Compact perturbations resulting in hereditarily polaroid operators

B.P. Duggal

Abstract

A Banach space operator $A \in B(\mathcal{X})$ is polaroid, $A \in(\mathcal{P})$, if the isolated points of the spectrum $\sigma(A)$ are poles of the operator; A is hereditarily polaroid, $A \in(\mathcal{H P})$, if every restriction of A to a closed invariant subspace is polaroid. It is seen that operators $A \in(\mathcal{H P})$ have SVEP - the single-valued extension property - on $\Phi_{s f}(A)=\{\lambda: A-\lambda$ is semi Fredholm $\}$. Hence $\Phi_{s f}^{+}(A)=\left\{\lambda \in \Phi_{s f}(A), \operatorname{ind}(A-\lambda)>0\right\}=\varnothing$ for operators $A \in(\mathcal{H P})$, and a necessary and sufficient condition for the perturbation $A+K$ of an operator $A \in B(\mathcal{X})$ by a compact operator $K \in B(\mathcal{X})$ to be hereditarily polaroid is that $\Phi_{s f}^{+}(A)=\varnothing$. A sufficient condition for $A \in B(\mathcal{X})$ to have SVEP on $\Phi_{s f}(A)$ is that its component $\Omega_{a}(A)=\left\{\lambda \in \Phi_{s f}(A): \operatorname{ind}(A-\lambda) \leq 0\right\}$ is connected. We prove: If $A \in B(\mathcal{H})$ is a Hilbert space operator, then a necessary and sufficient condition for there to exist a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$ is that $\Omega_{a}(A)$ is connected.

1. Introduction

Let $B(\mathcal{X})$ (resp., $B(\mathcal{H})$) denote the algebra of operators, equivalently bounded linear transformations, on a complex infinite dimensional Banach (resp., Hilbert) space into itself. For an operator $A \in B(\mathcal{X})$, let iso $\sigma(A)$ denote the isolated points of the spectrum $\sigma(A)$, let $\operatorname{asc}(A)$ (resp., $\mathrm{dsc}(A)$) denote the ascent (resp., descent) of A and let $A-\lambda$ denote $A-\lambda I$. A point $\lambda \in \operatorname{iso} \sigma(A)$ is a pole (of the resolvent)

[^0]of A, equivalently A is polar at λ, if $\operatorname{asc}(A-\lambda)=\operatorname{dsc}(A-\lambda)<\infty$. The operator A is polaroid if it is polar at every $\lambda \in \operatorname{iso} \sigma(A)$, and it is hereditarily polaroid if every restriction $\left.A\right|_{M}$ of A to an (always closed) invariant subspace M of A is polaroid. Polaroid operators, and their perturbation by commuting compact perturbations, have been studied by a number of authors in the recent past (see [2, 3, 7, 8, 17] for a sample). For example, if $N \in B(\mathcal{X})$ is a nilpotent operator which commutes with $A \in B(\mathcal{X})$, then A is polaroid if and only if $A+N$ is polaroid [8, Theorem 2.6(b)]. This however does not extend to non-nilpotent quasinilpotent commuting operators: Consider for example the trivial operator $A=0 \in B(\mathcal{X})$ and a non-nilpotent quasinilpotent $Q \in B(\mathcal{X})$. The perturbation of a polaroid operator by a compact operator may or may not effect the polaroid property of the operator. For example, if $U \in B(\mathcal{H})$ is the forward unilateral shift, $A=U \oplus U^{*}$ and K is the compact operator $K=\left(\begin{array}{ll}0 & 1-U U^{*} \\ 0 & 0\end{array}\right)$, then both A and $A+K$ are polaroid (for the reason that iso $\sigma(A)=\varnothing$ and $A+K$ is a unitary); trivially the identity operator 1 is polaroid, but its perturbation $1+Q$ by a compact quasinilpotent operator is not polaroid.

An interesting problem, recently considered by Li and Zhou [17], is the following: Given an operator $A \in B(\mathcal{H})$, do there exist compact operators $K_{0}, K \in B(\mathcal{H})$ such that (i) $A+K_{0}$ is polaroid and (ii) $A+K$ is not polaroid. The answer to both these problems is an emphatic "yes" (see [17, Theorems 1.4 and 1.5]). The argument used to prove these results ties up with the work of Herrero and his co-authors [11, 12, 13, 4], Ji [15], and Zhu and Li [19]. A natural extension of this problem is the question of whether there exist compact operators $K_{0}, K \in B(\mathcal{H})$ such that (i)' $A+K_{0}$ is hereditarily polaroid and (ii)' $A+K$ is not hereditarily polaroid. Here the answer to (ii)' is a "yes" [17, Theorem 5.2], but there is caveat to the answer to (i)' - the answer is "yes if the set $\Phi_{s f}^{+}(A)=\{\lambda \in \sigma(A): A-\lambda$ is semi- Fredholm and $\operatorname{ind}(A-\lambda)>0\}=\varnothing^{\prime \prime}$. The authors of [17] leave the problem of a straight "yes or no" answer to (i)' open. This note considers this problem to prove that if $A, K \in B(\mathcal{X})$ with K compact, then $A+K$ hereditarily polaroid implies $\Phi_{s f}^{+}(A)=\varnothing$. Indeed, we prove that if $A \in B(\mathcal{H})$, then there exists a compact $K \in B(\mathcal{H})$ such that $A+K$ is hereditarily polaroid if and only if A has SVEP, the single-valued extension property, on $\Phi_{s f}(A)$. A sufficient condition for operators $A \in B(\mathcal{X})$ to have SVEP on $\Phi_{s f}(A)$ is that the component $\Omega_{a}(A)=\left\{\lambda \in \Phi_{s f}(A): \operatorname{ind}(A-\lambda) \leq 0\right\}$ is connected. We prove that for an operator $A \in B(\mathcal{H})$, a necessary and sufficient condition for there to exist a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$ is that $\Omega_{a}(A)$ is connected.

2. Complementary results

We start by introducing our notation and terminology. We shall denote the class of polaroid operators by (\mathcal{P}) and the subclass of hereditarily polaroid operators by $(\mathcal{H P})$. The boundary of a subset S of the set C of complex numbers will be denoted by ∂S. An operator $A \in B(\mathcal{X})$ has SVEP, the single-valued extension property, at a point $\lambda_{0} \in \mathrm{C}$ if for every open disc $\mathcal{D}_{\lambda_{0}}$ centered at λ_{0} the only analytic
function $f: \mathcal{D}_{\lambda_{0}} \longrightarrow \mathcal{X}$ satisfying $(A-\lambda) f(\lambda)=0$ is the function $f \equiv 0$. (Here, as before, we have shortened $A-\lambda I$, equivalently $A-\lambda 1$, to $A-\lambda$.) Evidently, every A has SVEP at points in the resolvent $\rho(A)=\mathrm{C} \backslash \sigma(A)$ and the boundary $\partial \sigma(A)$ of the spectrum $\sigma(A)$. We say that T has SVEP on a set S if it has SVEP at every $\lambda \in S$. The ascent of $A, \operatorname{asc}(A)$ (resp. descent of $A, \operatorname{dsc}(A)$), is the least nonnegative integer n such that $A^{-n}(0)=A^{-(n+1)}(0)$ (resp., $A^{n}(\mathcal{X})=A^{n+1}(\mathcal{X})$): If no such integer exists, then $\operatorname{asc}(A), \operatorname{resp} . \operatorname{dsc}(A),=\infty$. It is well known that $\operatorname{asc}(A)<\infty$ implies A has SVEP at $0, \operatorname{dsc}(A)<\infty$ implies A^{*} ($=$ the dual operator) has SVEP at 0 , finite ascent and descent for an operator implies their equality, and that a point $\lambda \in \sigma(A)$ is a pole (of the resolvent) of A if and only if $\operatorname{asc}(A-\lambda)=\operatorname{dsc}(A-\lambda)<\infty($ see $[1,14,16])$.

An operator $A \in B(\mathcal{X})$ is: upper semi-Fredholm at $\lambda \in C, \lambda \in \Phi_{u f}(A)$ or $A-\lambda \in \Phi_{u f}(\mathcal{X})$, if $(A-\lambda)(\mathcal{X})$ is closed and the deficiency index $\alpha(A-\lambda)=$ $\operatorname{dim}\left(\left(\mathrm{A}-{ }^{-}\right)^{-1}(0)\right)<\infty$; lower semi-Fredholm at $\lambda \in C, \lambda \in \Phi_{l f}(A)$ or $A-\lambda \in \Phi_{l f}(\mathcal{X})$, if $\beta(A-\lambda)=\operatorname{dim}\left(\mathcal{X} /\left(\mathrm{A}-{ }^{-}\right)(\mathcal{X})\right)<\infty$. A is semi-Fredholm, $\lambda \in \Phi_{s f}(A)$ or $A-\lambda \in \Phi_{s f}(\mathcal{X})$, if $A-\lambda$ is either upper or lower semi-Fredholm, and A is Fredholm, $\lambda \in \Phi(A)$ or $A-\lambda \in \Phi(\mathcal{X})$, if $A-\lambda$ is both upper and lower semi-Fredholm. The index of a semi-Fredholm operator is the integer, possibly infinite, $\operatorname{ind}(A)=\alpha(A)-\beta(A)$. Corresponding to these classes of one sided Fredholm operators, we have the following spectra: The upper Fredholm spectrum $\sigma_{u f}(A)$ of A defined by $\sigma_{u f}(A)=\left\{\lambda \in \sigma(A): A-\lambda \notin \Phi_{u f}(\mathcal{X})\right\}$, and the lower Fredholm spectrum $\sigma_{l f}(A)$ of A defined by $\sigma_{l f}(A)=\{\lambda \in \sigma(A)$: $\left.A-\lambda \notin \Phi_{l f}(\mathcal{X})\right\}$. The Fredholm spectrum $\sigma_{f}(A)$ of A is the set $\sigma_{f}(A)=\sigma_{u f}(A) \cup$ $\sigma_{l f}(A)$, and the Wolf spectrum $\sigma_{u l f}(A)$ of A is the set $\sigma_{u l f}(A)=\sigma_{u f}(A) \cap \sigma_{l f}(A)$. $A \in B(\mathcal{X})$ is Weyl (at 0) if it is Fredholm with ind $(A)=0$. It is well known that a semi- Fredholm operator A (resp., its conjugate operator A^{*}) has SVEP at a point λ if and only if asc $(A-\lambda)<\infty$ (resp., $\operatorname{dsc}(A-\lambda)<\infty)$ [1, Theorems 3.16, 3.17]; furthermore, if $A-\lambda$ is Weyl, i.e., if $\lambda \in \Phi(A)$ and $\operatorname{ind}(A-\lambda)=0$, then A has SVEP at λ implies $\lambda \in \operatorname{iso} \sigma(A)$ with asc $(A-\lambda)=\operatorname{dsc}(A-\lambda)<\infty$. The Weyl (resp., the upper or approximate Weyl) spectrum of A is the set

$$
\begin{aligned}
& \sigma_{w}(A)=\left\{\lambda \in \sigma(A): \lambda \in \sigma_{f}(A) \text { or } \operatorname{ind}(A-\lambda) \neq 0\right\} \\
& \left(\sigma_{a w}(A)=\left\{\lambda \in \sigma_{a}(A): \lambda \in \sigma_{u f}(A) \text { or ind }(A-\lambda)>0\right\}\right)
\end{aligned}
$$

The Browder (resp., the upper or approximate Browder) spectrum of A is the set

$$
\begin{aligned}
& \sigma_{b}(A)=\left\{\lambda \in \sigma(A): \lambda \in \sigma_{f}(A) \text { or } \operatorname{asc}(A-\lambda) \neq \operatorname{des}\left(\mathrm{A}-{ }^{-}\right)\right\} \\
& \left(\sigma_{a b}(A)=\left\{\lambda \in \sigma_{a}(A): \lambda \in \sigma_{u f}(A) \text { or } \operatorname{asc}(A-\lambda)=\infty\right\}\right.
\end{aligned}
$$

Clearly, $\sigma_{f}(A) \subseteq \sigma_{w}(A) \subseteq \sigma_{b}(A) \subseteq \sigma(A)$ and $\sigma_{u f}(A) \subseteq \sigma_{a w}(A) \subseteq \sigma_{a b}(A) \subseteq$ $\sigma(A)$.

An operator $A \in B(\mathcal{X})$ is B-Fredholm (resp., upper B-Fredholm), $A \in \Phi_{B f}(\mathcal{X})$ (resp., $\Phi_{u B f}(\mathcal{X})$), if there exists an integer $n \geq 1$ such that $A^{n}(\mathcal{X})$ is closed and the induced operator $A_{[n]}=\left.A\right|_{A^{n}(\mathcal{X})}, A_{[0]}=A$, is Fredholm (resp., upper semi Fredholm) in the usual sense. It is seen that if $A_{[n]} \in \Phi_{s f}(\mathcal{X})$ for an integer $n \geq 1$,
then $A_{[m]} \in \Phi_{s f}(\mathcal{X})$ for all integers $m \geq n$: One may thus define unambiguously the index of A by ind $(A)=\alpha(A)-\beta(A)$ (see [6, 3, 5]). The B-Fredholm (resp., the upper B-Fredholm) spectrum of A is the set

$$
\begin{aligned}
& \sigma_{B f}(A)=\left\{\lambda \in \sigma(A): \lambda \notin \Phi_{B f}(A)\right\} \\
& \left(\sigma_{u B f}(A)=\left\{\lambda \in \sigma(A): \lambda \notin \Phi_{u B f}(A)\right\}\right)
\end{aligned}
$$

and the B-Weyl (resp., upper or approximate B-Weyl) spectrum of A is the set

$$
\begin{aligned}
& \sigma_{B w}(A)=\left\{\lambda \in \sigma(A): \lambda \in \sigma_{B f}(A) \text { or } \operatorname{ind}(A-\lambda) \neq 0\right\} \\
& \left(\sigma_{u B w}(A)=\left\{\lambda \in \sigma(A): \lambda \in \sigma_{u B f}(A) \text { or } \operatorname{ind}(A-\lambda)>0\right\}\right) .
\end{aligned}
$$

It is clear that $\sigma_{B w}(A) \subseteq \sigma_{w}(A)$ and $\sigma_{u B w}(A) \subseteq \sigma_{a w}(A)$.
Let $H_{0}(A)$ and $K(A)$ denote, respectively, the quasinilpotent part

$$
H_{0}(A)=\left\{x \in \mathcal{X}: \lim _{n \rightarrow \infty}\left\|A^{n} x\right\|^{\frac{1}{n}}=0\right\}
$$

and the analytic core

$$
\begin{aligned}
& K(A)=\left\{x \in \mathcal{X}: \text { there exists a sequence }\left\{x_{n}\right\} \subset \mathcal{X} \text { and } \delta>0\right. \text { for which } \\
& \left.x=x_{0}, A x_{n+1}=x_{n} \text { and }\left\|x_{n}\right\| \leq \delta^{n}\|x\| \text { for all } n=0,1,2, \cdots\right\}
\end{aligned}
$$

of A. It is well known, [1], that $(A-\lambda)^{-p}(0) \subseteq H_{0}(A-\lambda)$, for all integers $p \geq 1$, and $(A-\lambda) K(A-\lambda)=K(A-\lambda)$ for all complex λ. A necessary and sufficient condition for $\lambda \in \operatorname{iso} \sigma(A)$ to be a pole of A is that $H_{0}(A-\lambda)=(A-\lambda)^{-p}(0)$ for some integer $p \geq 1$: This is seen as follows. If $\lambda \in \operatorname{iso} \sigma(A)$, then (by the Riesz representation theorem $[1,14]$)

$$
\begin{aligned}
& \mathcal{X}=H_{0}(A-\lambda) \oplus K(A-\lambda)=(A-\lambda)^{-p}(0) \oplus K(A-\lambda) \\
\Longrightarrow & (A-\lambda)^{p}(\mathcal{X})=0 \oplus(A-\lambda)^{p} K(A-\lambda)=K(A-\lambda) \\
\Longrightarrow & \mathcal{X}=(A-\lambda)^{-p}(0) \oplus(A-\lambda)^{p}(\mathcal{X}) \\
\Longrightarrow & \lambda \text { is a pole of order } p \text { of } A \\
\Longrightarrow & H_{0}(A-\lambda)=(A-\lambda)^{-p}(0) .
\end{aligned}
$$

For every $\lambda \notin \sigma_{B w}(A)$ such that A has SVEP at $\lambda, \operatorname{asc}(A-\lambda)<\infty$ (implying thereby that there exists an integer $p \geq 1$ such that $\left.H_{0}(A-\lambda)=(A-\lambda)^{-p}(0)\right)$ and $\lambda \in \operatorname{iso} \sigma(A)$ [9]. Hence A has SVEP at $\lambda \notin \sigma_{B w}(A)$ implies λ is a pole of A.

If $\mathcal{X}=\mathcal{H}$ is a Hilbert space, and $A \in B(\mathcal{H})$ is such that $\lambda \in \Phi_{s f}(A)$, then the minimal index of $A-\lambda$ is the integer

$$
\min \{\alpha(A-\lambda), \beta(A-\lambda)\}=\min \left\{\alpha(A-\lambda), \alpha(A-\lambda)^{*}\right\} .
$$

It is well known that the function $\lambda \rightarrow \min . \operatorname{ind}(A-\lambda)$ is constant on every component of $\Phi_{s f}(A)$ (except perhaps for a denumerable subset without limit points in $\left.\Phi_{s f}(A)\right)$ [11, Corollary 1.14]

3. Results

Given $A \in B(\mathcal{X})$, the reduced minimum modulus function $\gamma(A)$ is the function

$$
\gamma(A)=\inf _{\mathrm{x} \notin \mathrm{~A}^{-1}(0)}\left\{\frac{\|\mathrm{Ax}\|}{\operatorname{dist}\left(\mathrm{x}, \mathrm{~A}^{-1}(0)\right)}\right\}
$$

where $\gamma(A)=\infty$ if $A=0$. Recall that $A(\mathcal{X})$ is closed if and only if $\gamma(A)>$ 0 . Let $\sigma_{p}(A)$ (resp., $\sigma_{a}(A)$) denote the point spectrum (resp., the approximate point spectrum) of the operator A, and let $\operatorname{acc} \sigma(A)$ denote the set of accumulation points of $\sigma(A)$.

Theorem 3.1. If, for an operator $A \in B(\mathcal{X})$, there exists a compact operator $K \in B(\mathcal{X})$ such that $A+K \in(\mathcal{H P})$, then $A+K$ has SVEP at points $\lambda \in \Phi_{s f}(A)$. Consequently, $\Phi_{s f}^{+}(A)=\left\{\lambda \in \Phi_{s f}(A): \operatorname{ind}(A-\lambda)>0\right\}=\varnothing$.
Proof. Suppose to the contrary that $A+K$ does not have SVEP at a point $\lambda \in \Phi_{s f}(A)=\Phi_{s f}(A+K)$. Recall from [1, Theorem 3.23] that if an operator $T \in B(\mathcal{X})$ has SVEP at a point $\mu \in \Phi_{s f}(T)$, then $\mu \in \operatorname{iso} \sigma_{a}(T)$. Hence, since $A+K$ does not have SVEP at $\lambda \in \Phi_{s f}(A+K)$, we must have $\lambda \in \operatorname{acc} \sigma_{p}(A+K)$. Consequently, there exists a sequence $\left\{\lambda_{n}\right\} \subset \sigma_{p}(A+K)$ of non-zero eigenvalues of $A+K$ converging to λ. Choose $\alpha, \beta \in\left\{\lambda_{n}\right\}$, and let M denote the subspace generated by the eigenvectors $(A+K-\alpha)^{-1}(0) \cup(A+K-\beta)^{-1}(0)$. Then $A_{1}=\left.(A+K)\right|_{M}$ is a polaroid operator with $\sigma\left(A_{1}\right)=\{\alpha, \beta\}$, which implies that $\left(A_{1}-\alpha\right)^{-1}(0)$ and $\left(A_{1}-\beta\right)^{-1}(0)$ are mutually orthogonal spaces (in the sense of G. Birkhoff: A subspace M of \mathcal{X} is orthogonal to a subspace N of \mathcal{X} if $\|m\| \leq\|m+n\|$ for every $m \in M$ and $n \in N$ [10, P. 93]). Now choose a $\lambda_{m} \in\left\{\lambda_{n}\right\}$. Then the mutual orthogonality of the eigenspaces corresponding to distinct (non -trivial) eigenvalues implies

$$
\operatorname{dist}\left(x,(A+K-\lambda)^{-1}(0)\right) \geq 1
$$

for every unit vector $x \in\left(A+K-\lambda_{m}\right)^{-1}(0)$. Define $\delta\left(\lambda_{m}, \lambda\right)$ by

$$
\delta\left(\lambda_{m}, \lambda\right)=\sup \left\{\operatorname{dist}\left(x,(A+K-\lambda)^{-1}(0)\right): x \in\left(A+K-\lambda_{m}\right)^{-1}(0),\|x\|=1\right\}
$$

Then $\delta\left(\lambda_{m}, \lambda\right) \geq 1$ for all m, and

$$
\frac{\left|\lambda_{m}-\lambda\right|}{\delta\left(\lambda_{m}, \lambda\right)} \longrightarrow 0 \text { as } m \rightarrow \infty
$$

i.e., the reduced minimum modulus function satisfies

$$
\gamma(A+K-\lambda)=\frac{\left|\lambda_{m}-\lambda\right|}{\delta\left(\lambda_{m}, \lambda\right)} \longrightarrow 0 \text { as } m \rightarrow \infty
$$

Since this implies $(A+K-\lambda)(\mathcal{X})$ is not closed, we have a contradiction (of our assumption $\lambda \in \Phi_{s f}(A+K)$). Hence $A+K$ has SVEP at every $\lambda \in \Phi_{s f}(A+K)=$ $\Phi_{s f}(A)$. The fact that $\Phi_{s f}^{+}(A)=\varnothing$ is now a straightforward consequence of " A has SVEP at $\lambda \in \Phi_{s f}(A)$ implies ind $(A-\lambda) \leq 0^{\prime \prime}$.

It is well known (indeed, easily proved) that

$$
A \in B(\mathcal{X}) \cap(\mathcal{P}) \Longleftrightarrow A^{*} \in B\left(\mathcal{X}^{*}\right) \cap(\mathcal{P})
$$

This equivalence does not extend to $(\mathcal{H P})$ operators. To see this, consider an operator $A \in B(\mathcal{X})$ such that both A and A^{*} are in $(\mathcal{H P})$. Then both A and A^{*} have SVEP at points in $\Phi_{s f}(A)\left(=\Phi_{s f}\left(A^{*}\right)\right)$ by the preceding theorem. Hence, for every such operator A,

$$
\lambda \in \Phi_{s f}(A) \Longrightarrow \lambda \in \Phi_{w}(A)=\{\lambda: \lambda \in \Phi(A), \operatorname{ind}(A-\lambda)=0\}
$$

But then $\lambda \in \Phi_{s f}(A) \cap \sigma(A)$ is (an isolated point of $\sigma(A)$ which happens to be) a finite rank pole of A. That this is (in general) false follows from a consideration of the forward unilateral shift $U \in B(\mathcal{H})$ (which is trivially $(\mathcal{H P})$ and satisfies $\lambda \in \Phi_{s f}(U)$ for all $\left.|\lambda|<1\right)$.

We consider next a sufficient condition for $A+K \in(\mathcal{P})$ to imply $A+K \in$ $(\mathcal{H P})$. If $A \in B(\mathcal{X})$ and M is an invariant (assumed, as before, to be closed) subspace of A, then A has an upper triangular matrix representation

$$
A=\left(\begin{array}{cl}
A_{1} & * \\
0 & A_{2}
\end{array}\right) \in B\left(M \oplus M^{\perp}\right)
$$

with main diagonal $\left(A_{1}, A_{2}\right)$. Generally, $\sigma(A) \subseteq \sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$ and $\sigma_{w}(A) \subseteq$ $\sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right)$: Indeed,

$$
\begin{aligned}
& \sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)=\sigma(A) \cup\left\{\sigma\left(A_{1}\right) \cap \sigma\left(A_{2}\right)\right\} \text { and } \\
& \sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right)=\sigma_{w}(A) \cup\left\{\sigma_{w}\left(A_{1}\right) \cap \sigma_{w}\left(A_{2}\right)\right\} .
\end{aligned}
$$

Recall from [18, Exercise 7, P. 293] that

$$
\operatorname{asc}\left(A_{1}-\lambda\right) \leq \operatorname{asc}(A-\lambda) \leq \operatorname{asc}\left(A_{1}-\lambda\right)+\operatorname{asc}\left(A_{2}-\lambda\right)
$$

for every complex λ; hence, if $H_{0}(A-\lambda)=(A-\lambda)^{-p}(0)$ for a $\lambda \in\left\{\sigma(A) \cap \sigma\left(A_{1}\right)\right\}$ (and some integer $p \geq 1$), then

$$
\begin{aligned}
H_{0}\left(A_{1}-\lambda\right) & =\left.H_{0}(A-\lambda)\right|_{M} \subseteq(A-\lambda)^{-p}(0) \cap M \\
& =\left(A_{1}-\lambda\right)^{-p}(0) \subseteq H_{0}\left(A_{1}-\lambda\right)
\end{aligned}
$$

consequently

$$
H_{0}\left(A_{1}-\lambda\right)=\left(A_{1}-\lambda\right)^{-p}(0)
$$

(with $\left.\operatorname{asc}\left(A_{1}-\lambda\right) \leq p\right)$.
Let $\Pi_{0}(A)$ denote the set of Riesz points (i.e., finite rank poles), and let $\Pi(A)$ denote the set of poles, of $A \in B(\mathcal{X})$. If A has SVEP on the complement of $\sigma_{w}(A)$ in $\sigma(A)$, then

$$
\sigma(A) \backslash \sigma_{w}(A)=\Pi_{0}(A) \Longleftrightarrow \sigma(A) \backslash \sigma_{B w}(A)=\Pi(A)
$$

[5, Theorem 2.1].

Theorem 3.2. If, for an operator $A \in B(\mathcal{X})$, there exists a compact operator $K \in B(\mathcal{X})$ such that $A+K \in(\mathcal{P})$ and if $\sigma(A+K) \backslash \sigma_{w}(A+K)=\Pi_{0}(A+K)$, then a sufficient condition for $A+K \in(\mathcal{H P})$ is that:
(i) $\sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right) \subseteq \sigma_{w}(A+K)$ for every invariant subspace M of $A+K$ such that $\left.(A+K)\right|_{M}=A_{1}$ (and $\left(A_{1}, A_{2}\right)$ is the main diagonal in the upper triangular representation of $A+K \in B\left(M \oplus M^{\perp}\right)$;
(ii) $\operatorname{iso} \sigma_{w}\left(A_{1}\right) \subseteq \operatorname{iso} \sigma_{w}(A)$.

Proof. We claim that $\sigma(A+K)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$. To prove the claim, we start by combining hypothesis (i) with the observation that $\sigma_{w}(A+K) \subseteq \sigma_{w}\left(A_{1}\right) \cup$ $\sigma_{w}\left(A_{2}\right)$ for every upper triangular operator with main diagonal $\left(A_{1}, A_{2}\right)$ to obtain $\sigma_{w}(A+K)=\sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right)$. Consider a complex $\lambda \notin \sigma(A+K)$. Since

$$
A+K-\lambda=\left(\begin{array}{ll}
1 & 0 \\
0 & A_{2}-\lambda
\end{array}\right)\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A_{1}-\lambda & 0 \\
0 & 1
\end{array}\right)
$$

$A_{1}-\lambda$ is left invertible, $A_{2}-\lambda$ is right invertible, $\alpha\left(A_{1}-\lambda\right)=0=\beta\left(A_{2}-\lambda\right)$ and $\operatorname{ind}(A+K-\lambda)=\left(\operatorname{ind}\left(A_{1}-\lambda\right)+\operatorname{ind}\left(A_{2}-\lambda\right)=0 \Longrightarrow\right) \beta\left(A_{1}-\lambda\right)=\alpha\left(A_{2}-\lambda\right)$. If $\beta\left(A_{1}-\lambda\right) \neq 0$, then $\lambda \in \sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right)=\sigma_{w}(A+K)$, a contradiction (since $\lambda \notin \sigma(A+K)$). Consequently, $\beta\left(A_{1}-\lambda\right)=\alpha\left(A_{2}-\lambda\right)=0$, and hence $\lambda \notin \sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$. This proves our claim. Consider now a $\lambda \in \operatorname{iso} \sigma\left(A_{1}\right)$. Then either $\lambda \notin \sigma_{B w}\left(A_{1}\right)$ or $\lambda \in \sigma_{B w}\left(A_{1}\right)$. If $\lambda \notin \sigma_{B w}\left(A_{1}\right)$ and $\lambda \in \operatorname{iso} \sigma\left(A_{1}\right)$, then λ is a pole of A_{1}. If, instead, $\lambda \in \sigma_{B w}\left(A_{1}\right) \subseteq \sigma_{w}\left(A_{1}\right)$, then $\lambda \in \operatorname{iso} \sigma_{w}\left(A_{1}\right) \subseteq \operatorname{iso} \sigma_{w}(A)=$ iso $\sigma_{w}(A+K)$. Since $\sigma_{w}(A+K)=\sigma(A+K) \backslash \Pi_{0}(A+K), \lambda \in \operatorname{iso} \sigma_{w}(A+K)$ implies $\lambda \in \operatorname{iso} \sigma(A+K)$ and $\lambda \notin \Pi_{0}(A+K)$. Again, since $A+K \in(\mathcal{P})$, $\lambda \in \Pi(A+K)$ (is a pole of $A+K$ of infinite multiplicity), and there exists an integer $p>0$ such that $H_{0}(A+K-\lambda)=(A+K-\lambda)^{-p}(0)$. But then, as seen above, $H_{0}\left(A_{1}-\lambda\right)=\left(A_{1}-\lambda\right)^{-p}(0)$, and hence λ is a pole of A_{1}. This contradiction implies $\lambda \notin \sigma_{B w}\left(A_{1}\right)$, and $A \in(\mathcal{H P})$.

Remark 3.3. The hypothesis $\sigma_{w}\left(A_{1}\right) \cup \sigma_{w}\left(A_{2}\right) \subseteq \sigma_{w}(A+K)$ is not necessary in Theorem 3.2. For example, if $\sigma_{w}\left(A_{1}\right) \subseteq \sigma_{w}(A)$, then $\lambda \notin \sigma(A+K)$ implies $\alpha\left(A_{1}-\lambda\right)=0=\beta\left(A_{2}-\lambda\right)$ and $\beta\left(A_{1}-\lambda\right)=\alpha\left(A_{2}-\lambda\right)$; hence, since $\lambda \notin \sigma_{w}\left(A_{1}\right)$, $\beta\left(A_{1}-\lambda\right)=\alpha\left(A_{2}-\lambda\right)=0$. Consequently, $\sigma(A+K)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$. The hypothesis $\sigma(A+K)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$ on its own does not guarantee $A+K \in(\mathcal{H P})$ in Theorem 3.2. Let $R \in B(\mathcal{X})$ be a Riesz operator and let $Q \in B(\mathcal{X})$ be a compact quasinilpotent operator. Define $A \in B(\mathcal{X} \oplus \mathcal{X})$ by $A=R \oplus 0$, and let $K=0 \oplus Q$. Then $A+K$ is a Riesz operator. Since the restriction of a Riesz operator to an invariant subspace is again a Riesz operator $[14,1], \sigma_{w}\left(A_{1}\right) \subseteq \sigma_{w}(A+K)$ for every part (i.e., restriction an invariant subspace) $A_{1}=\left.(A+K)\right|_{M}$ of $A+K$. Hence $\sigma(A+K)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$ for every upper triangular representation, with main diagonal $\left(A_{1}, A_{2}\right)$, of $A+K$. Evidently, $A+K \in(\mathcal{P})$. Observe however that iso $\sigma_{w}\left(A_{1}\right) \subseteq$ iso $\sigma_{w}(A+K)$ fails for the (upper triangular matrix) representation $A+K=Q \oplus A$ of $A+K$. Clearly, $A+K \notin(\mathcal{H P})$. In the presence of the hypothesis $\sigma(A+K)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$, a sufficient condition for $A_{1} \in(\mathcal{H P})$ is (of course) that iso $\sigma\left(A_{1}\right) \cap \operatorname{acc} \sigma(A)=\varnothing$.

Hilbert Space Operators. Given an operator $A \in B(\mathcal{H})$, there always exists a compact operator $K \in B(\mathcal{H})$ satisfying (the hypotheses of Theorem 3.2 that) $\sigma(A+K) \backslash \sigma_{w}(A+K)=\Pi_{0}(A+K)$ and $A+K \in(\mathcal{P})$: This follows from the following familiar (see [11, 19, 17]) argument. Every $A \in B(\mathcal{H})$ has an upper triangular matrix representation

$$
\begin{array}{r}
A=\left(\begin{array}{cl}
A_{0} & * \\
0 & A_{1}
\end{array}\right) \in B\left(\mathcal{H}_{0} \oplus \mathcal{H}_{1}\right), \mathcal{H}_{1}=\mathcal{H} \ominus \mathcal{H}_{0}, \sigma\left(A_{0}\right)=\Pi_{0}(A) \\
\sigma\left(A_{1}\right)=\sigma(A) \backslash \Pi_{0}(A) .
\end{array}
$$

Consider $A_{1} \in B\left(\mathcal{H}_{1}\right)$. If we define d by $d=\max \left\{\operatorname{dist}\left(\lambda, \partial \Phi_{s f}\left(A_{1}\right): \lambda \in\right.\right.$ $\left.\Pi_{0}(A)\right\}<\epsilon / 2$ (for some arbitrarily small $\epsilon>0$), then there exists a compact operator $K_{1} \in B\left(\mathcal{H}_{1}\right),\left\|K_{1}\right\|<\epsilon / 2+d<\epsilon$, such that min.ind $\left(A_{1}+K_{1}-\lambda\right)=0$ for all $\lambda \in \Phi_{s f}\left(A_{1}\right)$ and $\sigma\left(A_{1}+K_{1}\right)=\sigma_{w}\left(A_{1}\right)$ [11, Theorem 3.48]. Let $A_{11}=$ $A_{1}+K_{1}$. Then $\lambda \in \operatorname{iso} \sigma_{w}\left(A_{1}\right)$ and $\lambda \notin \sigma_{u l f}\left(A_{11}\right)$ implies $\lambda \in \Pi_{0}(A)$; hence iso $\sigma\left(A_{11}\right) \cap \sigma_{u l f}\left(A_{11}\right) \neq \varnothing$. Let $(\varnothing \neq) \Gamma \subset\left\{\operatorname{iso} \sigma\left(A_{11}\right) \cap \sigma_{u l f}\left(A_{11}\right)\right\}$. Then, for every $\epsilon>0$, there exists a compact operator $K_{11} \in B\left(\mathcal{H}_{1}\right),\left\|K_{11}\right\|<\epsilon$, such that

$$
A_{11}+K_{11}=\left(\begin{array}{cc}
N & C \\
0 & A_{2}
\end{array}\right) \in B\left(\mathcal{H}_{11} \oplus \mathcal{H}_{12}\right), \quad \mathcal{H}_{11}=\mathcal{H}_{1} \ominus \mathcal{H}_{12}, \quad \operatorname{dim}\left(\mathcal{H}_{11}\right)=\infty,
$$

N is a diagonal normal operator of uniform infinite multiplicity, $\sigma(N)=$ $\sigma_{u l f}(N)=\Gamma, \sigma\left(A_{2}\right)=\sigma\left(A_{11}\right), \sigma_{u l f}\left(A_{2}\right)=\sigma_{u l f}\left(A_{11}\right), \operatorname{ind}\left(A_{2}-\lambda\right)=\operatorname{ind}\left(A_{11}-\lambda\right)$ and min.ind $\left(A_{2}-\lambda\right)=0$ for all $\lambda \in \Phi_{s f}\left(A_{11}\right)$ [15, Lemma 2.10]. Assume, without loss of generality, that $N=\oplus_{i=1}^{\infty} \lambda_{i} 1_{\mathcal{H}_{11 i}} \in B\left(\oplus_{i=1}^{\infty} \mathcal{H}_{11 i}\right)=B\left(\mathcal{H}_{11}\right)$, where $\operatorname{dim}\left(\mathcal{H}_{11 i}\right)=\infty$ for all $i \geq 1$. The points λ_{i} being isolated in $\sigma(N)$, there exists $\epsilon>0$, an ϵ-neighbourhood $\mathcal{N}_{\epsilon}\left(\lambda_{i}\right)$ of λ_{i} and a sequence $\left\{\lambda_{i j}\right\} \subset \mathcal{N}_{\epsilon}\left(\lambda_{i}\right)$ such that $\left|\lambda_{i j}-\lambda_{i}\right|<\epsilon / 2^{i}$ for all $i \geq 1$. Choose an orthonormal basis $\left\{e_{i j}\right\}_{j=1}^{\infty}$ of $\mathcal{H}_{11 i}$, and let $K_{i 0}$ be the compact operator

$$
K_{i 0}=\sum_{j=1}^{\infty}\left(\lambda_{i j}-\lambda_{i}\right)\left(e_{i j} \otimes e_{i j}\right) \in B\left(H_{11 i}\right),\left\|K_{i 0}\right\|=\max _{j}\left|\lambda_{i j}-\lambda_{i}\right|
$$

define the compact operator K_{22} by

$$
K_{22}=\oplus_{i=1}^{\infty} K_{i 0} \in B\left(\mathcal{H}_{11}\right),
$$

and let

$$
N+K_{22}=\oplus_{i=1}^{\infty}\left\{\lambda_{i} 1_{\mathcal{H}_{11 i}}+K_{i 0}\right\}=\oplus_{i=1}^{\infty} N_{i} .
$$

Then each N_{i} is a diagonal operator with $\operatorname{diag}\left\{\lambda_{i 1}, \lambda_{i 2}, \cdots\right\}, \sigma\left(N+K_{22}\right)=$ $\cup_{i=1}^{\infty} \sigma\left(N_{i}\right)$ and $\sigma_{u l f}\left(N+K_{22}\right)$ is the closure of the set $\left\{\lambda_{i}: i=1,2, \ldots\right\}$. Define the compact operator $K \in B\left(H_{0} \oplus \mathcal{H}_{1}\right)$ by

$$
K=0 \oplus\left(K_{1}+K_{11}+\left(K_{22} \oplus 0\right)\right) \in B\left(\mathcal{H}_{0} \oplus\left(\mathcal{H}_{11} \oplus \mathcal{H}_{12}\right)\right),
$$

and consider a point $\lambda \in \operatorname{iso} \sigma(A+K)$: Either $\lambda \in \sigma\left(A_{0}\right)$, in which case $\lambda \in \Pi_{0}(A)$, or, $\lambda \in \operatorname{iso} \sigma_{w}(A+K)=\operatorname{iso} \sigma_{w}(A)$. If $\lambda \in \operatorname{iso} \sigma_{w}(A)$, then $\lambda \in \operatorname{iso} \sigma_{u l f}(A)=\operatorname{iso}(\Gamma)$. Consequently, $\lambda=\lambda_{i}$ for some integer $i \geq 1$, which
then forces $\lambda_{i}=\lim _{j \rightarrow \infty} \lambda_{i j}$. Since this contradicts $\lambda \in \operatorname{iso} \sigma(A+K)$, we are led to conclude $A+K \in(\mathcal{P})$.

The operator $\left(\begin{array}{cl}A_{0} & * \\ 0 & N+K_{2}\end{array}\right) \in B\left(\mathcal{H}_{0} \oplus \mathcal{H}_{11}\right)$ (of the above construction) has SVEP. However, since min.ind $\left(A_{2}-\lambda\right)=0$ for all $\lambda \in \Phi_{s f}\left(A_{2}\right)$, either $\alpha\left(A_{2}-\lambda\right)=0$ or $\alpha\left(A_{2}-\lambda\right)^{*}=0$. If $\alpha\left(A_{2}-\lambda\right)=0$, then $\left(\operatorname{ind}\left(A_{2}-\lambda\right)<\right.$ 0 , and hence) A_{2}^{*} does not have SVEP at $\bar{\lambda}$; if, instead, $\alpha\left(A_{2}-\lambda\right)^{*}=0$, then (ind $\left(A_{2}-\lambda\right)>0$, and hence) A_{2} does not have SVEP at λ. Conclusion: The operator $A+K$ above does not always satisfy the necessary condition of Theorem 3.1, and hence $A+K$ may or may not satisfy $A+K \in(\mathcal{H P})$. It is extremely complicated, if not impossible, to determine the structure of the invariant subspaces of the operator $A+K$, and as such the determination of the passage from $A+K \in(\mathcal{P})$ to $A+K \in(\mathcal{H} \mathcal{P})$ does not seem to be within reach. An amenable case is the one in which $A+K$ satisfies $\Phi_{s f}^{+}(A+K)=\Phi_{s f}^{+}(A)=\varnothing$. Recall, [11, Theorem 6.4], $A \in B(\mathcal{H})$ is quasitriangular if and only if $\Phi_{s f}^{+}\left(A^{*}\right)=\varnothing$; if A is quasitriangular, then there is a compact operator K such that $A+K$ is triangular. Thus, if $\Phi_{s f}^{+} A=\varnothing$, then there exists a compact operator $K \in B(\mathcal{H})$ and an orthonormal basis $\left\{e_{i}\right\}_{i=1}^{\infty}$ such that

$$
(A+K)^{*}=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
0 & a_{22} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots
\end{array}\right)
$$

for some scalars $a_{i i} \neq a_{j j}$ for all $i \neq j$. For each invariant subspace M of $A+K$

$$
A+K=\left(\begin{array}{cc}
A_{1} & * \\
0 & A_{2}
\end{array}\right)\binom{M}{M^{\perp}} \Longleftrightarrow(A+K)^{*}=\left(\begin{array}{cc}
A_{2}^{*} & * \\
0 & A_{1}^{*}
\end{array}\right)\binom{M^{\perp}}{M}
$$

where A_{1}^{*} has an upper triangular matrix with main diagonal $\operatorname{diag}\left(\mathrm{A}_{1}^{*}\right)=$ $\left\{\mathrm{a}_{\mathrm{n}_{\mathrm{k}} \mathrm{n}_{\mathrm{k}}}\right\}_{\mathrm{k}=1^{\prime}}^{\infty} \sigma(A+K)^{*}=\sigma\left(A_{1}^{*}\right) \cup \sigma\left(A_{2}^{*}\right)$ and $\operatorname{iso} \sigma\left(A_{1}^{*}\right) \subset \operatorname{iso} \sigma(A+K)^{*}$. Applying Theorem 3.2 (to obtain [17, Theorem 5.1]) and combining with Theorem 3.1 we have:

Theorem 3.4. Given an operator $A \in B(\mathcal{H})$, a necessary and sufficient condition that there exist a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$ is that either (i) $\Phi_{s f}^{+}(A)=\varnothing$ or (equivalently) (ii) $A+K$ has SVEP at points in $\Phi_{s f}(A)$.

We close this note with the result that given an operator $A \in B(\mathcal{H})$, a necessary and sufficient condition for there to exist a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$ is that the component $\Omega_{a}(A)$ is connected. Here, given an operator A, the component $\Omega_{a}(A)$ of $\Phi_{s f}(A)$ is defined by

$$
\Omega_{a}(A)=\left\{\lambda \in \Phi_{s f}(A): \operatorname{ind}(A-\lambda) \leq 0\right\} .
$$

Theorem 3.5. (i) If, for an operator $A \in B(\mathcal{X})$, the component $\Omega_{a}(A)$ of $\Phi_{s f}(A)$ is connected, then $A+K$ has SVEP on $\Phi_{s f}(A)$ for every compact operator $K \in B(\mathcal{X})$.
(ii) If $\mathcal{X}=\mathcal{H}$ is a Hilbert space and $A \in B(\mathcal{H})$, then a necessary and sufficient condition for there to exist a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$ is that the component $\Omega_{a}(A)$ of $\Phi_{s f}(A)$ is connected.

Proof. (i) We prove by contradiction. If $\Omega_{a}(A)$ is connected, then (it has no bounded component, and hence) it has just one component, namely itself, and hence the resolvent set $\rho(A)$ intersects $\Omega_{a}(A)$. Consequently, both A and A^{*} have SVEP at points in $\Omega_{a}(A)$ [1, Theorem 3.36]. Suppose now that there exists a compact operator $K \in B(\mathcal{X})$ such that $A+K$ does not have SVEP at a point $\lambda \in \Phi_{s f}(A+K)=\Phi_{s f}(A)$. Since $(A+K)^{*}$ has SVEP and $A+K$ fails to have SVEP at a point $\lambda \in \Phi_{s f}(A)$ implies ind $(A-\lambda)>0$, we must have that neither of $A+K$ and $(A+K)^{*}$ have SVEP at λ. Hence $\operatorname{asc}(A+K-\lambda)=\operatorname{dsc}(A+K-\lambda)=$ ∞. On the other hand, since $\rho(A+K) \subset \Omega_{a}(A)$, the continuity of the index at points $\lambda \in \Omega_{a}(A)$ implies that $\operatorname{ind}(A+K-\lambda)=0$. Thus $\alpha(A+K-\lambda)=0$ (except perhaps for a countable set of λ), and it follows that $A+K-\lambda$ is bounded below (and hence $\operatorname{asc}(A+K-\lambda)<\infty)$. This is a contradiction.
(ii) Start by observing that if $A+K$ has SVEP at $\lambda \in \Phi_{s f}(A)$, then (necessarily) ind $(A+K-\lambda) \leq 0$, equivalently, $\Phi_{s f}^{+}(A)=\varnothing$, for every compact operator $K \in B(\mathcal{H})$. This, by Theorem 3.4 above or [17, Theorem 5.1], implies the existence of a compact operator $K \in B(\mathcal{H})$ such that $A+K \in(\mathcal{H P})$. Conversely, if there exists a compact operator K such that $A+K \in(\mathcal{H P})$, then $A+K$ has SVEP on $\Phi_{s f}(A)$. Assume, to the contrary, that $\Omega_{a}(A)$ (is not connected, and hence) has a bounded component $\Omega_{0}(A)$. Then $\Gamma=\partial \Omega_{0}(A) \subset \sigma_{u l f}(A)$, and there exists a compact operator $K_{1} \in B(\mathcal{H})$ such that $A+K_{1}$ has the upper triangular matrix representation

$$
A+K_{1}=\left(\begin{array}{cl}
N & * \\
0 & A_{2}
\end{array}\right) \in B\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right), \quad \operatorname{dim}\left(\mathcal{H}_{1}\right)=\infty
$$

with respect to some decomposition $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ of \mathcal{H}, where N is a normal diagonal operator of uniform infinite multiplicity, $\sigma(N)=\sigma_{u f}(N)=\Gamma$, $\sigma_{u f}\left(A_{2}\right)=\sigma_{u f}(A)$ and $\operatorname{ind}\left(A_{2}-\lambda\right)=\operatorname{ind}(A-\lambda)$ for all $\lambda \in \Phi_{s f}(A)$ (see [15, Lemma 2.10]). The spectrum $\sigma(N)=\Gamma$ of N being the boundary of a bounded connected open subset of $C,[12$, Theorem 3.1] implies the existence of a compact operator $K_{2} \in B\left(\mathcal{H}_{1}\right)$ such that $\sigma\left(N+K_{2}\right)$ equals the closure $\Omega_{0}(A)$. Define the compact operator $K \in B\left(\mathcal{H}_{1} \oplus \mathcal{H}_{2}\right)$ by $K=K_{1}+\left(K_{2} \oplus 0\right)$. Then

$$
A+K=\left(\begin{array}{cc}
N+K_{2} & * \\
0 & A_{2}
\end{array}\right) \in B(\mathcal{H})
$$

where for every $\mu \in \Omega_{0}(A)$ we have $\mu \in \Phi_{s f}\left(N+K_{2}\right)=\Phi_{s f}(N)$ with $\operatorname{ind}\left(N+K_{2}-\mu\right)=0$. It being clear that SVEP for $A+K$ at a point implies SVEP for $N+K_{2}$ at the point, it follows that every $\mu \in \Omega_{0}(A)$ is an isolated point - a contradiction. Conclusion: $\Omega_{a}(A)$, has no bounded component.

References

[1] Pietro Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, Dordrecht, 2004.
[2] Pietro Aiena and Elvis Aponte, Polaroid type operators under perturbations, Studia Math. 214 (2013), 121-136.
[3] Pietro Aiena and J. E. Sanabria, On left and right poles of the resolvent, Acta Sci. Math. (Szeged) 74 (2008), 669-687.
[4] C. Apostol, L.A. Fialkow, D.A. Herrero and D. Voiculescu, Approximation of Hilbert Space Operators, Vol. II, Research Notes in Mathematics 102, Pitman, Boston, 1984.
[5] A. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math. J. 48 (2006), 179-185.
[6] M. Berkani and J. J. Koliha, Weyl type theorems for bounded linear operators, Acta Math. Sci. (Szeged) 69 (2003), 359-376.
[7] B. P. Duggal, Polaroid operators, SVEP and perturbed Browder, Weyl theorems, Rend. Circ. Mat. Palermo LVI (2007), 317-330.
[8] B. P. Duggal, B-Browder operators and perturbations, Functional Analysis, Approximation and Computation 4 (2012), 71-75.
[9] B. P. Duggal, SVEP, Browder and Weyl Theorems, Tópicas de Theoria de la Approximaciǒn III. in: Jiménez Pozo, M. A., Bustamante González, J., Djordjević, S. V. (eds.) Textos Cientificos BUAP Puebla, pp. 107-146. Available at http://www.fcfm.buap.mx/CA/analysis-mat/pdf/LIBRO-TOP-TAPPROX.pdf
[10] N. Dunford and J.T. Schwartz, Linear Operators, Part I, Interscience, New York, 1964.
[11] D.A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Research Notes in Mathematics 72, Pitman, Boston, 1982.
[12] D. A. Herrero Economical compact perturbations, J. Operator Theory 19 (1988), 27-42.
[13] D. A. Herrero, T. J. Taylor and Z. Y. Wang, Variation of the point spectrum under compact perturbations, in: Topics in Operator Theory: Operator Theory Advances and Application, Birkhäuser, Basel, 1988, 113-158.
[14] H. G. Heuser, Functional Analysis, Wiley, Chichester, 1982.
[15] You Qing Ji, Quasitriangular + small compact = strongly irreducible, Trans. Amer. Math. Soc. 351 (1999), 4657-4673.
[16] K.B. Laursen and M.M. Neumann, Introduction to local spectral theory, Clarendon Press, Oxford, 2000.
[17] C. G. Li and T. T. Zhou, Polaroid type operators and compact perturbations, Studia Math. 221 (2014), 175-192.
[18] Angus, E. Taylor and David C. Lay, Introduction to Functional Analysis, Wiley, Chichester, 1980.
[19] Sen Zhu and Chun Guang Li, SVEP and compact perturbations, J. Math. Anal. Appl., 380 (2011), 69-75.

8 Redwood Grove, Northfield Avenue, Ealing,
London W5 4SZ, United Kingdom.
e-mail: bpduggal@yahoo.co.uk

[^0]: Received by the editors in August 2016.
 Communicated by F. Bastin.
 2010 Mathematics Subject Classification : 47A10, 47A55, 47A53, 47B40.
 Key words and phrases : Banach space operator, Hilbert space, compact perturbation, SVEP, hereditarily polaroid, Fredholm.

