Stability constants for weighted composition operators on $L^p(\Sigma)$

M. R. Jabbarzadeh M. Jafari Bakhshkandi

Abstract

In this note we give an explicit formula for the Moore-Penrose inverse W^{\dagger} of a weighted composition operator W on $L^{2}(\Sigma)$ and then we obtain the stability constant K_{W} of W on $L^{p}(\Sigma)$, where $1 \leq p \leq \infty$. Moreover, we determine, under certain conditions, the essential norm of W acting on $L^{\infty}(\Sigma)$.

1 Introduction and Preliminaries

Let (X, Σ, μ) be a complete σ -finite measure space. For a sub- σ -algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation mapping, associated with \mathcal{A} is a mapping $E^{\mathcal{A}} : f \to E^{\mathcal{A}}f$, defined for each non-negative Σ -measurable function f or for each $f \in L^{p}(\Sigma)$ $(1 \leq p)$, where $E^{\mathcal{A}}f$ is the unique \mathcal{A} -measurable function satisfying

$$\int_A f d\mu = \int_A E^{\mathcal{A}} f d\mu, \quad \forall A \in \mathcal{A}.$$

Let *f* be a real valued Σ -measurable function on *X*, if $\mu(\{x : E^{\mathcal{A}}(f^+(x)) = E^{\mathcal{A}}(f^-(x)) = \infty\}) = 0$, then we define $E^{\mathcal{A}}(f) := E^{\mathcal{A}}(f^+) - E^{\mathcal{A}}(f^-)$. In the case of complex-valued function *f*, if $\mu(\{x : E^{\mathcal{A}}((\operatorname{Im} f)^+(x)) = E^{\mathcal{A}}((\operatorname{Im} f)^-(x)) = \infty\}) = 0$ and $\mu(\{x : E^{\mathcal{A}}((\operatorname{Re} f)^+(x)) = E^{\mathcal{A}}((\operatorname{Re} f)^-(x)) = \infty\}) = 0$, then $E^{\mathcal{A}} := E^{\mathcal{A}}(\operatorname{Re} f) + iE^{\mathcal{A}}(\operatorname{Im} f)$. As an operator on $L^2(\Sigma)$, $E^{\mathcal{A}}$ is an orthogonal projection and $E^{\mathcal{A}}(L^2(\Sigma)) = L^2(\mathcal{A})$. For an introduction to as well as for a deep

Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 271-281

Received by the editors in June 2016 - In revised form in October 2016. Communicated by G. Godefroy.

²⁰¹⁰ Mathematics Subject Classification : Primary 47B33; Secondary 34K20.

Key words and phrases : Moore-Penrose inverse, weighted composition operator, conditional expectation, closed range.

study of conditional expectation operator, we refer the reader to the Lambert papers, for example [11] and the monograph [15].

Let $\varphi : X \to X$ be a measurable transformation such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ , that is, φ is non-singular. It is assumed that the Radon-Nikodym derivative $h = d\mu \circ \varphi^{-1}/d\mu$ is finite-valued, which is, equivalent to the fact that $(X, \varphi^{-1}(\Sigma), \mu)$ is σ -finite. In the setting of L^p -spaces the so called conditional expectation operator $E^{\varphi^{-1}(\Sigma)}$ with respect to $\varphi^{-1}(\Sigma)$ plays an important role. If there is no possibility of confusion, we write Ef in place of $E^{\varphi^{-1}(\Sigma)}f$. Denote the complement of *B* by *B^c*. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. We denote the linear space of all complex-valued Σ -measurable functions on X by $L^0(\Sigma)$. The support of $f \in L^0(\Sigma)$ is defined by $\sigma(f) = \{x \in X : f(x) \neq 0\}$. For a finite valued function $u \in L^0(\Sigma)$, the weighted composition operator W on $L^p(\Sigma)$ with $1 \le p \le \infty$, induced by *u* and the non-singular measurable function φ is given by $W = M_u \circ C_{\varphi}$ where M_u is a multiplication operator and C_{φ} is a composition operator on $L^p(\Sigma)$ defined by $M_u f = uf$ and $C_{\varphi} f = f \circ \varphi$, respectively. It is a classical fact that $W \in B(L^2(\Sigma))$, the C^{*}-algebra of all bounded linear operators on $L^2(\Sigma)$, if and only if $J := hE(|u|^2) \circ \varphi^{-1} \in L^{\infty}(\Sigma)$ and $W \in B(L^{\infty}(\Sigma))$ if and only if $u \in L^{\infty}(\Sigma)$ (see [6]). Throughout this paper we assume that $\varphi : X \to X$ is a non-singular transformation and $u \ge 0$.

Now, let \mathcal{H} be a complex Hilbert space. We write $\mathcal{N}(T)$ and $\mathcal{R}(T)$ for the nullspace and range of an operator $T \in B(\mathcal{H})$. Let $T \in B(\mathcal{H})$ have closed range. Then the Moore-Penrose inverse of T, denoted by T^{\dagger} , is the unique operator $T^{\dagger} \in B(\mathcal{H})$ which satisfies $TT^{\dagger}T = T$, $T^{\dagger}TT^{\dagger} = T^{\dagger}$, $(TT^{\dagger})^* = TT^{\dagger}$ and $(T^{\dagger}T)^* = T^{\dagger}T$. For other important properties of T^{\dagger} , see [4, 13].

The study of Hyers-Ulam stability of mappings has a quite long and rich history (see [7, 20]). The Hyers-Ulam stability of linear operators was considered for the first time in the paper by Takagi, Miura and Takahasi in [17]. Let \mathcal{X} be a Banach space. We recall that $T \in B(\mathcal{X})$ has the Hyers-Ulam stability, if there exists K > 0 such that, for any $f \in \mathcal{X}$, there exists $f_0 \in \mathcal{N}(T)$ with $||f - f_0|| \leq 1$ K||Tf||. We call K a Hyers-Ulam stability (HUS) constant for T, and denote the infimum of all HUS constants for T by K_T . By [17, Theorem 2.1], $T \in B(\mathcal{X})$ has the Hyers-Ulam stability if and only if T has closed range if and only if \tilde{T}^{-1} is bounded, where \overline{T} is the one-to-one operator from the quotient Banach space $\mathcal{X}/\mathcal{N}(T)$ onto $\mathcal{R}(T)$ defined by $T(f + \mathcal{N}(T)) = Tf$. Moreover, in this case they proved that $K_T = \|\widetilde{T}^{-1}\|$. After then, Hirasawa and Miura [5] gave some necessary and sufficient conditions under which a closed operator in a Hilbert space has the Hyers-Ulam stability. They showed that $K_T = \gamma(T)^{-1}$, where $\gamma(T)$ is the reduced minimum modulus of T. Also Rakocevic in [14] shows that $\gamma(T)^{-1} = ||T^{\dagger}||$. Thus $K_T = ||T^{\dagger}||$. In [8], Hyers-Ulam stability of weighted composition operators acting on L^p -spaces with 1 have been studiedunder certain conditions. Some good sources about the Hyers-Ulam stability of weighted composition operators acting between various function spaces are [18] and [19].

W^{\dagger} and HUS Constants and Essential Norm of W2

Let $0 \leq u \in L^0(\Sigma)$. Then the multiplication operator M_u has closed range on $L^2(\Sigma)$ if and only if *u* is bounded away from zero on $\sigma(u)$ (see [2]). Since ||Wf|| = $\|\sqrt{J}f\|$ (see [6]), so W has closed range on $L^2(\Sigma)$ if and only if J is bounded away from zero on $\sigma(J)$. Let $W \in B(L^2(\Sigma))$ have closed range. A result of Hoover, Lambert and Quinn [6] shows that the adjoint W^* of $W \in B(L^2(\Sigma))$ is given by $W^*f = hE(uf) \circ \varphi^{-1}$. Put $S = M_{\underline{\chi_{\sigma(J)}}}W^*$. Thus $S \in B(L^2(\Sigma))$, since $\frac{\chi_{\sigma(J)}}{J} \in L^{\infty}(\Sigma)$.

Then we have

$$WSWf = u(SWf) \circ \varphi$$

= $u(\frac{\chi_{\sigma(J)}}{J}hE(u^{2}f \circ \varphi) \circ \varphi^{-1}) \circ \varphi$
= $u(\frac{\chi_{\sigma(J)}}{J}hE(u^{2})\varphi^{-1}f) \circ \varphi$
= $u\chi_{\sigma(J \circ \varphi)}f \circ \varphi$.

Since $u \ge 0$ and $\sigma(h \circ \varphi) = X$, hence $\sigma(J \circ \varphi) = \sigma(h \circ \varphi E(u^2)) = \sigma(E(u^2)) \supseteq$ $\sigma(u)$. It follows that

$$WSWf = (u\chi_{\sigma(u)})\chi_{\sigma(E(u^2))}f \circ \varphi$$
$$= (u\chi_{\sigma(u)})f \circ \varphi = Wf,$$

$$SWSf = \frac{\chi_{\sigma(J)}}{J} hE(uWSf) \circ \varphi^{-1}$$

= $\frac{\chi_{\sigma(J)}}{J} hE(u^2(Sf) \circ \varphi) \circ \varphi^{-1}$
= $\frac{\chi_{\sigma(J)}}{J} h(E(u^2)(Sf) \circ \varphi) \circ \varphi^{-1}$
= $\frac{\chi_{\sigma(J)}}{J} (hE(u^2) \circ \varphi^{-1}) Sf$
= $\chi_{\sigma(J)} Sf = Sf$,

$$(WS)^* = (M_u E M_{\frac{u}{E(u^2)}})^*$$
$$= M_{\frac{u}{E(u^2)}} E M_u$$
$$= M_u E M_{\frac{u}{E(u^2)}} = WS,$$

and $SW = M_{\chi_{\sigma(J)}} = (SW)^*$. These observations establish the following theorem. **Theorem 2.1.** Let $W \in B(L^2(\Sigma))$ have closed range. Then $W^{\dagger} = M_{\underline{\chi_{\sigma(I)}}} W^*$. In particular, if φ is a measure-preserving map, then $C_{\varphi}^{\dagger} = C_{\varphi}^{*} = E(\cdot) \circ \varphi^{-1}$.

Lemma 2.2. Let $1 \le p < \infty$ and $W \in B(L^p(\Sigma))$. Then

$$||f + \mathcal{N}(W)||^p = \int_{\sigma(J)} |f|^p d\mu$$

Proof. Since for each $f \in L^p(\Sigma)$, $||Wf|| = ||\sqrt[p]{J}f||$, where $J = hE(u^p) \circ \varphi^{-1}$, it follows that

$$\mathcal{N}(W) = \mathcal{N}(M_{\sqrt[p]{J}}) = \{ f \in L^p(\Sigma) : f_{|\sigma(J)|} = 0 \} = L^p(\sigma(J)^c).$$

Let $g \in \mathcal{N}(W)$. Then we have

$$\int_{\sigma(J)} |f|^p d\mu \leq \inf_{g \in \mathcal{N}(W)} \int_X |f+g|^p d\mu = \|f+\mathcal{N}(W)\|^p.$$

On the other hand, since for each $f \in L^p(\Sigma)$, $\chi_{\sigma(I)^c} f \in \mathcal{N}(W)$, then we get that

$$\|f + \mathcal{N}(W)\|^{p} \le \|f - \chi_{\sigma(J)^{c}}f\|^{p} = \|f\chi_{\sigma(J)}\|^{p} = \int_{\sigma(J)} |f|^{p} d\mu.$$

Theorem 2.3. Let $1 \le p < \infty$ and $W \in B(L^p(\Sigma))$ have closed range. Then $K_W = \frac{1}{R} = \|\frac{\chi_{\sigma(J)}}{\sqrt[R]{I}}\|_{\infty}$, where $R = \sup\{r > 0 : J_{|\sigma(J)} \ge r^p\}$.

Proof. First we show that $K_W = \frac{1}{R}$. Since W has closed range, hence J is bounded away from zero on $\sigma(J)$. Let $J_{|\sigma(J)} \ge r^p$ for some r > 0 and $\tilde{f} = f + \mathcal{N}(W) \in X/\mathcal{N}(W)$. Then by Lemma 2.2, we have

$$\begin{split} \|f + \mathcal{N}(W)\|^p &= \int_{\sigma(J)} |f|^p d\mu \leq \frac{1}{r^p} \int_{\sigma(J)} |\sqrt{J}f|^p d\mu \\ &\leq \frac{1}{r^p} \int_X |\sqrt{J}f|^p d\mu = \frac{1}{r^p} \|Wf\|^p. \end{split}$$

It follows that $\|\tilde{f}\| \leq \frac{1}{r} \|\tilde{W}\tilde{f}\|$, and so $\|\tilde{W}^{-1}\| \leq \frac{1}{r}$. Now, by Takagi-Miura-Takahasi equality $K_W = \|\tilde{W}^{-1}\|$ (see [17]), if r is taken over all numbers satisfying $J_{|\sigma(J)} \geq r^p$, we obtain $K_W \leq \frac{1}{R}$. If $\|\tilde{W}^{-1}\| < \frac{1}{R}$, then, by definition of R, there exists $A \subseteq \sigma(J)$ with $0 < \mu(A) < \infty$ such that $J_{|A} < \frac{1}{\|\tilde{W}^{-1}\|^p}$. Put $f_0 = \chi_A/\mu(A)^{1/p}$. Then $\|Wf_0\| < \frac{1}{\|\tilde{W}^{-1}\|}$, and so

$$1 = \|f_0\| = \left(\int_{\sigma(J)} |f_0|^p d\mu\right)^{\frac{1}{p}} = \|f_0 + \mathcal{N}(W)\| \le \|\widetilde{W}^{-1}\| \|Wf_0\| < 1.$$

But this is a contradiction, and hence $K_W = \frac{1}{R}$. Finally

$$R = \sup\{r > 0: J_{|\sigma(J)} \ge r^p\} = \sup\{r > 0: \frac{\chi_{\sigma(J)}}{J} \le \frac{1}{r^p}\}$$
$$= \frac{1}{\inf\{r > 0: \frac{\chi_{\sigma(J)}}{J} \le r^p\}}$$
$$= \frac{1}{\left\|\frac{\chi_{\sigma(J)}}{\sqrt[p]{J}}\right\|_{\infty}}.$$

So, $K_W = \frac{1}{R} = \left\| \frac{\chi_{\sigma(I)}}{\sqrt[p]{I}} \right\|_{\infty}$.

Lemma 2.4. [9, Proposition 2.1(b)] For $w \in L^0(\Sigma)$, $T = EM_w$ defines a bounded linear operator on $L^2(\Sigma)$ if and only if $E(w^2) \in L^{\infty}(\varphi^{-1}(\Sigma))$. In this case $||T|| = \sqrt{||E(w^2)||_{\infty}}$.

Corollary 2.5. Let $W \in B(L^2(\Sigma))$ have closed range. Then $K_W = \|\frac{\chi_{\sigma(J \circ \varphi)}}{\sqrt{J \circ \varphi}}\|_{\infty}$. Moreover, if $u \in L^0(\varphi^{-1}(\Sigma))$, then $K_W = \|\frac{\chi_{\sigma(u)}}{\sqrt{J \circ \varphi}}\|_{\infty}$.

Proof. For each $f \in L^2(\Sigma)$, we have

$$\begin{split} \|W^{\dagger}f\|^{2} &= \int_{X} |W^{\dagger}f|^{2} d\mu = \int_{X} |h\frac{\chi_{\sigma(J)}}{J}E(uf) \circ \varphi^{-1}|^{2} d\mu \\ &= \int_{X} h|\sqrt{h}\frac{\chi_{\sigma(J)}}{J}E(uf) \circ \varphi^{-1}|^{2} d\mu \\ &= \int_{X} |\sqrt{h \circ \varphi}\frac{\chi_{\sigma(J) \circ \varphi}}{J \circ \varphi}E(uf)|^{2} d\mu \\ &= \int_{X} |E(u\frac{\chi_{\sigma(E(u^{2})}}{J \circ \varphi}\sqrt{h \circ \varphi}f)|^{2} d\mu \\ &= \|EM_{w}f\|^{2}, \end{split}$$

where $w = u \frac{\chi_{\sigma(E(u^2)})}{J \circ \varphi} \sqrt{h \circ \varphi}$. Hence by Lemma 2.3 we get that

$$\|W^{\dagger}\| = \sqrt{\|E(w^2)\|_{\infty}} = \|\frac{\chi_{\sigma(J \circ \varphi)}}{\sqrt{J \circ \varphi}}\|_{\infty}.$$

Now, the desired conclusion follows from the equality $K_W = ||W^{\dagger}||$. Moreover, If u is $\varphi^{-1}(\Sigma)$ -measurable, then E(u) = u, hence $\sigma(J \circ \varphi) = \sigma(E(u^2)) = \sigma(E(u)) = \sigma(u)$. So $K_W = ||\frac{\chi_{\sigma(u)}}{\sqrt{J \circ \varphi}}||_{\infty}$.

Corollary 2.6. (*i*) Let $C_{\varphi} \in B(L^2(\Sigma))$ have closed range. Then

$$K_{C_{\varphi}} = \sup_{0 < \mu(A) < \infty} \frac{\mu(A)}{\int_{A} \sqrt{h \circ \varphi} d\mu}.$$

(ii) If φ is a measure-preserving map, then $K_{C_{\varphi}} = \|C_{\varphi}\| = 1$.

At this stage, we determine the stability constant K_W of W on $L^{\infty}(\Sigma)$.

Lemma 2.7. Assume $\varphi(\Sigma) \subseteq \Sigma$ and $\mu(\varphi(A)) = 0$ for every null set $A \in \Sigma$, and let $W \in B(L^{\infty}(\Sigma))$. Then for each $f \in L^{\infty}(\Sigma)$,

$$||f + \mathcal{N}(W)|| = \operatorname{ess\,sup}\{|f(x)| : x \in \varphi(\sigma(u))\}$$

Proof. Pick $g \in \mathcal{N}(W)$ and take $\alpha = \operatorname{ess} \sup\{|f(x)| : x \in \varphi(\sigma(u))\}$. Since $\mathcal{N}(W) = \{f \in L^{\infty}(\Sigma) : (f \circ \varphi)_{|_{\sigma(u)}} = 0\} = \{f \in L^{\infty}(\Sigma) : f_{|_{\varphi(\sigma(u))}} = 0\} = L^{\infty}(\varphi(\sigma(u))^{c})$, hence $g_{|_{\varphi(\sigma(u))}} = 0$. It follows that

$$\alpha = \operatorname{ess\,sup}\{|(f+g)(x)| : x \in \varphi(\sigma(u))\} \le ||f+g||_{\infty},$$

and so $\alpha \leq \inf\{\|f + g\|_{\infty} : g \in \mathcal{N}(W)\} = \|f + \mathcal{N}(W)\|$. For the opposite inequality, put $g = -f\chi_{\varphi(\sigma(u))^c}$. Then $g \in \mathcal{N}(W)$ and

$$||f+g||_{\infty} = \operatorname{ess\,sup}\{|f(1-\chi_{\varphi(\sigma(u))^c})(x)| : x \in \varphi(\sigma(u))\} = \alpha.$$

Thus, $||f + \mathcal{N}(W)|| \leq \alpha$.

Theorem 2.8. Let $W \in B(L^{\infty}(\Sigma))$. If $\varphi(\Sigma) \subseteq \Sigma$ and $\mu(\varphi(A)) = 0$ for every null set $A \in \Sigma$, then W has Hyers-Ulam stability if and only if there exists a positive constant r such that $\varphi(U(r)) = \varphi(\sigma(u))$, where $U(r) := \{x \in X : |u(x)| \ge r\}$. Moreover, in this case $K_W = \frac{1}{R}$, where $R = \sup\{r > 0 : \varphi(U(r)) = \varphi(\sigma(u))\}$.

Proof. Suppose that there exists an r > 0 such that $\varphi(U(r)) = \varphi(\sigma(u))$. Then by Lemma 2.7 we have

$$\begin{split} \|f + \mathcal{N}(W)\| &= \operatorname{ess\,sup}\{|f(x)| : x \in \varphi(U(r))\}\\ &= \operatorname{ess\,sup}\{|f \circ \varphi(x)| : x \in U(r)\}\\ &= \operatorname{ess\,sup}\{\frac{1}{|u(x)|}|Wf(x)| : x \in U(r)\}\\ &\leq \frac{1}{r} \operatorname{ess\,sup}\{|Wf(x)| : x \in U(r)\}\\ &\leq \frac{1}{r} \|Wf\|_{\infty}. \end{split}$$

It follows that \widetilde{W}^{-1} from $\mathcal{R}(W)$ into $L^{\infty}(\Sigma)/\mathcal{N}(W)$ is bounded and $\|\widetilde{W}^{-1}\| \leq \frac{1}{r}$. Thus $\|\widetilde{W}^{-1}\| \leq \frac{1}{R}$. Conversely, suppose that W has closed range. Then \widetilde{W}^{-1} is bounded [17, Theorem 2.1]. Assume $\|\widetilde{W}^{-1}\| < \frac{1}{r}$ for some r > 0. We show that $\varphi(\sigma(u)) = \varphi(U(r))$. For this, we assume that $\varphi(\sigma(u)) \neq \varphi(U(r))$. Take $A = \varphi(\sigma(u)) \setminus \varphi(U(r))$. Put $f_0 = \chi_A$. Then $|Wf_0| \leq |u|\chi_{U(r)^c} \leq r$. Thus, we get that

$$1 = \operatorname{ess\,sup}\{|f_0(y)| : y \in \varphi(\sigma(u)))\} \\ = \|f_0 + \mathcal{N}(W)\| \le \|\widetilde{W}^{-1}\| \|Wf_0\| < 1.$$

But this is a contradiction. Finally, by a similar argument we show that $\frac{1}{R} \leq \|\widetilde{W}^{-1}\|$. Suppose, to the contrary, $\|\widetilde{W}^{-1}\| < \beta < \frac{1}{R}$ for some $\beta > 0$. Then $\varphi(U(\frac{1}{\beta})) \neq \varphi(\sigma(u))$. Now, take $B = \varphi(\sigma(u)) \setminus \varphi(U(\frac{1}{\beta}))$ and put $f_1 = \chi_B$. Then $\|Wf_1\| \leq \frac{1}{\beta}$, and so $1 = \|f_1 + \mathcal{N}(W)\| \leq \|\widetilde{W}^{-1}\| \|Wf_1\| < 1$. Thus, $K_W = \|\widetilde{W}^{-1}\| = \frac{1}{R}$. Let \mathcal{K} be the set of all compact operators on $L^{\infty}(\Sigma)$. For $W \in B(L^{\infty}(\Sigma))$ the essential norm of W means the distance from W to \mathcal{K} in the operator norm, namely $||W||_e = \inf\{||W - S|| : S \in \mathcal{K}\}$. Many people have computed the essential norm of (weighted) composition operators on various function spaces. In [10], the essential norm of W on $L^p(\Sigma)$ with 1 has been computed. Atthis stage, we determine the essential norm of <math>W on $L^{\infty}(\Sigma)$. Recall that an atom of the measure μ is an element $A \in \Sigma$ with $\mu(A) > 0$ such that for each $F \in \Sigma$, if $F \subseteq A$ then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure space (X, Σ, μ) with no atoms is called non-atomic measure space. It is well-known fact that every σ -finite measure space (X, Σ, μ) can be partitioned uniquely as $X = Z \cup Y$, where $Z = \bigcup\{A_j : j \in \mathbb{N}\}$ is a union of pairwise disjoint atoms and $Y \in \Sigma$, being disjoint from each A_j , is non-atomic (see [21]). Since Σ is σ -finite, so $\mu(A_j) < \infty$ for all $j \in \mathbb{N}$. Note that $\varphi(Y)$ is not necessarily subset of Y, but $\varphi(Z)$ is essentially subset of Z. In other words, if $A \notin \{A_i : i \in \mathbb{N}\}$, then $\varphi^{-1}(A)$ is not an atom (see [3]). Also, every $L^{\infty}(\Sigma)$ -function is constant on any atom in Z.

Theorem 2.9. Assume $\varphi(\Sigma) \subseteq \Sigma$ and $\mu(\varphi(A)) = 0$ for every null set $A \in \Sigma$, and let $W \in B(L^{\infty}(\Sigma))$. The essential norm of W is given by

$$||W||_e = \inf\{r > 0 : \varphi(G_r) \text{ consists of only finitely many atoms}\}, \qquad (2.1)$$

where $G_r = \{x \in X : |u(x)| \ge r\}.$

Proof. Denote the right side of (2.1) by α . We first show that $||W||_e \geq \alpha$. If $\alpha = 0$, there is nothing to prove, so we assume that $\alpha > 0$. Take $\varepsilon > 0$ arbitrarily. The definition of α implies that $\varphi(G_{\alpha-\varepsilon/2})$ either contains a non-atomic subset or has infinitely many atoms. So we can find mutually disjoint measurable subsets $\{F_n\}_n \subseteq Y \cap \varphi(G_{\alpha-\varepsilon/2})$ or $\{B_n\}_n \subseteq \{A_i \cap \varphi(G_{\alpha-\varepsilon/2}) : i \in \mathbb{N}\}$. For $\{C_n\}_n \subseteq \{F_n, B_n\}_n$, put $f = \chi_{C_n}$. Then $||f_n||_{\infty} = 1$ and $f_n \to 0$ weakly (see [12, p. 54-55]). Now, take a compact operator T on $L^{\infty}(\Sigma)$ such that $||W - T|| < ||W||_e + \frac{\varepsilon}{2}$. Then we have

$$|W||_{e} > ||W - T|| - \frac{\varepsilon}{2} \ge ||Wf_{n} - Tf_{n}||_{\infty} - \frac{\varepsilon}{2}$$

$$\ge ||(Wf_{n})\chi_{G_{\alpha-\varepsilon/2}}||_{\infty} - ||Tf_{n}||_{\infty} - \frac{\varepsilon}{2}$$

$$= ||u\chi_{\varphi^{-1}(C_{n})\cap G_{\alpha-\varepsilon/2}}||_{\infty} - ||Tf_{n}||_{\infty} - \frac{\varepsilon}{2}$$

$$\ge (\alpha - \frac{\varepsilon}{2}) - ||Tf_{n}||_{\infty} - \frac{\varepsilon}{2}$$

for all $n \in \mathbb{N}$. Since a compact operator maps weakly convergent sequences into norm convergent ones, it follows $||Tf_n||_{\infty} \to 0$. Hence $||W||_e \ge \alpha - \varepsilon$. Since ε was arbitrary, we obtain $||W||_e \ge \alpha$.

For the opposite inequality, take ε arbitrarily. By definition of α , there is $m \in \mathbb{N}$ such that $\varphi(G_{\alpha+\varepsilon}) = \bigcup_{i=1}^{m} A_{j_i}$. Put $v = u\chi_{G_{\alpha+2\varepsilon}}$. Note that if $\varphi(G_{\alpha+\varepsilon}) = \emptyset$, then $G_{\alpha+2\varepsilon} \subseteq G_{\alpha+\varepsilon} = \emptyset$, and so v = 0. Take $F_i = \varphi^{-1}(A_{j_i}) \cap G_{\alpha+\varepsilon}$ and $v_i = u\chi_{G_{\alpha+2\varepsilon}\cap F_i}$. Since $G_{\alpha+2\varepsilon} \subseteq \varphi^{-1}(\varphi(G_{\alpha+\varepsilon})) = \bigcup_{i=1}^{m} \varphi^{-1}(A_{j_i})$, hence $\bigcup_{i=1}^{m} (G_{\alpha+2\varepsilon} \cap F_i)$.

 $F_i) = G_{\alpha+2\varepsilon} \cap \varphi^{-1}(\bigcup_{i=1}^m A_i) \cap G_{\alpha+\varepsilon} = G_{\alpha+2\varepsilon}$. It follows that $v = \sum_{i=1}^m v_i$. Moreover, since $\varphi(F_i) \subseteq A_i$, then for each $f \in L^{\infty}(\Sigma)$, $f(\varphi(F_i)) = f(A_i)$ is constant. This implies that $vC_{\varphi}f = \sum_{i=1}^m f(A_i)v_i$. Hence vC_{φ} has finite rank and so is compact. Then we have

$$\|W - vC_{\varphi}\| = \|M_{u-v}C_{\varphi}\| \le \|u - v\|_{\infty} = \|(1 - \chi_{G_{\alpha+2\varepsilon}})u\|_{\infty} \le \alpha + \varepsilon.$$

It follows that $||W||_e \leq \alpha$.

Corollary 2.10. Assume $\varphi(\Sigma) \subseteq \Sigma$ and $\mu(\varphi(A)) = 0$ for every null set $A \in \Sigma$, and let $W \in B(L^{\infty}(\Sigma))$. Then W is compact if and only if for each $\varepsilon > 0$, $\varphi(\{x \in X : |u(x)| \ge \varepsilon\})$ consists of only finitely many atoms.

Note that, for $1 \le p < \infty$, Chan in [1] obtains a characterization of the weighted composition operators on $L^p(\Sigma)$ that are compact. He proved that $W \in B(L^p(\Sigma))$ is compact if and only if for any $\varepsilon > 0$ the set $\{x \in X : h(x) (E(|u|^p) \circ \varphi^{-1})(x) \ge \varepsilon\}$ consists essentially of finitely many atoms. The same characterization is contained in a paper by Takagi [16].

Example 2.11. (a) Let $w := \{m_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers. Consider the space $\ell^2(w) = L^2(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, where $2^{\mathbb{N}}$ is the power set of natural numbers and μ is a measure on $2^{\mathbb{N}}$ defined by $\mu(\{n\}) = m_n$. Let $u = \{u(j)\}_{j=1}^{\infty}$ be a sequence of non-negative real numbers. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a non-singular measurable transformation. Direct computations show that (see [10])

$$h(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} m_j;$$

$$E(f)(k) = \frac{\sum_{j \in \varphi^{-1}(\varphi(k))} f_j m_j}{\sum_{j \in \varphi^{-1}(\varphi(k))} m_j};$$

$$J(k) = \frac{1}{m_k} \sum_{j \in \varphi^{-1}(k)} (u(j))^2 m_j.$$

Thus either $\sigma(J)^c = \{k \in \mathbb{N} : \varphi^{-1}(k) = \emptyset \text{ or } u(\{\varphi^{-1}(k)\}) = \{0\}\}$. Hence $\sigma(J) = \{n \in \mathbb{N} : \varphi^{-1}(\{n\}) \cap \sigma(u) \neq \emptyset\} = \varphi(\sigma(u))$. It follows that $W \in B(\ell^2(w))$ has closed range if and only if

$$\inf\{\frac{1}{m_k}\sum_{j\in\varphi^{-1}(k)}(u(j))^2m_j; k\in\sigma(J)\}>0.$$

So by Theorem 2.4, $||W^{\dagger}|| = \frac{1}{\sqrt{\alpha}}$, where

$$\alpha := \inf\{\frac{1}{m_{\varphi(k)}}\sum_{j\in\varphi^{-1}(\varphi(k))}(u(j))^2m_j; k\in\sigma(J\circ\varphi)\}.$$

Note that $\sigma(J \circ \varphi) = \sigma(E(u^2)) = \{k \in \mathbb{N} : u(\{\varphi^{-1}(\varphi(k))\}) \neq \{0\}\}$. In particular, if for each $k \in \mathbb{N}$, $\varphi^{-1}(k) \neq \emptyset$, equivalently h > 0, then $\|C_{\varphi}^{\dagger}\| = \frac{1}{\sqrt{\beta}}$, where

$$\beta = \inf\{\frac{1}{m_{\varphi(k)}}\sum_{j\in\varphi^{-1}(\varphi(k))}m_j; k\in\mathbb{N}\}.$$

(b) Let X = (0,1) equipped with the Lebesgue measure μ on the Lebesgue measurable subsets. Set $u(x) = \sqrt{x}$ and let $\varphi : X \to X$ be defined by

$$\varphi(x) = \begin{cases} 2x & 0 < x < \frac{1}{2}, \\ 2 - 2x & \frac{1}{2} \le x < 1. \end{cases}$$

Direct computations show that

$$J(x) = \frac{1}{2} \left(u^2(\frac{x}{2}) + u^2(1 - \frac{x}{2}) \right) = \frac{1}{2}$$

and for each $f \in L^2(\Sigma)$,

$$(W^{\dagger}f)(x) = \sqrt{\frac{x}{2}}f(\frac{x}{2}) + \sqrt{\frac{2-x}{2}}f(1-\frac{x}{2}).$$

Thus *W* has closed range with $||W|| = \frac{\sqrt{2}}{2}$ and $||W^{\dagger}|| = \sqrt{2}$.

Here, there are a few examples to show that some of our results may be not true without some assumptions.

Example 2.12. (a) Take X = [0,1], $\Sigma = \{\emptyset, X\}$, $\mu(X) = 1$, $\varphi(x) = \frac{x}{2}$, and u = 1. Here $\varphi(\Sigma)$ is not a subset of Σ , $G_1 = \{x : |u(x)| \ge 1\} = X$, and $\varphi(X) = [0, \frac{1}{2}]$ does not consist of finitely many atoms. But since $L^{\infty}(\Sigma)$ is finite dimensional, so W is compact operator.

(b) Consider $X = \mathbb{N}$ and $\Sigma = 2^{\mathbb{N}}$. Let *E* denote the set of even numbers and define $\mu(A) = \operatorname{card}(A \cap E)$, where *A* is a subset of \mathbb{N} . Define $\varphi(n) = 2n$ for every $n \in \mathbb{N}$. It is clear that $\varphi(\Sigma) \subseteq \Sigma$. Consider $u = \chi_{E^c}$. Then $G_1 = E^c$ and $\varphi(E^c)$ is an infinite subset of even numbers, but W = 0 is compact.

Acknowledgment

The authors would like to acknowledge the valuable contribution of the referee regarding the improvement of the quality of the paper especially by suggesting the Example 2.12.

References

- [1] J. T. Chan, A note on compact weighted composition operators on $L^p(\mu)$, Acta Sci. Math. (Szeged) **56** (1992), 165-168.
- [2] P. R. Halmos, A Hilbert space problem book, Van Nostrand, New York, 1967.
- [3] D. J. Harrington, Co-rank of a composition operator, Canad. Math. Bull. **29** (1986), 33-36.

- [4] R. Harte, Invertibility and singularity for bounded linear operators, New York, Marcel Dekker, 1988.
- [5] G. Hirasawa and T. Miura, Hyers-Ulam stability of a closed operator in a Hilbert space, Bull. Korean Math. Soc. **43** (2006), 107-117.
- [6] T. Hoover, A. Lambert and J. Quinn, The Markov process determined by a weighted composition operator, Studia Math. (Poland) LXXII (1982), 225-235.
- [7] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. **27** (1941), 222-224.
- [8] M. R. Jabbarzadeh, Hyers-Ulam stability of weighted composition operators on L^p-spaces, Bull. Iranian Math. Soc. **32** (2006) 67-73.
- [9] M. R. Jabbarzadeh, A conditional expectation type operator on L^p spaces, Oper. Matrices 4 (2010), 445-453.
- [10] M. R. Jabbarzadeh, Conditional multipliers and essential norm of uC_{φ} between L^p spaces, Banach J. Math. Anal. 4 (2010), 158-168.
- [11] A. Lambert, Hyponormal composition operators, Bull. London Math. Soc. 18 (1986), 395-400.
- [12] C. O. Lo, Compact and Fredholm weighted composition operators, Ph.D. Thesis, Hong Kong, University of Science and Technology, 2010.
- [13] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
- [14] V. Rakocevic, Moore-Penrose inverse in Banach algebras, Proc. Roy. Irish Acad. Sect. A 88 (1988), 57-60.
- [15] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
- [16] H. Takagi, Compact weighted composition operators on L^p, Proc. Amer. Math. Soc. 116 (1992), 505-511.
- [17] H. Takagi, T. Miura and S.-E. Takahasi, Essential norms and stability constants of weighted composition operators on C(X), Bull. Korean Math. Soc. **40** (2003), 583-591.
- [18] H. Takagi, T. Miura and S.-E. Takahasi, The Hyers-Ulam stability of a weighted composition operator on a uniform algebra, J. Nonlinear Convex Anal. 5 (2004), 43-48.
- [19] H. Takagi, J. Takahashi and S.-I. Ueki, The essential norm of a weighted composition operator on the ball algebra, Acta Sci. Math.(Szeged) 70 (2004), 819-829.

- [20] S. M. Ulam, A collection of mathematical problems, Interscience, NewYork, 1960.
- [21] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

Faculty of Mathematical Sciences, University of Tabriz, P. O. Box: 5166615648, Tabriz, Iran email: mjabbar@tabrizu.ac.ir, m_jafari@tabrizu.ac.ir