The Nielsen Borsuk-Ulam number

Fabiana Santos Cotrim

Daniel Vendrúscolo*

Abstract

A Nielsen-Borsuk-Ulam number ($\operatorname{NBU}(f, \tau)$) is defined for continuous maps $f: X \rightarrow Y$ where X and Y are closed orientable triangulable n-manifolds and X has a free involution τ. This number is a lower bound, in the homotopy class of f, for the number of pairs of points in X satisfying $f(x)=$ $f \circ \tau(x)$. It is proved that $\operatorname{NBU}(f, \tau)$ can be realized (Wecken type theorem) when $n \geq 3$.

1 Introduction

The classical Borsuk-Ulam Theorem of maps from the sphere S^{n} in the Euclidean space \mathbb{R}^{n} has been discussed and generalized in many different directions (see [1, 2, 4, 5, 6]).

Given a triple $(X, \tau ; Y)$, where X and Y are finite n-dimensional complexes and τ is a free simplicial involution, one possible approach is to study the question - in the homotopy classes of maps - of the existence of points $x \in X$ such that $f(x)=f \circ \tau(x)$.

In a previous work ([1]) some notions, which can be seen as a Nielsen theory approach for Borsuk-Ulam type problems, were defined. In the context of maps between finite n-dimensional complexes, Nielsen Borsuk-Ulam coincidence classes (named BU-coincidence classes) were defined and a mild version of an index is proposed with the property that when such index is non-zero the class is geometrically essential.

[^0]This work went further in the same direction. In the context of closed orientable triangulable manifolds, we define a " p seudo-index" for BU-coincidence classes, then a Nielsen-Borsuk-Ulam number in such situation, demonstrating that said number is a lower bound for the number of pairs of coincidences between f and $f \circ \tau$ in the homotopy class of f and that it can be realized (Wecken type theorem) when the dimension of the manifolds are greater than 2 (as usual in Nielsen theory).

In the last section an example where said number is greater than 1 is presented, showing that this approach can contribute for the description of the set of Borsuk-Ulam coincidences.

2 Nielsen Borsuk-Ulam theory

In [1] some ideas about a Nielsen Borsuk-Ulam theory were presented. In fact, the theory was constructed using an index with image in \mathbb{Z}_{2} for the Nielsen BorsukUlam classes. Following [1] we have:

Definition 2.1. Let $(X, \tau ; Y)$ be a triple where X and Y are finite n-dimensional complexes, τ is a free simplicial involution on X for any map $f: X \rightarrow Y$ with $\operatorname{Coin}(f, f \circ \tau)=\left\{x_{1}, \tau\left(x_{1}\right), \cdots, x_{m}, \tau\left(x_{m}\right)\right\}$ we define the Borsuk-Ulam coincidence set for the pair (f, τ), as the set of pairs:

$$
\operatorname{BUCoin}(f ; \tau)=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right) ; \cdots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\}
$$

and we say that two pairs $\left(x_{i}, \tau\left(x_{i}\right)\right),\left(x_{j}, \tau\left(x_{j}\right)\right)$ are in the same BU-coincidence class if there exists a path γ from a point in $\left\{x_{i}, \tau\left(x_{i}\right)\right\}$ to a point in $\left\{x_{j}, \tau\left(x_{j}\right)\right\}$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.

Definition 2.2. A BU-coincidence class C is called single if for one (or any) pair $(x, \tau(x)) \in C$ there exists a path γ from x to $\tau(x)$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.

If we consider:
Remark 2.3. [1, Proposition 4.3] If C^{\prime} is a usual Nielsen coincidence class for the pair $(f, f \circ \tau)$ then there exists a BU-coincidence class C of the pair (f, τ) such that $C^{\prime} \subseteq C$.

We obtain:
Proposition 2.4. A BU-coincidence class C is single if, and only if, it is composed of just one usual coincidence class of the pair $(f, f \circ \tau)$. Moreover, if C is a finite BU-coincidence class of the pair (f, τ) that is not single (called double) then we can change the labels of the elements of C in a way that:

- $C=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right), \ldots,\left(x_{k}, \tau\left(x_{k}\right)\right)\right\} ;$
- $C=C_{1} \cup C_{2}$ where C_{1} and C_{2} are usual coincidence classes of the pair $(f, f \circ \tau)$;
- $C_{1}=\left\{x_{1}, \ldots, x_{k}\right\}$ and $C_{2}=\left\{\tau\left(x_{1}\right), \ldots, \tau\left(x_{k}\right)\right\}$.

Furthermore, for an isolated coincidence c of the pair $(f, f \circ \tau)$ between closed orientable n-manifolds, we have:

$$
\operatorname{ind}(f, f \circ \tau ; c)=\left\{\begin{array}{rll}
\operatorname{ind}(f, f \circ \tau ; \tau(c)) & \text { if } & \tau \text { preserves orientation, } \\
-\operatorname{ind}(f, f \circ \tau ; \tau(c)) & \text { if } & \tau \text { reverses orientation. }
\end{array}\right.
$$

where $\operatorname{ind}(f, f \circ \tau ; c)$ is the usual local index for coincidence.
Now it is possible to define a pseudo-index ${ }^{1}$ for BU-coincidence classes:
Definition 2.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free involution on X and $f: X \rightarrow Y$ a continuous map such that BUCoin (f, τ) is finite. If $C=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right), \ldots,\left(x_{k}, \tau\left(x_{k}\right)\right)\right\}$ is a BU-coincidence class of the pair (f, τ) we define the pseudo-index of C by

$$
|\operatorname{ind}|(f, \tau ; C)=\left\{\begin{array}{cl}
\sum \operatorname{ind}\left(f, f \circ \tau ; x_{i}\right) \text { mod } 2 & \begin{array}{l}
\text { if } C \text { is single and } \\
\tau \text { reverses orientation; }
\end{array} \\
\frac{\operatorname{ind}(f, f \circ \tau ; C)}{2} & \begin{array}{l}
\text { if } C \text { is single and } \\
\tau \text { preserves orientation; }
\end{array} \\
& \begin{array}{l}
\text { ind }\left(f, f \circ \tau ; C_{1}\right) \mid \\
\\
\\
\text { ind } \tau \text { double, } C=C_{1} \cup C_{2} \\
\text { and reverses orientation; }
\end{array} \\
\operatorname{ind}\left(f, f \circ \tau ; C_{1}\right) & \begin{array}{l}
\text { if } C \text { is double, } C=C_{1} \cup C_{2} \\
\text { and } \tau \text { preserves orientation. } .
\end{array}
\end{array}\right.
$$

where C_{1} and C_{2} are disjoint usual coincidence classes of the pair $(f, f \circ \tau)$.
We note that when τ reverses orientation, a single BU-coincidence class has similar properties to the defective classes defined for coincidences of maps between non-orientable manifolds (see [3, 7, 8]).
Definition 2.6. As usual, we call a BU-coincidence class C essential if \mid ind $\mid(f, \tau ; C) \neq 0$ and we define $\operatorname{NBU}(f, \tau)$, the Nielsen Borsuk-Ulam number of the pair (f, τ), as the number of essential BU-coincidences classes.
Proposition 2.7. If f^{\prime} is homotopic to f then f^{\prime} has at least $N B U(f, \tau)$ pairs of BU-coincidence points.

Proof: Given an essential BU-coincidence class C of the pair (f, τ) then we can have

1. C is double; so $C=C_{1} \cup C_{2}$, two disjoint usual coincidence classes of the pair $(f, f \circ \tau)$ both with non-zero index;
2. C is single and τ preserves orientation; so \mid ind $\mid(f, \tau ; C) \neq 0$ implies $\operatorname{ind}(f, f \circ \tau ; C) \neq 0$ as a usual coincidence class;
3. C is single and τ reverses orientation; in this case the geometric essentiality of C is a result of [1, Lemma 5.1];
in all cases C is geometrically essential and the result follows.
[^1]
3 Realization

From classic coincidence theory it is easy to prove the following lemma:
Lemma 3.1. Let X and Y be closed triangulable n-manifolds, τ a free involution on X and $f: X \rightarrow Y$ a continuous map, suppose $c \in X$ an isolated point such that the pair $(c, \tau(c))$ is a BU-coincidence pair of points (i.e. $f(c)=f(\tau(c))$) with ind $(f, f \circ \tau ; c)=$ 0 , then, by a deformation of f in a small neighborhood of c we can obtain a map f^{\prime}, homotopic to f, such that BUCoin $\left(f^{\prime}, \tau\right)=$ BUCoin $(f, \tau) \backslash\{c, \tau(c)\}$.

The following lemma corresponds to the geometric realizations of the join procedure defined in [1, page 3744]:

Lemma 3.2. Let X and Y be closed orientable triangulable n-manifolds, $n \geq 3, \tau$ a free involution on X and $f: X \rightarrow Y$ a continuous map. Suppose that

- BUCoin $(f, \tau)=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right) ; \cdots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\} ;$
- x_{1} and x_{2} are in the same usual coincidence class of the pair $(f, f \circ \tau)$ (so the pairs $\left(x_{1}, \tau\left(x_{1}\right)\right),\left(x_{2}, \tau\left(x_{2}\right)\right)$ are in the same BU-coincidence class);
then there exists a map $f^{\prime} \sim f$ such that:
- BUCoin $\left(f^{\prime}, \tau\right)=\left\{\left(x_{1}^{\prime}, \tau\left(x_{1}^{\prime}\right)\right) ;\left(x_{3}, \tau\left(x_{3}\right)\right) ; \cdots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\} ;$
- ind $\left(f, f \circ \tau ; x_{1}^{\prime}\right)=\operatorname{ind}\left(f, f \circ \tau ; x_{1}\right)+\operatorname{ind}\left(f, f \circ \tau ; x_{2}\right)$;

Proof: There exists a path γ, from x_{1} to x_{2}, realizing the Nielsen relation (i.e. $f(\gamma)$ is homotopic relative to the endpoints to $f \tau(\gamma)$), and a closed neighborhood \bar{U} of γ in X, such that $\bar{U} \cap \tau(\bar{U})=\varnothing$, and $\bar{U} \cap \operatorname{BUCoin}(f, f \circ \tau)=\left\{x_{1}, x_{2}\right\}$.

We can suppose that there exists a homeomorphism φ from \bar{U} to a δ-neighborhood $U(I, \delta)$ of the interval I (the line segment from the origin to $(1,0, \cdots, 0)$) in \mathbb{R}^{n}, with $\varphi(\gamma)=I$.

The idea is to follow the steps used to define f^{\prime} in the proof of Theorem 2.1 in [1] until the $(n-2)$-skeleton of \bar{U} without changing the map on the boundary of \bar{U}. Such construction consists in changing the definition of f in the simplexes in the interior of \bar{U}, using a triangularization of Y with small diameter, in a way that the image of any point by f^{\prime} is so close to the image by f that the two maps are homotopic.

Now, for the maximal simplexes of \bar{U} and its faces (all the n and $(n-1)$ simplexes) we proceed in the following way: First we note that all n-simplexes of \bar{U} can be ordered by $\sigma_{1}^{n}, \sigma_{2}^{n}, \cdots, \sigma_{r}^{n}$ in a way that all σ_{i}^{n} with $i<r$, contains one face (named σ_{i}^{n-1}) which is a face of one σ_{j}^{n} with $r \geq j>i$.

We will define f^{\prime} without coincidences with $f^{\prime} \circ \tau$ in $\sigma_{1}^{n}, \sigma_{2}^{n}, \cdots, \sigma_{r-1}^{n}$.
In σ_{1}^{n}, using a geometric construction similar to that one in the non maximal simplexes we can extend f^{\prime} over all $(n-1)$-simplexes of $\partial \sigma_{1}^{n}-\sigma_{1}^{n-1}$ where f^{\prime} is not defined yet.

We can choose $p \notin \bar{\sigma}_{1}^{n}$ in a way that σ_{1}^{n} can be bijected over $\partial \sigma_{1}^{n}-\bar{\sigma}_{1}^{n-1}$ by a linear projection from p, (imagine p inside the other n-simplex that has σ_{1}^{n-1} as a face σ_{j}^{n}).

For each $\alpha_{0} \in \partial \sigma_{1}^{n}-\bar{\sigma}_{1}^{n-1}$ let α_{1} be the intersection of $\overrightarrow{p \alpha_{0}}$ with σ_{1}^{n-1} and we define $\alpha_{t}=(1-t) \alpha_{0}+t \alpha_{1}$, for $0 \leq t \leq 1$.

We can suppose $\left[f \circ \tau\left(\bar{\sigma}_{1}^{n}\right) \cup f\left(\partial \sigma_{1}^{n}-\sigma_{1}^{n-1}\right)\right] \subset V_{1}$ where $V_{1} \subset Y$ is homeomorphic, by φ_{1}, to the unitary ball $B_{1}^{n}(0)$ in \mathbb{R}^{n}.

So, for all $\alpha_{1} \in \sigma_{1}^{n-1}$ we can associate, in a continuous way, a positive number $\lambda\left(\alpha_{1}\right)=\left|\overrightarrow{\varphi_{1}\left(f \circ \tau\left(\alpha_{1}\right)\right) \varphi_{i}\left(f\left(\alpha_{1}\right)\right)}\right|$. In the same way we define $\lambda\left(\alpha_{0}\right)=$ $\left|\overrightarrow{\varphi_{1}\left(f \circ \tau\left(\alpha_{0}\right)\right) \varphi_{1}\left(f\left(\alpha_{0}\right)\right)}\right|$, for all $\alpha_{0} \in \partial \sigma_{1}^{n}-\bar{\sigma}_{1}^{n-1}$. Then, for each $t \in[0,1]$, we define $f\left(\alpha_{t}\right)$ satisfying:

$$
\overrightarrow{0 \varphi_{1}\left(f^{\prime}\left(\alpha_{t}\right)\right)}=\overrightarrow{0 \varphi_{1}\left(f \circ \tau\left(\alpha_{t}\right)\right)}+\left[1+t\left(\frac{\lambda\left(\alpha_{1}\right)}{\lambda\left(\alpha_{0}\right)}-1\right)\right] \overrightarrow{\varphi_{1}\left(f \circ \tau\left(\alpha_{0}\right)\right) \varphi_{1}\left(f\left(\alpha_{0}\right)\right)} .
$$

We can see that for all $t \in[0,1]$, the vector $\overrightarrow{0 \varphi_{1}\left(f\left(\alpha_{t}\right)\right)}$ is entirely contained in $B_{1}^{n}(0)$, then the map is well defined. So, f^{\prime} is extended in a continuous way in σ_{1}^{n}.

Correspondingly, following the sequence, the map f^{\prime} can be defined in σ_{2}^{n}, $\sigma_{3}^{n}, \cdots, \sigma_{r-1}^{n}$.

The map f^{\prime} is already defined in $\partial \sigma_{r}^{n}$ close enough to $f^{\prime} \circ \tau$, then we can use the same geometric constructions as in the proof of Theorem 2.1 in [1] to define f^{\prime} in σ_{r}^{n} in a way that it produces at most one coincidence with $f^{\prime} \circ \tau$ in σ_{r}^{n}.

We finish with a map f^{\prime}, homotopic to f relatively to the set $X \backslash \bar{U}(\gamma)$, such that f^{\prime} and $f^{\prime} \circ \tau$ have, at most, one coincidence in $\bar{U}(\gamma)$. The conclusion about the index of said coincidence follows from properties of the index.

Remark 3.3. The geometrical equivalent to the procedure named blend, defined in [1, page 3744], is exactly an interchange of the names in one pair $\left(x_{j}, \tau\left(x_{j}\right)\right) \in \operatorname{BUCoin}(f, \tau)$ and the geometric version of the split can be stated as the Lemma 3.4 below and it can be seen as the reverse of Lemma 3.2.

Lemma 3.4. Let X and Y be compact connected orientable triangulable n-manifolds, $n \geq 3, \tau$ a free involution on X and $f: X \rightarrow Y$ a continuous map. Suppose that

$$
\operatorname{BUCoin}(f, \tau)=\left\{\left(x_{1}, \tau\left(x_{1}\right)\right) ; \cdots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\}
$$

then there exists a map $f^{\prime} \sim f$ such that:

- BUCoin $\left(f^{\prime}, \tau\right)=\left\{\left(x_{1}^{\prime}, \tau\left(x_{1}^{\prime}\right)\right) ;\left(x_{1}^{\prime \prime}, \tau\left(x_{1}^{\prime \prime}\right)\right) ;\left(x_{2}, \tau\left(x_{2}\right)\right) ; \cdots\right.$ $\left.\cdots ;\left(x_{m}, \tau\left(x_{m}\right)\right)\right\}$;
- ind $\left(f, f \circ \tau ; x_{1}\right)=\operatorname{ind}\left(f, f \circ \tau ; x_{1}^{\prime}\right)+\operatorname{ind}\left(f, f \circ \tau ; x_{1}^{\prime \prime}\right)$;

Now the tools are complete to prove a Wecken type theorem:
Theorem 3.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free involution on X and $f: X \rightarrow Y$ a continuous map, if $n \geq 3$ then there exists a map f^{\prime} homotopic to f such that f^{\prime} has exact NBUCoin (f, τ) pairs of BU-coincidence points.

Proof: Using [1, Theorem 2.1] we can suppose $\operatorname{BUCoin}(f, \tau)$ finite, moreover, Theorem 3.5, Corollaries 3.8 and 3.9 in [1] prove that the pseudo-index is invariant
by homotopies, in the sense that BU-coincidence classes related by one homotopy have the same pseudo-index.

Using Lemma 3.2 we can produce a map f^{\prime} with exactly one BU-coincidence pair in each BU-coincidence essential class, additionally, it can be done in a way that the local index of one point of the pair is equal to the pseudo-index of its class, so the non essential ones can be removed (Lemma 3.1).

4 Examples

Consider the torus $T=\frac{\mathbb{R} \times \mathbb{R}}{\mathbb{Z} \times \mathbb{Z}}$ that we will denote by:

$$
T=[0,1] \times[0,1] \quad \bmod 1
$$

Let $\tau: T \rightarrow T$ be the free involution given by

$$
\tau(x, y)=\left(x+\frac{1}{2},-y\right)
$$

Define $f: T \rightarrow T$ by $f(x, y)=(2 x+y, y)$. The set BUCoin (f, τ) corresponds to the solutions of

$$
(2 x+y, y)=\left(2\left(x+\frac{1}{2}\right)-y,-y\right) \bmod 1
$$

so all points with $y=0$ or $y=\frac{1}{2}$ are in $\operatorname{BUCoin}(f, \tau)$.
Taking $\epsilon(x):[0,1] \rightarrow[0,1]$ such that

- $\epsilon(x)=0$ if $x=0$ or $x \in\left[\frac{1}{2}, 1\right]$;
- $0<\epsilon(x)<\frac{1}{10}$ if $\left.x \in\right] 0, \frac{1}{2}[$

It is not difficult to see that it is possible to deform f (by an ϵ-homotopy) to a map:

$$
f^{\prime}(x, y)=f(x, y)+(\epsilon(x), 0)
$$

such that the solutions to $f^{\prime}(x, y)=f^{\prime} \circ \tau(x, y)$ satisfy:

$$
(2 x+y+\epsilon(x), y)=\left(2\left(x+\frac{1}{2}\right)+y+\epsilon\left(x+\frac{1}{2}\right),-y\right) \bmod 1
$$

Which corresponds to

$$
f(x, y)+(\epsilon(x), 0)=f \circ \tau(x, y)+\epsilon\left(x+\frac{1}{2}\right) .
$$

So there exist 4 exact points:

$$
\left\{(0,0),\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right\}
$$

such that $f^{\prime}(x, y)=f^{\prime} \circ \tau(x, y)$.

We have two usual coincidence classes:

$$
C_{1}=\left\{(0,0),\left(\frac{1}{2}, 0\right)\right\} \quad C_{2}=\left\{\left(0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right\}
$$

each of them is equal to one (single) BU-class, and both of them with pseudoindex equals to 1.

So these two BU-classes are essential, and $\operatorname{NBU}(f, \tau)=2$.
In the examples in Theorem 5.2 in [1] (self-maps of the sphere S^{n}) there exists only one BU-coincidence class, which is single, and its pseudo-index depends on whether the involution (in that case the antipodal map) reverses or preserves orientation.

References

[1] F. S. Cotrim and D. Vendrúscolo, Nielsen coincidence theory applied to Borsuk-Ulam geometric problems. Topology Appl. 159 (2012), no. 18, 3738 3745.
[2] P. E. Desideri, P. L. Q. Pergher and D. Vendrúscolo, Some generalizations of the Borsuk-Ulam Theorem, Publicationes Mathematicae (Debrecen), 78 (2011), 583-593.
[3] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on nonorientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85.
[4] D. L. Gonçalves, The Borsuk-Ulam theorem for surfaces, Quaestiones Mathematicae, 29 (2006), no. 1, 117-123.
[5] D. L. Gonçalves and J. Guaschi, The Borsuk-Ulam theorem for maps into a surface. Topology Appl. 157 (2010), no. 10-11, 1742-1759,
[6] D. L. Gonçalves, O. Manzoli Neto and M. Spreafico, The Borsuk-Ulam Theorem for 3-dimensional homotopy spherical space forms, Journal of Fixed Point Theory and its Applications, 9 (2011), 285-294.
[7] J. Jezierski, The semi index product formula, Fund. Math. 140 (1992), 99-120.
[8] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178.

Centro de Ciências da Natureza - UFSCar, Buri, SP - Brazil.
email: fabiana_cotrim@yahoo.com.br
Departamento de Matemática - UFSCar, São Carlos, SP - Brazil.
email: daniel@dm.ufscar.br

[^0]: *The second author is partially supported by FAPESP as a member of the "Projeto Temático Topologia Algébrica, Geométrica e Diferencial ".

 Received by the editors in October 2016 - In revised form in January 2017.
 Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.
 2010 Mathematics Subject Classification : Primary: 55M20.
 Key words and phrases : Borsuk-Ulam Theorem, Nielsen theory, Coincidence theory.

[^1]: ${ }^{1}$ See $[3,7,8]$ for a definition of a semi-index on coincidence classes for non-orientable closed manifolds

