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Abstract

A Nielsen-Borsuk-Ulam number (NBU( f , τ)) is defined for continuous
maps f : X → Y where X and Y are closed orientable triangulable n-mani-
folds and X has a free involution τ. This number is a lower bound, in the
homotopy class of f , for the number of pairs of points in X satisfying f (x) =
f ◦ τ(x). It is proved that NBU( f , τ) can be realized (Wecken type theorem)
when n ≥ 3.

1 Introduction

The classical Borsuk-Ulam Theorem of maps from the sphere Sn in the Euclidean
space R

n has been discussed and generalized in many different directions (see
[1, 2, 4, 5, 6]).

Given a triple (X, τ; Y), where X and Y are finite n-dimensional complexes
and τ is a free simplicial involution, one possible approach is to study the ques-
tion - in the homotopy classes of maps - of the existence of points x ∈ X such that
f (x) = f ◦ τ(x).

In a previous work ([1]) some notions, which can be seen as a Nielsen
theory approach for Borsuk-Ulam type problems, were defined. In the context
of maps between finite n-dimensional complexes, Nielsen Borsuk-Ulam coinci-
dence classes (named BU-coincidence classes) were defined and a mild version
of an index is proposed with the property that when such index is non-zero the
class is geometrically essential.
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This work went further in the same direction. In the context of closed
orientable triangulable manifolds, we define a “pseudo-index” for BU-coincidence
classes, then a Nielsen-Borsuk-Ulam number in such situation, demonstrating
that said number is a lower bound for the number of pairs of coincidences
between f and f ◦ τ in the homotopy class of f and that it can be realized (Wecken
type theorem) when the dimension of the manifolds are greater than 2 (as usual
in Nielsen theory).

In the last section an example where said number is greater than 1 is
presented, showing that this approach can contribute for the description of the
set of Borsuk-Ulam coincidences.

2 Nielsen Borsuk-Ulam theory

In [1] some ideas about a Nielsen Borsuk-Ulam theory were presented. In fact, the
theory was constructed using an index with image in Z2 for the Nielsen Borsuk-
Ulam classes. Following [1] we have:

Definition 2.1. Let (X, τ; Y) be a triple where X and Y are finite n-dimensional
complexes, τ is a free simplicial involution on X for any map f : X → Y with
Coin( f , f ◦ τ) = {x1, τ(x1), · · · , xm, τ(xm)} we define the Borsuk-Ulam coincidence
set for the pair ( f , τ), as the set of pairs:

BUCoin( f ; τ) = {(x1, τ(x1)); · · · ; (xm, τ(xm))}

and we say that two pairs (xi, τ(xi)), (xj, τ(xj)) are in the same BU-coincidence class if
there exists a path γ from a point in {xi, τ(xi)} to a point in {xj, τ(xj)} such that f ◦ γ
is homotopic to f ◦ τ ◦ γ with fixed endpoints.

Definition 2.2. A BU-coincidence class C is called single if for one (or any) pair
(x, τ(x)) ∈ C there exists a path γ from x to τ(x) such that f ◦ γ is homotopic to
f ◦ τ ◦ γ with fixed endpoints.

If we consider:

Remark 2.3. [1, Proposition 4.3] If C′ is a usual Nielsen coincidence class for the pair
( f , f ◦ τ) then there exists a BU-coincidence class C of the pair ( f , τ) such that C′ ⊆ C.

We obtain:

Proposition 2.4. A BU-coincidence class C is single if, and only if, it is composed of just
one usual coincidence class of the pair ( f , f ◦ τ). Moreover, if C is a finite BU-coincidence
class of the pair ( f , τ) that is not single (called double) then we can change the labels of
the elements of C in a way that:

• C = {(x1, τ(x1)), . . . , (xk, τ(xk))};

• C = C1 ∪ C2 where C1 and C2 are usual coincidence classes of the pair ( f , f ◦ τ);

• C1 = {x1, . . . , xk} and C2 = {τ(x1), . . . , τ(xk)}.
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Furthermore, for an isolated coincidence c of the pair ( f , f ◦ τ) between closed
orientable n-manifolds, we have:

ind( f , f ◦ τ; c) =

{

ind( f , f ◦ τ; τ(c)) if τ preserves orientation,
−ind( f , f ◦ τ; τ(c)) if τ reverses orientation.

where ind( f , f ◦ τ; c) is the usual local index for coincidence.
Now it is possible to define a pseudo-index1 for BU-coincidence classes:

Definition 2.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free
involution on X and f : X → Y a continuous map such that BUCoin( f , τ) is finite.
If C = {(x1, τ(x1)), . . . , (xk, τ(xk))} is a BU-coincidence class of the pair ( f , τ) we
define the pseudo-index of C by

|ind|( f , τ; C) =















































































∑ ind( f , f ◦ τ; xi) mod 2 if C is single and
τ reverses orientation;

ind( f , f ◦ τ; C)

2
if C is single and

τ preserves orientation;

|ind( f , f ◦ τ; C1)| if C is double, C = C1 ∪ C2

and τ reverses orientation;

ind( f , f ◦ τ; C1) if C is double, C = C1 ∪ C2

and τ preserves orientation.

where C1 and C2 are disjoint usual coincidence classes of the pair ( f , f ◦ τ).

We note that when τ reverses orientation, a single BU-coincidence class has
similar properties to the defective classes defined for coincidences of maps
between non-orientable manifolds (see [3, 7, 8]).

Definition 2.6. As usual, we call a BU-coincidence class C essential if |ind|( f , τ; C) 6= 0
and we define NBU( f , τ), the Nielsen Borsuk-Ulam number of the pair ( f , τ), as the
number of essential BU-coincidences classes.

Proposition 2.7. If f ′ is homotopic to f then f ′ has at least NBU( f , τ) pairs of
BU-coincidence points.

Proof: Given an essential BU-coincidence class C of the pair ( f , τ) then we can
have

1. C is double; so C = C1 ∪ C2, two disjoint usual coincidence classes of the
pair ( f , f ◦ τ) both with non-zero index;

2. C is single and τ preserves orientation; so |ind|( f , τ; C) 6= 0 implies
ind( f , f ◦ τ; C) 6= 0 as a usual coincidence class;

3. C is single and τ reverses orientation; in this case the geometric essentiality
of C is a result of [1, Lemma 5.1];

in all cases C is geometrically essential and the result follows.

1See [3, 7, 8] for a definition of a semi-index on coincidence classes for non-orientable closed
manifolds
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3 Realization

From classic coincidence theory it is easy to prove the following lemma:

Lemma 3.1. Let X and Y be closed triangulable n-manifolds, τ a free involution on X
and f : X → Y a continuous map, suppose c ∈ X an isolated point such that the pair
(c, τ(c)) is a BU-coincidence pair of points (i.e. f (c) = f (τ(c))) with ind( f , f ◦ τ; c) =
0, then, by a deformation of f in a small neighborhood of c we can obtain a map f ′,
homotopic to f , such that BUCoin( f ′ , τ) = BUCoin( f , τ) \ {c, τ(c)}.

The following lemma corresponds to the geometric realizations of the join pro-
cedure defined in [1, page 3744]:

Lemma 3.2. Let X and Y be closed orientable triangulable n-manifolds, n ≥ 3, τ a free
involution on X and f : X → Y a continuous map. Suppose that

• BUCoin( f , τ) = {(x1, τ(x1)); · · · ; (xm, τ(xm))};

• x1 and x2 are in the same usual coincidence class of the pair ( f , f ◦ τ) (so the pairs
(x1, τ(x1)), (x2, τ(x2)) are in the same BU-coincidence class);

then there exists a map f ′ ∼ f such that:

• BUCoin( f ′ , τ) = {(x′1, τ(x′1)); (x3, τ(x3)); · · · ; (xm, τ(xm))};

• ind( f , f ◦ τ; x′1) = ind( f , f ◦ τ; x1) + ind( f , f ◦ τ; x2);

Proof: There exists a path γ, from x1 to x2, realizing the Nielsen relation
(i.e. f (γ) is homotopic relative to the endpoints to f τ(γ)), and a closed neighbor-
hood U of γ in X, such that U ∩ τ(U) = ∅, and U ∩ BUCoin( f , f ◦ τ) = {x1, x2}.

We can suppose that there exists a homeomorphism ϕ from U to a δ-neighbor-
hood U(I, δ) of the interval I (the line segment from the origin to (1, 0, · · · , 0)) in
R

n, with ϕ(γ) = I.
The idea is to follow the steps used to define f ′ in the proof of Theorem 2.1 in

[1] until the (n − 2)-skeleton of U without changing the map on the boundary of
U. Such construction consists in changing the definition of f in the simplexes in
the interior of U, using a triangularization of Y with small diameter, in a way that
the image of any point by f ′ is so close to the image by f that the two maps are
homotopic.

Now, for the maximal simplexes of U and its faces (all the n and (n − 1)-
simplexes) we proceed in the following way: First we note that all n-simplexes of
U can be ordered by σn

1 , σn
2 , · · · , σn

r in a way that all σn
i with i < r, contains one

face (named σn−1
i ) which is a face of one σn

j with r ≥ j > i.

We will define f ′ without coincidences with f ′ ◦ τ in σn
1 , σn

2 , · · · , σn
r−1.

In σn
1 , using a geometric construction similar to that one in the non maximal

simplexes we can extend f ′ over all (n − 1)-simplexes of ∂σn
1 − σn−1

1 where f ′ is
not defined yet.

We can choose p /∈ σn
1 in a way that σn

1 can be bijected over ∂σn
1 − σn−1

1 by a

linear projection from p, (imagine p inside the other n-simplex that has σn−1
1 as a

face σn
j ).
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For each α0 ∈ ∂σn
1 − σn−1

1 let α1 be the intersection of −→pα0 with σn−1
1 and we

define αt = (1 − t)α0 + tα1, for 0 ≤ t ≤ 1.

We can suppose
[

f ◦ τ(σn
1) ∪ f (∂σn

1 − σn−1
1 )

]

⊂ V1 where V1 ⊂ Y is homeo-

morphic, by ϕ1, to the unitary ball Bn
1 (0) in R

n.

So, for all α1 ∈ σn−1
1 we can associate, in a continuous way, a positive number

λ(α1) = |
−−−−−−−−−−−−−−−→
ϕ1( f ◦ τ(α1))ϕi( f (α1))|. In the same way we define λ(α0) =

|
−−−−−−−−−−−−−−−→
ϕ1( f ◦ τ(α0))ϕ1( f (α0))|, for all α0 ∈ ∂σn

1 − σn−1
1 . Then, for each t ∈ [0, 1], we

define f (αt) satisfying:

−−−−−−−→
0ϕ1( f ′(αt)) =

−−−−−−−−→
0ϕ1( f ◦τ(αt)) +

[

1 + t

(

λ(α1)

λ(α0)
− 1

)]

−−−−−−−−−−−−−−−→
ϕ1( f ◦τ(α0))ϕ1( f (α0)).

We can see that for all t ∈ [0, 1], the vector
−−−−−−→
0ϕ1( f (αt)) is entirely contained in

Bn
1 (0), then the map is well defined. So, f ′ is extended in a continuous way in σn

1 .
Correspondingly, following the sequence, the map f ′ can be defined in σn

2 ,
σn

3 , · · · , σn
r−1.

The map f ′ is already defined in ∂σn
r close enough to f ′ ◦ τ, then we can use

the same geometric constructions as in the proof of Theorem 2.1 in [1] to define
f ′ in σn

r in a way that it produces at most one coincidence with f ′ ◦ τ in σn
r .

We finish with a map f ′, homotopic to f relatively to the set X \ U(γ), such
that f ′ and f ′ ◦ τ have, at most, one coincidence in U(γ). The conclusion about
the index of said coincidence follows from properties of the index.

Remark 3.3. The geometrical equivalent to the procedure named blend, defined in [1,
page 3744], is exactly an interchange of the names in one pair (xj, τ(xj)) ∈ BUCoin( f , τ)
and the geometric version of the split can be stated as the Lemma 3.4 below and it can be
seen as the reverse of Lemma 3.2.

Lemma 3.4. Let X and Y be compact connected orientable triangulable n-manifolds,
n ≥ 3, τ a free involution on X and f : X → Y a continuous map. Suppose that

BUCoin( f , τ) = {(x1, τ(x1)); · · · ; (xm, τ(xm))}

then there exists a map f ′ ∼ f such that:

• BUCoin( f ′ , τ) = {(x′1, τ(x′1)); (x
′′
1 , τ(x′′1 )); (x2, τ(x2)); · · ·

· · · ; (xm, τ(xm))};

• ind( f , f ◦ τ; x1) = ind( f , f ◦ τ; x′1) + ind( f , f ◦ τ; x′′1 );

Now the tools are complete to prove a Wecken type theorem:

Theorem 3.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free
involution on X and f : X → Y a continuous map, if n ≥ 3 then there exists a map f ′

homotopic to f such that f ′ has exact NBUCoin( f , τ) pairs of BU-coincidence points.

Proof: Using [1, Theorem 2.1] we can suppose BUCoin( f , τ) finite, moreover,
Theorem 3.5, Corollaries 3.8 and 3.9 in [1] prove that the pseudo-index is invariant
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by homotopies, in the sense that BU-coincidence classes related by one homotopy
have the same pseudo-index.

Using Lemma 3.2 we can produce a map f ′ with exactly one BU-coincidence
pair in each BU-coincidence essential class, additionally, it can be done in a way
that the local index of one point of the pair is equal to the pseudo-index of its
class, so the non essential ones can be removed (Lemma 3.1).

4 Examples

Consider the torus T =
R × R

Z × Z
that we will denote by:

T = [0, 1]× [0, 1] mod 1

Let τ : T → T be the free involution given by

τ(x, y) = (x +
1

2
,−y).

Define f : T → T by f (x, y) = (2x + y, y). The set BUCoin( f , τ) corresponds
to the solutions of

(2x + y, y) = (2(x +
1

2
)− y,−y) mod 1,

so all points with y = 0 or y = 1
2 are in BUCoin( f , τ).

Taking ǫ(x) : [0, 1] → [0, 1] such that

• ǫ(x) = 0 if x = 0 or x ∈ [ 1
2 , 1];

• 0 < ǫ(x) < 1
10 if x ∈]0, 1

2 [

It is not difficult to see that it is possible to deform f (by an ǫ-homotopy) to a map:

f ′(x, y) = f (x, y) + (ǫ(x), 0),

such that the solutions to f ′(x, y) = f ′ ◦ τ(x, y) satisfy:

(2x + y + ǫ(x), y) = (2(x +
1

2
) + y + ǫ(x +

1

2
),−y) mod 1.

Which corresponds to

f (x, y) + (ǫ(x), 0) = f ◦ τ(x, y) + ǫ(x +
1

2
).

So there exist 4 exact points:

{(0, 0), (
1

2
, 0), (0,

1

2
), (

1

2
,

1

2
)}

such that f ′(x, y) = f ′ ◦ τ(x, y).
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We have two usual coincidence classes:

C1 = {(0, 0), (
1

2
, 0)} C2 = {(0,

1

2
), (

1

2
,

1

2
)}

each of them is equal to one (single) BU-class, and both of them with pseudo-
index equals to 1.

So these two BU-classes are essential, and NBU( f , τ) = 2.
In the examples in Theorem 5.2 in [1] (self-maps of the sphere Sn) there exists

only one BU-coincidence class, which is single, and its pseudo-index depends
on whether the involution (in that case the antipodal map) reverses or preserves
orientation.
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