential
topology, we have

Proposition 4.12. Let X and Y be smooth oriented closed manifolds with dim X =
1
2 dim Y = m, and Let f , g : X → Y be two smooth maps. Suppose that f (u) = g(v) =
y and that f and g are transversal at (u, v). Then (u, v) is an isolated common value pair,
and its index L∗( f × g, {(u, v)}) = L2m( f × g, {(u, v)}) in cohomologies is given by
H2m(Y2, Y2 − ∆Y2(Y)) ∋ τ 7→ ǫ (ω × ω) ∈ H2m(X2), where τ is the Thom class, ω is
the orientation class of X, and ǫ = ±1 depending ( f × g)∗|(u,v) is orientation preserving
or not.

Proof. Note that Y ∼= ∆Y2(Y). By Thom isomorphism theorem, we know that
Hk(Y) is isomorphic to Hk+2m(Y2, Y2 − ∆Y2(Y)) for all k. Such an isomorphism
is given by α 7→ α ∪ τ. This means that the Thom class τ generates the in-
finitely cyclic group H2m(Y2, Y2 − ∆Y2(Y)). Moreover, Hq(Y2, Y2 − ∆Y2(Y)) = 0
for q < 2m. On the other hand, since X has dimension m, Hq(X2) does not
vanish only if 0 ≤ q ≤ 2m. Thus, the possible non-trivial homomorphisms
between H∗(Y2, Y2 − ∆Y2(Y)) and H∗(X2) happen on dimension 2m only.

Since X is orientable, H2m(X2) ∼= Z has a generator ω × ω. The remaining
proof is a standard argument in differential topology.
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Now we illustrate with an example.

Example 4.13. Let f , g : S1 → T2 be two maps. By a homotopy and re-coordinating,
we may assume that they are respectively given by f (eθi) = (emθi, e0) and f (eθi) =
(eqθi, enθi) for some m, n, q ∈ Z.

Let pX : R
1 → S1 be the universal covering of X = S1 given by pX(x̃) = e2πx̃i,

and pY : R
2 → T2 be the universal covering of Y = T2 given by pY(ỹ1, ỹ2) =

(e2πỹ1i, e2πỹ2i). Clearly, the deck transformation group D(R2) ∼= Z
2 is generated

by a and b, where (ỹ1, ỹ2)
a
7→ (ỹ1 + 1, ỹ2), (ỹ1, ỹ2)

b
7→ (ỹ1, ỹ2 + 1).

Then f has a lifting f̃ : R
1 → R

2 which is given by f̃ (x̃) = (mx̃, 0), and g has
a lifting g̃ : R

1 → R
2 which is given by g̃(x̃) = (qx̃, nx̃). Hence, all liftings of g

have the form akbl g̃ for k, l ∈ Z. Notice that

CVP( f̃ , akbl g̃) = {(ũ, ṽ) | mũ = qṽ + k, 0 = nṽ + l}. (4.1)

Case 1: m 6= 0 and n 6= 0. Then CVP( f̃ , akbl g̃) = {(− ql
mn +

k
m ,− l

n)} is singleton

for all k, l ∈ Z. By Proposition 2.3, two pair ( f̃ , akbl g̃) and ( f̃ , ak′bl ′ g̃) determine
the same common class if and only if the projections of their common value are
the same. The number of common value classes of f and g is |mn|. These classes
are determined by ( f̃ , akbl g̃), k = 0, 1, . . . , |m| − 1; l = 0, 1, . . . , |n| − 1.

Case 2: m = 0 and n 6= 0. By (4.1), we obtain that CVP( f̃ , akbl g̃) = {(ũ,− l
n) |

ũ ∈ R} if k = − qn
n ; CVP( f̃ , akbl g̃) = ∅ if k 6= − ql

n . If k = − ql
n , we can make a

small homotopy starting with f so that the ending map has a lifting f̃ ′(x̃) = (ε, 0).
Note that CVP( f̃ ′, akbl g̃) = ∅. It follows that all common value classes have zero
homomorphism indices.

Case 3: n = 0. By (4.1), if CVP( f̃ , akbl g̃) 6= ∅, then l must be zero. We
can make a small homotopy starting with f so that the ending map has a lifting
f̃ ′(x̃) = (mx̃, ε). Note that CVP( f̃ ′, ak g̃) = ∅. It follows that all common value
classes have zero homomorphism indices.

Such a computation shows that our theory here coincides with the method
of cohomology in this special case: loops on the torus. It is not hard to see that
common value classes will bring more information than cohomology even in the
case of loops on surfaces. For example, non-trivial but homology vanishing loops
on surfaces of genus ≥ 2.

5 Self common values, what is the special?

We shall consider in this section the number of common value pairs of a map and
itself. Such kinds of common value pairs are said to be self common value pairs.

Definition 5.1. Two self common value classes are said to be symmetric to each other if
they are respectively determined by lifting pair f̃ ′ × f̃ ′′ and f̃ ′′ × f̃ ′.

A common value class is said to be self-symmetric if it is symmetric to itself. Espe-
cially, self common value classes determined by f̃ × f̃ are said to be trivial classes.

Note that f̃ × f̃ and f̃ ′ × f̃ ′ determine the same common value class. We have
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Corollary 5.2. Each map f : X → Y has a unique trivial self common value class. It is
the class containing the diagonal ∆X2(X) in X2.

Next Proposition includes some criterions which help us to understand self-
symmetric classes.

Proposition 5.3. Let C be a self common value class of f : X → Y. Then following four
statements are equivalent:

(1) C is a self-symmetric;
(2) for any two liftings f̃1 and f̃2 of f , f̃1 × f̃2 determines C if and only if f̃2 × f̃1

determines C;
(3) (u, v) ∈ C if and only if (v, u) ∈ C;
(4) there are two points u, v ∈ X such that (u, v) and (v, u) are both in C.

Proof. From (1) to (2): Since C is self-symmetric, we have that
C = pX2(CVP( f̃ ′, f̃ ′′)) = pX2(CVP( f̃ ′′, f̃ ′)) for two liftings f̃ ′ and f̃ ′′ of f . If
f̃1 × f̃2 determines C, then f̃1 × f̃2 ∼∆

Ỹ2(Ỹ)
f̃ ′ × f̃ ′′. By definition, f̃2 × f̃1 ∼∆

Ỹ2(Ỹ)

f̃ ′′ × f̃ ′. It follows that f̃2 × f̃1 ∼∆
Ỹ2(Ỹ)

f̃ ′ × f̃ ′′, because f̃ ′ × f̃ ′′ ∼∆
Ỹ2(Ỹ)

f̃ ′′ × f̃ ′.

The converse is the same.
From (2) to (3): If (u, v) ∈ C, then there are two liftings f̃ ′ and f̃ ′′ of f such

that (ũ, ṽ) ∈ pX2(CVP( f̃ ′, f̃ ′′)) = C. Since C is also determined by f̃ ′′ × f̃ ′, (v, u)
lies in C. The converse is the same.

From (3) to (4): Trivial.
From (4) to (1): If (u, v) ∈ C, then (u, v) ∈ pX2(CVP( f̃ ′, f̃ ′′)) for two liftings f̃ ′

and f̃ ′′ of f . By definition of common value pair, (v, u) ∈ pX2(CVP( f̃ ′′ , f̃ ′)). Since
(v, u) ∈ C, C is also determined by ( f̃ ′′, f̃ ′). Thus, C is self-symmetric.

By using a similar argument, we have

Proposition 5.4. Let C be a self common value class of f . The set {(x′, x′′) | (x′′, x′) ∈
C} is the self common value class which is symmetric to C.

In another word, the symmetric relation is an Z2-action on the set of all self
common value classes of given map, which is induced by the natural action on
X2 defined by (x′, x′′) 7→ (x′′, x′). The self-symmetric classes are just the elements
fixed by this action. Moreover, we have

Proposition 5.5. Let C′ and C′′ be two self common value classes of f , which is sym-
metric to each other. Then C′ has non-zero homomorphism index if and only if C′′ has
non-zero homomorphism index.

Proof. We write τ : X2 → X2 for the natural involution given by τ(x′, x′′) =
(x′′, x′). Pick a closed neighborhood N′ of C′ with N′ ∩CVP( f , f ) = C′, it follows
that N′′ = τ(N′) is a closed neighborhood of C′′ with N′′ ∩ CVP( f , f ) = C′′. We
have following commutative diagram:

H∗(X2)
j∗//

τ∗
��

H∗(X2, X2 − C′)
e−1
∗ //

τ∗
��

H∗(N′, N′ − C′)
( f× f )∗//

τ∗
��

H∗(Y2, Y2 − ∆Y2(Y)).

τ′
∗

��

H∗(X2)
j∗// H∗(X2, X2 − C′′)

e−1
∗ // H∗(N′′, N′′ − C′′)

( f× f )∗// H∗(Y2, Y2 − ∆Y2(Y)),
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where τ′ : Y2 → Y2 is the natural involution. It is obvious that the first row gives
the homomorphism index of C′, and that the second row gives that of C′′. Thus,
we prove this proposition because τ∗ and τ′

∗ are both isomorphisms.

Similar to Theorem 4.10, we may have an estimation of self common value
pairs for given map. But, the estimation of self-intersections is a little different
because symmetric pairs are mapped into the same intersection point. Thus, we
have

Theorem 5.6. Suppose that X is compact and Y is a Hausdorff space. If f no self-
intersection with multiple bigger than 2, then

♯{non-trival self-symmetric self common value classe with non-zero indices }

+
1

2
♯{non-self-symmetric self common value classe with non-zero indices }

gives a lower bound for the number of self-intersection points of f .

We can also explain the self-symmetric classes in sense of deck transformation
groups.

Proposition 5.7. Let f̃0 be a lifting of f , and δ an element in D(Ỹ). Then
f̃0 × δ f̃0 ∼∆

Ỹ2(Ỹ)
δ f̃0 × f̃0 if and only if δ = f̃D(α1)δ

−1 f̃D(α2) for some α1, α2 ∈ D(X̃).

Proof. Suppose that f̃0 × δ f̃0 ∼∆
Ỹ2(Ỹ)

δ f̃0 × f̃0. By Proposition 4.4, δ f̃0 = β f̃0α and

f̃0 = βδ f̃0γ. It follows that δ = β f̃D(α) and 1 = βδ f̃D(γ). By canceling β, we
obtain that δ = f̃D(γ

−1)δ−1 f̃D(α).
Conversely, if δ = f̃D(α1)δ

−1 f̃D(α2) for some α1, α2 ∈ D(X̃), then δ f̃0 =
f̃D(α1)δ

−1 f̃D(α2) f̃0 = f̃D(α1)δ
−1 f̃0α2 and f̃0 = f̃D(α1) f̃0α−1

1 = f̃D(α1)δ
−1(δ f̃0)α

−1
1 .

This implies that f̃0 × δ f̃0 and δ f̃0 × f̃0 are equivalent.

Now, we give a simple example showing the self common value classes.

Example 5.8. Let f : S1 → T2 = S1 × S1 be a map given by f (eθi) = (emθi, e0).

We can homotope f into a map f ′, defined by f ′(eθi) = (emθi, e(sin θ
2 )

2i). We
shall using the same notations as in Example 4.13 for universal coverings and
their deck transformation groups. Then the map f ′ has a lifting f̃ ′, defined by
f̃ ′(x̃) = (mx̃, 1

2π sin2 πx̃). A direct computation show that

CVP( f̃ ′, ak f̃ ′) = {(ũ, ṽ) | mũ = mṽ + k, sin2 πũ = sin2 πṽ}

= {(ũ, ṽ) | ũ = ṽ + k
m , ũ = ±ṽ + s, s ∈ Z}

=

{

{(ṽ + k
m , ṽ) | ṽ ∈ R} if m|k,

{( s
2 +

k
2m , s

2 −
k

2m ) | s ∈ Z} if m 6 |k.

In fact, there is no more self common value class, because CVP( f̃ ′, akbl f̃ ′) = ∅ if
l 6= 0. Thus, there are m self common value classes: pX2(CVP( f̃ ′, ak f̃ ′)), where
k = 0, 1, . . . , m − 1. For k = 0, the class pX2(CVP( f̃ ′, f̃ ′)) = {(eθi, eθi) = ∆

(S1)
2(S1)

is the trivial class. If k = 1, . . . , m − 1, then

pX2(CVP( f̃ ′, ak f̃ ′)) = {(e
kπi
m , e−

kπi
m ), (eπi+ kπi

m , eπi− kπi
m )}.
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The class pX2(CVP( f̃ ′, ak f̃ ′)) and pX2(CVP( f̃ ′, am−k f̃ ′)) are symmetric to each
other. Clearly, if m is even, then the pX2(CVP( f̃ ′, am/2 f̃ ′)) is self-symmetric.

Note that the homomorphism index of a self common value class comes from
the constructed map f × f . It is easy to see that we can homotope f into f ′′ so
that the image of f and f ′′ have no intersection. The homotopy invariance of the
homomorphism index implies that all non-trivial self common value classes have
zero homomorphism indices. From a geometric argument, we know that that
there must be self-intersection points and hence non-trivial self common value
pairs if |m| > 1, because f is not a simple closed curve. This phenomenon shows
that vanishing of index does not mean intersection free in general.
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