The Nielsen Borsuk-Ulam number

Fabiana Santos Cotrim

Daniel Vendrúscolo^{*}

Abstract

A Nielsen-Borsuk-Ulam number $(NBU(f, \tau))$ is defined for continuous maps $f : X \to Y$ where X and Y are closed orientable triangulable *n*-manifolds and X has a free involution τ . This number is a lower bound, in the homotopy class of f, for the number of pairs of points in X satisfying f(x) = $f \circ \tau(x)$. It is proved that $NBU(f, \tau)$ can be realized (Wecken type theorem) when $n \ge 3$.

1 Introduction

The classical Borsuk-Ulam Theorem of maps from the sphere S^n in the Euclidean space \mathbb{R}^n has been discussed and generalized in many different directions (see [1, 2, 4, 5, 6]).

Given a triple $(X, \tau; Y)$, where *X* and *Y* are finite *n*-dimensional complexes and τ is a free simplicial involution, one possible approach is to study the question - in the homotopy classes of maps - of the existence of points $x \in X$ such that $f(x) = f \circ \tau(x)$.

In a previous work ([1]) some notions, which can be seen as a Nielsen theory approach for Borsuk-Ulam type problems, were defined. In the context of maps between finite *n*-dimensional complexes, Nielsen Borsuk-Ulam coincidence classes (named BU-coincidence classes) were defined and a mild version of an index is proposed with the property that when such index is non-zero the class is geometrically essential.

Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 613-619

^{*}The second author is partially supported by FAPESP as a member of the "Projeto Temático - Topologia Algébrica, Geométrica e Diferencial ".

Received by the editors in October 2016 - In revised form in January 2017.

²⁰¹⁰ Mathematics Subject Classification : Primary: 55M20.

Key words and phrases : Borsuk-Ulam Theorem, Nielsen theory, Coincidence theory.

This work went further in the same direction. In the context of closed orientable triangulable manifolds, we define a "*pseudo-index*" for BU-coincidence classes, then a Nielsen-Borsuk-Ulam number in such situation, demonstrating that said number is a lower bound for the number of pairs of coincidences between f and $f \circ \tau$ in the homotopy class of f and that it can be realized (Wecken type theorem) when the dimension of the manifolds are greater than 2 (as usual in Nielsen theory).

In the last section an example where said number is greater than 1 is presented, showing that this approach can contribute for the description of the set of Borsuk-Ulam coincidences.

2 Nielsen Borsuk-Ulam theory

In [1] some ideas about a Nielsen Borsuk-Ulam theory were presented. In fact, the theory was constructed using an index with image in \mathbb{Z}_2 for the Nielsen Borsuk-Ulam classes. Following [1] we have:

Definition 2.1. Let $(X, \tau; Y)$ be a triple where X and Y are finite n-dimensional complexes, τ is a free simplicial involution on X for any map $f : X \to Y$ with $Coin(f, f \circ \tau) = \{x_1, \tau(x_1), \cdots, x_m, \tau(x_m)\}$ we define the Borsuk-Ulam coincidence set for the pair (f, τ) , as the set of pairs:

$$BUCoin(f;\tau) = \{(x_1,\tau(x_1));\cdots;(x_m,\tau(x_m))\}$$

and we say that two pairs $(x_i, \tau(x_i)), (x_j, \tau(x_j))$ are in the same BU-coincidence class if there exists a path γ from a point in $\{x_i, \tau(x_i)\}$ to a point in $\{x_j, \tau(x_j)\}$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.

Definition 2.2. A BU-coincidence class C is called single if for one (or any) pair $(x, \tau(x)) \in C$ there exists a path γ from x to $\tau(x)$ such that $f \circ \gamma$ is homotopic to $f \circ \tau \circ \gamma$ with fixed endpoints.

If we consider:

Remark 2.3. [1, Proposition 4.3] If C' is a usual Nielsen coincidence class for the pair $(f, f \circ \tau)$ then there exists a BU-coincidence class C of the pair (f, τ) such that $C' \subseteq C$.

We obtain:

Proposition 2.4. A BU-coincidence class C is single if, and only if, it is composed of just one usual coincidence class of the pair $(f, f \circ \tau)$. Moreover, if C is a finite BU-coincidence class of the pair (f, τ) that is not single (called double) then we can change the labels of the elements of C in a way that:

- $C = \{(x_1, \tau(x_1)), \dots, (x_k, \tau(x_k))\};$
- $C = C_1 \cup C_2$ where C_1 and C_2 are usual coincidence classes of the pair $(f, f \circ \tau)$;
- $C_1 = \{x_1, \ldots, x_k\}$ and $C_2 = \{\tau(x_1), \ldots, \tau(x_k)\}.$

Furthermore, for an isolated coincidence *c* of the pair $(f, f \circ \tau)$ between closed orientable *n*-manifolds, we have:

$$ind(f, f \circ \tau; c) = \begin{cases} ind(f, f \circ \tau; \tau(c)) & \text{if } \tau \text{ preserves orientation,} \\ -ind(f, f \circ \tau; \tau(c)) & \text{if } \tau \text{ reverses orientation.} \end{cases}$$

where $ind(f, f \circ \tau; c)$ is the usual local index for coincidence.

Now it is possible to define a pseudo-index¹ for BU-coincidence classes:

Definition 2.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free involution on X and $f : X \to Y$ a continuous map such that $BUCoin(f, \tau)$ is finite. If $C = \{(x_1, \tau(x_1)), \dots, (x_k, \tau(x_k))\}$ is a BU-coincidence class of the pair (f, τ) we define the pseudo-index of C by

$$|ind|(f,\tau;C) = \begin{cases} \sum ind(f,f\circ\tau;x_i) \mod 2 & if C \text{ is single and} \\ \tau \text{ reverses orientation;} \\ \frac{ind(f,f\circ\tau;C)}{2} & if C \text{ is single and} \\ \tau \text{ preserves orientation;} \\ |ind(f,f\circ\tau;C_1)| & if C \text{ is double, } C = C_1 \cup C_2 \\ and \tau \text{ reverses orientation;} \\ ind(f,f\circ\tau;C_1) & if C \text{ is double, } C = C_1 \cup C_2 \\ and \tau \text{ preserves orientation.} \end{cases}$$

where C_1 and C_2 are disjoint usual coincidence classes of the pair $(f, f \circ \tau)$.

We note that when τ reverses orientation, a single BU-coincidence class has similar properties to the defective classes defined for coincidences of maps between non-orientable manifolds (see [3, 7, 8]).

Definition 2.6. As usual, we call a BU-coincidence class C essential if $|ind|(f, \tau; C) \neq 0$ and we define $NBU(f, \tau)$, the Nielsen Borsuk-Ulam number of the pair (f, τ) , as the number of essential BU-coincidences classes.

Proposition 2.7. If f' is homotopic to f then f' has at least $NBU(f, \tau)$ pairs of *BU-coincidence points*.

Proof: Given an essential BU-coincidence class *C* of the pair (f, τ) then we can have

- 1. *C* is double; so $C = C_1 \cup C_2$, two disjoint usual coincidence classes of the pair $(f, f \circ \tau)$ both with non-zero index;
- 2. *C* is single and τ preserves orientation; so $|ind|(f,\tau;C) \neq 0$ implies $ind(f, f \circ \tau; C) \neq 0$ as a usual coincidence class;
- 3. *C* is single and τ reverses orientation; in this case the geometric essentiality of *C* is a result of [1, Lemma 5.1];

in all cases *C* is geometrically essential and the result follows.

¹See [3, 7, 8] for a definition of a semi-index on coincidence classes for non-orientable closed manifolds

3 Realization

From classic coincidence theory it is easy to prove the following lemma:

Lemma 3.1. Let X and Y be closed triangulable n-manifolds, τ a free involution on X and $f : X \to Y$ a continuous map, suppose $c \in X$ an isolated point such that the pair $(c, \tau(c))$ is a BU-coincidence pair of points (i.e. $f(c) = f(\tau(c))$) with $ind(f, f \circ \tau; c) =$ 0, then, by a deformation of f in a small neighborhood of c we can obtain a map f', homotopic to f, such that BUCoin $(f', \tau) = BUCoin(f, \tau) \setminus \{c, \tau(c)\}$.

The following lemma corresponds to the geometric realizations of the *join* procedure defined in [1, page 3744]:

Lemma 3.2. Let X and Y be closed orientable triangulable n-manifolds, $n \ge 3$, τ a free involution on X and $f : X \rightarrow Y$ a continuous map. Suppose that

- $BUCoin(f, \tau) = \{(x_1, \tau(x_1)); \cdots; (x_m, \tau(x_m))\};$
- x_1 and x_2 are in the same usual coincidence class of the pair $(f, f \circ \tau)$ (so the pairs $(x_1, \tau(x_1)), (x_2, \tau(x_2))$ are in the same BU-coincidence class);

then there exists a map $f' \sim f$ such that:

- $BUCoin(f', \tau) = \{(x'_1, \tau(x'_1)); (x_3, \tau(x_3)); \cdots; (x_m, \tau(x_m))\};$
- $ind(f, f \circ \tau; x'_1) = ind(f, f \circ \tau; x_1) + ind(f, f \circ \tau; x_2);$

Proof: There exists a path γ , from x_1 to x_2 , realizing the Nielsen relation (i.e. $f(\gamma)$ is homotopic relative to the endpoints to $f\tau(\gamma)$), and a closed neighborhood \overline{U} of γ in X, such that $\overline{U} \cap \tau(\overline{U}) = \emptyset$, and $\overline{U} \cap BUCoin(f, f \circ \tau) = \{x_1, x_2\}$.

We can suppose that there exists a homeomorphism φ from \overline{U} to a δ -neighborhood $U(I, \delta)$ of the interval I (the line segment from the origin to $(1, 0, \dots, 0)$) in \mathbb{R}^n , with $\varphi(\gamma) = I$.

The idea is to follow the steps used to define f' in the proof of Theorem 2.1 in [1] until the (n-2)-skeleton of \overline{U} without changing the map on the boundary of \overline{U} . Such construction consists in changing the definition of f in the simplexes in the interior of \overline{U} , using a triangularization of Y with small diameter, in a way that the image of any point by f' is so close to the image by f that the two maps are homotopic.

Now, for the maximal simplexes of \overline{U} and its faces (all the *n* and (n-1)-simplexes) we proceed in the following way: First we note that all *n*-simplexes of \overline{U} can be ordered by $\sigma_1^n, \sigma_2^n, \dots, \sigma_r^n$ in a way that all σ_i^n with i < r, contains one face (named σ_i^{n-1}) which is a face of one σ_i^n with $r \ge j > i$.

We will define f' without coincidences with $f' \circ \tau$ in $\sigma_1^n, \sigma_2^n, \cdots, \sigma_{r-1}^n$.

In σ_1^n , using a geometric construction similar to that one in the non maximal simplexes we can extend f' over all (n - 1)-simplexes of $\partial \sigma_1^n - \sigma_1^{n-1}$ where f' is not defined yet.

We can choose $p \notin \overline{\sigma}_1^n$ in a way that σ_1^n can be bijected over $\partial \sigma_1^n - \overline{\sigma}_1^{n-1}$ by a linear projection from p, (imagine p inside the other n-simplex that has σ_1^{n-1} as a face σ_i^n).

For each $\alpha_0 \in \partial \sigma_1^n - \overline{\sigma}_1^{n-1}$ let α_1 be the intersection of $\overrightarrow{p\alpha_0}$ with σ_1^{n-1} and we define $\alpha_t = (1-t)\alpha_0 + t\alpha_1$, for $0 \le t \le 1$.

We can suppose $\left[f \circ \tau(\overline{\sigma}_1^n) \cup f(\partial \sigma_1^n - \sigma_1^{n-1})\right] \subset V_1$ where $V_1 \subset Y$ is homeomorphic, by φ_1 , to the unitary ball $B_1^n(0)$ in \mathbb{R}^n .

So, for all $\alpha_1 \in \sigma_1^{n-1}$ we can associate, in a continuous way, a positive number $\lambda(\alpha_1) = |\overline{\varphi_1(f \circ \tau(\alpha_1))\varphi_i(f(\alpha_1))}|$. In the same way we define $\lambda(\alpha_0) = |\overline{\varphi_1(f \circ \tau(\alpha_0))\varphi_1(f(\alpha_0))}|$, for all $\alpha_0 \in \partial \sigma_1^n - \overline{\sigma}_1^{n-1}$. Then, for each $t \in [0, 1]$, we define $f(\alpha_t)$ satisfying:

$$\overrightarrow{0\varphi_1(f'(\alpha_t))} = \overrightarrow{0\varphi_1(f\circ\tau(\alpha_t))} + \left[1 + t\left(\frac{\lambda(\alpha_1)}{\lambda(\alpha_0)} - 1\right)\right] \overrightarrow{\varphi_1(f\circ\tau(\alpha_0))\varphi_1(f(\alpha_0))}.$$

We can see that for all $t \in [0, 1]$, the vector $\overrightarrow{0\varphi_1(f(\alpha_t))}$ is entirely contained in $B_1^n(0)$, then the map is well defined. So, f' is extended in a continuous way in σ_1^n .

Correspondingly, following the sequence, the map f' can be defined in σ_2^n , $\sigma_3^n, \dots, \sigma_{r-1}^n$.

The map f' is already defined in $\partial \sigma_r^n$ close enough to $f' \circ \tau$, then we can use the same geometric constructions as in the proof of Theorem 2.1 in [1] to define f' in σ_r^n in a way that it produces at most one coincidence with $f' \circ \tau$ in σ_r^n .

We finish with a map f', homotopic to f relatively to the set $X \setminus \overline{U}(\gamma)$, such that f' and $f' \circ \tau$ have, at most, one coincidence in $\overline{U}(\gamma)$. The conclusion about the index of said coincidence follows from properties of the index.

Remark 3.3. The geometrical equivalent to the procedure named blend, defined in [1, page 3744], is exactly an interchange of the names in one pair $(x_j, \tau(x_j)) \in BUCoin(f, \tau)$ and the geometric version of the split can be stated as the Lemma 3.4 below and it can be seen as the reverse of Lemma 3.2.

Lemma 3.4. Let X and Y be compact connected orientable triangulable n-manifolds, $n \ge 3$, τ a free involution on X and $f : X \to Y$ a continuous map. Suppose that

$$BUCoin(f, \tau) = \{(x_1, \tau(x_1)); \cdots; (x_m, \tau(x_m))\}$$

then there exists a map $f' \sim f$ such that:

- $BUCoin(f', \tau) = \{(x'_1, \tau(x'_1)); (x''_1, \tau(x''_1)); (x_2, \tau(x_2)); \cdots , (x_m, \tau(x_m))\};$
- $ind(f, f \circ \tau; x_1) = ind(f, f \circ \tau; x'_1) + ind(f, f \circ \tau; x''_1);$

Now the tools are complete to prove a Wecken type theorem:

Theorem 3.5. Let X and Y be closed orientable triangulable n-manifolds, τ a free involution on X and $f : X \to Y$ a continuous map, if $n \ge 3$ then there exists a map f' homotopic to f such that f' has exact NBUCoin (f, τ) pairs of BU-coincidence points.

Proof: Using [1, Theorem 2.1] we can suppose $BUCoin(f, \tau)$ finite, moreover, Theorem 3.5, Corollaries 3.8 and 3.9 in [1] prove that the pseudo-index is invariant

by homotopies, in the sense that BU-coincidence classes related by one homotopy have the same pseudo-index.

Using Lemma 3.2 we can produce a map f' with exactly one BU-coincidence pair in each BU-coincidence essential class, additionally, it can be done in a way that the local index of one point of the pair is equal to the pseudo-index of its class, so the non essential ones can be removed (Lemma 3.1).

4 Examples

Consider the torus $T = \frac{\mathbb{R} \times \mathbb{R}}{\mathbb{Z} \times \mathbb{Z}}$ that we will denote by:

$$T = [0,1] \times [0,1] \mod 1$$

Let $\tau : T \to T$ be the free involution given by

$$\tau(x,y) = (x + \frac{1}{2}, -y).$$

Define $f : T \to T$ by f(x, y) = (2x + y, y). The set $BUCoin(f, \tau)$ corresponds to the solutions of

$$(2x+y,y) = (2(x+\frac{1}{2})-y,-y) \mod 1,$$

so all points with y = 0 or $y = \frac{1}{2}$ are in $BUCoin(f, \tau)$.

Taking $\epsilon(x) : [0, 1] \rightarrow [0, 1]$ such that

- $\epsilon(x) = 0$ if x = 0 or $x \in [\frac{1}{2}, 1]$;
- $0 < \epsilon(x) < \frac{1}{10}$ if $x \in]0, \frac{1}{2}[$

It is not difficult to see that it is possible to deform f (by an ϵ -homotopy) to a map:

$$f'(x,y) = f(x,y) + (\epsilon(x),0),$$

such that the solutions to $f'(x, y) = f' \circ \tau(x, y)$ satisfy:

$$(2x + y + \epsilon(x), y) = (2(x + \frac{1}{2}) + y + \epsilon(x + \frac{1}{2}), -y) \mod 1.$$

Which corresponds to

$$f(x,y) + (\epsilon(x),0) = f \circ \tau(x,y) + \epsilon(x+\frac{1}{2}).$$

So there exist 4 exact points:

$$\{(0,0), (\frac{1}{2},0), (0,\frac{1}{2}), (\frac{1}{2},\frac{1}{2})\}$$

such that $f'(x, y) = f' \circ \tau(x, y)$.

We have two usual coincidence classes:

$$C_1 = \{(0,0), (\frac{1}{2},0)\}$$
 $C_2 = \{(0,\frac{1}{2}), (\frac{1}{2},\frac{1}{2})\}$

each of them is equal to one (single) BU-class, and both of them with pseudoindex equals to 1.

So these two BU-classes are essential, and $NBU(f, \tau) = 2$.

In the examples in Theorem 5.2 in [1] (self-maps of the sphere S^n) there exists only one BU-coincidence class, which is single, and its pseudo-index depends on whether the involution (in that case the antipodal map) reverses or preserves orientation.

References

- F. S. Cotrim and D. Vendrúscolo, Nielsen coincidence theory applied to Borsuk-Ulam geometric problems. Topology Appl. 159 (2012), no. 18, 3738 – 3745.
- [2] P. E. Desideri, P. L. Q. Pergher and D. Vendrúscolo, Some generalizations of the Borsuk-Ulam Theorem, Publicationes Mathematicae (Debrecen), 78 (2011), 583-593.
- [3] R. Dobreńko and J. Jezierski, *The coincidence Nielsen theory on non-orientable manifolds*, Rocky Mountain J. Math. 23 (1993), 67–85.
- [4] D. L. Gonçalves, *The Borsuk-Ulam theorem for surfaces*, Quaestiones Mathematicae, 29 (2006), no. 1, 117–123.
- [5] D. L. Gonçalves and J. Guaschi, The Borsuk-Ulam theorem for maps into a surface. Topology Appl. 157 (2010), no. 10-11, 1742–1759,
- [6] D. L. Gonçalves, O. Manzoli Neto and M. Spreafico, The Borsuk-Ulam Theorem for 3-dimensional homotopy spherical space forms, Journal of Fixed Point Theory and its Applications, 9 (2011), 285–294.
- [7] J. Jezierski, The semi index product formula, Fund. Math. 140 (1992), 99–120.
- [8] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167–178.

Centro de Ciências da Natureza - UFSCar, Buri, SP - Brazil. email: fabiana_cotrim@yahoo.com.br

Departamento de Matemática - UFSCar, São Carlos, SP - Brazil. email: daniel@dm.ufscar.br