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Abstract

Lane - Emden type equations are nonlinear differential equations which
represent many scientific phenomena in astrophysics and mathematical
physics. In this study, a new analytic approximate technique for addressing
nonlinear problems, namely the optimal perturbation iteration method, is
introduced and implemented to singular initial value Lane-Emden type prob-
lems to test the effectiveness and performance of the method. This technique
provides us to adjust the convergence regions when necessary.Comparing
different methods reveals that the proposed method is highly accurate and
has great potential to be a new kind of powerful analytical tool for Lane-
Emden type equations.

1 Introduction

Many problems of science and engineering lead to different types of differen-
tial equations and it is still very hard to solve them in the presence of strong
nonlinearity. Many numerical methods have been dealt with in order to solve
these equations. Alternatively, there is great interest in discovering methods for
analytic approximate solutions. Recently, there has been much attention devoted
to investigate better and more efficient analytical techniques such as homotopy
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decomposition method [1], auxiliary equation method [2], homotopy perturba-
tion method [3, 4], Taylor collocation method [5], Sumudu transform method [6]
and Adomian decomposition method [7, 8].

Emden-Fowler equation is one of the most important differential equations of
mathematical physics [9, 10]. It distinctively characterizes many scientific phe-
nomena. The generalized Emden-Fowler equation is defined in the following
form

y′′ + α(x)y′ + β(x)γ(y) = 0 (1.1)

subject to conditions
y(0) = A, y′(0) = B

where A, B are constants and α(x), β(x), γ(y) are some arbitrary functions. For
different γ(y), the Eq. (1.1) has been subject of many studies in the literature such
as the theory of stellar structure, thermionic currents and isothermal gas spheres
[11]. When α(x) = k

x , β(x) = β0xr, γ(y) = ys (k and β0 are constants, s and r are
real numbers), Eq.(1.1) reduces to the classic Emden-Fowler equation:

y′′ +
k

x
y′ + β0xrys = 0; y(0) = A, y′(0) = B (1.2)

Furthermore, by choosing r = 0 and k = 2 , we get the standard Lane-Emden
equation

y′′ +
2
x

y′ + β0ys = 0 (1.3)

with supplementary conditions

y(0) = A, y′(0) = 0

which arises in astrophysics. Eq. (1.2) is also used to model the thermal behavior
of a spherical cloud of gas acting under the mutual attraction of its molecules
[12]. Many analytical techniques have been considered by various researchers to
obtain the approximate solutions for these types of equations [13–16].

In this study, we derive a new effective technique namely optimal perturba-
tion iteration method (OPIM) to get a new approximate solutions for nonlinear
problems. Main idea of this method is essentially based on optimal homotopy
asymptotic method [17, 18] and perturbation iteration technique [19]. Both of
these methods have been recently developed and they have been successfully
implemented to some strongly nonlinear systems [20–24]. We apply OPIM to
obtain more reliable approximate solutions to the Lane-Emden equations

y′′ +
2
x

y′ + β(x)γ(y) = 0; y(0) = A, y′(0) = 0 (1.4)

with different choices of β(x), γ(y). It is also indicated that this method enables
us to control the convergence of solution series for the given illustrations.
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2 Optimal Perturbation Iteration Algorithm

In this section, the following formulation is given to explain the basic concept of
OPIM for second order differential equations.

(a) Write the governing differential equation as:

F(y′′ , y′, y, ε) = A + g(x) = 0 (2.1)

where ε is the auxiliary perturbation parameter, y = y(x) is the unknown func-
tion and g(x) is the source term. Furthermore, (2.1) can be decomposed into
A = L + N where L is the linear simpler part, which can be easily managed and
N is the remaining part which is more crucial for algorithms of OPIM. Here we
have a great freedom to choose linear part L.

(b) Approximate solution is taken as

yn+1 = yn + ε(yc)n (2.2)

with one correction term in the perturbation expansion. Inserting (2.2) into the
(2.1) and expanding the remaining part (N) in a Taylor series with first derivatives
yields optimal perturbation iteration algorithm (OPIA):

N(yn
′′, yn

′, yn, 0) + Ny(yc)nε + Ny′(y
′
c)nε + Ny′′(y

′′
c )nε + Nεε = −L − g(x). (2.3)

It should be noted that all derivatives and functions are calculated at ε = 0.
To describe the iterative scheme, first correction term (yc)0 can be computed from
the algorithm (2.3) by using a first guess y0 and initial condition(s).
(2.3) may seem complicated at first, but it should not be forgotten that we use
the general form of the differential equations of second order to illustrate the
proposed method. Actually, most differential equations in literature contain only
some of the nonlinear terms y, y′, y′′. So, the algorithm (2.3) reduces to some
simple mathematical expressions in many cases.

c) Use the following equation

yn+1 = yn + Sn(yc)n (2.4)

to increase the accuracy of the results and effectiveness of the method. Here
S0, S1, S2, . . . are convergence control parameters which provide us to adjust the
convergence.
Proceeding for n = 0, 1, . . ., approximate solutions are found as:

y1 = y(x, S0) = y0 + S0(yc)0
y2(x, S0, S1) = y1 + S1(yc)1

...
ym(x, S0, . . . , Sm−1) = ym−1 + Sm−1(yc)m−1

(2.5)

d) Substitute the approximate solution ym into the Eq.(2.1) and the general
problem results in the following residual:

R(x, S0, . . . , Sm−1) = A (ym(x, S0, . . . , Sm−1)) + g(x). (2.6)
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Obviously, when R(x, S0, . . . , Sm−1) = 0 then the approximation ym(x, S0, . . . ,
Sm−1) will be the exact solution. Generally it doesn’t happen in nonlinear equa-
tions, but the functional can be minimized as:

J(S0, . . . , Sm−1) =

b
∫

a

R2(x, S0, . . . , Sm−1)dx (2.7)

where a and b are selected from the domain of the problem. Optimum values of
S0, S1, . . . can be obtained from the conditions

∂J

∂S0
=

∂J

∂S1
= ... =

∂J

∂Sm−1
= 0. (2.8)

The constants S0, S1, . . . can also be defined from

R(x0, Si) = R(x1, Si) = · · · = R(xm−1, Si) = 0, i = 0, 1, . . . , m − 1 (2.9)

where xi ∈ (a, b). Putting these constants into the last one of the Eqs. (2.5), the
approximate solution of order m is determined.For much more information about
finding these constants please see [25].

3 Applications

In this section, we apply OPIA to solve the Lane-Emden type problems. Obtained
results show that the new algorithm gives better results when compared with
many other methods in literature.

Example 3.1. Consider the following homogeneous Lane-Emden equation of the first
kind:

y′′ +
2
x

y′ + y5 = 0, y(0) = 1, y′(0) = 0, x ≥ 0. (3.1)

is a basic equation in the theory of stellar structure [26, 27]. In [28], exact solution of
(3.1) is given by

y =

(

1 +
x2

3

)−1/2

. (3.2)

Perturbation parameter ε can be inserted into (3.1) as:

F(y′′ , y′, y, ε) = y′′ + ε
2
x

y′ + εy5 = 0 = L + N = 0 (3.3)

where

L = y′′ and N = ε

(

2
x

y′ + y5
)

. (3.4)
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For this problem, we do not have the term y′′ in the remaining part N. Therefore,
Eq. (2.3) is simplified to:

N + Ny(yc)nε + Ny′(yc
′)nε + Nεε = −L (3.5)

Using the Eqs. (2.2), (3.4), (3.5) and setting ε = 1 yields the following algorithm

(yc)
′′

n = −(yn)
′′ −

2
x
(yn)

′ − (yn)
5. (3.6)

One may select y0 = 1 as a starting guess which satisfies the given initial condi-
tions. Substituting y0 into the Eq. (3.6), yields first order problem:

(yc)
′′

n = −1, y(0) = y′(0) = 0. (3.7)

Solving the (3.7) gives first correction term:

(yc)0 = −
x2

2
(3.8)

Now, Eq.(3.8) is inserted into Eq.(2.4) to obtain first approximate solution:

y1 = 1 −
S0x2

2
(3.9)

By using the procedure mentioned in Section 2, one obtains the following approx-
imate solutions:

y2 = 1 −
S0x2

2
+

S1

88704

[

21S5
0x12 − 308S4

0x10 + 1980S3
0x8 − 7392S2

0x6 +

18480S0x4 + 133056S0x2 − 44352x2
]

(3.10)
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y3 = 1−
S0x2

2
+

S1

88704

[

21S5
0x12 − 308S4

0x10 + 1980S3
0x8 − 7392S2

0x6 +

18480S0x4 + 133056S0x2 − 44352x2
]

+

S2 ×

[

S5
0x12

4224
+

1
288

S4
0x10 +

5
224

S3
0x8 +

1
12

S2
0x6 +

5S0x4

24
−

35
36

S0S1x4 +
5S1x4

24
+

9
2

S0S1x2 −
3S0x2

2
−

3S1x2

2
+

29
144

S0S1x6 −
37
60

S2
0S1x6 +

25
224

S2
0S1x8 −

45
196

S3
0S1x8+

505S3
0S1x10

12096
−

119S4
0S1x10

2592
+

1555S4
0S1x12

133056
−

17S8
0S1x20

3852288
+

6185S7
0S1x18

108573696
+

163S6
0S1x16

354816
+

21145S5
0S1x14

8072064
+

89S5
0S1x12

23232
−

1262395S7
0S4

1x22

1529966592
+

26869S6
0S3

1x20

34320384
−

171505S7
0S3

1x20

125841408
+

515S7
0S3

1x18

251328
+

3275S6
0S3

1x18

565488
+

295S7
0S4

1x18

91392
+

63575S8
0S5

1x24

304668672
+

52316665S7
0S4

1x24

592275898368
−

1262395S7
0S4

1x22

1529966592
+

8123S7
0S4

1x20

2996224
+

2145139S8
0S4

1x26

79705866240
−

37445S8
0S4

1x24

171376128
+ . . . +

3755S23
0 S5

1x58

6365173848985187647488
+

S25
0 S5

1x62

5085586811194303315968
+

S24
0 S5

1x60

64911460909191266304

]

(3.11)

It should be emphasized that y3 does not represent the third correction term;
rather it is the approximate solution after the third iteration. Unknown constants
can be determined from the residual

R(x, S0, S1, S2) = L (y3(x, S0, S1, S2)) + N (y3(x, S0, S1, S2)) (3.12)

for the third order approximation. Using the Eq. (2.9) with x = 1, 2, 3 yields

S0 = 1.53406577, S1 = 0.98031243, S2 = −0.10588147 (3.13)

Substituting these constants into the Eq.(3.11), the approximate solution of the
third order is obtained as:
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Figure 3.1: Comparison between the fourth order OPIM(•), fifth order HAM-VIM
(N), ninth order HAM-VIM (�) approximate solutions and the numerical results
(–) for Example 1.

y3(x) = 1 − 0.166667x2 + 0.0416667x4 − 0.0115741x6 + 0.00337577x8−

0.00101275x10 + 0.000309553x12 − 0.0000961702x14 + 0.0000305113x16−

7.757926108× 10−6x18 − 8.2105715765× 10−6x20 + 0.0000259462x22

− 0.00002895x24 − 3.5887084471241× 10−7x26 + 0.0000302234x28

− 7.866052351076× 10−6x30 − 0.00003015x32 + 4.4502399674× 10−6x34

+ 0.00003140x36 + 6.5466232556× 10−6x38 − 0.0000288707x40 − 0.000020677x42

+ 0.000018640x44 + 0.000031354x46 + 2.724316366046× 10−6x48

− 0.0000345355x50 − 0.000011951x52 + 0.000034677x54 + 0.000017377x56

− 0.0000476036x58 + 0.0000265864x60 − 4.989939036859478× 10−6x62 (3.14)

It is obvious that as the number of iterations increase, the approximate solu-
tion becomes more and more complicated which requires symbolic computer
programs. Mathematica 9.0 is used to deal with the complex calculations in this
work. Repeating the same steps by using Mathematica, one can easily get higher
order approximate solutions. Dehghan et al.[29] and Singh et al. [30] obtained
approximate solutions for this problem using variational iteration method(VIM)
and homotopy analysis method(HAM). Figure 3.1 shows that OPIM yields better
results than those obtained by VIM and HAM.

Example 3.2. Consider the Lane-Emden type equation :

y′′ +
2
x

y′ + ey = 0, y(0) = y′(0) = 0 (3.15)

which represents the isothermal gas spheres equation in the case that the temperature
stays constant [15, 29, 31].
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Reconsider the Eq. (3.15) as:

F(y′′ , y′, y, ε) = y′′ + (
2ε

x
y′ + eεy) = L + N = 0 (3.16)

where

L = y′′ and N = (
2ε

x
y′ + eεy). (3.17)

There is not y′′ term in part N. Thus, (2.3) reduces to:

N + Ny(yc)nε + Ny′(yc
′)nε + Nεε = −L. (3.18)

With the help of the Eqs. (2.2), (3.17), (3.18) and setting ε = 1, OPIA is constructed
as:

(yc)
′′

n = −(yn)
′′ −

2
x
(yn)

′ − yn − 1, y(0) = y′(0) = 0. (3.19)

By choosing y0 = 0 as a starting guess, (3.19) turns into first order problem:

(yc)
′′

0 = −(y0)
′′ −

2
x
(yn)

′ − yn − 1, y(0) = y′(0) = 0. (3.20)

Solving (3.20) and using (2.4), one gets the following approximate solutions:

y1 = −
1
2

S0x2 (3.21)

y2 = −
1
2

S0x2 +
1

24
(S1) x2

(

S0x2 + 36S0 − 12
)

(3.22)

y3 = −
x2

720

[

S0

[

S1

(

S2

(

x4 + 140x2 + 3240
)

−
(

x2 + 36
))

−

30 30
(

S2

(

x2 + 36
)

− 12
)]

− 30
(

S1

(

S2

(

x2 + 36
)

− 12
)

− 12S2

)]

(3.23)

y4 =
x2

604800

[

−840
(

S1

(

S2

(

S3(x
4 + 140x2 + 3240)− 30(x2 + 36)

)

−

30
(

S3(x
2 + 36)− 12

))

− 30
(

S2(S3(x
2 + 36)− 12)− 12S3

))

S0

(

−840
(

S2

(

S3(x
4 + 140x2 + 3240)− 30(x2 + 36)

)

− 30
(

S3(x
2 + 36)− 12

))

S1

[

−840
(

S3(x
4 + 140x2 + 3240)− 30(x2 + 36)

)

+S2

(

S3(15x6 + 5096x4 + 422800x2 + 8164800)− 840(x4 + 140x2 + 3240)
)]

(3.24)
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Figure 3.2: Comparison between the fourth order approximate solutions obtained
by OPIM(•), ADM-DTM (N) and the numerical results (–) for Example 2.

Using the Eq. (2.9) with the residual

R(x, S0, S1, S2, S3) = L (y4(x, S0, S1, S2, S3)) + N (y4(x, S0, S1, S2, S3)) (3.25)

the unknown constants are obtained as

S0 = 2.0203622551, S1 = −1.0201147822, S2 = −0.9963202221, S3 = 0.020789994
(3.26)

for the fourth order approximation. Substituting the Eq.(3.26) into (3.24) yields:

y4(x) = −0.15989962328x2 + 0.007920058473x4+

− 0.005608897215631x6 + 0.000039055217456x8. (3.27)

In [26, 31], the authors have used differential transform method (DTM) and
Adomian decomposition method(ADM) to solve the (3.15) and they obtained the
series solution:

y(x) = −
1
3!

x2 +
1
5!

x4 −
8

3 × 7!
x6 +

122
9 × 9!

x8 −
5032

45 × 11!
x10 + . . . (3.28)

Figure 3.2 and Figure 3.3 are sketched for comparison of the higher order approx-
imate solutions of OPIM and ADM-DTM solutions.It is also clear from the figures
that OPIM solutions are valid in larger region.

Example 3.3. Consider the following homogeneous Lane-Emden type equation [32]:

y′′ +
2
x

y′ − (4x2 + 6)y = 0, y(0) = 1, y′(0) = 0, 0 ≤ x ≤ 1. (3.29)

Exact solution of this problem is given as

y(x) = ex2
. (3.30)
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Figure 3.3: Comparison between the fifth order approximate solutions obtained
by OPIM(•), ADM-DTM (N) and the numerical results (–) for Example 2.

Rewrite the Eq. (3.29) as:

F(y′′ , y′, y, ε) = y′′ + ε

(

2
x

y′ − (4x2 + 6)y
)

= L + N = 0 (3.31)

where

L = y′′ and N = ε

(

2
x

y′ − (4x2 + 6)y
)

. (3.32)

y′′ does not appear in the remaining part N. Therefore, Eq. (2.3) becomes:

N + Ny(yc)nε + Ny′(yc
′)nε + Nεε = −L (3.33)

In the light of previous examples, OPIA can be established as

(yc)
′′

n = −(yn)
′′ −

2
x
(yn)

′ + (4x2 + 6)yn. (3.34)

by using the Eqs. (2.2), (3.32)and (3.33). Accordingly, first order problem is
obtained as:

(yc)
′′

n = (4x2 + 6), y(0) = y′(0) = 0 (3.35)

Starting with the initial condition y0 = 1, iterations can be reached as:

y1 = 1 +
1
3

S0

(

x4 + 9x2
)

(3.36)

y2 = 1 +
1
3

S0

(

x4 + 9x2
)

+

1
630

S1x2
[

15S0x6 + 294S0x4 + 595S0x2 − 5670S0 + 210x2 + 1890
]

(3.37)



A new analytical technique for solving Lane - Emden type equations 315

y3 = 1 +
1
3

S0

(

x4 + 9x2
)

+

1
630

S1x2
[

15S0x6 + 294S0x4 + 595S0x2 − 5670S0 + 210x2 + 1890
]

+

S2

727650
×

[

2182950x2 + 242550x4 − 6548850S0x2 + 687225S0x4 + 339570S0x6+

17325S0x8 + 687225S1x4 + 339570S1x6 + 525S0S1x12 + 16247S0S1x10+

63195S0S1x8 − 1211133S0S1x6 − 4419800S0S1x4 + 19646550S0S1x2−

6548850S1x2 + 17325S1x8
]

(3.38)

Unknown constants can be determined from the residual

R(x, S0, S1, S2) = L (y3(x, S0, S1, S2)) + N (y3(x, S0, S1, S2)) (3.39)

for the third order approximation. Using the Eq. (2.9) with x = 0.3, 0.6, 0.9 yields

S0 = 0.33423439, S1 = 0.31859877, S2 = 0.20764389 (3.40)

Substituting these constants into the Eq.(3.38), the approximate solution of the
third order is obtained as:

y3(x) = 0.000135466x12 + 0.00419221x10 + 0.041724x8 + 0.185681x6+

0.483647x4 + 1.0041x2 + 1. (3.41)

Repeating the same steps one can get the following approximations:

y4(x) = 0.0000407289x16 + 0.000166717x14 + 0.00142143x12

+ 0.00831423x10 + 0.0416732x8 + 0.166665x6 + 0.5x4 + x2 + 1. (3.42)

y5(x) = 4.529285401255387× 10−7x20 + 2.306750146551151× 10−6x18+

0.0000254168x16 + 0.000197899x14 + 0.00138916x12+

0.00833324x10 + 0.0416667x8 + 0.166667x6 + 0.5x4 + x2 + 1. (3.43)

This problem has been also investigated by Ozis et al using variational iteration
method(VIM) and homotopy perturbation method (HPM) [32, 33]. Figures 3.4,
3.5 and Table 1 give important information on the convergence and the absolute
errors for OPIA and other approximate solutions in literature. It is clear that the
results obtained by OPIM are more accurate than those in [32, 33] .
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Table 1: Comparison of absolute errors for Example 3 at different orders of
approximations.

x Errors for OPIA Errors for VIM-HPM
|yexact − y5| |yexact − y6| |yexact − y5| |yexact − y6|

0.1 3.08426×10−13 2.22045×10−16 1.11022×10−15 1.00128×10−16

0.2 3.85914×10−13 2.22045×10−16 5.72165×10−12 3.26406×10−14

0.3 5.62883×10−13 1.00025×10−17 7.47710×10−10 9.59788×10−12

0.4 9.64347×10−13 2.44249×10−15 2.38451×10−8 5.43454×10−10

0.5 1.95532×10−12 1.50998×10−14 3.51584×10−7 1.24994×10−8

0.6 4.77649×10−12 1.01037×10−13 3.18608×10−6 1.62772×10−7

0.7 5.45375×10−11 5.02709×10−13 0.0000206568 1.43282×10−6

0.8 2.78031×10−11 2.05902×10−12 0.000104921 9.47740×10−6

0.9 3.08426×10−10 6.38223×10−12 0.000442699 0.000050436
1 2.10201×10−9 2.90235×10−12 0.00161516 0.000226273

(a) Fourth order OPIA(•) and VIM-HPM(N)
solutions.

(b) Fifth order OPIA(•) and VIM-HPM(N)
solutions.

Figure 3.4: Comparison of approximate solutions of OPIM and VIM-HPM with
the exact solution(–) for Example 3.

(a) OPIA solution of fifth order. (b) VIM solution of fifth order.

Figure 3.5: Errors for OPIA and the variational iteration method for Example 3.
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4 Conclusion

In this paper, OPIM is applied for the first time to investigate the new approxi-
mate solutions for Lane-Emden type differential equations. This new technique
provides us to optimally control the convergence of solution series. Also, it gives
a very good approximation even in a few terms to these kinds of nonlinear equa-
tions. The results obtained in this paper proves that the OPIM is a very effective
technique for differential equations. It is worth mentioning that, a symbolic pro-
gram is necessary for successive calculations after a few iterations. Mathematica 9
has been used to overcome the complicated calculations for this present research.
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