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Abstract

In this work we prove the existence of a classical positive solution for an
elliptic equation with a sublinear term. We use Galerkin approximations to
show existence of such solution on bounded domains in R

N .

1 Introduction

In this paper, we study the existence of solution for the problem





−∆v = λvq + f (v), in Ω,
v > 0 in Ω,
v = 0 on ∂Ω,

(1)

where Ω ⊂ R
N, N ≥ 2, is a bounded domain with smooth boundary, λ > 0 is a

parameter, 0 < q < 1 and f : R → R is a continuous function satisfying

0 ≤ f (s)s ≤ C|s|p+1, (2)

where 1 < p ≤ N+2
N−2 if N ≥ 3 or 1 < p if N = 2.

Our main result in this paper is the following:

Theorem 1.1. Suppose that f : R → R is a continuous function satisfying (2). Then,
there exists λ∗

> 0 such that, for every λ ∈ (0, λ∗), the problem (1) has a positive
solution u ∈ C2,γ(Ω), for some γ ∈ (0, 1).
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Elliptic problems of the type
{

−∆v = g(x, v) in Ω,
v = 0 on ∂Ω,

(3)

where the nonlinearity g : Ω × R → R is continuous, have been extensively
studied; see for example [2, 3] for a survey. Furthermore, we also refer [4], where
the authors considered problem (3) with nonlinearity combined effects of concave
and convex; namely, they considered g(x, u) = λuq + up with 0 < q < 1 < p.

We say that g has sublinear growth at infinite if

lim
|s|→+∞

g(x, s)

s
= 0 uniformly in x.

We say that g has superlinear growth at infinite if

lim
|s|→+∞

g(x, s)

s
= +∞ uniformly in x.

We would like to highlight that the only assumptions which we assume are that
0 < q < 1 and that f is continuous and satisfies the growth condition (2). This
way, the nonlinearity g(x, s) = λsq + f (s) of problem (1) can have sublinear or
superlinear growth at infinite.

Most papers treat problem (3) by means of variational methods, then it is
usually assumed that g has sublinear or superlinear growth and, sometimes,
sg(x, s) ≥ c|s|p, where c > 0 is a constant and p > 2; see for example [11]. An-
other common assumption on g is the so-called Ambrosetti-Rabinowitz condition
that means the following:

∃R > 0 and θ > 2 such that 0 < θG(x, s) ≤ sg(x, s) ∀|s| ≥ R and x ∈ Ω,

where G(x, s) =
∫ s

0 g(x, τ)dτ. Even when the Ambrosetti-Rabinowitz condi-
tion can be dropped, it must be assumed some condition to give compactness
of Palais-Smale sequences or Cerami sequences. See for instance [6], where they
assume

g : Ω × R → R is continuous and g(x, 0) = 0;

∃t0 > 0 and M > 0 such that 0 < G(x, s) ≤ Mg(x, s) ∀|s| ≥ t0 and x ∈ Ω;

0 < 2G(x, s) ≤ sg(x, s) ∀|s| ≥ 0 and x ∈ Ω.

See also [9].
We are able to solve (1) under weaker assumptions by using the Galerkin

method. For that matter we approximate f by Lipschitz functions in Section 2.
In Section 3 we solve approximate problems. In Section 4 we prove a regularity
result to approximate problems. Section 5 is devoted to prove Theorem 1.1; in
doing so we show that solutions vn of approximate problems are bounded away
from zero and converge to a positive solution of (1).

At last in this introduction, we would like to emphasize that a similar
approach was already used in [1], but different to that, we do not assume that
the nonlinearity f is Lipschitz continuous.
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2 Approximating functions

In order to prove Theorem 1.1, we make use of the following approximation result
by Lipschitz functions, proved by Strauss in [10].

Lemma 2.1. Let f : R → R be a continuous function such that s f (s) ≥ 0 for all s ∈ R.
Then, there exists a sequence fk : R → R of continuous functions satisfying s fk(s) ≥ 0
and

(i) ∀ k ∈ N, ∃ck > 0 such that | fk(ξ) − fk(η)| ≤ ck|ξ − η|, for all ξ, η ∈ R.

(ii) ( fk) converges uniformly to f in bounded subsets of R.

The proof consists in considering the following family of approximation func-
tions fk : R → R defined by

fk(s) =





−k[G(−k − 1
k )− G(−k)], if s ≤ −k,

−k[G(s − 1
k )− G(s)], if −k ≤ s ≤ − 1

k ,

k2s[G(− 2
k )− G(− 1

k )], if − 1
k ≤ s ≤ 0,

k2s[G(2
k )− G(1

k )], if 0 ≤ s ≤ 1
k ,

k[G(s + 1
k )− G(s)], if 1

k ≤ s ≤ k,

k[G(k + 1
k )− G(k)], if s ≥ k.

(4)

where G(s) =
∫ s

0 f (τ)dτ.
The sequence ( fk) of the previous lemma has some additional properties.

Lemma 2.2. Let f : R → R be a continuous function such that s f (s) ≥ 0 for all s ∈ R.
Let us suppose that there exist constants C > 0 and 1 < p ≤ N+2

N−2 such that

s f (s) ≤ C|s|p+1 , ∀s ∈ R. (5)

Then, the sequence ( fk)k∈N from Lemma 2.1 satisfies

(i) 0 ≤ s fk(s) ≤ C1|s|
p+1 for all |s| ≥ 1

k ,

(ii) 0 ≤ s fk(s) ≤ C2|s|
2 for all |s| ≤ 1

k ,

where C1 and C2 do not depend on k.

Proof: Everywhere in this proof, the constant C is the one given by (2).
First step: Suppose −k ≤ s ≤ − 1

k .

By the mean value theorem, there exists η ∈ (s − 1
k , s) such that

fk(s) = −k[G(s −
1

k
)− G(s)] = −kG′(η)(s −

1

k
− s) = f (η)

and
s fk(s) = s f (η).

As s − 1
k < η < s < 0 and f (η) < 0, we have s f (η) ≤ η f (η). Therefore,

s fk(s) ≤ η f (η) ≤ C|η|p+1 ≤ C|s −
1

k
|p+1 ≤ C(|s|+

1

k
)p+1 ≤ C2p+1|s|p+1.
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Second step: Suppose 1
k ≤ s ≤ k.

By the mean value theorem, there exists η ∈ (s, s + 1
k ) such that

fk(s) = k[G(s +
1

k
)− G(s)] = kG′(η)(s +

1

k
− s) = f (η)

and
s fk(s) = s f (η).

As 0 < s < η < s + 1
k and f (η) > 0, we have s f (η) ≤ η f (η). Therefore,

s fk(s) ≤ η f (η) ≤ C|η|p+1 ≤ C|s +
1

k
|p+1 = C(|s| +

1

k
)p+1 ≤ C2p+1|s|p+1.

Third step: Suppose |s| ≥ k.
Define

fk(s) =

{
−k[G(−k − 1

k )− G(−k)], if s ≤ −k,

k[G(k + 1
k )− G(k)], if s ≥ k.

If s ≤ −k, by the mean value theorem, there exists η ∈ (−k − 1
k ,−k) such that

fk(s) = k[G(−k −
1

k
)− G(−k)] = −kG′(η)(−k −

1

k
− (−k)) = f (η)

and
s fk(s) = s f (η).

As −k − 1
k < η < −k < 0 and k < |η| < k + 1

k , we have s f (η) = s
η η f (η).

Therefore,

s fk(s) =
s

η
η f (η) ≤

|s|

|η|
C|η|p+1 =

= C|s||η|p ≤ C|s|(k +
1

k
)p ≤ C|s|(|s| +

1

k
)p ≤ C2p|s|p+1.

If s ≥ k, by the mean value theorem, there exists η ∈ (k, k + 1
k ) such that

fk(s) = k[G(k +
1

k
)− G(k)] = kG′(η)(k +

1

k
− k) = f (η)

and

s fk(s) = s f (η) =
s

η
η f (η) ≤

|s|

|η|
C|η|p+1 =

= C|s||η|p ≤ C|s|(k +
1

k
)p ≤ C|s|(|s| +

1

k
)p ≤ C2p|s|p+1.

Fourth step: Suppose − 1
k ≤ s ≤ 1

k .
Define

fk(s) =

{
k2s[G(− 2

k )− G(− 1
k )], if − 1

k ≤ s ≤ 0,

k2s[G(2
k )− G(1

k )], if 0 ≤ s ≤ 1
k .
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If − 1
k ≤ s ≤ 0, by the mean value theorem, there exists η ∈ (− 2

k ,− 1
k ) such

that

fk(s) = k2s[G(−
2

k
)− G(−

1

k
)] = k2sG′(η)(−

2

k
− (−

1

k
)) = −ks f (η).

Therefore,

s fk(s) = −ks2 f (η) = −k
s2

η
η f (η) ≤ k

s2

|η|
η f (η)

≤ Ck|s|2|η|p ≤ Ck|s|2(
2

k
)p ≤ C2p|s|2.

If 0 ≤ s ≤ 1
k , by the mean value theorem, there exists η ∈ (1

k , 2
k ) such that

fk(s) = k2s[G(
2

k
)− G(

1

k
)] = k2sG′(η)(

2

k
−

1

k
) = ks f (η).

Therefore,

s fk(s) = ks2 f (η) = k
s2

|η|
η f (η) ≤

≤ Ck|s|2|η|p ≤ Ck|s|2(
2

k
)p ≤ C2p|s|2.

The proof of the lemma follows by taking C1 = C2p+1 and C2 = C2p, where C is
like in (5).

3 Approximate problem

In order to prove Theorem 1.1, we first study the auxiliary problem





−∆v = λvq + fn(v) +
1
n in Ω,

v > 0 in Ω,
v = 0 on ∂Ω,

(6)

where 0 < q < 1, λ > 0 is a parameter and fn : R → R is a function of the
sequence given by Lemma 2.1 and Lemma 2.2.

We will use the Galerkin method together with the following fixed point the-
orem, see [10] and [8, Theorem 5.2.5]. A similar approach was already used in
[1].

In the following proposition, 〈., .〉 denotes the Euclidean inner product of R
d.

Proposition 3.1. Let F : R
d → R

d be a continuous function such that 〈F(ξ), ξ〉 ≥ 0
for every ξ ∈ R

d with |ξ| = r for some r > 0. Then, there exists z0 in the closed ball
Br(0) such that F(z0) = 0.

The main result in this section is the following theorem.

Theorem 3.2. There exists λ∗
> 0 and n∗ ∈ N such that (6) has a weak positive

solution for all λ ∈ (0, λ∗) and n ≥ n∗.
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Proof: Fix B = {w1, w2, . . . , wm, . . . } a orthonormal basis of H1
0(Ω) and define

Wm = [w1, w2, . . . , wm]

to be the space generated by {w1, w2, . . . , wm}. Given ξ = (ξ1, . . . , ξm) ∈ R
m,

let v = ∑
m
i=1 ξiwi ∈ Wm and consider the function F : R

m → R
m such that

F(ξ) = (F1(ξ), F2(ξ), . . . , Fm(ξ)), where

Fj(ξ) =
∫

Ω
∇v∇wj − λ

∫

Ω
(v+)

qwj −
∫

Ω
fn(v+)wj −

1

n

∫

Ω
wj, j = 1, 2, . . . , m

. Therefore,

〈F(ξ), ξ〉 =
∫

Ω
|∇v|2 − λ

∫

Ω
(v+)

q+1 −
∫

Ω
fn(v+)v+ −

1

n

∫

Ω
v. (7)

Given v ∈ Wm, we define

Ω+
n = {x ∈ Ω : |v(x)| ≥

1

n
}

and

Ω−
n = {x ∈ Ω : |v(x)| <

1

n
}.

Thus, we rewrite (7) as

〈F(ξ), ξ〉 = 〈F(ξ), ξ〉P + 〈F(ξ), ξ〉N ,

where

〈F(ξ), ξ〉P =
∫

Ω+
n

|∇v|2 − λ
∫

Ω+
n

(v+)
q+1 −

∫

Ω+
n

fn(v+)v+ −
1

n

∫

Ω+
n

v

and

〈F(ξ), ξ〉N =
∫

Ω−
n

|∇v|2 − λ
∫

Ω−
n

(v+)
q+1 −

∫

Ω−
n

fn(v+)v+ −
1

n

∫

Ω−
n

v.

Step 1. Since 0 < q < 1, then

∫

Ω+
n

(v+)
q+1 ≤

∫

Ω
|v|q+1 = ‖v‖

q+1

Lq+1(Ω)
≤ C1‖v‖

q+1

H1
0 (Ω)

. (8)

By virtue of (i) Lemma 2.2, we get

∫

Ω+
n

fn(v+)v+ ≤ C
∫

Ω
|v+|

p+1dx ≤ C2‖v‖
p+1

H1
0 (Ω)

. (9)

It follows from (8) and (9) that

〈F(ξ), ξ〉P ≥
∫

Ω+
n

|∇v|2 − λC1‖v‖
q+1

H1
0 (Ω)

− C2‖v‖
p+1

H1
0 (Ω)

−
C3

n
‖v‖H1

0 (Ω),
(10)
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where C1, C2 and C3 depends on C and |Ω|.
Step 2. Since 0 < q < 1, then

∫

Ω−
n

(v+)
q+1 ≤

∫

Ω−
n

|v|q+1 ≤ |Ω|
1

nq+1
. (11)

By virtue of (ii) Lemma 2.2, we get

∫

Ω−
n

fn(v+)v+ ≤ C
∫

Ω−
n

|v+|
2dx ≤ C|Ω|

1

n2
. (12)

It follows from (11) and (12) that

〈F(ξ), ξ〉N ≥
∫

Ω−
n

|∇v|2 − λ|Ω|
1

nq+1
− C|Ω|

1

n2
− |Ω|

1

n2
. (13)

It follows from (10) and (13) that

〈F(ξ), ξ〉 ≥ ‖v‖2
H1

0 (Ω)
− λC1‖v‖

q+1

H1
0 (Ω)

− C2‖v‖
p+1

H1
0 (Ω)

−
C3

n
‖v‖H1

0 (Ω) − λ|Ω|
1

nq+1
− C|Ω|

1

n2
− |Ω|

1

n2
.

Assume now that ‖v‖H1
0 (Ω) = r for some r > 0 which will be fixed later. We have

〈F(ξ), ξ〉 ≥ r2 − λC1rq+1 − C2rp+1 −
C3

n
r − λ|Ω|

1

nq+1
− C|Ω|

1

n2
− |Ω|

1

n2
.

We want to choose r such that

r2 − C2rp+1 ≥
r2

2
,

that is,

r ≤
1

(2C2)
1

p−1

.

Then, choosing r = 1

2(2C2)
1

p−1

, we obtain

〈F(ξ), ξ〉 ≥
r2

2
− λC1rq+1 −

C3

n
r − λ|Ω|

1

nq+1
− C|Ω|

1

n2
− |Ω|

1

n2
.

Now, defining ρ = r2

2 − λC1rq+1, we choose λ∗
> 0 such that ρ > 0 for λ < λ∗.

Therefore, we choose λ∗ = r1−q

4C1
. Now, we choose n∗ ∈ N such that

C3

n
r + λ|Ω|

1

nq+1
+ C|Ω|

1

n2
+ |Ω|

1

n2
<

ρ

2
,

for every n ≥ n∗. Let ξ ∈ R
m such that |ξ| = r. Then, for λ < λ∗ and n ≥ n∗, we

obtain

〈F(ξ), ξ〉 ≥
ρ

2
> 0.
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Since fn is a Lipschitz continuous function for every n, by standard arguments
it is shown that F is continuous, that is, given (xk) in R

m and x ∈ R
m such that

xk → x we obtain F(xk) → F(x). Therefore, by Proposition 3.1, for all m ∈ N,
there exists y ∈ R

m satisfying |y| ≤ r and F(y) = 0, that is, there exists vm ∈ Wm

verifying ‖vm‖H1
0 (Ω) ≤ r, for every m ∈ N, and

∫

Ω
∇vm∇w = λ

∫

Ω
(vm+)

qw +
∫

Ω
fn(vm+)w +

1

n

∫

Ω
w, ∀ w ∈ Wm.

Since Wm ⊂ H1
0(Ω) for all m ∈ N and r does not depend on m, we have that

(vm) is a bounded sequence of H1
0(Ω). Then, for some subsequence, there exists

v = vn ∈ H1
0(Ω) such that

vm ⇀ v weakly in H1
0(Ω) (14)

and
vm → v in L2(Ω) and a.e. in Ω. (15)

Fixing k ∈ N such that m ≥ k we obtain
∫

Ω
∇vm∇wk = λ

∫

Ω
(vm+)

qwk +
∫

Ω
fn(vm+)wk +

1

n

∫

Ω
wk, ∀ wk ∈ Wk. (16)

Now, considering g : H1
0(Ω) → R defined by g(u) =

∫
Ω
∇u∇wk, for every

u ∈ H1
0(Ω), we have that g is a continuous linear functional and it follows from

(14) that ∫

Ω
∇vm∇wk →

∫

Ω
∇v∇wk as m → ∞. (17)

On the other hand, note that, from (15), we obtain
∫

Ω
fn(vm+)wk →

∫

Ω
fn(v+)wk as m → ∞. (18)

Indeed, by Lemma 2.1 (ii) it follows that | fn(vm+) − fn(v+)| ≤ cn|vm+ − v+|;
hence

∣∣∣∣
∫

Ω
fn(vm+)wk −

∫

Ω
fn(v+)wk

∣∣∣∣ ≤ cn‖wk‖L2(Ω)‖vm − v‖L2(Ω) as m → ∞,

and then, (15) implies (18). By (14), (18) and Sobolev compact embedding, letting
m → ∞, we obtain

λ
∫

Ω
(vm+)

qwk +
∫

Ω
fn(vm+)wk +

1

n

∫

Ω
wk → λ

∫

Ω
(v+)

qwk +
∫

Ω
fn(v+)wk +

1

n

∫

Ω
wk.

(19)
By (16), (17), (19) and by the uniqueness of the limit, we obtain

∫

Ω
∇v∇wk = λ

∫

Ω
(v+)

qwk +
∫

Ω
fn(v+)wk +

1

n

∫

Ω
wk, ∀ wk ∈ Wk.

For density of [Wk]k∈N in H1
0(Ω) and by linearity, we conclude that

∫

Ω
∇v∇w = λ

∫

Ω
(v+)

qw +
∫

Ω
fn(v+)w +

1

n

∫

Ω
w, ∀ w ∈ H1

0(Ω). (20)
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Furthermore, v ≥ 0 a.e. in Ω. In fact, as v− ∈ H1
0(Ω), we obtain from (20) that

∫

Ω
∇v∇v− = λ

∫

Ω
(v+)

qv− +
∫

Ω
fn(v+)v− +

1

n

∫

Ω
v−.

Hence, we have from Lemma 2.1 that

0 ≥ −‖v−‖
2
H1

0 (Ω)
=
∫

Ω
∇v∇v− =

∫

Ω
fn(v+)v− +

1

n

∫

Ω
v− ≥ 0,

that is, ‖v−‖H1
0(Ω) = 0 and consequently, v−(x) = 0 a.e. in Ω. Therefore,

v(x) = v+(x) ≥ 0 a.e. in Ω and we conclude the proof of the theorem.

4 Regularity of Solution of the Approximate Problem

In this section, we show that all weak solutions of the problem (6) are regular. Let
v ∈ H1

0(Ω) be a weak solution of the problem (6) and define

g(x) := λvq(x) + fn(v(x)) +
1

n
.

We have that

|g| ≤ λ|v|q + | fn(v)|+
1

n
. (21)

Notice that

|v|q ≤ 1 + |v|t−1, (22)

where 2 ≤ t ≤ 2∗. Here, 2∗ is the critical Sobolev exponent, that is,

2∗ =
2N

N − 2
.

Furthermore, since fn : R → R is a Lipschitz continuous function and fn(0) = 0,
we have for each n ∈ N that

| fn(v)| ≤ Cn|v|,

and consequently,

| fn(v)| ≤ Cn(1 + |v|t−1), (23)

where 2 ≤ t ≤ 2∗. This way, by combining (21), (22) and (23), we obtain

|g| ≤ C1 + C2|v|
t−1, (24)

where

C1 := λ + Cn +
1

n

and

C2 := λ + Cn.

Then, using (24) and well-known Bootstrap arguments, similar to those found in
[7], we conclude that v ∈ C2,γ(Ω), for some γ ∈ (0, 1).
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5 Proof of the Theorem 1.1

In this section, we demonstrate Theorem 1.1. The following lemma of [10, Theo-
rem 1.1] is used to show that vn converges to a solution v of (1).

Lemma 5.1. Let Ω be a bounded open set in R
N, uk : Ω → R be a sequence of functions

and gk : R → R be a sequence of functions such that gk(uk) are measurable in Ω

for every k ∈ N. Assume that gk(uk) → v a.e. in Ω and
∫

Ω
|gk(uk)uk|dx < C for

a constant C independent of k. Suppose that for every bounded set B ⊂ R there is a
constant CB depending only on B such that |gk(x)| ≤ CB, for all x ∈ B and k ∈ N.
Then, v ∈ L1(Ω) and gk(uk) → v in L1(Ω).

Since v ∈ C2,γ(Ω), γ ∈ (0, 1), satisfies v ≥ 0 and

−∆v = λvq + fn(v) +
1

n
,

it follows by assumptions on fn that

−∆v ≥ 0.

Then, by Maximum Principle, we have v > 0 in Ω, that is, v is a solution of the
problem (6). For each n ∈ N, let us denote by vn the solution of (6). It follows
from (14) that

v
(n)
m ⇀ vn weakly in H1

0(Ω) as m → ∞,

where, for each n ∈ N, (v
(n)
m )m∈N is a sequence in H1

0(Ω) satisfying

||v
(n)
m || ≤ r, ∀m ∈ N.

Then,

‖vn‖ ≤ lim inf
m→∞

‖v
(n)
m ‖ ≤ r, ∀ n ∈ N.

Since r does not depend on n, there exists v ∈ H1
0(Ω) such that

vn ⇀ v weakly in H1
0(Ω).

By compact embedding, up to a subsequence, we have

vn → v in Ls(Ω), for 1 ≤ s < 2∗ if N ≥ 3 or for 1 ≤ s < +∞ if N = 2,

and then, up to a subsequence,

i) vn(x) → v(x) a.e. in Ω;

ii) |vn(x)| ≤ h(x), ∀ n ∈ N a.e. in Ω, for some h ∈ Ls(Ω).
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Notice that the following inequality holds:






−∆vn ≥ λv
q
n, in Ω,

vn > 0 in Ω,
vn = 0 on ∂Ω.

This way, considering wn = λ
1

q−1 vn, we obtain

−∆

(
wn

λ
1

q−1

)
≥ λ

(
wn

λ
1

q−1

)q

,

and consequently,
−∆ wn ≥ w

q
n.

Let us denote by w̃ the unique solution of the problem






−∆w̃ = w̃q, in Ω,
w̃ > 0 in Ω,
w̃ = 0 on ∂Ω.

The existence and uniqueness of such solution is proved in [5]. By Lemma 3.3 of
[4], it follows that wn ≥ w̃, ∀ n ∈ N, that is,

vn(x) ≥ λ
1

1−q w̃(x), a.e. in Ω, ∀ n ∈ N. (25)

Taking the limit as n → +∞ in (25), we obtain

v(x) ≥ λ
1

1−q w̃(x), a.e. in Ω

and hence, v > 0 a.e. in Ω.
Recall that, from (20),

∫

Ω
∇vn∇w = λ

∫

Ω
(vn)

qw +
∫

Ω
fn(vn)w +

1

n

∫

Ω
w, ∀ w ∈ H1

0(Ω),

and using that vn is a classical solution, we have

−∆ vn = λ(vn)
q + fn(vn) +

1

n
in L2(Ω). (26)

Since
vn → v a.e. in Ω,

we have
fn(vn(x)) → f (v(x)) a.e. in Ω (27)

by the uniform convergence of Lemma 2.1 (ii).
Multiplying the equation (26) by w = vn and since vn is bounded in H1

0(Ω),
we obtain ∫

Ω
fn(vn)vndx ≤ C, (28)
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for every n ∈ N, where C > 0 is a constant independent of n. By (27), (28) and
by the expression of fn defined in (4), the assumptions of Lemma 5.1 are satisfied
implying

fn(vn) → f (v) strongly in L1(Ω).

Multiplying (26) by w ∈ D(Ω), integrating on Ω and using the previous conver-
gences, we have

−∆ v = λ vq + f (v) in D′(Ω). (29)

Since f (v) ∈ L
p+1

p (Ω) and λ vq ∈ L
p+1

p (Ω), we conclude from (29) that v ∈

H1
0(Ω) ∩ W

2,
p+1

p (Ω) and
−∆v = λ vq + f (v)

in the strong sense. Notice that the assumption (2) implies that

| f (s)| ≤ C|s|t−1,

where 2 ≤ t ≤ 2∗. Thus, using well-known Bootstrap arguments, we conclude
that v ∈ C2,γ(Ω), for some γ ∈ (0, 1), and it is a classical positive solution of
problem (1).
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