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Abstract

We give several structural results concerning the Lipschitz-free spaces
F(M), where M is a metric space. We show that F(M) contains a com-
plemented copy of ℓ1(Γ), where Γ = dens(M). If N is a net in a finite di-
mensional Banach space X, we show that F(N ) is isomorphic to its square.
If X contains a complemented copy of ℓp, c0 then F(N ) is isomorphic to its
ℓ1-sum. Finally, we prove that for all X ∼= C(K) spaces, where K is a metriz-
able compact, F(N ) are mutually isomorphic spaces with a Schauder basis.

1 Introduction

Let (M, d) be a metric space and 0 ∈ M be a distinguished point. The triple
(M, d, 0) is called pointed metric space. By Lip0(M) we denote the Banach space
of all Lipschitz real valued functions f : M → R, such that f (0) = 0. The norm
of f ∈ Lip0(M) is defined as the smallest Lipschitz constant L = Lip( f ) of f , i.e.

Lip( f ) = sup

{ | f (x)− f (y)|
d(x, y)

, x, y ∈ M, x 6= y

}
.

The Dirac map δ : M → Lip0(M)∗ defined by 〈 f , δ(p)〉 = f (p) for
f ∈ Lip0(M) and p ∈ M is an isometric embedding from M into Lip0(M)∗.
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Note that δ(0) = 0. The closed linear span of {δ(p), p ∈ M} is denoted F (M)
and called the Lipschitz-free space over M (or just free space, for short). Clearly,

‖m‖F (M) = sup
{
〈m, f 〉 : f ∈ Lip0(M), ‖ f‖ ≤ 1

}

It follows from the compactness of the unit ball of Lip0(M) with respect to
the topology of pointwise convergence, that F (M) can be seen as the canonical
predual of Lip0(M), i.e. F (M)∗ = Lip0(M) holds isometrically ([33] Chapter 2
for details).

Lipschitz free spaces have gained importance in the non-linear structural the-
ory of Banach spaces after the appearance of the seminal paper [13] of Godefroy
and Kalton, and the subsequent work of these and many other authors e.g. [19],
[20], [21], [22], [14], [24], [16], [17], [31], [23], [5], [4], [10], [6], [29] [7], [8], [9]. Free
spaces can be used efficiently for constructions of various examples of Lipschitz-
isomorphic Banach spaces X, Y which are not linearly isomorphic. To this end,
structural properties of their free spaces F (X), as well as free spaces of their sub-
sets, enter the game. For example, in the separable setting, F (X) contains a com-
plemented copy of X [13], and it is isomorphic to its ℓ1-sum. On the other hand,
if N is a net in X then F (N ) is a Schur space [20] and it has the approximation
property.

A comprehensive background on free spaces of metric spaces can be found in
the book of Weaver [33]. There are several surveys exposing the applications of
this notion to the nonlinear structural theory of Banach spaces, in particular [19],
[15].

Our first observation in this note is that F (M) contains a complemented copy
of ℓ1(Γ), where Γ is the density character of an arbitrary infinite metric space M.
Our proof could be adjusted also to the case Γ = ω0, which is one of the main
results in [5].

The main purpose of this note is to prove several structural results, focusing
mainly on the case when M is a uniformly discrete metric space, in particular a
net N in a Banach space X. Our results run parallel (as we have realized during
the preparation of this note) to those of Kaufmann [23], resp. Dutrieux and Fer-
enczi [10] which are concerned with the bigger (in a sense) space F (X). However,
the space F (N ) is only the linear quotient of F (X), so the results are certainly
not formally transferable. In particular, the discrete setting prohibits the use of
the ”scaling towards zero” arguments (used e.g. in [23]), which leads to compli-
cations in proving that our free spaces are linearly isomorphic to their squares,
or even ℓ1-sums. We are able to show these facts at least for nets in finite dimen-
sional Banach spaces and all classical Banach spaces. Surprisingly, the proofs for
the finite dimensional case and the infinite dimensional case are rather different.

Our main technical result is that F (N ) has a Schauder basis for all nets in
C(K) spaces, K metrizable compact. The constructive proof is obtained in c0, and
the result is then transferred into the C(K) situation by using the abstract theory
developed in the first part of our note.
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Let us start with some definitions and preliminary results. Let N ⊂ M be
metric spaces, and assume that the distinguished point 0 ∈ M serves as a dis-
tinguished point in N as well. Then the identity mapping leads to the canonical
isometric embedding F (N) →֒ F (M) ([33] p.42). In order to study the comple-
mentability properties of this subspace, one can rely on the theory of quotients of
metric space, as outlined in [33] p.11 or [23]. For our purposes we will outline an
alternative (but equivalent) description of the situation.

Definition 1. Let N ⊂ M be metric spaces, 0 ∈ N. We denote by

LipN(M) = { f ∈ Lip0(M) : f |N = 0} .

It is clear that LipN(M) is a closed linear subspace of Lip0(M), which is more-
over w∗-closed. Indeed, by the general perpendicularity principles ([11] p.56) we
obtain

LipN(M) = F (N)⊥ , F (N) = LipN(M)⊥

Hence there is a canonical isometric isomorphism

LipN(M) ∼= (F (M)/F (N))∗

Since the space of all finite linear combinations of Dirac functionals is linearly
dense in F (M), resp. also in F (N), it is clear that the image of finite linear com-
binations of Dirac functionals supported outside the set N, under the quotient
mapping F (M) → F (M)/F (N) is linearly dense. Moreover, it is nonzero for
nontrivial combinations.

Definition 2. If µ = ∑
n
j=1 ajδtj

: tj ∈ M \ N then we let

‖µ‖FN(M) = sup〈µ, f 〉, f ∈ LipN(M), ‖ f‖ ≤ 1.

FN(M) =

{
µ =

n

∑
j=1

ajδtj
: tj ∈ M \ N

}‖·‖FN(M)

.

i.e. we complete the space of finite sums of Dirac functionals with respect to the duality

〈FN(M), LipN(M)〉.

Clearly, our definition gives an isometric isomorphism

FN(M) ∼= F (M)/F (N)

Proposition 1. Let N ⊂ M be metric spaces. If there exists a Lipschitz retraction
r : M → N then

F (M) ∼= F (N)⊕FN(M).
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This follows readily from the alternative description using metric quotients
(e.g. in [23] Lemma 2.2) using the fact that FN(M) ∼= F (M/N).

We say that the metric space (M, d) is δ-uniformly discrete if there exists δ > 0
such that d(x, y) ≥ δ, x, y ∈ M. The metric space is uniformly discrete if it is
δ-uniformly discrete for some δ > 0.

If α, β > 0 we say that a subset N ⊂ M is a (α, β)-net in M provided it is
α-uniformly discrete and d(x, N) < β, x ∈ M.

It is easy to see that every maximal δ-separated subset N ⊂ M, which exists
due to the Zorn maximal principle, is automatically a (δ, δ + ε)-net, for any ε > 0.

Proposition 2. Let (M, d, 0) be a pointed metric space, K > 0, {Mα}α∈Γ be a system of
pairwise disjoint subsets of M, and 0 ∈ N ⊂ M \ ∪α∈Γ Mα. Suppose that for all β ∈ Γ

and all x ∈ Mβ holds
d(x,∪α∈Γ,α 6=βMα) ≥ Kd(x, N).

Then
FN(N ∪ ∪α∈Γ Mα) ∼= (⊕α∈ΓFN(N ∪ Mα))ℓ1(Γ)

.

In particular, if N = {0} then

F ({0} ∪ ∪α∈Γ Mα) ∼= (⊕α∈ΓF ({0} ∪ Mα))ℓ1(Γ)
.

Proof. The result is immediate as any collection of 1-Lipschitz functions fα ∈
LipN(N ∪ Mα) is the restriction of a 1

K -Lipschitz function f ∈ LipN(N ∪ ∪α∈ΓMα)

Recall that the density character dens(M), or just density, of a metric space M
is the smallest cardinal Γ such that there exists dense subset of M of cardinality Γ.

Let Γ be a cardinal (which is identified with the smallest ordinal of the same
cardinality). By the cofinality cof(Γ) we denote the smallest ordinal α (in fact a
cardinal) such that Γ = limβ<α Γβ, where Γβ is an increasing ordinal sequence
([18] p.26).

2 Structural properties

Proposition 3. Let M be a metric space of density dens(M) = Γ. Then F (M) contains
a complemented copy of ℓ1(Γ).

Proof. For convenience we may assume that Γ > ω0, because this case has been
already proved in [5] (Our proof can be adjusted to this case as well). By ([32]
Corollary 1.2) if c0(Γ) →֒ X∗ then ℓ1(Γ) is complemented in X. So it suffices to
prove that Lip0(M) contains a copy of c0(Γ). For every n ∈ N let Mn be some

maximal 1
2n -separated set in M. Denote Γn = |Mn|. It is clear that dens(M) =

limn→∞ Γn, in the cardinal sense. In case when the cofinality cof(Γ) > ω0, it is
clear that Γn = Γ, for some n ∈ N. In this case, let { fα : α ∈ Γn} be a trans-
finite sequence of 1-Lipschitz functions such that fα(xα) =

1
2n+3 and supp( fα) ⊂

B(xα, 1
2n+2 ). Since the supports of fα are pairwise disjoint it is clear that { fα}α∈Γn

is

equivalent to the unit basis of c0(Γ) and the result follows. In the remaining case,
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we may assume that {Γkn
}∞

n=1 is a strictly increasing sequence of cardinals. De-
note Mn = {xn

α}α∈Γkn
. Let L1 = M1. By induction we will construct sets Ln ⊂ Mn

as follows. Inductive step towards n + 1. Consider the sets

Aj,α = Mn+1 ∩ B(x
j
α,

1

2kj+1
), j ≤ n, α ∈ Γkj

If there is some j, α so that |Aj,α| = Γkn+1
then we let Ln+1 = Aj,α. Otherwise

we let

Ln+1 = Mn+1 \ ∪j≤n,α∈Γkj
Aj,α

In either case we have |Ln+1| = Γkn+1
. By discarding suitable countable sub-

sets of these sets Ln we can assume that

dist(Ln, Lm) ≥ max

{
1

2kn+1
,

1

2km+1

}

To finish, let { f n
α : xn

α ∈ Ln, n ∈ N} be a transfinite sequence of 1-Lipschitz dis-
jointly supported functions such that f n

α (x
n
α) =

1
2kn+3 and supp( f n

α ) ⊂ B(xn
α , 1

2kn+2 ).

This sequence is equivalent to the basis of c0(Γ), which finishes the proof.

Theorem 4. Let N, M be uniformly discrete infinite sets of the same cardinality such
that N ⊂ M is a net. Then F (N) ∼= F (M).

Proof. Let K > 0 be such that maxm∈M dist(m, N) ≤ K Let r : M → N be a
retraction such that d(x, r(x)) ≤ K. As M is uniformly discrete, r is Lipschitz. By
Proposition 1

F (M) ∼= F (N)⊕FN(M).

It is clear that FN(M) ∼= ℓ1(M \ N). By Proposition 3

F (N) ∼= F (N)⊕ ℓ1(M) ∼= F (M).

Recall that all nets in a given infinite dimensional Banach space are Lipschitz
equivalent ([26], or [1] p.239), hence their free spaces are linearly isomorphic. On
the other hand, there are examples of non-equivalent nets in R

2 ([28], [3] or [1]
p.242), hence the next result is not immediately obvious.

Proposition 5. Let N , M be nets of the same cardinality dens(M) in a metric space
(M, d). Then F (N ) ∼= F (M).

Proof. Suppose N is a (a, b)-net and M is a (c, d)-net in M, a ≤ c. Let K =
M∪N , and let K ⊂ K be maximal subset such that from each pair of points
x ∈ M, y ∈ N for which d(x, y) <

a
4 we choose only one x ∈ K. It is now clear

that both N and M are bi-Lipschitz equivalent to a respective subset of K. By
Theorem 4, F (K) ∼= F (M) ∼= F (N ).

Of course, the above proposition applies to any pair of nets in a given Banach
space X, or its subset S ⊂ X which contains arbitrarily large balls.
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Lemma 6. Let Y = X ⊕ R be Banach spaces, N be a net in X and M be the extension
of N into the natural net in Y. Denote M+ = M∩ X ⊕ R

+, M− = M∩ X ⊕ R
−.

If F (N ) = F (N )⊕ F (N ) and F (M+) = F (M+)⊕F (M+) then F (M) =
F (M+) = F (M)⊕F (M).

Proof. Thanks to Proposition 5 we are allowed to make additional assumptions
on the form of the nets. Let us assume that M = N × Z, which immediately im-
plies that N ∪M+ is bi-Lipschitz equivalent with M+ (and M−) by translation.
Denoting P : Y → X the canonical projection P(x, t) = x, we see that P : M → N
is a Lipschitz retraction, so

F (M+) ∼= F (N ∪M+) ∼= F (N )⊕FN (N ∪M+)

and using Proposition 2

F (M) ∼= F (N )⊕FN (M) ∼= F (N )⊕FN (N ∪M+)⊕FN (N ∪M−)

Since FN (N ∪M+) ∼= FN (N ∪M−) and F (N ) ∼= F (N )⊕F (N ) the result
follows.

Theorem 7. Let N be a net in R
n. Then F (N ) ∼= F (N )⊕F (N ).

Proof. For n = 1 it is well known [12] that F (N ) ∼= F (N+) ∼= ℓ1
∼=

F (N )⊕F (N ).
Inductive step towards n + 1. We may assume that N = Z

n+1 is the in-
teger grid. Let us use the following notation (our convention is that Z

+ =
{1, 2, 3, . . . } , Z

− = {−1,−2, . . . }).

L = Z
n−1 × {0} × {0} , L1 = Z

n−1 × Z
+ × {0} ,

L2 = Z
n−1 × {0} × Z

+, L3 = Z
n−1 × Z

− × {0}
M+ = Z

n−1 × Z × Z
+, M1 = Z

n−1 × Z
+ × Z

+, M2 = Z
n−1 × Z

− × Z
+

With this notation, we have the following bi-Lipschitz equivalence

L1 ∪ L ∪ L2
∼= L1 ∪ L ∪ L3.

By inductive assumption this implies

F (L ∪ L1 ∪ L2) ∼= F (L ∪ L1 ∪ L2)⊕F (L ∪ L1 ∪ L2). (1)

On the other hand, using Proposition 2 in various settings

F (L ∪ L1 ∪ L2) ∼= F (L)⊕FL(L ∪ L1)⊕FL(L ∪ L2),

F (L ∪ L1 ∪ L2) ∼= F (L ∪ L1)⊕FL∪L1
(L ∪ L1 ∪ L2) ∼=

F (L ∪ L1)⊕FL(L ∪ L2), (2)
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F (L ∪ L1 ∪ L2 ∪ L3) ∼= F (L ∪ L1 ∪ L3)⊕FL∪L1∪L3
(L ∪ L1 ∪ L2 ∪ L3) ∼=

F (L ∪ L1 ∪ L3)⊕FL(L ∪ L2). (3)

Hence, using the inductive assumption F (L ∪ L1 ∪ L3) ∼= F (L ∪ L1)

F (L ∪ L1 ∪ L2 ∪ L3) ∼= F (L ∪ L1)⊕FL(L ∪ L2) (4)

Comparing (2), (4) and using (1) we obtain

F (L∪L1 ∪L2 ∪L3) ∼= F (L∪L1 ∪L2) ∼= F (L∪L1 ∪L2)⊕F (L∪L1 ∪L2) (5)

By Lemma 6, in order to complete the inductive step, it suffices to prove that
F (M+) = F (M+)⊕F (M+).

Denote R : R
+ × R

+ → R × R
+ the mapping R(z) = z2

|z| , where z is the

complex number represented as z = x + iy. It is clear that R is bi-Lipschitz.
Indeed, if z0 = a + ib and z1 = x + iy are two complex numbers from the first
quadrant with a ≤ x, then

|R(z0)− R(z1)| = |ea+2ib − ex+2iy| ≤ |ea+2ib − ea+2iy|+ |ea+2iy − ex+2iy| =
= ea|eib − eiy| · |eib + eiy|+ |ea − ex|
≤ 2|ea+ib − ea+iy|+ |ea+ib − ex+iy|
≤ 2|ea+ib − ex+iy|+ |ea+ib − ex+iy| = 3|z0 − z1|.

On the other hand, for any z0 = a + ib and z1 = x + iy from the upper half plane
with a ≤ x we have

|R−1(z0)− R−1(z1)| = |ea+ ib
2 − ex+

iy
2 | ≤ |ea+ ib

2 − ea+
iy
2 |+ |ea+

iy
2 − ex+

iy
2 | =

= ea |eib − eiy|
|e ib

2 + e
iy
2 |

+ |ea − ex|

≤
√

2

2
|ea+ib − ea+iy|+ |ea+ib − ex+iy|

≤ 2|z0 − z1|,

which we wanted to prove.
The mapping

T : M1 → R
n+1, T(u, x, y) = (u, R(x, y))

takes the net M1 from the set R
n−1 × R

+ × R
+ in a bi-Lipschitz way to the net

T(M1) in the set R
n−1 × R × R

+. Hence F (M1) ∼= F (T(M1)). Since M+ =
M1 ∪ L2 ∪M2 is another net in the second set, by Proposition 5 we obtain

F (M1) ∼= F (M+)
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Now thanks to the bi-Lipschitz equivalence M1
∼= M1 ∪ L ∪ L1 ∪ L2,

F (M1) ∼= F (M1 ∪ L ∪ L1 ∪ L2) ∼=
F (L ∪ L1 ∪ L2)⊕FL∪L1∪L2

(M1 ∪ L ∪ L1 ∪ L2)

Since M+ is bi-Lipschitz equivalent to M+ ∪ L ∪ L1 ∪ L2 we get

F (M+) ∼= F (L ∪ L1 ∪ L2 ∪ L3)⊕FL∪L1∪L2
(M1 ∪ L ∪ L1 ∪ L2)⊕
FL∪L2∪L3

(M2 ∪ L ∪ L1 ∪ L3) (6)

Using (5) and the obvious

FL∪L1∪L2
(M1 ∪ L ∪ L1 ∪ L2) ∼= FL∪L2∪L3

(M2 ∪ L ∪ L1 ∪ L3)

we finally obtain

F (M1)⊕F (M1) ∼= F (M+) ∼= F (M1)

which ends the inductive step and the proof.

Theorem 8. Let X be a Banach space such that X ∼= Y ⊕ X, where Y is an infinite
dimensional Banach space with a Schauder basis. Let N be a net in X. Then

F (N ) ∼= (⊕∞
j=1F(N ))ℓ1

.

Proof. We may assume without loss of generality that the norm of the direct
sum Y ⊕ X is in fact equal to the maximum norm Y ⊕∞ X. Using Proposition
5 it suffices to prove the result for just one particular net N . Let Mk ⊂ kSX ,
k ∈ N be a (1, 2)-net. Then N = ∪∞

k=1Mk is a (1, 3)-net in X. Let {ek} be a
bi-monotone normalized Schauder basis of Y. Set Z = (⊕∞

j=1F(N ))ℓ1
. It is clear

that
Z ∼= (⊕∞

j=1Z)ℓ1

We will use Pelczynski’s decomposition technique to prove the theorem. Since
F (N ) is complemented in Z it only remains to prove that F (N ) contains a com-
plemented subspace isomorphic to Z. Let

Vn = {ken ⊕ x : x ∈ Mk, k ∈ N} ⊂ Y ⊕ X

M = ∪∞
n=1Vn

The sets Vn, as subsets of the pointed metric space (Y ⊕ X, ‖ · ‖, 0), satisfy the
assumptions of Proposition 2 and so

F (M) = (⊕∞
n=1F (Vn))ℓ1

∼= (⊕∞
n=1F (N ))ℓ1

∼= Z.

We extend the set M into a (1, 3)-net M in Y ⊕ X. Because F (M) ∼= F (N )
it suffices to show that F (M) contains a complemented copy of F (M). To this
end it is enough to find a Lipschitz retraction R : M → M. Denote by [a] the
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integer part of a ∈ R. First let r : X → N be a (non-continuous) retraction such
that [‖x‖] ≤ ‖r(x)‖ ≤ ‖x‖, ‖r(x)− x‖ ≤ 4 and ‖r(x)‖ = ‖x‖ provided ‖x‖ ∈ N.
Let s : Y → Y be a (non-continuous) retraction defined for x = ∑

∞
i=1 xiei by

s

(
∞

∑
i=1

xiei

)
=





dek if xk > max {xi : i 6= k} ∪ {0} , d = mini 6=k[xk − xi]

0 otherwise

(7)

It is easy to see that ‖r(x) − r(y)‖ ≤ 9‖x − y‖, ‖s(x) − s(y)‖ ≤ 6‖x − y‖
provided ‖x − y‖ ≥ 1 (i.e. they are Lipschitz for large distances). Indeed,

‖r(x)− r(y)‖ ≤ ‖r(x)− x‖+ ‖r(y)− y‖+ ‖x − y‖ ≤ 8 + ‖x − y‖ ≤ 9‖x − y‖
Assuming 1 ≤ ‖x − y‖ ≤ λ, we get |xi − yi| ≤ λ, i ∈ N. Suppose that s(x) =
dek, s(y) = tel. We claim that d ≤ 3λ. Indeed, assuming by contradiction
that xk ≥ d + max {xi : i 6= k} ≥ 3λ + max {xi : i 6= k} we obtain that yk ≥
λ + max {yi : i 6= k}. Hence k = l and |d − t| ≤ 2λ + 2. The same argument
yields t ≤ 3λ, so finally we obtain ‖s(x)− s(y)‖ ≤ 6λ.

Let R : M → M is now defined as

R(y ⊕ x) =





s(y)⊕ r
( ‖s(y)‖

‖x‖ x
)

if ‖x‖ > ‖s(y)‖ > 0
‖r(x)‖
‖s(y)‖ s(y)⊕ r(x) if ‖s(y)‖ ≥ ‖x‖ > 0

0 otherwise

(8)

We claim that R is a retraction onto M. If y ⊕ x ∈ M then clearly
s(y) = y, r(x) = x, ‖s(y)‖ = ‖r(x)‖ and so R(y ⊕ x) = y ⊕ x. Next, observe
that R(y ⊕ x) ∈ M holds for every y ⊕ x ∈ M. Indeed, regardless of the case in
the definition of R, we see that the first summand of R(y ⊕ x) is a non-negative
integer multiple of some basis vector en in Y. In the first (and third) case it is

obvious, in the second case it follows as the norm of ‖r(x)‖
‖s(y)‖ s(y) is an integer ‖r(x)‖.

The second summand is the result of an application of the retraction r, and its
norm equals the norm of the first summand, hence the value of R(y ⊕ x) indeed
lies in M.

Next, we claim that R is Lipschitz. Recall that M is a (1, 3)-net in a Banach
space, so it suffices to prove that there exists a K > 0 such that ‖R(y1 ⊕ x1) −
R(y ⊕ x)‖ ≤ K whenever ‖y1 ⊕ x1 − y ⊕ x‖ ≤ D, for say D = 8. This is well-
known and easy to see, as every pair of distinct points p, q ∈ M can be connected
by a straight segment of length ‖p − q‖, and a sequence of [‖p − q‖] + 1 points
on this segment of distance (of consecutive elements) at most one. Each of these
points has an approximant from M of distance at most 3, so it clear that there
exists a sequence of [‖p − q‖] + 1 points in M of (consecutive) distance at most
D − 1 = 7, ”connecting” the points p, q, and the result follows by a simple sum-
mation of the increments of R along the mentioned sequence.

Let us start the proof of Lipschitzness of R by partitioning M into three
disjoint subsets

D1 = {y ⊕ x : ‖x‖ > ‖s(y)‖ ≥ 20D} ,
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D2 = {y ⊕ x : ‖s(y)‖ ≥ ‖x‖ ≥ 20D} ,

D3 = {y ⊕ x : min {‖s(y)‖, ‖x‖} < 20D} .

The set D1 (resp. D2) corresponds to the case 1 (resp. 2) in the definition of R.
Observe that ‖R(y ⊕ x)‖ ≤ min {‖y‖, ‖x‖} so it suffices to prove the

Lipschitzness of R on the set D1 ∪ D2. Moreover, the sets D1 and D2 have in a
sense a common ”boundary” (in the intuitive sense, which is not contained in
D1) consisting of those elements for which ‖x‖ = ‖s(y)‖. It is easy to see that
for such elements the first two cases in definition of R may be applied with the
same result (although formally we are forced to apply the second case). Suppose
now that p ∈ D1, q ∈ D2. A similar argument as above using the straight segment
connecting p, q (and a short finite sequence from M which approximates this seg-
ment) we see that the segment essentially has to ”cross the boundary” between
D1, D2, and so the proof of the Lipschitzness of R will follow provided we can do
it for each of the sets D1, D2 separately.

Suppose y1 = y + ỹ, x1 = x + x̃ are such that ‖ỹ‖, ‖x̃‖ ≤ D.

Case 1. We consider first the case y1 ⊕ x1, y ⊕ x ∈ D1. Then

‖s(y1)‖
‖x1‖

x1 −
‖s(y)‖
‖x‖ x =

‖s(y + ỹ)‖
‖x + x̃‖ (x + x̃)− ‖s(y)‖

‖x‖ x =

(‖s(y + ỹ)‖
‖x + x̃‖ − ‖s(y)‖

‖x‖
)

x +
‖s(y + ỹ)‖
‖x + x̃‖ x̃

Now

∣∣∣∣
‖s(y + ỹ)‖
‖x + x̃‖ − ‖s(y)‖

‖x‖

∣∣∣∣ ≤ max

{‖s(y)‖+ 9D

‖x‖ − D
− ‖s(y)‖

‖x‖ ,
‖s(y)‖
‖x‖ − ‖s(y)‖ − 9D

‖x‖+ D

}

‖s(y)‖+ 9D

‖x‖ − D
− ‖s(y)‖

‖x‖ =
(‖s(y)‖+ 9D)‖x‖ − ‖s(y)‖(‖x‖ − D)

(‖x‖ − D)‖x‖

=
9D‖x‖+ D‖s(y)‖
(‖x‖ − D)‖x‖ ≤ 10D‖x‖

(‖x‖ − D)‖x‖ ≤ 10D
9

10‖x‖ ≤ 100D

9‖x‖ ≤ 12D

‖x‖
Similarly, we obtain

‖s(y)‖
‖x‖ − ‖s(y)‖ − 9D

‖x‖+ D
≤ 10D

‖x‖ .

Hence we obtain

∣∣∣∣
‖s(y + ỹ)‖
‖x + x̃‖ − ‖s(y)‖

‖x‖

∣∣∣∣ ≤
12D

‖x‖ .

The last term is also estimated similarly:

‖s(y + ỹ)‖
‖x + x̃‖ ‖x̃‖ ≤ ‖s(y)‖+ 9D

‖x‖ − D
D ≤ ‖x‖+ 9D

‖x‖ − D
D ≤ 3D
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So combining the above computations we get

∥∥∥∥
‖s(y1)‖
‖x1‖

x1 −
‖s(y)‖
‖x‖ x

∥∥∥∥ ≤ 15D

So the mapping y ⊕ x → ‖s(y)‖
‖x‖ x from D1 to M takes vectors of distance at

most D to vectors of distance at most 15D. It is now clear that R is Lipschitz on
D1.

Case 2. We consider now y1 ⊕ x1, y ⊕ x ∈ D2, and denote z = s(y + ỹ)− s(y)
(recall that ‖z‖ ≤ 9D):

‖r(x1)‖
‖s(y1)‖

s(y1)−
‖r(x)‖
‖s(y)‖ s(y) =

‖r(x + x̃)‖
‖s(y + ỹ)‖ s(y + ỹ)− ‖r(x)‖

‖s(y)‖ s(y)

Therefore ∥∥∥∥
‖r(x + x̃)‖
‖s(y + ỹ)‖ s(y + ỹ)− ‖r(x)‖

‖s(y)‖ s(y)

∥∥∥∥

≤ max

{∥∥∥∥
‖r(x)‖+ 9D

‖s(y)‖ − 9D
(s(y) + z)− ‖r(x)‖

‖s(y)‖ s(y)

∥∥∥∥ ,

∥∥∥∥
‖r(x)‖ − 9D

‖s(y)‖ + 9D
(s(y) + z)− ‖r(x)‖

‖s(y)‖ s(y)

∥∥∥∥
}

The first term could be rewritten and estimated as follows:

∥∥∥∥
(‖r(x)‖+ 9D)‖s(y)‖
(‖s(y)‖ − 9D)‖s(y)‖ (s(y) + z)− (‖s(y)‖ − 9D)‖r(x)‖

(‖s(y)‖ − 9D)‖s(y)‖ s(y)

∥∥∥∥

≤
∥∥∥∥
( (‖r(x)‖ + 9D)‖s(y)‖
(‖s(y)‖ − 9D)‖s(y)‖ − (‖s(y)‖ − 9D)‖r(x)‖

(‖s(y)‖ − 9D)‖s(y)‖
)

s(y)

∥∥∥∥+
‖r(x)‖+ 9D

‖s(y)‖ − 9D
9D

≤
∥∥∥∥
( (‖r(x)‖+ 9D)‖s(y)‖ − (‖s(y)‖ − 9D)‖r(x)‖

(‖s(y)‖ − 9D)‖s(y)‖
)

s(y)

∥∥∥∥+ 27D

≤
∣∣∣∣
(‖r(x)‖ + 9D)‖s(y)‖ − (‖s(y)‖ − 9D)‖r(x)‖

‖s(y)‖ − 9D

∣∣∣∣+ 27D

≤
∣∣∣∣
9D‖s(y)‖+ 9D‖r(x)‖

‖s(y)‖ − 9D

∣∣∣∣+ 27D ≤ 18D‖s(y)‖
‖s(y)‖ − 9D

+ 27D ≤ 63D.

The second term we estimate analogously

∥∥∥∥
‖r(x)‖ − 9D

‖s(y)‖+ 9D
(s(y) + z)− ‖r(x)‖

‖s(y)‖ s(y)

∥∥∥∥

≤
∥∥∥∥
( (‖r(x)‖ − 9D)‖s(y)‖
(‖s(y)‖ + 9D)‖s(y)‖ − (‖s(y)‖ + 9D)‖r(x)‖

(‖s(y)‖ + 9D)‖s(y)‖
)

s(y)

∥∥∥∥+
‖r(x)‖ − 9D

‖s(y)‖+ 9D
9D

≤
∣∣∣∣
9D‖s(y)‖+ 9D‖r(x)‖

‖s(y)‖ + 9D

∣∣∣∣+ 9D ≤ 18D‖s(y)‖
‖s(y)‖ + 9D ≤ 27D.

We conclude that R is Lipschitz on the whole domain M. Hence F (M) is
isomorphic to a complemented subspace of F (M) ∼= F (N ).
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A simple situation which fits the above assumptions is when X contains a
complemented subspace with a symmetric basis (e.g. ℓp, c0 or an Orlicz sequence
space). By the standard structural theorems for classical Banach spaces ([27]) we
obtain.

Corollary 9. Let X be a Banach space isomorphic to any of the (classical) spaces ℓp, Lp,
1 ≤ p < ∞, C(K), or an Orlicz space hM, N be a net in X. Then

F (N ) ∼= (⊕∞
j=1F(N ))ℓ1

.

Recall that a metric space M is an absolute Lipschitz retract if, for some K > 0,
M is a K-Lipschitz retract of every metric superspace M ⊂ N ([1] p.13). We are
going to use the discretized form of this condition. This concept is almost explicit
in the work of Kalton [21], where it would probably be called absolute coarse
retract.

Definition 3. Let M be a δ-uniformly discrete space, δ > 0. We say that M is an absolute
uniformly discrete Lipschitz retract if, for some K > 0, the space M is a
K-Lipschitz retract of every δ-uniformly discrete superspace M ⊂ N.

Lemma 10. Let X be Banach space which is an absolute Lipschitz retract, N be a net in
X. Then N is absolute uniformly discrete Lipschitz retract. Conversely, if N is absolute
uniformly discrete Lipschitz retract and X is a Lipschitz retract of X∗∗ then X is an
absolute Lipschitz retract.

Proof. The first implication is obvious. To prove the second one, suppose that
X ⊂ ℓ∞(Γ) = Y is a linear embedding. Since ℓ∞(Γ) is an injective space, it suf-
fices to prove that there is a Lipschitz retraction from ℓ∞(Γ) onto X. Since X is
a Lipschitz retract of X∗∗, it suffices to follow verbatim the proof of Theorem 1
in [25]. Indeed, consider a net N in X with extension into a net M in Y. By as-
sumption, there exists a Lipschitz retraction r : M → N . This retraction r can
be easily extended to a coarsely continuous retraction R from Y onto X (using
the terminology of [21]), which is of course Lipschitz for large distances. It is this
condition on R that is used in the proof of Theorem 1 in [25].

Remark. It is an open problem if the retraction from X∗∗ to X exists for every
separable Banach space (see [21]).

Important examples of absolute uniformly discrete Lipschitz retract are the
nets in C(K) spaces, K metrizable compact, [1] p.15.

Corollary 11. Let M be a countable absolute uniformly discrete Lipschitz retract which
contains a bi-Lipschitz copy of the net N in c0. Then F (M) ∼= F (N ).

Proof. There is a Lipschitz retraction from M onto N , and on the other hand
using Aharoni’s theorem ([11] p. 546) M is bi-Lipschitz embedded into N (and
hence also a retract). Thus F (M) is complemented in F (N ) and vice versa.
To finish, apply Theorem 8 for c0 together with the Pelczynski decomposition
principle.
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To give concrete applications of the above corollary, we obtain the following
result. The case of c+0 follows from the Pelant c+0 -version of Aharoni’s result [30].

Theorem 12. Let N be a net in c0 and M be a net in any of the following metric spaces:
C(K), K infinite metrizable compact, or c+0 (the subset of c0 consisting of elements with
non-negative coordinates). Then F (M) ∼= F (N ).

3 Schauder basis

Theorem 13. Let X be a metric space. Suppose there exist a set M ⊆ X and a sequence
of distinct points {µn}∞

n=1 ⊆ M, together with a sequence of retractions {ϕn}∞
n=1,

ϕn : M → M, n ∈ N, which satisfy the following conditions:

(i) ϕn(M) = Mn :=
⋃n

j=1

{
µj

}
for every n ∈ N,

(ii)
⋃∞

j=1

{
µj

}X
= M,

(iii) There exists K > 0 such that ϕn is K-Lipschitz for every n ∈ N,

(iv) ϕmϕn = ϕnϕm = ϕn for every m, n ∈ N, n ≤ m.

Then the space F (M) has a Schauder basis with the basis constant at most K.

Proof. It is a well-known fact that every Lipschitz mapping L : A → B between
pointed metric spaces A, B, such that L(0) = 0 extends uniquely to a linear map-
ping

L̂ : F (A) → F (B) in a way that that the following diagram commutes:

F (A)
L̂−−−→ F (B)

δA

x
xδB

A
L−−−→ B

Moreover, the norm of L̂ is at most Lip(L). Therefore for every n ∈ N there
is a linear mapping Pn = ϕ̂n : F (M) → F (M) extending ϕn : M → M with
‖Pn‖ ≤ K. We want to prove that {Pn} is a sequence of canonical projections
associated with some Schauder basis of F (M), namely that

a) dim Pn(F (M)) = n − 1 for every n ∈ N,

b) PnPm = PmPn = Pm for all m, n ∈ N, m ≤ n,

c) limn Pn(x) = x for all x ∈ F (M).

The first condition is easy: as ϕn(M) = Mn = {µi}n
i=1 we have Pn(F (M)) =

F (Mn), which is a (n − 1)-dimensional space. Let us check the commutativity.
Note first that for m, n ∈ N the diagram

F (M)
Pm−−−→ F (M)

Pn−−−→ F (M)

δM

x
xδM

xδM

M
ϕm−−−→ M

ϕn−−−→ M
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commutes, which means that ϕ̂n ◦ ϕm = PnPm. But then from the condition iv
follows PnPm = PmPn = Pm for m ≤ n.

The validity of the limit equation is proved easily. Note that elements of the
form ∑

m
i=1 αiδxi

, where m ∈ N, xi ∈ {µn}∞
n=1, αi ∈ R for all i ∈ {1, · · · , m}, are

norm dense in F (M). Indeed, it is a well-known fact that elements µ ∈ F (M) of
the same form ∑

m
i=1 αiδxi

with xi ∈ M are norm dense in F (M) and the condition
ii gives the more general result. By uniform boundedness of the family {Pn}∞

n=1,
it suffices to check the limit for elements mentioned above. Thus pick a measure
µ = ∑

m
i=1 αiδxi

, m ∈ N, ai ∈ R, xi ∈
{

µj

}∞

j=1
for all i ∈ {1, ..., m}. Find k ∈ N such

that {x1, · · · , xm} ⊆ Mk. Then for all n ≥ k we have

‖Pnµ − µ‖ = sup‖ f ‖≤1

∣∣∣∣∣〈 f ,
m

∑
i=1

αi(δϕn(xi)
− δxi

)〉
∣∣∣∣∣

= sup‖ f ‖≤1

∣∣∣∣∣
m

∑
i=1

(αi f (ϕn(xi))− αi f (xi))

∣∣∣∣∣

= sup‖ f ‖≤1

∣∣∣∣∣
m

∑
i=1

(αi f (xi)− αi f (xi))

∣∣∣∣∣ = 0.

This was to prove.

Definition 4. Let X be a Banach space with a Schauder basis E = {ei}∞
i=1. The set

M(E) = {x ∈ X| x = ∑
∞
i=1 xiei, xi ∈ Z, i ∈ N} we call the integer-grid to the basis

E. If it is clear what basis we are working with, we will denote the set M and speak
simply about a grid.

It is not difficult to see that if a basis E is normalized, then the grid M(E)
is a 1

2bc(E)
-separated set, where bc(E) denotes the basis constant of E. For E an

unconditional basis we will denote uc(E) the unconditional constant of E. We
will now show that for a normalized, unconditional basis E the space F (M) has
a Schauder basis.

Lemma 14. Let X be a Banach space with a normalized, unconditional Schauder
basis E = {ei}i∈N

and a grid M(E) = M. Then there exists a sequence of retractions
ϕn : M → M together with a sequence of distinct points µn ∈ M, n ∈ N satisfying the
conditions from the Theorem 13 with the constant at most K = uc(E) + 2bc(E).

Proof. Before we define the retractions {ϕn}∞
n=1 and the points {µn}∞

n=1 rigor-
ously, let us give the reader some geometric idea of how will the retractions look
like. We will add points from M so that first the set C1

1 = {x1e1| |x1| ≤ 1} is
created, then the set C2

1 = {x1e1 + x2e2| |xi| ≤ 1, i = 1, 2}, then the set

C2
2 = {x1e1 + x2e2| |xi| ≤ 2, i = 1, 2}, then C3

2 =
{

∑
3
i=1 xiei| |xi| ≤ 2, i = 1, 2, 3

}

and so on. Note that coordinates of each µ ∈ C
j
i are entire numbers.

The retractions will cut coordinates of the argument so that if x = ∑
∞
i=1 xiei ∈

M and {µi}n
i=1 = Mn = ϕn(M), n ∈ N, then ϕn(x) is obtained by following algo-

rithm: Choose all µi ∈ Mn minimizing the value |x1 − (µi)1|, out of them choose
those µij

minimizing |x2 − (µij
)2| and so on. Note the process will stop eventually
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because x = ∑
k
i=1 xiei for some k ∈ N as x ∈ M and the basis E is normalized. It

will be a matter of choosing (ordering) the points {µi}∞
i=1 so that the process ends

with only one point µi = ϕn(x).

We are now going to describe the construction of the sequence ϕn in the fol-
lowing way. We will build the sequence of points µn and to each n ∈ N, we
associate the sets ϕ−1

n (µi), i ∈ {1, · · · , n}. As we want the image ϕn(M) = Mn =⋃n
i=1 {µi}, the only things needed for the mapping ϕn to be well-defined is to

check
⋃n

i=1

{
ϕ−1

n (µi)
}
= M and ϕ−1

n (µi) ∩ ϕ−1
n (µj) = ∅ for i 6= j. For simplicity,

we denote the set-valued mapping ϕ−1
n = Fn and we will define the mappings

ϕn, n ∈ N through defining Fn : Mn → 2M. Note that if for every i ∈ {1, ..., n}
holds µi ∈ Fn(µi), then the mapping ϕn is a retraction.

In the sequel, by the n-tuple (a1, a2, ...an), ai ∈ R we will mean the linear com-
bination ∑

n
i=1 aiei and for a point x ∈ X, x = ∑

∞
i=1 xiei we will always identify x

with (x1, x2, x3, ...).

Set

µ1 = 0 F1(µ1) = M,

µ2 = (1, 0) F2(µ2) = {x ∈ M| x1 ≥ 1}
F2(µ1) = M \ F2(µ2),

µ3 = (−1, 0) F3(µ3) = {x ∈ M| x1 ≤ −1}
F3(µ1) = F2(µ1) \ F3(µ3)
F3(µ2) = F2(µ2).

It is not difficult to see ϕ1, ϕ2, ϕ3 are retractions satisfying the conditions i,iii,iv
from the Theorem 13 with Lipschitz constant which equals to uc(E) ≤ K. Indeed,
for ϕ1 it is clear as its image is only {0}. For ϕ2, x, y ∈ M and i ∈ N we have

|ϕ2(x)i − ϕ2(y)i | =
{

0 i > 1 ∨ (x1 ≥ 1 ∨ y1 ≥ 1) ∨ (x1 ≤ 0 ∨ y1 ≤ 0),

1 i = 1 ∧ ((x1 ≥ 1 ∧ y1 ≤ 0) ∨ (y1 ≥ 1 ∧ x1 ≤ 0)) ,
(9)

and similarily for n = 3, x ∈ M and i ∈ N we have

ϕ3(x)i =





0 i > 1 ∨ x1 = 0,

1 i = 1 ∧ x1 ≥ 1,

−1 i = 1 ∧ x1 ≤ −1

and therefore for x, y ∈ M

|ϕ3(x)i − ϕ3(y)i| =





0 i > 1 ∨ x1y1 ≥ 1 ∨ x1 = y1 = 0,

1 i = 1 ∧ ((|x1| ≥ 1 ∧ y1 = 0) ∨ (|y1| ≥ 1 ∧ x1 = 0)) ,

2 i = 1 ∧ x1y1 ≤ −1.

(10)

Due to the unconditionality of E, it is true that for every x ∈ X and z ∈ R, |z| ≤ x1

holds ‖(z, x2, x3, x4, ...)‖ ≤ uc(E)‖x‖. But for every i ∈ N the expression in (10) is
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less or equal to |xi − yi|, which gives us Lipschitz condition on ϕn with constant
uc(E).

Moreover, the last retraction ϕ3 maps M onto the set C1
1 ⊆ M containing all

points x ∈ M with x = (x1) and |x1| ≤ 1. Let us denote
Cd

r = {x ∈ M| x = (x1, x2, ..., xd), |xi| ≤ r, i ≤ d}. From now on, we will proceed
inductively. Suppose we have a sequence of retractions {ϕi}m

i=1 together with the
points µi, such that ϕm(M) = Cr

r and that {ϕi}m
i=1 satisfy the conditions i,iii,iv

from the Theorem 13. Note that m = (2r + 1)r.
We proceed by induction which we divide into two steps. First we find points

µm+1, ..., µs together with retractions ϕm+1, ..., ϕs, where s = (2r + 1)r+1, such that
Ms = Cr+1

r and such that {ϕi}s
i=1 satisfy the conditions i,iii,iv from theorem 13.

Then we find points µs+1, ..., µt and retractions ϕs+1, ..., ϕt, where t = (2r + 3)r+1,

ϕt : M → Cr+1
r+1 which satisfy i,iii,iv. As

⋃∞
r=1 Cr

r = M, the condition ii from theo-
rem 13 is obtained as well, which will conclude the proof.

On the bounded set Cr
r we define an ordering by the formula

(x1, x2, ..., xr) ≺ (y1, y2, ..., yr) ⇔ (x1 > y1)∨
∃i ∈ {1, ..., r − 1} ∀j ∈ {1, ..., i} : (xj = yj) ∧ (xi+1 > yi+1).

(11)

There exists a bijection w : {1, ..., (2r + 1)r} → Cr
r , which preserves order.

Let us shorten the notation by introducing indexing functions a, b.
If j ∈ {1, ..., r} and i ∈ {1, ..., (2r + 1)r}, let a(j, i) = j(2r + 1)r + i and
b(j, i) = (r + j)(2r + 1)r + i. We set µa(j,i) = (w(i), j) = w(i) + jer+1 and µb(j,i) =

(w(i),−j) = w(i) − jer+1. Moreover, we formally put µa(0,i) = µb(0,i) = w(i).
Then we define sets

Fa(j,i)(µa(j,i)) =
{

x ∈ Fa(j,i)−1(µa(j−1,i)), xr+1 ≥ j
}

,

Fa(j,i)(µa(j−1,i)) = Fa(j,i)−1(µa(j−1,i)) \ Fa(j,i)(µa(j,i)),

Fa(j,i)(µq) = Fa(j,i)−1(µq), q ∈ {1, ..., a(j, i)− 1} , µq 6= µa(j−1,i),

and

Fb(j,i)(µb(j,i)) =
{

x ∈ Fb(j,i)−1(µb(j−1,i)), xr+1 ≤ −j
}

,

Fb(j,i)(µb(j−1,i)) = Fb(j,i)−1(µb(j−1,i)) \ Fb(j,i)(µb(j,i)),

Fb(j,i)(µq) = Fb(j,i)−1(µq), q ∈ {1, ..., b(j, i)− 1} , µq 6= µb(j−1,i).

It is easy to see that the formulae above define mappings ϕa(j,i) and ϕb(j,i). Sup-

posed it holds for the mappings {ϕi}m
i=1 it is clear that Fn(µp) ∩ Fn(µq) = ∅ for

p 6= q and all n ∈ {1, ..., s}, and that µn ∈ Fn(µn) and
⋃n

i=1 Fn(µi) = M, which
means each mapping ϕn is well-defined and is a retraction onto Mn.

Let us check the uniform Lipschitz boundedness. Fix n ∈ {m + 1, ..., s}. Note
first that

∀x =
∞

∑
i=1

xiei ∈ X, ∀z ∈ ℓ∞ :

∀i ∈ N : 0 ≤ |zi| ≤ |xi| ⇒
∥∥∥∥∥

∞

∑
i=1

ziei

∥∥∥∥∥ ≤ ‖x‖ · uc(E)
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From this we deduce the Lipschitz boundedness.

If x, y ∈ M, then for i > r + 1 we have |ϕn(x)i − ϕn(y)i | = |0 − 0| = 0 ≤ |xi − yi|.
If i < r + 1 then we distinguish three cases:

a) |xi|, |yi| ≤ r. Then ϕn(x)i = xi, ϕn(y)i = yi and therefore |ϕn(x)i − ϕn(y)i | =
|xi − yi|.

b) |xi| ≤ r, |yi| > r. Then ϕn(x)i = xi and ϕn(y)i = r sgn(yi). Therefore
|ϕn(x)i − ϕn(y)i| = |xi − r sgn(yi)| ≤ |xi − yi|.

c) |xi|, |yi| > r. Then ϕn(x)i = r sgn(xi), ϕn(y)i = r sgn(yi) and therefore

|ϕn(x)i − ϕn(y)i| = |r sgn(xi)− r sgn(yi)| =
{

0 ≤ |xi − yi|, xiyi > 0,

2r ≤ |xi − yi|, xiyi < 0.

Finally, let i = r + 1. If now xiyi < 0, then either 0 ≤ ϕn(x)i ≤ xi and
yi ≤ ϕn(y)i ≤ 0 or vice versa. Both options give |ϕn(x)i − ϕn(y)i | ≤ |xi − yi|,
which is what we need.

Let xi, yi ≥ 0. Suppose n = a(j, k) for eligible j, k. Then ϕn(x)i = j or
ϕn(x)i = j − 1 or ϕn(x)i = xi, which occurs whenever 0 ≤ xi < j − 1. Of
course the same holds for y. From this we have either |ϕn(x)i − ϕ(y)i | ≤ |xi − yi|
or |ϕn(x)i − ϕ(y)i| ≤ 1. If n = b(j, k) for some j, k, then ϕn(x)i = r when-
ever xi ≥ r and ϕn(x)i = xi whenever xi < r, the same for y. It is clear that
|ϕn(x)i − ϕ(y)i | ≤ |xi − yi|.

Let xi, yi ≤ 0. If n = a(j, k) for some j, k, then |ϕn(x)i − ϕ(y)i| = |0 − 0| =
0 ≤ |xi − yi|. If n = b(j, k) for some j, k, then ϕn(x)i = −j or ϕn(x)i = −j + 1
or ϕn(x)i = xi, which holds whenever 0 ≥ xi > −j + 1. Again, we get either
|ϕn(x)i − ϕ(y)i | ≤ |xi − yi| or |ϕn(x)i − ϕ(y)i| ≤ 1.

To sum up all cases, if x, y ∈ M, then either xr+1 = yr+1 or not. In the first case
we have

‖ϕn(x)− ϕn(y)‖ =

∥∥∥∥∥
r+1

∑
i=1

(ϕn(x)i − ϕn(y)i) ei

∥∥∥∥∥ ≤
∥∥∥∥∥

r

∑
i=1

(ϕn(x)i − ϕn(y)i) ei

∥∥∥∥∥+ 1

≤ uc(E)‖x − y‖+ 2bc(E)‖x − y‖ =

= ‖x − y‖(uc(E) + 2bc(E)),

(12)

as M is a 1
2bc(E)

-separated set, while in the xr+1 6= yr+1 case we have

‖ϕn(x)− ϕn(y)‖ =

∥∥∥∥∥
r+1

∑
i=1

(ϕn(x)i − ϕn(y)i) ei

∥∥∥∥∥ ≤ uc(E)‖x − y‖. (13)

Considering both cases we get the mapping ϕn is Lipschitz with constant
K = uc(E) + 2bc(E).

It remains to prove that the mappings {ϕn}s
n=1 satisfy the commutativity con-

dition iv, provided the mappings {ϕn}m
n=1 do. Note that for any m, n ∈ N, m ≤ n

holds
Fn(µn) ∩ Fm(µm) ∈ {∅, Fn(µn)} . (14)
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Out of this fact the commutativity follows easily: Consider i < j ∈ {1, ..., s}.
First, because ϕi is a retraction onto Mi and the same holds for ϕj and Mj, from
Mi ⊆ Mj follows ϕj ϕi = ϕi. It remains to prove ϕi ϕj(x) = ϕi(x) for every x ∈ M.

Take x ∈ M. There exists a maximal finite sequence of indices 1 = k0 < ... <
kl ≤ s such that

x ∈ Fkl
(µkl

) ⊆ · · · ⊆ Fk0
(µk0

).

Clearly if c(i) is the biggest index such that kc(i) ≤ i, then ϕi(Fkd
(µkd

)) = µc(i) for

all d, c(i) ≤ d ≤ l. This applies analogously for ϕj with c(j). From the fact that
both x, µkc(j)

∈ Fkc(j)
(µkc(j)

) ⊆ Fkc(i)
(µkc(i)

) we get simply

ϕi ϕj(x) = ϕi(µkc(j)
) = µkc(i)

= ϕi(x),

which finishes the proof of commutativity.

To finish the proof, it remains to show the construction of retractions ϕs+1, ..., ϕt,

where t = (2r + 3)r+1, ϕt : M → Cr+1
r+1 which satisfy i,iii,iv.

For i ∈ N let us define an i-predecessor function pi : M → M by

pi

(
∞

∑
n=1

xnen

)
=

∞

∑
n=1

xnen − sgn(xi)ei.

Now for every j ∈ {1, ..., r + 1} we introduce sets

Aj,1 =
{
(x1, ..., xj−1, r + 1, xj+1, ..., xr+1) :

xi ∈ Z ∧ |xi| ≤ r + 1 for i < j ∧ |xi| ≤ r for i > j} ,

Aj,−1 =
{
(x1, ..., xj−1,−r − 1, xj+1, ..., xr+1) :

xi ∈ Z ∧ |xi| ≤ r + 1 for i < j ∧ |xi| ≤ r for i > j} .

Clearly, Aj,−1, Aj,1 ⊆ Cr+1
r+1 and |Aj,−1| = |Aj,1| = (2r + 1)r+1−j(2r + 3)j−1. More-

over, ⋃

j∈{1,...,r+1}
i∈{−1,1}

Aj,i = Cr+1
r+1 \ Cr+1

r

and it is a disjoint union. For each j, choose any bijection wj :
{

1, ..., |Aj,1|
}
→

Aj,1 and fix it. Define wj :
{

1, ..., |Aj,1|
}

→ Aj,−1, by wj(i) = (wj(i)1, wj(i)2,

...,−wj(i)j, ..., wj(i)r+1). For simplicity, for j ∈ {1, ..., r + 1} , i ∈
{

1, ..., |Aj,1|
}

put

α(j, i) = s + 2
j−1

∑
k=1

|Ak,1|+ i, β(j, i) = s + 2
j−1

∑
k=1

|Ak,1|+ |Aj,1|+ i.

Then we finally set µα(j,i) = wj(i), µβ(j,i) = wj(i). Now we define mappings

{Fn}t
n=s+1 via

Fα(j,i)(µα(j,i)) =
{

x ∈ Fα(j,i)−1(pj(µα(j,i))), xj ≥ r + 1
}

,

Fα(j,i)(pj(µα(j,i))) = Fα(j,i)−1(pj(µα(j,i))) \ Fα(j,i)(µα(j,i)),

Fα(j,i)(µq) = Fα(j,i)−1(µq), q ∈ {1, ..., α(j, i)− 1} , µq 6= pj(µα(j,i)),
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and

Fβ(j,i)(µβ(j,i)) =
{

x ∈ Fβ(j,i)−1(pj(µβ(j,i))), xj ≤ −r − 1
}

,

Fβ(j,i)(pj(µβ(j,i))) = Fβ(j,i)−1(pj(µβ(j,i))) \ Fβ(j,i)(µβ(j,i)),

Fβ(j,i)(µq) = Fβ(j,i)−1(µq), q ∈ {1, ..., β(j, i)− 1} , µq 6= pj(µβ(j,i)).

Obviously, the upper equations define mappings ϕα(j,i) and ϕβ(j,i) for all

j ∈ {1, ..., r + 1} and i ∈
{

1, ..., |Aj,1|
}

, hence the mappings {ϕn}t
n=s+1 are well-

defined and it is an easy check that each such ϕn is a retraction onto the set Mn.

Note that the sets {Fn(µn)}t
n=1 still satisfy the condition (14) so the commu-

tativity condition iv from theorem 13 is obtained similarly as it was done for
retractions {ϕn}s

n=1.
It remains to show the mappings are Lipschitz-bounded. Let us for simplicity

denote βk = β(k − 1, |Ak−1,1|) for 1 < k ≤ r + 1 and β1 = s, the index of first
retraction ϕβk

such that Ak−1,−1 ⊆ Mβk
. Fix n ∈ {s + 1, ..., t}. We will prove that

there exists at most one j = j(n) ∈ N such that for all l ∈ N, l 6= j and all x, y ∈ M
we have |ϕn(x)l − ϕn(y)l | ≤ |xl − yl | out of which the Lipschitz boundedness of
ϕn follows. If n = α(j, i) for some eligible j, i, then for every x ∈ M holds

ϕn(x)l =





0 l > r + 1,

xl (l ≤ r + 1, |xl| ≤ r) ∨ (l < j, |xl | = r + 1),

r sgn(xl) (j < l ≤ r + 1, |xl| > r) ∨ (j = l, xl < −r)∨(
j = l, xl > r, ∀µ ∈ Mn : ϕβj

(x)j 6= pj(µ)
)

,

(r + 1) sgn(xl) (l < j, |xl| > r + 1)∨(
l = j, xl ≥ r + 1, ∃µ ∈ Mn : ϕβj

(x)j = pj(µ)
)

,

while if n = β(j, i) for some j, i, then for every x ∈ M we have

ϕn(x)l =





0 l > r + 1,

xl (l ≤ r + 1, |xl| ≤ r) ∨ (l < j, |xl| = r + 1)∨
(l = j, xl = r + 1),

r sgn(xl) (j < l ≤ r + 1, |xl| > r)∨(
j = l, xl < −r, ∀µ ∈ Mn : ϕβj

(x)j 6= pj(µ)
)

,

(r + 1) sgn(xl) (l < j, |xl | > r + 1) ∨ (l = j, xl > r + 1)∨(
l = j, xl ≤ −r − 1, ∃µ ∈ Mn : ϕβj

(x)j = pj(µ)
)

.

If x, y ∈ M, it is not difficult to see that if |ϕn(x)l − ϕn(y)l | > |xl − yl|, then
l = j and ϕn(x)l = (r + 1) sgn(xl), ϕn(y)l = r sgn(yl) or vice versa and xlyl > 0.
Particularly |ϕn(x)l − ϕn(y)l | = 1 and |xl − yl| = 0. For all other l, i.e. l 6= j, l ∈ N

holds |ϕn(x)l − ϕn(y)l | ≤ |xl − yl |, which is what we need.
Therefore we get by computation similar to those done in (12) and (13) that ϕn

is a Lipschitz mapping with constant K = uc(E) + 2bc(E), which concludes the
induction.

As
⋃∞

r=1 Cr
r = M the condition ii from theorem 13 is also satisfied and hence

our proof is finished.
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Remark. In (11) it was not necessary for our construction to choose exactly this
order. In fact, any bijection w : {1, ..., (2r + 1)r} → Cr

r would suit our purpose. We
chose the order (11) for simplicity. In this case we have µa(j−1,i) = pj(µa(j,i)) and

µb(j−1,i) = pj(µb(j,i)) for pj the j-predecessor function and i ∈ {1, ..., (2r + 1)r},

j ∈ {1, ..., r}.

Corollary 15. If E = {ei}∞
i=1 denotes the canonical basis in c0 and M = M(E) ⊆ c0

the integer grid, then the Free-space F (M) has a monotone Schauder basis.

Proof. applying the construction of the retractions from the lemma 14 to (c0, E),
we get Lipschitz constant K = 1, (see estimates (12) and (13)). Therefore, F (M)
has a monotone Schauder basis.

Corollary 16. Let N ⊆ c0 be a net. Then the Free-space F (N ) has a Schauder basis.

Proof. If we use the notation from previous corollary, M is a (1, 1)-net in c0. But
as all nets in an infinite-dimensional space are Lipschitz equivalent ([1], p.239,
Proposition 10.22), N is Lipschitz equivalent to the grid M and therefore F (N )
is isomorphic to F (M), which concludes the proof.

Corollary 17. Let N be a net in any of the following metric spaces: C(K), K metrizable
compact, or c+0 (the subset of c0 consisting of elements with non-negative coordinates).
Then F (N ) has a Schauder basis.

Proof. Follows immediately from Theorem 12.

Corollary 18. Let N ⊆ R
n be a net. Then F (N ) has a Schauder basis.

Proof. It follows from the proof of lemma 14 that F (Zn) has a Schauder basis and
F (Zn) ∼= F (N ) by Proposition 5, which gives the result.
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