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Abstract

We show that sufficiently small mild solutions of the initial value prob-
lem to the quasi-geostrophic equation in IR? are asymptotically stable under
arbitrary large initial L2-perturbations. We obtain also the decay rate.

1 Introduction

The Cauchy problem of the two-dimensional dissipative quasi-geostrophic model
given by Constantin [2] has the form

0, R2x(0,+0c0), (1.1)
6o(x), (1.2)

0; + g - VO + k(—A)20
6(x,0)

where the pseudo-differential operator A* = (—A)2 with 0 < a < 2 is defined
by the Fourier transformation:

Avw(E) = (27|2]) D (E). (1.3)

and x > 0 is a dissipative coefficient. Here, a scalar function 6 = 6(x,t) repre-
senting potential temperature and the velocity field uy = ug(x, t) are unknown.
Moreover, the velocity field 6 = 0(x, ) is determined by the scalar stream func-
tion 1 through

d d
ug = (ug, ug) = <_d—x2¢’_d—xlqj) ,
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where 1 satisfies the equation Ay = —6.

The quasi-geostrophic fluid is an important model in geophysical fluid
dynamics, they are special cases of the general quasi-geostrophic approxima-
tions for atmospheric and oceanic fluid flow with the small local Rossby num-
ber which ensures the validity of the geostrophic balance between the pressure
gradient and the Coriolis force. Furthermore, this quasi-geostrophic fluid motion
equation shares many features with fundamental fluid motion equations. When
x = 0, this equation is comparable to the vorticity formulation of the Euler equa-
tions, and (1.1) with &« = 0 is similar to a non-viscous wind driven circulation
equation. What is more, equation (1.1) with « = 1 shares similar features with
the three-dimensional Navier-Stokes equations. Thus, a = 1 is therefore referred
as the critical case, while the cases 0 < &« < 1and 1 < a < 2 are supercritical and
subcritical, respectively.

Due to its mathematical importance and its potential for applications in me-
teorology and oceanography, this equation has been recently intensively inves-
tigated by many authors. They were interested in two issues: the existence of
solutions and their asymptotic behavior for large times. For the subcritical case
1 < a < 2, Constantin and Wu [3] proved the existence of global in time smooth
solutions for every sufficiently smooth initial data. For &« = 1, Kiselev et al. [8]
proved the existence of the global smooth solution for any C* periodic initial
data. The issue of global existence and uniqueness of smooth solution is more
difficult, when 0 < a < 1, and has still unanswered aspects although many good
results on global solutions under small initial data and regularity criteria of weak
solutions have been examined by many authors (see e.g. [4, 12]).

On the other hand, it is desirable to understand the asymptotic behavior of
the quasi-geostrophic equation, especially for the asymptotic stability of solu-
tions. The asymptotic stability for zero solution is well understand by the differ-
ent methods (see [3, 10]). Chae and Lee studied the asymptotic stability of solu-
tions to the critical quasi-geostrophic (1.1) in suitable Besov space, while Dong
and Chen recently obtained the global stability of the critical and supercritical
problem in the Serrin-type class under the large initial and external perturba-
tions. Recently, Ren and Ma [11] described asymptotic stability of weak solutions
in L2-norm.

The aim of this paper is to obtain new, more subtle result concerning asymp-
totic behavior of solutions to the equation (1.1), especially solutions global-in-
time. First, we recall that Carrillo and Ferreira [1] considered self-similar so-
lutions for equation (1.1). Below, in Theorem 2.1 and Theorem 2.2 we show
that those self-similar solutions are globally asymptotically stable under arbitrary
large Lz—perturbation. We use ideas introduced in [6] and [7].

2 Notation and preliminaries

Let us recall Lorentz spaces, denoted as usual by LP7 = LP(IR). The decreasing
rearrangement of f is the function f* defined on [0, c0) by

F7(#) = inf{s > 0: dy(s) <1},
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where
de(s) = {x € R: [f(x)[ > s}.

It is easy to check that dy and f* are nonnegative and nonincreasing functions.
Moreover, if dy is strictly decreasing and continuous, then f* is the inverse func-
tion of d¢ and both f* and f have the same distribution function df. Hence, we

deduce that ) :
([ lrara) = ([Tirora)’,

which can be written in the form

Hﬂw=(54ﬂﬁﬂawéﬁ%.

The Lorentz space LP1 is defined as the set of all functions f such that || f]|} , < o0
with
1

(% fow[t%f*(f)]q%y,O <p<o0,0<g< oo,
sup,o t7 f*(1),0 < p < 00,4 = co.

If

*
pa

Notice that LP* are called the Marcinkiewicz spaces or the weak Lebesgue spaces.
The quantity [|f||},, gives a natural topology for the Lorentz space as a topologi-

cal vector space. However, the triangle inequality is not true for || f||}, ;. A natural
way of metrizing the space LF is to define

f**(t):%/otf*(s)ds for t>0

which can be computed as

f7(t) = sup {%’/Eu(x)mx}

[E[>t

for every set E with finite measure. Hence, we define the norm ||f||,, in the
following way

I/

1 1
R o), i 1<p<oi<g<e,
supy. £ (1), if 1<p<eo,q=co

The spaces LV endowed with the norm are Banach spaces and

p
1A llpq < ANl < F\If pa

holds. An alternative definition of the norm in the Marcinkiewicz spaces is

I1f

_ ~1+5 :
peo = sup { |E P/E|f(x)|dx.E€B}
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where B is the collection of all Borel sets with finite, positive measure. The
Lorentz spaces have the same scaling property as the Lebesgue spaces, namely
for all 5 > 0 we have ;

1£ ) lpg =0 71 fllpa

wherel < p < ooand1 < g < co.
Moreover, the following inequalities hold true: the weak Holder inequality:

for every 1 <p<oo(here L =1%),0 < g <oand0 < r < oo satisfying
1 _ . .
s == —|— =, and the weak Young inequality

forevery 0 < p < 00,0 < g < coand 0 < r < oo satisfying 1 + 1 = %4—%
The crucial role in our reasoning below play some useful inequalities. We
recall the Stroock-Varopoulos inequality [9]

x - 4(p-1) 2
P—ldx > / .
[ 0@ dr > o J (O 1) dax, @3)
which holds true for each f € L?(IR") such that (—A)2 € LP(IR"). Notice that for
« = 2, namely for the usual Laplacian, we have equality in (2.3). Important for us
is also the fractional Gagliardo-Nirenberg inequality under Lorentz spaces [5]

. B 95
1 fllpg < BIC=8)4fllp a1 f 52 g (2.4)
with
q1 q2

I« 9—B _q

- )+ =21

’3<p1 Zn) p2 p
and 1 < p<ool pz,q,ql,q2<ooO<,B<q,0<oc<2n1<q< and

1 < p; < 2. Moreover, we use the fractional Sobolev inequality
Il e < CI-2) 25)

for1<p<p<ooand0<¢x<27”

2 &
It is known [1] that there exists ¢ > 0 such that for every vy € La—1"°(IR?)

homogeneous of degree —a + 1 and ||og|| 2 (IR?) < e the initial value problem
—1*®
(1.1)—(1.2) has a global-in-time solution Wpflich is self-similar, namely

o(x,t) =t~y <£1) . (2.6)
tu
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Moreover, according to [1, Thm. 3.4] and the interpolation theorem for any
r € (;27,00) there exists 0 < &, < ¢ such that V € L"(R") with ||V, < &.

Thus, we have
41
[o(-, )|, = TV, (2.7)

for r > —%.. Furthermore, by inspection of the proof of [1, Prop. 3.15] we con-
clude that t|Vo|, <e
« ,00

QIN
‘IH

We now state the main results of this work: a type of asymptotic stability for
global-in-time solutions v = v(x, t) under arbitrary large L2(IR?)-perturbations.

Theorem 2.1 (Existence of weak solutions). Let v = v(x, t) be a global-in-time self-
2
similar solution to the initial value problem (1.1)~(1.2) in Cy ([O,oo), La—1% (IRZ))

satisfying properties (2.6)~(2.7). Denote vy = v(-,0) and let wy € L2(IR?) be arbi-
trary. Then, the Cauchy problem (1.1)—(1.2) with the initial condition ug = vy + wo
has a global-in-time solution 0 = 6(x,t) of the form 6(x,t) = v(x,t) + w(x, t), where
w = w(x,t) is a weak solution of the corresponding perturbed problem (see (2.9)—(2.10)
below) satisfying

w € Xr = L*([0,T], L3(R?)) N L*([0, T], H*(R?))  foreach T >0. (2.8)

Theorem 2.2 (Asymptotic behavior of weak solutions). A solution 6 = 6(x,t) of
problem (1.1)—(1.2) considered in Theorem 2.1 can be constructed in a such way to satisfy
lw(t)||2 = ||6(t) —v(t)||2 — 0as t — oo.

For the proofs of Theorems 2.1 and 2.2, denote by 6 = 0(x, t) a solution of the
dissipative quasi-geostrophic equation (1.1) and initial data 6y = vy 4 wp, where
wo € L2(IR?). Then, the functions w(x, t) = 8(x,t) — v(x, t) satisfy the perturbed
initial value problem

Wi+ Uy - Vo+uy - Vw+ A*w+ 1y - Vo =0, R? x (0, +00), (2.9)

w(x,0) = wo(x). (2.10)

Thus, our main goal is to construct a weak solution w of problem (2.9)—(2.10) and
show its L?-decay to zero as t — 0.

3 Existence of solutions

First, we recall a standard definition.

Definition 3.1. A vector field w = w(x,t) is called a weak solution to problem
(2.9)—(2.10) if it belongs to the classical energy space Xt defined in (2.8) and if
>+/ A)iu(t), (=8) (1)) + (uw - Vo, @) — (10 - V), 0)

+ (o - V w,g0>} drt

= (00, 9(0)) + [ (g}

(3.1)
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forall 0 > tand all ¢ € C([0,00), HL(IR?)) N C!([0,00), L2(IR?)), where (-, -) is the
inner product in L2(IR?).

Theorem 3.2. Let wy € L2(IR2) be arbitrary and Vv € L™ satisfies IVollz, <

where ¢ is sufficiently small. Then, the Cauchy problem (2.9)=(2.10) with the initial
condition zy = vy + wo has a solution w = w(x, t) such that w € Xt foreach T > 0
and satisfies

t o
()13 +2(1 - Ce) /O I(=a) () [3dT <0 (3.2)
forallt > 0.
Proof. We multiply equation (2.9) by w and integrate over R? to get

1d «
s @B+ [ - Vowdsr + (=a) w3 = 0 3

using the fact that [, uy - Vwwdx = 0 and [, w - Vww dx = 0 since div w = 0.
Now, applying Holder inequality in Lorentz spaces (2.1) we estimate

|/]Rzuw-Vdex

< Clluy - Vo|| 4 _||lw < C||Voll2 |wl]?
< Clluw Hmlz\l |4 ,<C] HWH s

4
2—u’ 2—a’

since ||uy||pq < Cllwl|p,q for suitable p and g. Next, we use the fractional Gagli-
ardo-Nirenberg inequality under Lorentz spaces (2.4) to obtain

/Zuw-vadx <CIVolla |I(=A) w3 (3.4)
R a®

Combining (3.3) and (3.4) we have
d 2 & 12
el — — <
gs@IB+2(1-CIvel Jli(-a)iul} <o.
Integrating from 0 to ¢ we obtain the energy inequality
t o
leo(1)]13 +2(1 — Ce) /O I(=2)3w(7)||7 dT < ||woll3

for sufficiently small || Vo), <e. ]
n ,00

4 Energy inequality in L? (R?) - space

Theorem 4.1. Let wy € L2(IR?) N LP(IR?) for some p > 2 be arbitrary. Then there
exists a constant C = C(p) such that the solution obtained in Theorem 3.2 satisfies the
following energy inequality

t o 4
leo(t) ]I} + p(1 - C||Vv(f)||§,oo)/O I(=8)%w|z(7)[zdT <0.  (41)
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Proof. We multiply equation (2.9) by |w|P~!, integrate over R?> and applying
Stroock-Varopoulos inequality (2.3) to get

_ @ P
LS IREI+ [ Vo dx + (A B <0 @)
using the fact that [p, 11, - Vw|w|P~1dx = 0 and [, w - Vw|w|P~!dx = 0 since
div w = 0. Hence, it is enough to estimate the term f]RZ Uy - Volw|P~1 dx. Apply-
ing Holder inequality in Lorentz spaces (2.1), we get

< Cllug - VolwPH| 4 2IIWH
2+a’ 2—u’

CHWHz Huw!wz "l 4
2—u’

| / Uy - V0|w|§_1 dx
R2 2

p
T

4 r 2 P
< CIVolly bl b7 e

2—a’

Finally, using the fractional Sobolev inequality (2.5), we arrive at

’ / Uy - Vv|w|§_1 dx
R2

3 r
<ClIVollz I(=A)ifw]2]3,
a/

which completes the proof of Theorem 4.1. n

5 Decay of solution

Theorem 5.1. For wy € L2(IR?) N LP(IR?) and p > 2 the solution obtained in Theorem
3.2 satisfies

lo@)l, < ¢+ ) g 6.1)

Proof. First, observe that using the fractional Gagliardo-Nirenberg inequality (2.4),
we have the following estimate

« r % p(2—s)
lo®)ll} < (I(=a)5w/5) " el *

&, P 3 p2=s)
C (I=)5lwl#13) llewoll, =
2(2—p)

since the L2- norm of the solution is bounded, where s = iy Hence, we get

Z s
(=) Feo| 2113 > Cllevoll3 >~ Jlw ()72,

The above inequality together with energy inequality (4.1) leads to the differential
inequality of the form

1d

B(s—2
S (0 < ~Cllwl;

@ IN

f(t)
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for the function f(t) = ||u(t)||3, which immediately gives the algebraic decay of
the L2-norm

lw®ll, < = 5 g .

Theorem 5.2. For wy € L2(IR?) N LP (R?) the solution obtained in Theorem 3.2 satisfies

lim flw(#)[|2 = 0. (5.2)
Proof. We define
1 gt
A =limsup ||w(t)||z and B =limsup - [ |lw(s)|2ds. (5.3)
t—o0 toeo £J0

Let us notice that if A = 0 if and only if B = 0 which is a straightforward conse-
quence of the fact that the norm ||w(t)||, is nonincreasing, the inequality A < B
and the Lebesgue dominated convergence theorem.

Using the Duhamel principle, we have

s o
leo(s)]l2 < fle™** *wollerII/0 Ve 708 sy (T)w(t) drll2 (5.4)

® S 14
+||/0 Ve (=mA *Mw('f)v(’f)<51'f||z+||/0 Ve 60 sy (T)w () dt |2
= I1(s) + Ix(s) + I3(s) + I4(s),

where e—*A" is a fundamental solution of the equation us = —A%u.

First, we prove that lims_,« [1(s) = 0, hence we get that

t
lim ! Li(s)ds = 0. (5.5)
0

t—oo t

It is know that |le™*A" x wp||2 < ||wol|2 and moreover, |[e™*A" % @||2 < Cs™ 2 llollh

for ¢ € CP(R?). Lete > 0. We choose ¢ € CP(R?) such that |[wy — ¢|j2 < &
Then we have

—sA%

. 1
le™*™" x woll2 < [le™A"  (wo — @)l + e * plla < Cs™2 +¢,

which proves (5.5).

Next, we deal with the second term in (5.4) applying the Young inequality
(2.2), the Holder inequality (2.1) and the fractional Gagliardo-Nirenberg inequal-
ity (2.4)

S

L(s) < C [[(s =0 F fuu(tjw(D)l2dr < € [ (s =)~ * () [fde

1 a 2 201
<C A (s —7) " «[[(=A)sw(T)[|5 lw(T)|, © dT.

Integrating I (s) from 0 to t and multiply by }, we get

1

%/ot h(s)ds < C7 / | —8)¥w(7)[3)" ds,



Asymptotic stability of solutions to quasi-geostrophic equation 197

since from energy inequality (3.2) the norm ||w(#)||3 is bounded for ¢ > 0. Now,
using the Young inequality in the Marcinkiewicz space (2.2), we obtain

1 t _2—a a _2—a
?/012( Ct /H Viw(7)|2dT < 5, (5.6)

because f(; (—A) Tw(T) |5 dt is bounded according to energy inequality (3.2).
The last two terms, namely integrals 13( ) and I4(s ) we treat in the same man-
ner. We apply the Young inequality with 1 +1 =1 —|— +1, wherer > —%;, prop-

erties of the fundamental solution et

v =1v(x,t) to get

and propertles of the self-similar solution

Taking the limit superior as s — oo of both sides and using notation (5.3) and
substituting T = sz, we have

. 1 _2(1yly 20141y g
hmsuplg(s)<C||V||rA/ (1—2)2G+DA0+D1qz < CB|V|,,  (5.7)
0

S—00

since the function f(z) = (1 — z)_az 14 js integrable for a € (1,2).
Analogously, we arrive at

limsup I4(s) < CB||V||,. (5.8)

S— 00

Now, we go back to (5.4), integrate from 0 to t and multiply by 1 to get

1t 1/t ae
7 [ o@llzds < 7 [ e w2 ds

1 t s &
+?/ ||/ Ve (-DA * Uy (T)w(T) dTl|2 ds
0o Jo

t s ’
+ %/0 | /0 Ve 70N sy (T)o(7) d 2 ds+

1t ° —(s—T)A"
?/0 ||/0 Ve Uy (T)w(T) dt||2 ds.

Taking the limit superior as t — oo of both sides, using notation (5.3) and com-
bining (5.5), (5.6), (5.7) and (5.8), we have

B < 2CB|[V|,

which is equivalent to
(1-2C||V|l)B<O

Hence, if the norm ||V||, is sufficiently small, B = 0 and, in the consequence,
A = 0, which completes the proof of Theorem 5.2. m
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