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Abstract

Let X be a paracompact space, let G be a finite group acting freely on X
and let H a cyclic subgroup of G of prime order p. Let f : X → M be a
continuous map where M is a connected m-manifold (orientable if p > 2)
and f ∗(Vk) = 0, for k ≥ 1, where Vk are the Wu classes of M. Suppose

that ind X ≥ n > (|G| − r)m, where r = |G|
p . In this work, we estimate the

cohomological dimension of the set A( f , H, G) of (H, G)-coincidence points
of f . Also, we estimate the index of a (H, G)-coincidence set in the case that
H is a p-torus subgroup of a particular group G and as application we prove
a topological Tverberg type theorem for any natural number r. Such result
is a weak version of the famous topological Tverberg conjecture, which was
proved recently fail for all r that are not prime powers. Moreover, we obtain
a generalized Van Kampen-Flores type theorem for any integer r.

1 Introduction

Let G be a finite group which acts freely on a space X and let f : X → Y be a
continuous map from X into another space Y. If H is a subgroup of G, then H

∗The author was supported in part by FAPESP of Brazil Grant numbers 12/24454-8 and
2013/24845-0

†The author was supported in part by FAPESP of Brazil Grant numbers 12/24454-8
‡The author was supported by CAPES and CNPq
Received by the editors in October 2016 - In revised form in January 2017.
Communicated by K. Dekimpe, D.L. Gonçalves and P. Wong.
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acts on the right on each orbit Gx of G as follows: if y ∈ Gx and y = gx, with
g ∈ G, then h · y = gh−1x. A point x ∈ X is said to be a (H, G)- coincidence point
of f (as introduced by Gonçalves and Pergher in [7]) if f sends every orbit of the
action of H on the G-orbit of x to a single point. Of course, if H is the trivial
subgroup, then every point of X is a (H, G)-coincidence. If H = G, this is the
usual definition of G-coincidence, that is, f (x) = f (gx), for all g ∈ G. If G = Zp

with p prime, then a nontrivial (H, G)-coincidence point is a G-coincidence point.
Let us denote by A( f , H, G) the set of all (H, G)-coincidence points. A kind of
Borsuk-Ulam type theorems consists in estimating the cohomological dimension
of the set A( f , H, G). Two main directions for this problem are either when the
target space Y is a manifold or Y is a CW complex. In the first direction are the
papers of Borsuk [4] ( the classical theorem of Borsuk-Ulam, for H = G = Z2,
X = Sn and Y = Rn), Conner and Floyd [5] (for H = G = Z2, X = Sn and
Y a n-manifold), Munkholm [13] (for H = G = Zp, X = Sn and Y = Rm),
Nakaoka [14] (for H = G = Zp, X under certain (co)homological conditions and
Y a m-manifold) and the following more general version proved by Volovikov
[17] using the index of a free Zp-space X (ind X, see Definition 2.2 ):

Theorem A.[17, Theorem 1.2] Let X be a paracompact free Zp-space of ind X ≥ n,
and f : X → M a continuous mapping of X into an m-dimensional connected manifold
M (orientable if p > 2). Assume that:

(1) f ∗(Vi) = 0 for i ≥ 1, where the Vi are the Wu classes of M; and

(2) n > m(p − 1).

Then the ind A( f ) ≥ n − m(p − 1) > 0.

In the second direction are the papers of Izydorek and Jaworowski [10]
(for H = G = Z2, X = Sn and Y a CW-complex ), Gonçalves and Pergher [7]
(for H = G = Zp, X = Sn and Y a CW-complex ) and for proper nontrivial sub-
group H of G, Gonçalves, Jaworowski and Pergher [8] (for H = Zp subgroup of
a finite group G, X an homotopy sphere and Y a CW-complex) and Gonçalves,
Jaworowski, Pergher and Volovikov [9](for H = Zp subgroup of a finite group
G, X under certain (co)homological assumptions and Y a CW-complex).

In this work, considering the target space Y = M a manifold and H a proper
nontrivial subgroup of G, we prove the following formulation of the Borsuk-
Ulam theorem for manifolds in terms of (H, G)-coincidence.

Theorem 1.1. Let X be a paracompact space of indX ≥ n and let G be a finite group
acting freely on X and H a cyclic subgroup of G of prime order p. Let f : X → M
be a continuous map where M is a connected m-manifold (orientable if p > 2) and
f ∗(Vk) = 0, for all k ≥ 1, where Vk are the Wu classes of M. Suppose that ind X ≥ n >

(|G| − r)m where r = |G|
p . Then ind A( f , H, G) ≥ n − (|G| − r)m. Consequently,

cohom.dim A( f , H, G) ≥ n − (|G| − r)m > 0.

Let us observe that if H = G = Zp, we have (|G| − r)m = (p − 1)m and
therefore Theorem 1.1 generalizes Theorem A above of Volovikov. For the case
n = (|G| − r)m, p an odd prime, if we consider X a mod p homology n-sphere in
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the Theorem 1.1 (in this case, the continuous map f can be arbitrary), we obtain a
version for (H, G)-coincidence points of the Zp-result of Nakaoka
[14, Theorem 8]. Further, it considerably improves the estimative of Gonçalves,
Jaworowski and Pergher (of [8]), when CW-complexes are replaced by manifolds:
if n > m(|G| − r) (which is better than n > m|G| and, depending on r, may be
much better than n > m|G|), then ind A( f ; H; G) ≥ n − m(|G| − r) (which again
is better than ind A( f ; H; G) ≥ n − m|G| and, depending on r, may be much
better than ind A( f ; H; G) ≥ n − m|G|).

Also, we prove the following nonsymmetric theorem for (H, G)-coincidences
which is a version for manifolds of the main theorem in [11].

Theorem 1.2. Let X be a compact Hausdorff space, let G be a finite group acting freely on
Sn and let H be a cyclic subgroup of G of order prime p. Let ϕ : X → Sn be an essential
map 1 and let f : X → M be a continuous map where M is a connected m-manifold
(orientable if p > 2) and f ∗(Vk) = 0, for all k ≥ 1, where Vk are the Wu classes of M.
Suppose that n > (|G| − r)m, then

cohom.dim Aϕ( f , H, G) ≥ n − (|G| − r)m,

where r = |G|
p and Aϕ( f , H, G) denotes the (H, G)-coincidence points of f relative to an

essential map ϕ : X → Sn.

In Section 4, we give a similar estimate in the case that H is a p-torus subgroup
of a particular group G and as application, we prove a topological Tverberg type
theorem for any natural number, which is a weak version of the famous topolog-
ical Tverberg conjecture. Moreover, we obtain a generalized Van Kampen-Flores
type theorem for any integer r.

2 Preliminaries

We introduce the following concept.

2.1 The Zp-index

We suppose that the cyclic group Zp acts freely on a paracompact Hausdorff
space X, where p is a prime number and we denote by [X]∗ the orbit space of
X by the action of Zp. Then, X → [X]∗ is a principal Zp-bundle and we can
consider a classifying map c : [X]∗ → BZp.

Remark 2.1. It is well known that if ĉ is another classifying map for the principal
Zp-bundle X → X∗, then there is a homotopy between c and ĉ.

Definition 2.2. We say that the Zp-index of X is greater than or equal to l if the homo-
morphism

c∗ : Hl(BZp; Zp) → Hl([X]∗; Zp)

1A map ϕ : X → Sn is said to be an essential map if ϕ induces nonzero homomorphism
ϕ∗ : Hn(Sn; Zp) → Hn(X; Zp).
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is nontrivial. We say that the Zp-index of X is equal to l if it is greater or equal than l

and, furthermore, c∗ : Hi(BZp; Zp) → Hi([X]∗ ; Zp) is zero, for all i ≥ l + 1.
We denote the Zp-index of X by ind X.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we use the technique introduced in [8, Section 5], which
had as a starting point the proof of the main theorem for G = Zp, made in
[8, Section 3]: choose a1, a2, ..., ar a set of representatives of the left lateral classes
of G/H, and define the map F : X → Mr of X to the r-fold product Mr by
F(x) = ( f (a1x), ..., f (ar x)).

In [8], it was used the case G = Zp for F and the restriction of the action of
G to H ∼= Zp. In our case, the starting point is Theorem A. However, to follow
the lines of [8], we need first to understand the Wu classes of a cartesian product
of manifolds and the effect of F∗ in such classes, which will be made through
Lemmas 3.1 and 3.2 below. The total Wu class of a manifold M is defined as the
formal sum

v(M) = 1 + v1(M) + v2(M) + · · ·+ vk(M) + · · ·

where vk(M) is the k-th Wu class of M, k = 1, 2, . . . (see [12]). Let p > 2 be a
prime. Using the total reduced power

P = P0 + P1 + P2 + · · ·+ Pk + · · ·

and the equation

〈vk(M) ⌣ x, [M]〉 = 〈Pk(x), [M]〉

we obtain the formula

〈v(M) ⌣ u, [M]〉 = 〈P(u), [M]〉

for all u ∈ H∗
c (M; Zp). For p = 2 we have a similar formula

〈v(M) ⌣ u, [M]〉 = 〈Sq(u), [M]〉

for all u ∈ H∗
c (M; Z2), where

Sq = Sq0 + Sq1 + Sq2 · · ·+ Sqk + · · ·

is the total Steenrod square. Let W and M be connected manifolds, both orientables
if p > 2.

Lemma 3.1. The total Wu class of W × M, is given by:

v(W)⊗ v(M) (3.1)

where v(W) and v(M) are the total Wu classes of W and M respectively.
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Proof. Let p > 2 be a prime number. Let z = w ⊗ u an element of H∗
c (W × M; Zp)

then

〈v(W)⊗ v(M) ⌣ z, [W × M]〉 = 〈v(W) ⌣ w ⊗ v(M) ⌣ u, [W × M]〉
= 〈P(w) ⊗ P(u), [W × M]〉
= 〈P(w ⊗ u), [W × M]〉
= 〈P(z), [W × M]〉
= 〈v(W × M) ⌣ z, [W × M]〉

Therefore by uniqueness of the Wu class we conclude that the total Wu class
of W × M is given by v(W × M) = v(W) ⊗ v(M). By a similar argument the
total Wu classes are obtained for p = 2; in this case are used the total Steenrod
square.

Lemma 3.2. If f ∗(vk(M)) = 0, for all k ≥ 1, where vk(M) are the Wu classes of M,
then F∗(vk(Mr)) = 0, for all k ≥ 1, where vk(Mr) are the Wu classes of Mr.

Proof. Since F = ( f1 × . . . × fr) ◦ D, where D : X → Xr is the diagonal map
and fi : X → X is given by fi(x) = f (ai x), i = 1 . . . r, it suffices to show that
( f1 × . . . × fr)

∗(vk(Mr)) = 0, for k ≥ 1. If r = 1, then F = f1 and f ∗1 (vk(M)) =
g∗1 ◦ f ∗(vk(M)) = 0.

Let us denote by

p1 : Mr−1 × M → Mr−1, p2 : Mr−1 × M → M

q1 : Xr−1 × X → Xr−1, q2 : Xr−1 × X → X

the natural projections. If r ≥ 2, we have

( f1 × . . . × fr−1) ◦ q1 = p1 ◦ ( f1 × . . . × fr)

fr ◦ q2 = p2 ◦ ( f1 × . . . × fr).

Since, by Lemma 3.1, vk(Mr−1 × M) =
k

∑
s=0

vs(Mr−1) × vk−s(M) and assuming

inductively that ( f1 × . . . × fr−1)
∗(vs(Mr−1)) = 0, for s ≥ 1, we conclude that

( f1 × . . . × fr)
∗(vk(Mr−1 × M)) =

= ( f1 × . . . × fr)
∗

(
k

∑
s=0

vs(Mr−1)× vk−s(M)

)

=
k

∑
s=0

( f1 × . . . × fr)
∗(p∗1(vs(Mr−1))) ⌣ ( f1 × . . . × fr)

∗(p∗2(vk−s(M)))

=
k

∑
s=0

q∗1 ◦ ( f1 × . . . × fr−1)
∗(vs(Mr−1)) ⌣ q∗2 ◦ g∗r ◦ f ∗(vk−s(M))

= 0.
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Proof. Now we return to the proof of Theorem 1.1. We have

A( f , H, G) ⊃ AF = {x ∈ X : F(x) = F(hx), ∀h ∈ H}.

In fact, let x be a point in the set AF, then

( f (a1x), . . . , f (ar x)) = ( f (a1hx), . . . , f (arhx)),

for all h ∈ H. Thus, f (ai x) = f (aihx), for all h ∈ H and i = 1, . . . , r. According to
the definition of the action of H on the orbit Gx, h−1 · aix := ai(h

−1)−1x = aihx ∈
ai Hx, for i = 1, . . . , r. Thus, f collapses each orbit ai Hx determined by the action
of H on aix, for i = 1, . . . , r, therefore x ∈ A( f , H, G).

Now we observe that H ∼= Zp acts freely on X by restriction and by hypo-
thesis ind X ≥ n > n − (p − 1)rm. By Lemma 3.2, F∗(vk) = 0, for all k ≥ 1, where
vk are the Wu classes of Mr. Thus, according to Theorem A,

ind AF ≥ n − (p − 1)rm = n − (|G| − r)m.

Let us consider the inclusion i : AF → A( f , H, G), which is an equivariant
map, and so it induces i : [AF]

∗ → [A( f , H, G)]∗ a map between the orbit spaces.
Therefore, if c : [A( f , H, G)]∗ → BZp is any classifying map, we have that c ◦ i :
[AF]

∗ → BZp is a classifying map. Thus,

ind A( f , H, G) ≥ ind AF ≥ n − (|G| − r)m.

Corollary 3.3. Let X be a paracompact space and let G be a finite group acting freely on
X. Let M be a orientable m-manifold, and p a prime number that divide |G|. Suppose

that indX ≥ n > (|G| − r)m, where r = |G|
p . Then, for a continuous map f : X → M

such that f ∗(Vk) = 0, for all k ≥ 1, where Vk are the Wu classes of M, there exists a
non-trivial subgroup H of G, such that

cohom.dim A( f , H, G) ≥ n − (|G| − r)m.

Proof. Let p be a prime number such that divide |G|. By Cauchy Theorem, there
is a cyclic of order p subgroup H of G . Then, we apply Theorem 1.1.

Remark 3.4. Let us observe that, if f ∗ : Hi(M; Zp) → Hi(X; Zp) is trivial, for

i ≥ 1, and p is the smallest prime number dividing |G|, then r = |G|
p ≥ |G|

q , where

q can be any other prime number dividing |G|. Thus, n > (|G| − |G|
q )m, therefore

for each prime number q dividing |G|, there exists a cyclic subgroup of order q,
Hq of G such that ind A( f , Hq, G) ≥ n − (|G| − r)m.

The following theorem is a version for manifolds of the main result in [8].

Theorem 3.5. Let G be a finite group which acts freely on n-sphere Sn and let H be a
cyclic subgroup of G of prime order p. Let f : Sn → M be a continuous map where M be

a m-manifold (orientable if p > 2). If n > (|G| − r)m where r = |G|
p , then

cohom.dim(A( f , H, G)) ≥ n − (|G| − r)m.

Proof. Since n > (|G| − r)m ≥ m, f ∗(Vk) = 0, for all k ≥ 1. Moreover, ind Sn = n
and thus we apply the Theorem 1.1.
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3.1 Proof of Theorem 1.2

Now, let us consider X a compact Hausdorff space and an essential map
ϕ : X → Sn. Suppose G be a finite group de order s which acts freely on Sn

and H be a subgroup of order p of G. Let G = {g1, ..., gs} be a fixed enumeration
of elements of G, where g1 is the identity of G. A nonempty space Xϕ can be
associated with the essential map ϕ : X → Sn as follows:

Xϕ = {(x1, ..., xs) ∈ Xs : gi ϕ(x1) = ϕ(xi), i = 1, ..., s},

where Xs denotes the s-fold cartesian product of X. The set Xϕ is a closed subset
of Xs and so it is compact. We define a G-action on Xϕ as follows: for each gi ∈ G
and for each (x1, ..., xs) ∈ Xϕ,

gi(x1, ..., xs) = (xσgi
(1), ..., xσgi

(s)),

where the permutation σgi
, is defined by σgi

(k) = j, gkgi = gj. We observe that if
x = (x1, ..., xs) ∈ Xϕ then xi 6= xj, for any i 6= j and therefore G acts freely on Xϕ.

Let us consider a continuous map f : X → M, where M is a topological space

and f̃ : Xϕ → M given by f̃ (x1, ..., xs) = f (x1),

Definition 3.6. The set Aϕ( f , H, G) of (H, G)-coincidence points of f relative to ϕ is
defined by

Aϕ( f , H, G) = A( f̃ , H, G).

Proof of Theorem 1.2. Let f̃ : Xϕ → M given by f̃ (x1, ..., xr) = f (x1), that is,

f̃ = f ◦ π1, where π1 is the natural projection on the 1-th coordinate. By hy-
pothesis, f ∗(Vk) = 0, for all k ≥ 1, where Vk are the Wu classes of M, then we

have f̃ ∗(Vk) = 0, for all k ≥ 1. Moreover, the Zp-index of Xϕ is equal to n by

[11] Theorem 3.1. In this way, Xϕ and f̃ satisfy the hypothesis of Theorem 1.1

which implies that the Zp-index of the set A( f̃ , H, G) is greater than or equal to

n − (|G| − r)m. By definition, Aϕ( f , H, G) = A( f̃ , H, G), and then

cohom.dim Aϕ( f , H, G) ≥ n − (|G| − r)m.

By a similar argument to that used in the proof of Corollary 3.3 we have the
following corollary of Theorem 1.2

Corollary 3.7. Let X be a compact Hausdorff space and let G be a finite group acting
freely on Sn. Let M be a orientable m-manifold and p a prime number dividing |G|.

Suppose that n > (|G| − r)m, where r = |G|
p . Then, for a continuous map f : X → M,

with f ∗(Vk) = 0, for all k ≥ 1, where Vk are the Wu classes of M, there exists a non-
trivial subgroup H of G, such that

cohom.dim Aϕ( f , H, G) ≥ n − (|G| − r)m.
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4 Topological Tverberg type theorem

The history of Tverberg theorem begins with a Birch’s paper (see [2]) which con-
tained the following conjecture

“Any (r − 1)(d + 1) + 1 points in R
d can be partitioned in N subsets whose convex

hulls have a common point ”.

The Birch’s conjecture was proved by Helge Tverberg (see [16]) and since then
is known as Tverberg theorem.

We note that the convex hull of l + 1 points in R
d is the image of the linear

map ∆l → R
d that maps the l + 1 vertices of ∆l to these l + 1 points. Thus the

Tverberg theorem can be reformulated as follows:

Tverberg Theorem. Let f be a linear map from the N-dimensional simplex ∆N to R
d.

If N = (d + 1)(r − 1) then there are r disjoint faces of ∆N whose images have a common
point.

The following conjecture is a generalization of Tverberg Theorem to arbitrary
continuous maps.

The topological Tverberg conjecture. Let f be a continuous map from the N-dimen-
sional simplex ∆N to R

d. If N = (d + 1)(r − 1) then there are r disjoint faces of ∆N

whose images have a common point.

The topological Tverberg conjecture was considered a central unsolved prob-
lem of topological combinatorics. For a prime number r the conjecture was proved
by Bárány, Shlosman and Szűcs ([1]) and it was extended for a prime power r by
Özaydin (unpublished) ([15]) and Volovikov ([19]). This result is known as the
topological Tverberg theorem. Recently, in [6], Frick presents surprising counterex-
amples to the topological Tverberg conjecture for any r that is not a power of
a prime and dimensions d ≥ 3r + 1 (see also [3]). Although, the conjecture is
not true for an integer r ≥ 6 that is not a prime power, it is possible to prove a
weak version of the topological Tverberg conjecture, more precisely, in this paper
we show that if r is a natural number with prime factorization r = pn1

1 · · · p
nk
k

then there is, for each j = 1, . . . , k, a set with r closed sides mutually disjoint of

∆N which can be divided into
r

p
nj

j

subsets, each one having p
nj

j elements, whose

images have a common point. Specifically, we prove the following Topological
Tverberg type theorem for manifolds and for any integer number r.

Theorem 4.1. Let d ≥ 1 a natural number. Consider a natural number r with prime
factorization r = pn1

1 · · · p
nk
k and set N = (r − 1)(d + 1). Let f : ∂∆N → M be a

continuous map into a compact d-dimensional topological manifold. If r = 2, suppose
additionally that the modulo 2 degree of the map f : ∂∆d+1 → M is equal to zero. Then,

for each j = 1, . . . , k, among the sides of ∆N there are r = qjrj, where rj = p
nj

j , and

qj =
r

rj
, mutually disjoint closed sides σ11

, ..., σ1rj
; . . . ;σi1 , ..., σirj

; . . .; σqj1
, ..., σqjrj

, such

that
f (σi1) ∩ · · · ∩ f (σirj

) 6= ∅, for each i = 1, . . . , qj.
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Definition 4.2 (Index). Let p be a prime. We suppose the p-torus
H = Z

k
p = Zp × · · · × Zp (k factors) acting freely on a paracompact space X. The cov-

ering X → X/H is induced from the universal covering EH → BH by means of a clas-
sifying map c : X/H → BH, defined uniquely up to homotopy. We say that the index
of X is greater than or equal to N (abbreviated by ind X ≥ N) if c∗ : HN(BH; Zp) →

HN(X/H; Zp) is a monomorphism.

Consider G = Z
n1
p1
× . . . × Z

nk
pk

, where Z
nj
pj
= Zpj

× . . . × Zpj
(nj factors), j =

1, . . . , k. We suppose that G acts freely on a paracompact space X.

Lemma 4.3. Let f : X → M be a continuous map into a compact d-dimensional
topological manifold (orientable for pj > 2). Suppose that the homomorphism f ∗ :

Hi(M; Zpj
) → Hi(X; Zpj

) is trivial for i ≥ 1 and ind X ≥ N ≥ d(r − qj), where

qj = r/p
nj

j . Then

indA
(

f , Z
nj
pj

, G
)
≥ N − d(r − qj).

Proof. We denote by a1, . . . , aqj
a set of representatives of the left lateral classes of

G/Z
nj
pj

. Consider the map F : X → Mqj defined by

F = ( f1 × . . . × fqj
) ◦ D,

where D : X → Xqj is the diagonal map and fi : X → X is given by fi(x) = f (ai x),
i = 1, . . . , qj.

We have F∗ : Hi(Mqj ; Zpj
) → Hi(X; Zpj

) trivial for i ≥ 1, therefore the in-

dex of A(F) = {x ∈ X : F(x) = F(gx) ∀g ∈ Z
nj
pj
} is greater than or equal to

N − qjd
(

p
nj

j − 1
)

(see [18, Theorem 1]). Since A(F) ⊂ A
(

f , Z
nj
pj

, G
)

and the in-

clusion A(F) →֒ A
(

f , Z
nj
pj

, G
)

is an equivariant map we have ind A
(

f , Z
nj
pj

, G
)
≥

A(F). Then

ind A
(

f , Z
nj
pj

, G
)
≥ N − d(r − qj).

Proof of Theorem 4.1. We consider the CW-complex YN,r that consists of points
(y1, . . . , yr), yi in the boundary ∂∆N of the simplex ∆N , that have mutually disjoint
closed faces. It is known that for all natural numbers r and N, where N ≥ r + 1,
YN,r is (N − r)-connected (see [1]). Let G = {g1, . . . , gr} be a fixed enumeration of
elements of G. We define a G-action on YN,r ⊂ (∆N)

r as follows: for each gi ∈ G
and for each (y1, . . . , yr) ∈ YN,r

gi(y1, ..., yr) = (yφgi
(1), ..., yφgi

(r)),

where the permutation φgi
, is defined by φgi

(k) = j, gkgi = gj. Then G acts freely
on YN,r, since YN,r consists of points (y1, . . . , yr), yi ∈ ∂∆N that have mutually
disjoint closed faces.

Let f̃ : YN,r → M given by f̃ (y1, . . . , yr) = f (y1), that is, f̃ = f ◦ π1 where
π1 : YN,r → ∂∆N is the projection on the 1-th coordinate. Since N = (r − 1)(d+ 1)
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and YN,r is (N − r)-connected, it follows that f̃ ∗ : Hi(M; Zpj
) → Hi(YN,r ; Zpj

) is

trivial for i ≥ 1 and indYN,r ≥ (N − r) + 1 = d(r − 1) > d(r − qj) (if M is
non-orientable, we consider the lifting of the map f : ∂∆N → M to the univer-

sal covering space). Then, according to Lemma 4.3, the set A
(

f̃ , Z
nj
pj

, G
)

is not

empty, for j = 1, . . . , k.

Let H = Z
nj
pj
= {h1, . . . , hrj

} be a fixed enumeration of elements of H = Z
nj
pj
⊂

G. We denote by a1, . . . , aqj
a set of representatives of the left lateral classes of

G/Z
nj
pj

. Then, for each i = 1, · · · , qj, aih
−1
1 = gi1 , . . . , aih

−1
rj

= girj
are elements of

G. Thus, if y = (y1, . . . , yr) ∈ A
(

f̃ , Z
nj
pj

, G
)

,

f̃ (gi1 · (y1, . . . , yr)) = · · · = f̃ (girj
· (y1, . . . , yr)),

that is,
f (yφgi1

(1)) = · · · = f (yφgirj
(1)).

Therefore, for each j = 1, . . . , k, among the sides of ∆N there are r = qjrj

mutually disjoint closed sides {σi1 , ..., σirj
}

qj

i=1, such that

f (σi1) ∩ · · · ∩ f (σirj
) 6= ∅,

for each i = 1, . . . , qj.

Let us observe that since the d-dimensional Euclidean space R
d is homeomor-

phic to the interior of the closed d-dimensional ball, Theorem 4.1 holds also for
maps into R

d, and we have the following weak version of the topological Tverberg
conjecture or topological Tverberg type theorem for any integer r.

Theorem 4.4 (Topological Tverberg type theorem for any integer r). Let r ≥ 2,
d ≥ 1 be integers and N = (r − 1)(d+ 1). Consider r = r1 . . . rk the prime factorization
of r and denote qj = r/rj, j = 1, . . . , k. Then for any continuous map f : ∆N → R

d, for

each j = 1, . . . , k, there are r = qjrj pairwise disjoint faces {σi1 , ..., σirj
}

qj

i=1 such that

f (σi1) ∩ · · · ∩ f (σirj
) 6= ∅, for each i = 1, . . . , qj.

Let us note that if we consider r a prime power in Theorem 4.4, we obtain the
topological Tverberg theorem for prime powers.

Now, by Theorem 4.4 and using similar method as in [3], we have the follow-
ing Generalized Van Kampen-Flores type theorem for any integer r or a weak version of
the Generalized Van Kampen-Flores theorem. In [3, Theorem 4.2], Blagojevic, Frick
and Ziegler proved that the Generalized Van Kampen-Flores theorem does not
hold in general.

Theorem 4.5 (Generalized Van Kampen-Flores type theorem for any r). Let d ≥ 1
a natural number. Consider a natural number r with prime factorization r = r1 · · · rk,
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r1 < · · · < rk, set N = (r − 1)(d + 2) and let l ≥ [ r−1
rk

d + 2(r−rk)
rk

]. Let

f : ∆N → R
d be a continuous mapping. Then, there are r = qkrk pairwise disjoint

faces {σi1 , ..., σirk
}

qk
i=1 of the l-th skeleton ∆

(l)
N , such that

f (σi1) ∩ · · · ∩ f (σirk
) 6= ∅, for each i = 1, . . . , qk.

Proof. Let g : ∆N → R
d+1 be a continuous function defined by g(x) = ( f (x),

dist(x, ∆
(l)
N )). Then, we can apply Theorem 4.4 to function g which results in a

collection of points

x11
, ..., x1rk

; . . . ; xi1 , ..., xirk
; . . . ; xqk1

, ..., xqkrk
,

such that {xi1 , ..., xirk
}

qk
i=1 are points in the pairwise disjoint faces {σi1 , ..., σirj

}
qk
i=1

with f (xi1) = · · · = f (xirk
) and dist(xi1 , ∆

(l)
N ) = · · · = dist(xirk

, ∆
(l)
N ), for each

i = 1, . . . , qk. We can suppose that all σis
’s are inclusion-minimal with the prop-

erty that xis
∈ σis

, that is, σis
is the unique face with xis

in its relative interior.
Now, for each i = 1, . . . , qk fixed, suppose that one of the faces σi1 , . . . , σirk

is

in ∆
(l)
N , e.g. σi1 . Then dist(xi1 , ∆

(l)
N ) = 0, which implies that dist(xi1 , ∆

(l)
N ) = · · · =

dist(xirk
, ∆

(l)
N ) = 0, and consequently, all faces σi1 , . . . , σirk

are in ∆
(l)
N .

Let us suppose the contrary, that no σis
is in ∆

(l)
N , i.e., dim σi1 ≥ l + 1, . . . ,

dim σirk
≥ l + 1. Since the faces σi1 , . . . , σirk

are pairwise disjoint we have

N + 1 = |∆N | ≥ |σi1 |+ · · ·+ |σirk
|

≥ rk(l + 2)

≥ rk(

[
r − 1

rk
d +

2(r − rk)

rk

]
+ 2) ≥ (r − 1)(d + 2) + 2 = N + 2,

which is a contradiction and thus one of the faces σi1 , . . . , σirk
is in ∆

(l)
N and conse-

quently all faces σi1 , . . . , σirk
are in ∆

(l)
N .

Remark 4.6. Let us observe that if we consider r a prime power in Theorem 4.5,
we obtain the Generalized Van Kampen-Flores theorem for prime powers proved
by Blagojevic, Frick and Ziegler in [3, Theorem 3.2].
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Caixa Postal 668, 13560-970,
São Carlos-SP, Brazil
E-mail address: deniseml@icmc.usp.br

Departamento de Matemática,
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